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ABSTRACT: This paper systematically presents the disruptive 

technologies that have emerged on the battlefields in recent decades, as well 

as those that are yet to come. Special attention is given to current technical 

capabilities: the status of unmanned vehicle development is briefly outlined, 

focusing primarily on the most prevalent type, unmanned aerial vehicles 

(UAVs). Additionally, the paper discusses the most common and effective 

adversarial attack techniques specifically targeting unmanned vehicle 

technology. The concepts of artificial intelligence (AI), machine learning, 

deep learning, and convolutional neural networks (CNNs) are introduced. 

The paper illustrates how CNNs aim to tackle tasks that previously required 

human intelligence, as well as how the enemy attempts to disrupt the 

development of CNNs during the crucial training and pattern recognition 

phase, which is essential for later generalisation. The paper demonstrates the 

advantages of manned-unmanned teaming as a model that effectively 

utilises disruptive technologies while simultaneously counteracting the 

effects of the enemy’s measures. Moreover, it analyses the introduction of 

fully autonomous, AI-driven military systems on the battlefield, outlining 

the advantages and disadvantages inherent to such a fundamental change. 

From the evident lack of interest among young people in joining the armed 

forces to the autonomous systems’ potential to save the lives of soldiers and 

civilians, there are numerous reasons suggesting that this technology could 

alleviate the burden on human soldiers. However, concerns remain that 
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autonomous systems may malfunction, potentially reducing rather than 

increasing the safety of militaries. The paper concludes with 

recommendations for future steps in the introduction of new technologies, 

based on their current state of development and the robustness of the AI 

models they use. 

 

KEYWORDS: Artificial Intelligence, Human-out-of-the-Loop, 

autonomous military systems, adversary attacks, manned-unmanned 

teaming. 

 

1. Introduction 

 

Unmanned Military Systems (UMSs) are becoming essential components of 

military arsenals. Driven by adverse demographic shifts, declining interest 

in military enlistment, and public aversion to domestic casualties resulting 

from armed conflicts, UMSs are increasingly deployed on modern 

battlefields1. Once deployed, their outstanding efficiency and the benefits 

they offer typically justify their substantial initial procurement costs. In 

essence, unmanned systems are entering and remaining on battlefields 

around the world, underlining their status as more than just experimental 

endeavours. Numerous examples of such systems have emerged over the 

past few decades, to the extent that at present, modern armies cannot be 

envisioned without them. The groundbreaking moment came with the first 

actions of the unmanned aerial vehicle (UAV) Predator, recorded at the end 

of the 20th century. Initially designated as RQ-1 in accordance with the US 

Air Force's naming conventions, where the letter “Q” is reserved for 

unmanned aircraft and “R” for reconnaissance missions, this widely utilised 

UAV underwent a significant transformation in 2002. With the addition of 

the AGM-114 Hellfire air-to-ground missiles, it was re-designated as MQ-1, 

signifying its newfound multi-role capabilities.2 The elegant silhouette, akin 

to a sailboat, combined with its low weight and large wingspan of 14.8 

meters, allowed it to achieve a substantial operational range and endurance 

in the air for a commendable number of hours. 

However, that was just the beginning: the Predator was soon followed 

by its more powerful successor, the MQ-9 Reaper, boasting a wider 

operational range and greater endurance (1900 km and 27 h vs. Predator’s 

                                                           
1 Krishnan, 2009, p. 7. 
2 Watts, 2013, p. 18. 
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1250 km and 24 h), a higher ceiling (50,000 ft. vs. 25,000), increased 

payload capacity (1750 kg vs. 200 kg) and superior armament (8 AGM-114 

Hellfire Missiles, or a combination of Hellfire missiles, GBU-12 Paveway II 

laser-guided bombs, GBU-38 Joint Direct Attack Munitions, GBU-49 

Enhanced Paveway II, or GBU-54 Laser Joint Direct Attack Munitions).3 

The MQ-9 Reaper is also equipped with an enhanced Multi-Spectral 

Targeting System (MTS), featuring a robust suite of visual sensors for 

precise targeting. Its MTS-B integrates an infrared sensor, colour and 

monochrome daylight TV cameras, shortwave infrared camera, laser 

designator, and laser illuminator.4 Following the MQ-9 Predator, other 

sizeable UAVs followed, built on related or independent platforms (for 

example, the MQ-20 Avenger UAV with jet propulsion and a maximum 

speed of 720 km/h, the MQ-9B SkyGuardian with an increased 24-meter 

wingspan and an extended range of 2500 km, or the heavyweight Northrop 

Grumman's RQ-4 Global Hawk classified as the only HALE USAF 

unmanned aircraft). 

