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Abstract: The article describes the numerical calculation of a streamline in a liquid jet flow-
ing through the impeller of a Bánki turbine. The importance of the results summarized in the 
article is that the knowledge of the velocity situation in the liquid jet flowing through the 
impeller is essential for the calculation of the flow losses occurring in the runner of a Bánki 
turbine and of the hydraulic efficiency of the runner. 
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1. INTRODUCTION 

The Hungarian literature of Bánki turbines has been lacking any improvement of the 
theory – that has remained the same since the age of Bánki – for a long time. In order 
to reach any advancement, a completely new way, which diverges from the previ-
ously available literature on Bánki turbines, had to be found in the research work. 
An important partial result of this new way is a new procedure of calculating the 
physical properties of the flow generated in the runner of a Bánki turbine, the flow 
losses in the runner of a Bánki turbine, and the hydraulic efficiency of the runner. 
 
2. THE BÁNKI TURBINE 

The Bánki turbine utilizes the kinetic energy of the mass flow of the liquid flowing 
through it. The theoretical head of the runner is equal to the drop in the kinetic energy 
of the liquid flowing through the runner, related to the unit liquid mass. The liquid 
fills only a part of the turbine runner. The blade force generated by the interaction 
between the blades and the liquid diverts the jet. The rotational speed of the runner 
is determined by the balance of the shaft torque (driving the generator) and the torque 
generated by the blade force that diverts the jet. 

The liquid enters the runner of a Bánki turbine as a free jet. The pressure in a free 
jet is equal to the environmental pressure. The velocity of the free jet is determined 
by the available head drop, which means that the quantity of liquid that flows through 
the runner of a Bánki turbine through unit time is independent of the rotational speed 
of the runner.  
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The volumetric flow rate of the liquid that enters the runner is the product of the 

velocity component perpendicular to the entry surface and the size of the entry sur-
face. The liquid that exits from the guiding channel (Figure 1) flows through the 
blade set of the runner transversally, i.e. the entry and the exit surfaces of the liquid 
are identical. The liquid arriving at the runner circumference flows through the blade 
set in the centripetal direction at first, and then, after passing through the bladeless 
part inside the runner, enters the blade set again, and flows through it in the centrif-
ugal direction before leaving it. 

The blade curve has a circular arc shape [2], [3]; the tangents of the blade curve 
are radial along the inside edge of the bladed area. 

 

 
Figure 1. Schematic of a Bánki turbine 

 
The directrix of the guide channel surface is, with the symbols of Figure 1, the curve 
section 0SK0  , while that of the movable guide channel surface – i.e. of the regulation 
flap – in the fully open state is the curve segment FK1 . The directrix of the movable 
guide channel surface – i.e. of the regulation flap – in the completely fully closed 
state is the curve section FK0 .  

The direction angle of the flow entering the runner is the angle between the tan-
gent of the guide channel and that of the circle with the radius IR , i.e. 0α . This 
angle is constant along the runner circumference involved in the liquid entry )01S(K . 
Bánki ensured this by constructing the cylinder-like K S0 0  and FK1  surfaces of the 
guide channel, which are situated between two parallel planes, in a way that their 
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directrices be logarithmic spirals shifted along the circumference of the runner whose 
angle of inclination is 0α . The highest available head (Figure 1) is: 

 

 )sin( 0010 εφ −−−=−−= SIDKD RHHHHHH   (1) 
 

3. CALCULATION OF THE FLOW GENERATED IN THE RUNNER 

A complete absolute streamline along the runner consists of three sections from the 
entry into the runner (Figure 1): the streamline section AC with a centripetal flow 
direction, the straight streamline CD along the bladeless inside part of the runner and 
the streamline section DE with a centrifugal flow direction. 

Explanation of the indices: the index of velocity and directional angle at the cen-
tripetal entry into the bladed runner area is 1; the index of velocity and directional 
angle at the centripetal exit from the bladed runner area is 2; the index of velocity 
and directional angle at the centrifugal entry into the bladed runner area is 3; the 
index of velocity and directional angle at the centrifugal exit from the bladed runner 
area is 4. 

