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Abstract: In this study, finite element method was used to study the effects of various notch 

geometries on the strain field distributions during the plane strain tensile test for cold-rolled 

steel (DC01). The artificial neural network approach (ANN) and the response surface meth-

odology (RSM) were adopted to develop the mathematical prediction models applied in the 

optimization procedure. The strain state was expressed by self-defined metrics, namely, the 

Plane Strain State Index (PSSI) and the Homogeneity Index (HI) were predicted by changing 

the notch angle (X degree), notch width (d mm), and notch length (c mm). The Quadratic 

mathematical models obtained by the RSM, and ANN presented the evolution of PSSI, and 

HI based on (X, d, and c). The results show that the ANN method provides more precise 

results compared to those of the RSM approach. 
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1. INTRODUCTION 

Predicting the formability and safety limit of material in sheet metal forming opera-

tions depends on accurate knowledge of forming behaviour under various strain 

states. The forming limit diagram (FLD) developed by Keeler (Keeler & Backofen, 

1964) and Goodwin (Goodwin & Gorton, 1968) is a beneficial graphical tool for 

predicting the plastic behaviour of sheet metal, used in FEM analysis and quality 

optimization during production. Usually, the FLD can be determined by the 

Nakajima and Marciniak stretch-forming test according to the ISO 12004-2:2008 

standard (Marciniak & Kuczyński, 1967), (International Organization for 

Standardization, 2008). The strain domain must be covered from equibiaxial tension 

(ε1 = ε2) to pure shear (ε1 = −ε2). Also, it is necessary to deform the specimen along 

a linear strain path during the different loading patterns. However, the strain path is 

a broken line in the actual industry. Because, unlike the laboratory simulation, there 
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are complex tool geometries and multi-stage forming operations for industrial sheet 

metal forming processes that require several passes, which means that the defor-

mation patterns change from one pass to another. 

A pre-strained plane specimen with tensile test could be an interesting alternative 

to determine and predict forming limit curves with non-linear path. Many authors in-

tensively used plane strain tensile test specimens for various mechanical characteriza-

tions (Flores et al., 2010), (Kuwabara, 2007), (An, Vegter & Elliott, 2004). In our 

study, we intended to predict and optimize a sample geometry for the plane strain ten-

sile test that could allow us to apply further deformation tests, which eventually leads 

to determining the forming limits on non-linear strain paths. Several sample geome-

tries were investigated through simulation on ABAQUS to study and measure the dif-

ferent strain behaviour during the test. Firstly, we investigate the evolution of the plane 

strain distribution, which is characterized by the self-defined change of the plane strain 

state index (PSSI) and homogeneity index (HI) as a function of the specimen notch 

parameters: notch angle (X degree), notch width (d mm), notch length (c mm). Sec-

ondly, modelling the specimen notch parameters using the response surface method-

ology (RSM) and the artificial neural network (ANN) methods is carried out. Finally, 

the predictive capabilities of the ANN and RSM models were further compared in 

terms of their mean square error (RMSE), and coefficient of determination (R2). 

2. MATERIAL AND SAMPLE GEOMETRY 

In the present work we considered a nominal 1 mm thick, cold rolled steel (DC01). 

Mechanical properties parallel, perpendicular and 45° to the rolling direction are 

given in Table 1. The plane strain tensile tests were performed by a geometry shown 

in Figure 1 (Wagoner, 1980). It was considered as the basic shape, on which subse-

quent improvements are proposed in this paper. 

Where: A80 is the total engineering strain, A80_ave is the average total engineer-

ing strain, r is the r-value, r =̅
(r0+r90+2 .r45) 

4
 is the normal anisotropy, ∆𝑟 =  

𝑟0+𝑟90

2
−

𝑟45  is the planar anisotropy, Rp0.2 is the yield strength, Rp0.2_ave is the average 

yield strength, Rm is the tensile strength and Rm_avr is the average tensile strength. 

Table 1 

Data for the yield and strength parameters of DC01 material 

Orientation angle 0° 45° 90° 

A80 (%) 40.0 36.0 39.0 

A80_ave (%) 38.0 

r 2.35 1.55 2.52 

r ̅ 1.99 

Δr 0.88 

Rp0,2 (N/mm2) 199 206 198 

Rp0,2_ave (N/mm2) 201 

Rm (N/mm2) 306 322 298 

Rm_ave (N/mm2) 309 
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Figure 1. Sample geometry, used in the plane strain tensile test simulation 

(units in mm) 

3. FINITE ELEMENT MODELLING 

The code used for simulation is Abaqus 2021, with Hill yield criterion developed by 

Hill in 1948 [(1), written in terms of the Lankford coefficients (r)]. In order to cal-

culate the plastic stress-strain behaviour of the investigated materials, the Swift non-

linear isotropic hardening model, shown in equation (2), was used with our measured 

data shown in Table 2. 