 

2. Different Classes of Unmanned Vehicles 

 

European industry has also ventured into the development of HALE and 

MALE UAVs5, although with less success thus far. However, this does not 

necessarily imply a negative outcome. Recent military conflicts, particularly 

the intense battles between Russia and Ukraine, have demonstrated the 

significant utility of tactical UAVs at a considerably lower cost. In this 

regard, the European industry has achieved greater success, partly due to 

reduced technical requirements and development costs, and partly because 

individual countries were able to develop their own systems instead of 

engaging in uncertain and often unsuccessful collaborations with other 

European nations. Notable examples include French Safran’s development 

of the Patroller UAV, Spain’s collaboration with Colombia in developing 

the SIRTAP tactical UAV, and Italy’s Leonardo manufacturing the FALCO 

                                                           
3 US Air Force (2021) MQ-9 Reaper, [Online]. Available at: https://www.af.mil/About-

Us/Fact-Sheets/Display/Article/104470/mq-9-reaper/ (Accessed: 18 October 2023). 
4 General Atomics (2020) Lynx Multi-Mode Radar: Surveillance, Tracking, Targeting for 

Manned and Unmanned Missions, Lynx Datasheet, [Online]. Available at: https://www.ga-

asi.com/radars/lynx-multi-mode-radar (Accessed: 5 November 2023). 
5 HALE: High-Altitude Long Endurance UAVs; MALE: Medium-Altitude Long Endurance 

UAVs. 
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EVO, among others. These small UAVs feature an endurance exceeding 20 

hours, a range of approximately 200 km, a payload capacity of around 200 

kg, a ceiling of 6,000 m, and a maximum speed of about 200 km/h. 

However, there are notable drawbacks, including redundant research and 

expenditures, resulting in associated costs amounting to a significant 500 

million EUR per country. As a result, European attempts to reduce 

dependence on foreign drone technology through costly capability 

development projects were unsuccessful.6 Tactical UAVs, suitable for a 

wide range of Intelligence, Surveillance, Target Acquisition, and 

Reconnaissance (ISTAR) missions,7 are still better solutions for a highly 

contested airspace, compared to expensive and still vulnerable large MALE 

and HALE UAVs. 

This suggests that it would be beneficial for European nations to 

undertake joint projects on a more regular basis. However, this is not 

typical, as each country strives to bolster its technological autonomy, invest 

in its own manufacturing capabilities, and retain exclusive control over 

UAV development, including specific requirements. This is particularly 

evident in the case of the Eurodrone MALE UAV project, which is heavily 

influenced by conflicting demands from the initiating countries.8 For 

instance, Germany prioritised a twin-turboprop configuration for security 

reasons, whereas France opted for a lighter aircraft. Additionally, Germany 

has only recently shown interest in developing an armed UAV with attack 

capabilities, a request initially made by the other founding nations (France, 

Italy, and Spain). 

It would appear that major EU countries are trailing behind in the 

global market competition, which is dominated by manufacturers from the 

USA, China, Turkey, and Russia. They have opted to concentrate on 

creating top-tier MALE UAVs, despite the lessons learned from the Russo-

Ukrainian conflict suggesting that quantity often outweighs quality in 

today's landscape. By committing to developing a single large and costly 

UAV, which is likely to become outdated by the time of project completion, 

EU countries continue to fall behind in production and may struggle to set a 

foothold in the global UAV market. Historical experiences do not favour 

participation in large-scale EU initiatives either, which tend to result in 

delayed deliveries of expensive systems with subpar technical capabilities. 

                                                           
6 Kunertova, 2022, pp. 3-4. 
7 Bartulović, Trzun and Hoić, 2023, p. 87. 
8 Kunertova, 2021, p. 3. 
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Regrettably, grandiose projects persist while the benefits of miniaturisation, 

proven effective in recent military conflicts, are disregarded.  