The origins of the Cartesian coordinate system yx,  and of the polar coordinate 
system ϕ,r  are both located in the centre of the runner, O ; the x axis of the Carte-
sian coordinate system yx,  is horizontal. The polar angle ϕ  increases in the coun-
terclockwise direction. The relation between the ϕ,r  polar and the yx,  Cartesian 
coordinates is:  

φcosrx =    ;     φsinry =  
 

 
Figure 2  

Velocity triangles in one point of the blade curve  
a) along the centripetal section 
b) along the centrifugal section 
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Figure 3. Geometry of a circular blade arc 

 
 
Figure 2 shows a velocity triangle that applies to a random P point in the bladed area 
of a Bánki turbine, which is situated on a circle of a radius III RrR ≤≤ , assuming 
infinitely dense and infinitely thin blades, where the relative flow in the bladed area 
of the runner is blade congruent, i.e. the relative streamlines are identical with the 
blade curves, which means that the relative velocity vectors are identical with the 
tangents of the blade curves. 

Along the circle with the radius of III RrR ≤≤  (the index m  here and hereinafter 
refers to the meridian velocity component) 

 

 mm wc =   (2) 
 

i.e. along a circle of the same radius, at the centrifugal- and centripetal-flow sections, 
the relative velocity vectors w have the same magnitude, but opposite directions 
(Figure 2). 

The directional angle β of the relative flow 
‒ along the centripetal section:        2/1 πββ ≤<  (acute angle); 
‒ along the centrifugal section:   12 βπβπ −≤≤  (obtuse angle). 

 
If assuming a blade congruent relative flow, the outermost streamlines are identical in 
the jet generated inside the bladed area, which means that the shapes of the outermost 
streamlines can be rotated around the centre of the runner to cover each other, i.e. the 
ε  angle is constant along the r radius. This means that the theorem of continuity for an 
incompressible liquid in the bladed area of the runner is described by the equation  
 

 mIm cRrc 1=   (3) 

bladeβ
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The absolute velocity at the runner entry is defined by the available head H  as de-
scribed by the Equation (1): 
 c gH1 2=   (4) 
 
In the bladed runner area, the relation between circumferential velocity u and merid-
ian velocity cm  is the following: 

u cm= −(cot cot )α β   
 
(Figure 2). Given the continuity Equation (3)and that IRruru 1== ω , the above equa-
tion can take the following form: 
 

 
u r

R
R
r

c
I

I
m1 1= −(cot cot )α β 

  (5) 
 
Based on the publication of Czibere [1], the operating state of the runner can, using 
the velocity relation  

 m1

1
c
u

=ψ
  (6) 

 
be described by the following form of Equation (5): 

 
cot cotα ψ β=
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 +

r
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  (7) 

 
which is the basic equation of the flow occurring in the bladed area of the runner of 
a Bánki turbine. This basic equation – assuming a blade congruent relative flow – 
provides a relation between the directional angle α  of the absolute flow and that of 
the relative flow, β , depending on the operating state of the turbine. The basic 
Equation (7) can be used for calculating a streamline of the liquid jet occurring in 
the runner. 

The blade angle bladeβ  is an acute angle in a point P of the blade curve, between 
the tangent of the circular arc-shaped blade curve and the tangent of a circle concen-
tric with the runner circumference and containing the point P (Figure 3). When as-
suming a blade congruent relative flow, the directional angle β  of the relative ve-
locity in the bladed area of the runner is, along the section with centripetal flow, 

bladeββ =  (acute angle), while along the section with centrifugal flow, bladeβπβ −=    
(obtuse angle). The basic Equation (7) of the flow in the bladed area of the runner of 
a Bánki turbine takes the following form when written with the blade angle: 
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where the positive sign applies to the centripetal-flow section ( bladeββ = ), and the 
negative one to the centrifugal-flow one ( bladeβπβ −=   ). 

The angle bladeβ  between the tangent of the circular arc shaped blade curve and 
the tangent of the circle of a radius  is defined by the following equation based on 
Figure 3: 
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Figure 4. The relationship between the directional angle α of the absolute velocity 
and the elementary triangle defined by the differentials 

Along the blade curve, the directions of the relative velocity along the centripetal-
flow and the centrifugal-flow sections are opposite, i.e. the differential equations of 
the streamline parts corresponding to the bladed areas are, in the polar coordinate 
system  around the rotational axis, different for the centripetal-flow and the cen-
trifugal-flow sections. 