All specimens have a 30 mm griping area length on both sides and 0.8 mm mesh 

size of a three-dimensional eight-node brick element with six integration points is 

used. The boundary and loading conditions are applied in a manner that is as similar 

to the real tensile test experiment as possible. The lower grip of the specimen was 

kept fixed in all directions but free in the direction of the applied load. The sliding 

between grips and specimen is neglected. The maximum major and minor strain val-

ues are extracted in the strain hardening region before the local cross-sectional area 

becomes significantly smaller than the average (necking region). The data gathered 

from nine points in the middle area of all samples were, as shown in Figure 2. 

 

 

𝛷(𝜎) =
r𝑇𝐷(𝑟𝑅𝐷 + 1)𝜎11

2 +  r𝑅𝐷(𝑟𝑇𝐷 + 1)𝜎22
2 − 2𝑟𝑅𝐷𝑟𝑇𝐷𝜎11𝜎22 +  (𝑟𝑅𝐷 + 𝑟𝑇𝐷)(2𝑟45° + 1)𝜎11

2  

r𝑇𝐷(𝑟𝑅𝐷 + 1)
− 𝜎 = 0 (1) 

 

 
 

�̅� =   𝐾( 𝜑0 + �̅�)𝑛  (2) 
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Figure 2. Mesh and data points of the standard geometry 

Table 2 

Swift equation data for the used materials 

Material Swift equation 

K [MPa] φ0 [–] n [–] 

DC01 578 0.0173 0.22 

 

In (1) and (2), �̅�, �̅�, are respectively the current yield stress and anisotropic equiva-

lent plastic strain, TD refers to the transverse and RD to the rolling direction. Hard-

ening is defined by the material parameters K, n and  𝜑0 and those are nominated in 

Table 2. 

4. TESTING METHODS 

To study the effect of various notch geometries (X, d, C) on the strain field distribu-

tions, the L27 (313 ) Taguchi standard orthogonal array is adopted as the testing 

method. The factors and their levels in the present study are presented in Table 3. 

Table 3 

Orthogonal array for responses and their levels 

X (degree) d (mm) c (mm) PSSI min HI min 

90 

2.5 

15 –0.1203 0.4168 

20 –0.0974 0.3175 

25 –0.0959 0.2898 

5 

15 –0.0914 0.3811 

20 –0,0847 0,2304 

25 –0,0838 0,2057 

10 

15 –0,0929 0,3350 

20 –0,0719 0,2168 

25 –0,0435 0,1602 
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X (degree) d (mm) c (mm) PSSI min HI min 

95 

2.5 

15 –0.1329 0.7350 

20 –0.1018 0.3715 

25 –0.0996 0.2930 

5 

15 –0.1133 0.4453 

20 –0.1018 0.3715 

25 –0.0999 0.2630 

10 

15 –0.0936 0.3570 

20 –0.0899 0.2476 

25 –0.0633 0.1914 

100 

2.5 

15 –0.2435 0.9350 

20 –0.2235 0.7239 

25 –0.1986 0.4930 

5 

15 –0.2345 0.7435 

20 –0.2105 0.4684 

25 –0.1850 0.3326 

10 

15 –0.1532 0.5138 

20 –0.1403 0.5021 

25 –0.0995 0.2923 

 

 

For characterizing the strain state, we used the following equations: 

Plane strain state index (PSSI): the closer the average minor strain (ε2) to zero, 

the better it is. 

𝑃𝑆𝑆𝐼 =  𝐴𝜀2 =  
∑ 𝜀2

𝑛
𝑖=1

𝑛
   (𝑛 = 1 … 9) (3) 

 

Homogeneity index (HI) (equivalent with standard deviation): the smaller the HI, 

the better is the result. 

                        𝐻𝐼 = √
∑ (𝜀1

𝑛 − 𝐴𝜀1)𝑛
𝑖=1

2

𝑛
   (𝑛 = 1 … 9) 

(4) 

  

5. MODELLING BY RESPONSE SURFACE METHODOLOGY 

The relationship between the factors and the output parameters was modelled by 

quadratic regression. The regression equations obtained are given below by (5), and 

(6) with coefficients of determination R2 of 96.34%, and 94.38%, respectively. 

These regression models help predict the response parameters with respect to the 

input control parameters. 