As for the unmanned ground, surface, and underwater vehicles 

(abbreviated UGVs, USVs, and UUVs respectively), their achievements 

thus far have been modest, primarily due to the challenges of navigating and 

operating in environments cluttered with obstacles.9 However, this does not 

mean that the development of such systems has been halted. For example, 

the Milrem THeMIS tracked UGV has been built in various iterations, 

spanning from logistical support vehicles to intelligence, surveillance, and 

reconnaissance (ISR) variants. Even armed versions of UGVs have been 

developed capable of carrying various armaments from a 12.7 mm machine 

gun to a 40 mm grenade launcher. For example, in early 2024, footage was 

released showing the destructive attack by the Ukrainian Ironclad wheeled 

UGV on a Russian position. Surface and underwater unmanned systems 

play an even more significant role in the Russo-Ukrainian war, with the 

most recent example being on 1 February 2024, when multiple Ukrainian 

GPS-guided MAGURA V5 USVs attacked and ultimately sank the Russian 

missile corvette ‘Ivanovets’ of the Tarantula-III class. 

 

3. Signal Jamming: Obstruction to the Stronger Use of Unmanned 

Systems 

 

The increasing capabilities of unmanned systems are evident, yet their 

susceptibility to signal interference cannot be overlooked. Electronic 

warfare (EW) encompasses the use of a set of powerful tools across three 

main categories: electronic support (ES), electronic self-protection (EP), and 

electronic attack (EA). This paper places particular emphasis on EA 

measures, which involves jamming or other offensive actions aimed at 

degrading the electromagnetic systems and communications of an 

adversary. Through EW measures, a less technologically advanced 

opponent can offset its disadvantage against a more advanced adversary by 

nullifying the capabilities of its modern systems. As for unmanned vehicles 

(regardless of their domain), after encountering unbeatable signal 

interference, they enter idle mode and subsequently circle aimlessly in an 

attempt to reconnect with the remote pilot.10 

                                                           
9 Zhou et al., 2021, p. 1576. 
10 Smith, 2020, p. 4. 
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Faced with modern EW measures, unmanned systems actually become 

more vulnerable the more advanced they are. For example, inertial guidance 

has its limitations and depends on the accurate operation of accelerometers, 

so today it is often paired with or even replaced by GPS guidance. However, 

strong EW defence manages to replace the real GPS signal with a fake one, 

causing unmanned vehicles to make errors in assessing their location by tens 

or hundreds of kilometres. Russia was particularly successful in developing 

its EW capabilities after bad experiences during the 2008 Russo-Georgian 

War. Based on a sincere analysis and an acknowledgment of the 

shortcomings of the equipment used at the time, Russia launched its 

ambitious Armed Forces reform, aiming to have up to 70% new or 

modernised equipment in the military inventory. This particularly applied to 

strategic EW systems, which were recognised as an “asymmetric response 

to the network-centric system of combat operations” on the part of the US 

and NATO.11 The Murmansk-BN, a powerful system with a reported range 

of 5,000 km, capable of the continuous monitoring of electromagnetic 

activity and intercepting enemy signals with a broad jamming capability, 

has been recognised as acknowledged the core part of the Russian EW 

capabilities. 

The consequences of such uncompromising modernisation of EW 

capabilities can be observed today in the Russo-Ukrainian conflict. 

Regarding the abovementioned GPS spoofing attacks, there are indications 

that they are deployed across the entire battlefield with significant impact. It 

is alleged that Russian EW equipment can emit false GPS signals that are an 

astonishing 500 times stronger than genuine ones.12  

Generally, the side deploying unmanned vehicles (UVs) seeks to 

evade the effects of jamming systems and other EW measures by employing 

more advanced tactics, such as utilising variable frequencies for unmanned 

vehicle communication with the base station (cognitive radio). 