Along the centripetal-flow section, the relationship between the directional angle α 
of the absolute velocity and the differentials applying to the elementary AB section of 
the streamlines can, according to Figure 4, be defined using the basic Equation (8): 
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The differential equation of the absolute streamline along the centripetal-flow area is: 
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The point of the centripetal section of the streamline, which is located on the runner 
circumference has, due to 0RI =)(ϕ , the polar coordinates );( 0RI . 
Along the centrifugal-flow section, the relationship between the directional angle α 
of the absolute velocity and the differentials applying to the elementary AB section 
of the streamlines can, according to Figure 4, be defined using the basic Equation (8) 
as written with the blade angle bladeβ : 
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The differential equation of the absolute streamline along the centrifugal-flow area is: 
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In the Equation (10) the angular coordinate Dϕ  of the streamline point D  depends 
on the position of the straight streamline part CD  (Figure 5). The angular coordinate 

Cϕ  of the point C  is calculated using the definite integral from (9). 
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The direction of the straight streamline section is defined by the directional angle of 
the streamline in the point C , Cα . This can be calculated using the form of the basic 
Equation (8), given that in the point C  , the blade angle is 2/πβ =C  and thus 0cot =Cβ : 
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Based on Figure 5, the angular coordinate of the point D , Dϕ  is defined by that of
the point C , Cϕ  and by the directional angle Cα , as follows: 
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Figure 5. The shape of an absolute streamline in the runner 

The streamlines at the two outermost points of the water jet arriving at the runner 
intersect in the bladeless area (Figure 6), which means that the blades force the liquid 
flow passing through the runner blades centripetally to contract, which results in en-
ergy losses. In order to calculate these losses, the approximate shape of the liquid jet 
occurring in the runner must be determined. The two outermost streamlines of the 
contracting section of the liquid jet flowing through the runner can be approximated 
with a circular arc each. These circular arcs touch the outermost streamlines in the 
points C and ′D , resp. ′C and D  along the inside circle of the runner with a radius RII  
(Figure 7). The cross-sectional ratio of the contracted area of the liquid jet along the 
circular arc CC'  is the ratio of the radius of the jet entering the bladeless area and the 
smallest radius, kS bb / : 
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The specific energy loss due to the velocity increase caused by the contraction is, 
related to the unit mass, the following:  
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where Kζ  is the contraction loss factor, cK  is the velocity occurring in the cross-
section AK  and  is the absolute velocity in the  entry cross-section of the con-
tracted jet section, which is identical with the exit velocity into the bladeless area 
along the cylindrical surface with a radius of . 
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Figure 6. Streamline sections AC 
and DE, and their projections 

A’C’ and D’E’ as rotated by the 
central angle ε   

Figure 7. Contraction of the liquid jet  
flowing through the blade set 

 
Given the continuity equation that applies to the centrifugal-flow runner section, 
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the fact that β π2 2=  and thus the basic Equation (7) being 
 

 

 

in the directional angle , and the formula (4), the following equation can be written: 
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and therefore the specific contraction energy loss as related to the unit mass of the 
flowing medium takes the following form: 
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where  is the runner radius ratio and  is the directional angle of the 
guide channel. Finally, the power loss of the mass flow ρ Q  that flows through the 
runner due to radius contraction is: 
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The frictional losses caused by the viscosity of the liquid that flows through the run-
ner of a Bánki turbine occur in the runner blade channels in contact with the medium. 
The number of blade channels in contact with the flow that enters along the section 
defined by the central angle ε  into a partially open runner with N blades is, along 
the centripetal-flow section of the blade set, πε 2/N  , and the same along the cen-
trifugal-flow section, i.e. the total number of blade channels in contact with the me-
dium is πε /N . The length of the rectangular cross-section pipe equivalent to the 
blade channels in contact with the medium is:  
 

πε /NLL kcs = , 
 

where  is the length of the circular arc shaped blade. The relative flow that occurs 
in the blade channels can be approximated to be a flow in a rectangular cross-section 
pipe, where the flow velocity is the geometric mean of the relative velocity  at 
the entry into the runner along the circumference of a radius , and the relative 
velocity  at the exit along the circumference of a radius : 
 

. 

 
The hydraulic diameter of the rectangular cross-section pipe is: 
 

, 

 

where A is the cross-section,  is the circumference in contact with the medium, and 
 is the runner width, which is, in this case, identical with the guide channel width. 
The specific frictional loss related to the unit mass of the liquid flowing through 

the runner is: 
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where Vζ  is the frictional loss factor, which can be calculated using the following 
formula: 

H

cs
csV D

Lλζ = . 

