

Design of Machines and Structures, Vol. 13, No. 2 (2023), pp. 113–120.
https://doi.org/10.32972/dms.2023.021

A BRIEF OVERVIEW OF GENETIC ALGORITHMS

KRISTÓF SZABÓ

University of Miskolc, Institute of Machine Tools and Mechatronics
H-3515, Miskolc-Egyetemváros
kristof.szabo@uni-miskolc.hu

https://orcid.org/0000-0002-4126-6687

Abstract: This article examines the topic of Genetic Algorithms, discussing the basic con-
cepts and terminology related to Genetic Algorithms. The advantages, disadvantages and
limitations of the mentioned algorithms are defined. The different population models and the
process of parent selection are presented, as well as the areas of application of the procedure
are summarized.

Keywords: genetic algorithms, optimization, evolutionary algorithms

1. INTRODUCTION

Continuing advances in manufacturing and materials science have enabled design
engineers to produce complex digital models that are difficult or impossible to pro-
duce using traditional manufacturing methods and technologies. This unprecedented
manufacturing flexibility will continue to offer even more opportunities and chal-
lenges for computer-aided design of digital models. With these possibilities, even
the most experienced design engineer's intuition can be underwhelmed. To address
design challenges, computer algorithms have been developed to solve the problem
based on specific design goals and constraints. This type of genetic algorithm-driven
design process is now called Generative Design.
This design approach is not a single algorithm or ready process, but an approach by
which the designer defines a series of instructions, rules and relationships that pre-
cisely identify the steps required to implement the proposed design and the resulting
data or geometry.
Genetic Algorithm (GA) is a search-based optimization technique based on the prin-
ciples of genetics and natural selection. It is often used in solving optimization

114 Kristóf Szabó

problems, in research and in machine learning stages as it is very useful when the
objective function is highly complex, just as in case of Generative Design.
In the optimization process, we have an input and an output, and, in the process, we
look for the input that gives the ‘best’ output. In mathematical terms, the definition
of ‘best’ is the maximization or minimization of one or more objective functions by
varying the input parameters. The set of all possible solutions constitutes the search
space. In this search space, there is a point that gives the optimal solution. The ob-
jective of optimization is to find a given point or set of points in this search space
(Erdős-Sélley, Gyurecz, Janik, & Körtvélyesi, 2013), (Hegedűs, 2002).

2. GENETIC ALGORITHMS

Genetic algorithms are search-based algorithms based on the principles of natural
selection and genetics. Genetic algorithms were developed by John Holland, his stu-
dents and colleagues at the University of Michigan, and David Edward Goldberg has
achieved great success in solving various optimization problems (Goldberg &
Samtani, 1986), (Holland, 1992), (Mitchell, 1998). In genetic algorithms, possible
solutions to a given problem undergo recombination and mutation, as in natural ge-
netics. Through this process new individuals are created, and the process is repeated
over several generations. Each individual or solution is assigned a so-called fitness
value, which is determined by the value of the objective function. More fit individ-
uals are given a better chance of producing individuals with a higher fitness value.
This is in line with the Darwinian theory of ‘survival of the fittest’ (Darwin, 1859).
Thus, over generations, better solutions are continuously produced until the stopping
criterion is reached. Genetic algorithms are spontaneous processes, but they perform
much better than random local search, in which only different random solutions are
tried, following the best ones so far (Haupt & Haupt, 2004), (Deb, 2011).

2. 1. The justification for genetic algorithms

Genetic algorithms have many positive features that have made them extremely pop-
ular. First, they do not require derivative information, which is not available for
many real-world problems. In many cases they are faster and more efficient than
traditional methods. They can handle both continuous and discrete functions as well
as multi objective problems. It provides a list of ‘good’ solutions, not just a single
solution. You always get an answer to the problem, which can only get better over
time. It is useful when the search area is very large and there are many parameters.
In addition to the so-called advantages, the disadvantages or, in a sense, limitations
should also be mentioned. Genetic algorithms are not suitable for solving all types

 A brief overview of genetic algorithms 115

of problems, especially those that are simple and where derived information is avail-
able. The calculation of the fitness value is repeated, which can be computationally
expensive for certain problems. Assuming a stochastic process, there is no guarantee
that the solution is optimal and of the best quality. If not properly implemented, the
algorithm may not converge to the optimal solution on the other hand it shows how
close a given design solution is from the designer's goals. Genetic algorithms are
also cannot be applied when the aim is to find ideas to the design task, and we need
originally new ideas (Takács & Kamondi, 2006).
For many problems in computer science, even the most powerful computing systems
may take a very long time to solve a problem. In this case, genetic algorithms have
proven to be a powerful tool to provide usable, near-optimal solutions in a short time.
Traditional gradient-based methods work by starting from a random point and mov-
ing in the direction of the gradient until a maximum value is reached. This technique
is efficient and works very well for objective functions with a maximum point. But
in most real situations this is not the case. Mostly, we have to deal with objective
functions that have multiple peaks, which is why these methods fail. This is because
they suffer from getting stuck in the local optimum.