Communication between the pilot and the UV is programmed to 

dynamically change and rapidly select new frequencies to avoid any 

interruption of data transfer. The algorithm for adjusting transmission 

parameters continuously analyses the received signal; if adversary 

interference is detected, changes in transmission parameters, such as 

                                                           
11 McDermott, 2017, p. 15. 
12 Smith, 2020, p. 4. 
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frequency, power or modulation are applied. Simultaneously, an alternative 

frequency range is selected if the current range is deemed unsuitable.13  

A conflict between two opposing sides where one seeks to disrupt the 

guidance signal for unmanned vehicles while the other endeavours to evade 

signal interference poses one of the primary challenges in the wider 

adoption of UVs. In contemporary conflicts varying in intensity, there is an 

obvious effort to overcome the defences of the opposing side by deploying a 

multitude of cheap and disposable robots/drones that attack otherwise well-

defended objectives simultaneously. The guidance signal is attempted to be 

concealed within channels already congested with high data traffic, 

particularly in urban warfare scenarios. Even highly affordable commercial 

drones are utilised, with their MAC addresses altered to prevent the 

identification of the control station (the first six characters of a MAC 

address denote the manufacturer).14  

Up to this time, the most prominent instances of employing multiple 

unmanned vehicles to overload defensive systems took place during the 

sinking of the cruiser ’Moskva’ and the missile corvette ‘Ivanovets’. In the 

case of the ’Moskva’, it is alleged that one or two Bayraktar TB-2 UAVs 

prevented the defensive systems from detecting the incoming ’Neptune’ 

missile. However, this seems less probable, as the ship's anti-drone and anti-

missile defences were provided by two different systems: long-range S-

300F (NATO designation: SA-N-6 Grumble) missiles against the Bayraktar 

and similar slow-moving UAVs, and multi-barrelled AK-630 cannons 

planned to engage the incoming missiles. On the other hand, during the 

sinking of the corvette ’Ivanovets’, it appears that six MAGURA V5 USVs 

easily overwhelmed the relatively weak defence of the Russian ship. 

 

4. Artificial Intelligence and Autonomous Systems 

 

The most effective solution to evade the adversary's EW capabilities could 

be fully autonomous unmanned vehicles, i.e., vehicles that will advance on 

the battlefield guided by their own artificial intelligence. The use of 

autonomous weapon systems offers numerous advantages, ranging from 

economic and operational to security and humanitarian benefits.15 From an 

economic perspective, replacing a destroyed robot or drone is certainly more 

                                                           
13 Semendiai et al., 2023, p. 731. 
14 Kratky et al., 2020, p. 449. 
15 Monte, 2018, p. 6. 
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cost-effective than replacing a highly trained, well-equipped soldier. 

However, this is primarily applicable to Western armies and their warfare 

strategies, where the adoption of new technologies aims to preserve the lives 

of their own soldiers (in some other societies, individuals are being seen as 

easily replaceable assets with minimal economic worth). Autonomous 

systems can significantly level the playing field between two armies, 

especially when one possesses a significant numerical advantage in terms of 

available personnel. 

Autonomous systems provide the capability for extremely quick 

responses to enemy actions. In the event of changes on the battlefield, these 

systems can swiftly adjust, capitalising on any new opportunities for 

advancement or promptly reinforcing defences where necessary. The impact 

of human errors is reduced – a highly significant aspect, especially 

considering that a significant portion of contemporary accidents, leading to 

the costly destruction of sensitive equipment, originates from human 

errors.16 

From the standpoint of resilience against enemy EW measures, AI-

driven systems can continue with combat operations even if the connection 

with remote pilots is disrupted. In accordance with mission-oriented or 

mission-type commands, autonomous systems do not require detailed or 

subsequent instructions once clear objectives are assigned to them. The 

degree of autonomy depends on the specific system.17 Semiautonomous 

systems are often referred to as “human-in-the-loop”, where a pilot has to 

make a positive decision to engage a target. All other actions (such as 

movement, target tracking, or perimeter monitoring) can be carried out 

autonomously by such a system. Supervised autonomous systems (“human-

on-the-loop”) represent the next level, where the robot can autonomously 

find, identify, and even engage targets, but a pilot monitors the situation and 

is able to intervene to discontinue the engagement. The highest level of 

independence is provided by full autonomous weapons, where human pilots 

are “out-of-the-loop”, meaning they have no ability to intervene in the 

process of weapon engagement. There are also additional classifications of 

systems based on the level of autonomy achieved.18 The ’loop’ that is 

mentioned here is actually the OODA loop, which stands for observing, 

                                                           
16 Wróbel, 2021, p. 9. 
17 Feldman, Dant and Massey, 2019. 
18 Haider, 2021, pp. 14–15. 
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orienting, deciding, and acting, depending on the current state of the weapon 

and the target.19  

Autonomous systems across all three autonomy levels (especially fully 

autonomous ones) could profoundly alter modern warfare, potentially 

undermining the current strategies and capabilities of less developed armies. 