 
The pipe friction factor  can be calculated using the well-known pipe friction law 
when the Reynolds number  is known. Therefore, the power loss caused 
by the medium viscosity in a mass flow Qρ  is: 
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The basic Equation (7) dictates that the blade angle at the entry, , and the velocity 
ratio that defines the operating state of the runner,  (where  is the tan-
gential velocity in the runner entry point and  is the radial component of the entry 
velocity in the same point) unambiguously define the absolute directional angle  
of the entry velocity : 

. 
 

If this directional angle  is identical with the directional angle  of the Bánki 
turbine guide channel, the absolute flow will enter the runner without any directional 
refraction. This so-called impact-free inflow will, according to the previous equa-
tion, occur in the 

 
 

operating state of the runner. If the turbine operating state is different )( 0ψψ≠ , the 
directional angle α 1  of the absolute entry velocity will also differ from the direc-
tional angle α 0  of the guide channel – in this case, an energy loss will occur in the 
liquid jet entering the runner. This specific energy loss, related to the unit mass flow, 
is proportional to the square of the absolute value of the velocity difference ∆ c  
between the absolute velocity at a directional angle α α1 0≠  and that at a directional 
angle α 0  (the latter being the impact-free operating state): 
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where 0ζ  is the impact loss factor and c m1  is the meridian component of the ve-
locity of the liquid jet entering the runner, which is defined by the available eleva-
tion drop H and the directional angle α 0  of the guide channel: 
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In the fully open state, the impact-related power loss in a mass flow Qρ  through 
the runner is: 
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The power of the liquid jet arriving at the runner of a Bánki turbine in the fully open 
turbine state is unambiguously defined by the mass flow  arriving at the runner 
and the available elevation drop : 
 

. 
 
The theoretical elevation drop of the runner is, in the fully open turbine state, equal 
to the change in the kinetic energy of the unit weight of the liquid that flows through 
the turbine: 
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Given that gH2c1 = ; mm cc 41 = ; 011 sin/ αmcc = ; 444 sin/ αmcc =   and using the 

identity )cot1/(1sin 22 xx += , the velocity ratio c c4 1/  can be described by the fol-
lowing formula: 
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and the basic Equation (7) dictates, (given that 14 βπβ −= ) that 
 

144 βψβψα cotcotcot −=+= , 
 
therefore the Equation (15) can be written in the following form: 
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which means that the theoretical power of the runner is: 
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By subtracting the impact loss , the contraction loss  and the frictional loss 

 from the theoretical power EP  of the runner, the runner power jkP  is obtained. 
In the fully open state, the hydraulic efficiency of the runner is the ratio of the runner 
power and the power of the liquid jet arriving at the runner: 
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The hydraulic efficiency of a stationary runner (in this state, 0=ψ ) is zero. The 
freely selectable impact loss factor 0ζ  should be selected so that, in case of 0=ψ , 
the hydraulic efficiency calculated using (16) be zero. By multiplying both sides of 
the equation 0jk =η  with the expression 2

101 )cot( βψ ++   – given that the basic 
Equation (7) dictates that 100 βψα cotcot +=  –, the following equation is obtained to 
the loss factor ζ 0 : 

0
S

1
S
S2

1II
V2

II

K
2
II

2
00

10
2
0 =−

+
−+

β
ζζψζβψψ

sin
cot

 
 
From this equation, the impact loss factor 0ζ  can be written in the following formula: 
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4. SUMMARY 

Assuming a circular arc-shaped blade curve (the tangent to the blade curve is radial 
at the inside edge of the bladed area) and a blade congruent relative flow, the formu-
las deduced in the publication make it possible to calculate the φ,r  coordinates of 
the points of a streamline in the free jet crossing the runner from the dimensions 

RRR IIII    ,,  of a Bánki turbine runner in a required operating state ψ . Based on these 
coordinates, the complete streamline can be drawn by points in the coordinate plane 
φ,r . No such calculation has been published in the literature yet. Once the velocity 

situation in the liquid jet flowing through the runner is known, it becomes possible 
to determine the frictional losses in a Bánki turbine runner and the hydraulic effi-
ciency of the runner, too. 
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