2. 2. Basic concepts of Genetic Algorithms

Table 1
Terminology of Genetic Algorithms

(Michalewicz, 1994), (Mitchell, 1998)

Title Definition
Population The subset of all coded solutions to a given problem.
Chromosomes A possible solution to the problem.
Gene An elementary position on a chromosome.
Allele The value that a gene takes for a given chromosome.
Genotype Population of the computational space.

Phenotype
The population in the real solution space in which solutions are
represented as they appear in the real world.

Decoding

For simple problems, the phenotype and genotype spaces are the
same. In most cases, however, the phenotype and genotype spaces
are different. Decoding is the process of transforming a solution
from the genotype to the phenotype space, while coding is the pro-
cess of transforming the solution from the phenotype to the geno-
type space

Fitness Function
A simply defined fitness function is a function that takes the solu-
tion as input and produces the fitness of the solution as output.

Genetic operators
They change the genetic make-up of the offspring. This includes
cross-breeding, mutation and selection

116 Kristóf Szabó

When examining genetic algorithms, it is very important to go into sufficient detail
about the basic terminology of the procedure, which is summarised in Table 1.

2. 3. The basic structure of Genetic Algorithms

Figure 1 shows the flowchart of the method, which starts with an initial population
and can be randomly generated. Every individual or design option can be mentioned
as a possible solution to the complete design problem. From this population, so-
called parents are selected for subsequent mating. Thanks to the crossing and muta-
tion operators used, new offspring are generated. Finally, these offspring replace the
existing individuals in the population and the process is repeated. In this way, genetic
algorithms attempt to mimic human evolution to some extent (Mitchell, 1998).

Figure 1. Flowchart of Genetic Algorithms

2. 4. Coding of solutions

When implementing a genetic algorithm, one of the most important aspects is the
representation we want to use to represent our solutions. Observations have shown
that the selection of the appropriate representation to properly define the mappings

 A brief overview of genetic algorithms 117

between phenotype and genotype spaces is essential for the success of Genetic Al-
gorithm (Goldberg & Samtani, 1986), (Mitchell, 1998).
The binary representation is one of the simplest and widely used representations in
genetic algorithms. This representation is shown in Figure 2. In this type of repre-
sentation, the genotype consists of a set of bits. For some problems, when the solu-
tion space consists of Boolean decision variables: yes or no, the binary representation
is natural.

0 0 1 0 1 1 1 0 1 0

Figure 2. Binary representation of genotype

Figure 3 shows a solution where genes can be defined by continuous rather than
discrete variables. In this case, a real-valued representation is most appropriate.
However, the accuracy of these real-valued or floating-point numbers may be a func-
tion of the computer.

0,5 0,2 0,1 0,4 0,6 0,8 0,3 0,9 0,2 0,8

Figure 3. Representation of a genotype with continuous variables

For genes with discrete values, the solution space cannot always be restricted to bi-
nary values. If four criteria have to be distinguished, then in such cases the represen-
tation of integers may be appropriate, as illustrated in Figure 4.

1 3 2 4 1 4 3 2 2 3

Figure 4. Representation of a genotype with discrete variables

In many problems, the solution itself is the order of the elements. In such cases, the
permutation representation is the most obvious solution, as shown in Figure 5.

1 5 9 6 4 3 2 8 10 7

Figure 5. Permutation representation of the genotype

118 Kristóf Szabó

2. 5. Evaluation of solutions

In steady-state genetic algorithms, one or two offspring are generated in each itera-
tion and replace at least one individual in the population. These algorithms are also
called incremental algorithms. In the generative model, ‘n’ offspring are generated,
where ‘n’ is the population size, and at the end of the iteration the entire population
is replaced.
A fitness function is the objective function for the genetic algorithm –it is a function
that takes as input a possible solution to a problem and gives as output a measure of
how ‘good’ the solution is relative to the problem. It shows how close a design so-
lution is from the designer’s original goal. The fitness value is calculated repeatedly.
In most cases, the fitness function and the objective function are the same, with the
objective being to maximise or minimise the objective function. The fitness function
must be fast to compute and, importantly, it must be measurable. In some cases, it
may not be possible to calculate the fitness function directly due to the complexity
of the problem. In such cases, approximations are made.

2. 6. Parent selection

Table 2
Methods of parent choosing

(Mitchell, 1998), (Michalewicz, 1994), (Yang & Soh, 1997)

Method Description

Roulette wheel selection

A pie chart is divided into ‘n’ units and the area of each unit is
proportional to the fitness value of the parents. Using a fixed
point, the selection is made by rotating and stopping the dia-
gram

Stochastic universal sampling
Similar to roulette wheel selection, but there are several fixed
points so that all parents can be selected at the same time.