 
PSSI min = −11.95 + 0.27 𝑋 −  0.0187 𝐶 +  0.000814 𝑋 𝑑 +  0.000222 𝑋 𝐶 +  0.000177 𝑑 𝐶 

−  0.001507 𝑋2  +  0.000414 𝑑2  −  0.000002 𝐶2 
(5) 

  
  

HI min = 14.45 −  0.346 𝑋 +  0.0792 𝑑 +  0.1089 𝐶 −  0.002150 𝑋 𝑑 −  0.001991 𝑋 𝐶 
+  0.001908 𝑑 𝐶 +  0.002238 𝑋2  +  0.00487 𝑑2  +  0.001076 𝐶2 

(6) 
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6. MODELLING BY ARTIFICIAL NEURAL NETWORK 

The purpose of applying this artificial intelligent (AI)-based method is because of 

their ability to model the highly nonlinear processes. A neural network consists of a 

directed weighted graph whose nodes symbolize neurons; these neurons have an ac-

tivation function to influence other network neurons (Chabbi et al., 2017). We used 

JMP Pro predictive analytics software, it provides advanced algorithms for building, 

assessing and managing predictive models. 

The test design consists of 27 tests; among them, 18 tests are used for learning 

the network and 9 are arbitrarily chosen for validating the network. The neural net-

work learning is made by backpropagation algorithm, which is based on the gradient-

descent method. 

Several network structures were tested for both PSSI and HI. According to the 

correlation coefficient R2 and the root-mean-square error (RMSE) for both learning 

and validation sets, the adopted structures are shown in Table 4. 

Table 4 

ANN structures of PSSI and HI 

Response 
Nodes number 

Input-hidden-output 

Learning Validation 

R2 RMSE R2 RMSE 

PSSI 3-4-1 0.9964 0.0029 0.9805 0.0087 

HI 3-6-1 0.9824 0.0026 0.9723 0.0048 

 

The comparison between RSM and ANN showed that, the values of R2 of the ANN 

models are better. That’s proves the robustness and the reliability of the ANN 

method. The ANN models are expressed as follows: 

 
PSSI min = − 0.1525     −  0.0002  H1 +  0.0231  H2 +  0.0578  H3 +  0.0253 H4 (7) 

where 

 
𝐻1 = tanh  (5 (0.577 𝑋 − 0.4556 𝑑 − 0.3363 𝐶 − 44.7319));   
𝐻2 = tanh  (5 (− 0.06 𝑋 − 0.4034 𝑑 + 0.5728 𝐶 − 3.3808));   

𝐻3 = tanh  (5 (− 1.4098 𝑋 − 0.438 𝑑 + 0.1278 𝐶 +  134.5717));   
𝐻4 = tanh  (5 (− 0.2553 𝑋 + 0.9046 𝑑 − 0.2511 𝐶 +  23.7027));   

 

HI min = 1.6204 − 2.8529 𝐻1 +  2.7680 𝐻2 +  2.0635 𝐻3 −  0.3214 𝐻4 − 0.5363 𝐻5 
−  0.7615 𝐻6    

(8) 

where 

 
𝐻1 = tanh  (5 (− 0.1081 𝑋 +  0.0981 𝑑 +  0.0387 𝐶 +  9.3979));   
𝐻2 = tanh  (5 (− 0.0633 𝑋 +  0.2012 𝑑 +  0.0607 𝐶 +  3.4180));   
𝐻3 = tanh  (5 (− 0.0638 𝑋 −  0.1956 𝑑 −  0.0110 𝐶 +  7.1946));   
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𝐻4 = tanh  (5 (0.0135 𝑋 +  0.0541 𝑑 +  0.0015 𝐶 −  1.6519));   
𝐻5 = tanh  (5 (− 0.011 𝑋 −  0.0291 𝑑 +  0.0097 𝐶 +  1.1673));   

𝐻6 = tanh  (5 (− 0.0662 𝑋 −  0.0761 𝑑 +  0.1098 𝐶 +  4.7903));   

 

where HI are the terms represent the output of the hidden layer. 

The previous models can predict plane strain state index (PSSI) and homogeneity 

index (HI) in the range of selected sample geometries. Figure 3 illustrate the differ-

ences between the modelled and predicted responses of HI and PSSI. These figures 

indicate that the models can represent the system under the given studied domain. 

 

 

Figure 3. Comparison of the modelled and predicted ANN method values  

for PSSI and HI 
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7. SUMMARY 

In our study, the prediction of strain distribution during the plane strain tensile test 

using the response surface methodology (RSM) and the artificial neural network 

(ANN) methods is carried out. The comparison between the two modelling methods 

showed that ANN is better with the values of R2. The comparison of the measured 

and predicted ANN method values for PSSI and HI figures indicates that the models 

can represent the system under the given studied domain. 
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