Tournament selection

"k" individuals are randomly selected from the population and
the best of them is chosen to become the parent. It is also very
popular in the literature, as it can work even with negative fit-
ness values.

Rank selection

All individuals in the population are ranked according to their
fitness. The selection of parents depends on the rank of the in-
dividual and not on fitness. It is used when the fitness values
of individuals in a population are very close to each other.

Random selection
Parents are randomly selected from the existing population.
There is no selection pressure on the fitter individuals, so this
strategy is not popular.

 A brief overview of genetic algorithms 119

The choice of parents is very important for the convergence rate in genetic algo-
rithms, as the right parents lead to better solutions. Maintaining population diversity
is crucial to the success of genetic algorithms, so it is important that a highly suitable
solution does not produce convergent results within a few generations, as this leads
to a loss of diversity. This process is called premature convergence, which is an un-
desirable state in genetic algorithms.
Fitness Proportional Choice is one of the most popular ways of parenting. In it, each
individual has a probability of becoming a parent proportional to his or her fitness
score. Those with higher fitness scores have better genes and are more likely to be
selected. There are several possible cases of fitness proportional selection. The most
common methods of selection are summarised in Table 2.

3. SUMMARY

Genetic algorithms are not only used in case of Generative Design, but it is most
often used in optimization tasks where the value of a given objective function needs
to be maximized or minimized under a given set of constraints. In economics, genetic
algorithms are used to characterise various economic models. Genetic algorithms are
used to train neural networks, in various digital image processing (DIP), in dense
pixel matching tasks, to solve various scheduling problems, and to process spectro-
metric data. Genetic Algorithm Based Machine Learning (GBML) is a narrow field
of machine learning in which algorithms have been used to plan the trajectories of
robotic arms. The method has also been exploited in parametric design of aircraft,
which has been used to design aircraft more efficiently. Genetic algorithms are good
approaches for multimodal optimization, in which multiple optimal solutions must
be found (Mitchell, 1998), (Borsodi & Takács, 2022).
The following article summarises the topic of genetic algorithms, covering the basic
concepts and terminology related to genetic algorithms. The advantages, disad-
vantages and limitations of these algorithms were identified. The different popula-
tion models and the process of parental selection were presented, and the applications
of the procedure were summarised.

REFERENCES

Borsodi, E., & Takács, Á. (2022). Generative Design: An Overview and Its Relation-
ship to Artificial Intelligence. Design of Machines and Structures, 12(2), 54-60.
doi:https://doi.org/10.32972/dms.2022.013

120 Kristóf Szabó

Darwin, C. (1859). Darwin, C. R.: 1872. The origin of species by means of natural
selection, or the preservation of favoured races in the struggle for life. London: John
Murray.

Deb, K. (2011). Multi-objective Optimisation Using Evolutionary Algorithms: An
Introduction. In:. In L. Wang, A. Ng, & K. Deb, Multi-objective Evolutionary
Optimisation for Product Design and Manufacturing. London: Springer.
doi:https://doi.org/10.1007/978-0-85729-652-8_1

Erdős-Sélley, C., Gyurecz, G., Janik, J., & Körtvélyesi, G. (2013). Mérnöki
optimalizáció. Typotex.

Goldberg, D. E., & Kuo, C. (1987). Genetic algorithms in pipeline optimization.
Journal of Computing in Civil Engineering, 1(2).
doi:https://doi.org/10.1061/(ASCE)0887-3801(1987)1:2(128)

Goldberg, D., & Samtani, M. (1986). Engineering optimization via genetic
algorithm. Engineering, .

Haupt, R., & Haupt, S. (2004). Practical Genetic Algorithms (2 ed.). Hoboken, New
Jersey: John Wiley and Sons.

Hegedűs, G. (2002). A módszeres géptervezés alkalmazása ipari mérőgép fejlesztése
esetén. Doktoranduszok Fóruma. Miskolc: Miskolc University Press.

Holland, J. (1992). Adaptation in Natural and Artificial Systems (Reprint ed.).
Bradford Books.

Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution
Programs (2. ed.). Springer.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. MIT Press.

Takács, Á., & Kamondi, L. (2006). A genetikus algoritmusok. In V. Csibi (Ed.),
OGÉT 2006: XIV. Nemzetközi Gépész Találkozó (pp. 332-335). Kolozsvár: EMT.

Yang, J., & Soh, C. (1997). Structural Optimization by Genetic Algorithms with
Tournament Selection. Journal of Computing in Civil Engineering, 195-200.
doi:https://doi.org/10.1061/(ASCE)0887-3801(1997)11:3(195)