These armies could only reach for the robust EW procedures as a relatively 

cost-effective asymmetric measure to neutralise the advantages of 

adversaries with highly sophisticated systems and methods of armed 

combat.20 

The enhanced safety of both our troops and civilians is also worth 

noting. Regarding our forces, it has been previously mentioned that 

autonomous systems could be deployed in combat operations, either in lieu 

of soldiers or alongside them, to mitigate the risk of damage. Additionally, 

in terms of civilian safety, autonomous systems could potentially adhere 

more strictly to the international humanitarian laws of war, even more 

reliably than humans, who may be influenced by heightened emotions and 

stress induced by prolonged fear and uncertainty.21 Yet, in order for such 

civilian protection to be effectively realised, it is imperative for autonomous 

systems to be able to accurately detect civilians and differentiate them from 

adversary soldiers. Regrettably, AI-driven systems are currently unable to 

fulfil this task with an adequate level of reliability. 

Considering the aforementioned factors, at present it is foreseeable 

that there will be further advancement in the concept of manned-unmanned 

teaming (MUM-T). This concept emphasises a team encompassing multiple 

units, with the human-operated unit retaining a central role, while additional 

AI-driven units serve for support and protection. Over time, these AI-driven 

units are likely to be granted increasing levels of autonomy and to be tasked 

with more complex assignments. However, the central unit should always 

remain under human control, ensuring oversight over the entire team. The 

MUM-T approach is moving towards a model of ’human-on-the-loop’ 

supervised autonomy, wherein AI-driven units can autonomously perform a 

significant part of their tasks, thereby relieving humans from routine 

supervisory duties such as movement or obstacle avoidance. Nonetheless, 

human intervention remains crucial for decisions about whether certain 

actions should proceed or be halted. 

                                                           
19 Morgan et al., 2020, p. 12. 
20 McDermott, 2017, p. 3. 
21 Monte, 2018, p. 162. 
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The emergence of the MUM-T concept is expected to remain a 

prominent trend for the foreseeable future, spanning over years or even 

decades. AI models will require thorough testing and refinement, raising 

questions about the feasibility of granting them full autonomy (‘human-out-

of-the-loop’), given the potential for numerous incidents and collateral 

damage. In parallel with technological progress, there must be a concerted 

effort to develop a suitable legal framework, which may involve 

amendments to international humanitarian law. 

As for the “human-out-of-the-loop” (HOOTL) concept, it indeed offers 

a number of advantages. It provides unprecedented efficiency and speed, 

scalability (these systems can handle large-scale operations without the 

limitations of human attention span and fatigue), increased safety for the 

implementing side, and significant cost reduction. HOOTL fully 

autonomous weapons and surveillance systems could operate independently 

in complex and potentially hostile environments. Nevertheless, there are 

also many challenges and risks associated with such systems, where safety 

and reliability are paramount. Errors or malfunctions can lead to 

catastrophic consequences. As AI and machine learning technologies 

advance, the potential for HOOTL systems to become more prevalent 

increases.  

 

5. Techniques and Tools of Artificial Intelligence 

 

Artificial Intelligence (AI) represents a specific field of computer science 

that deals with creating systems capable of performing tasks that typically 

require human intelligence. One of the key tools in the field of AI is 

machine learning (ML), which enables computers to learn from experience 

without explicit programming. ML is based on the concept of algorithms 

that analyse data, identify patterns in those data, and use those patterns to 

make decisions or predictions. Examples of ML applications span from 

image and speech recognition to product recommendations and data 

analysis.22 

Machine learning is characterised by its capability to automatically 

enhance system performance through experience. Instead of manual rule 

definition by programmers, ML algorithms utilise data to discern implicit 

patterns and regularities, applying acquired knowledge to novel, 

                                                           
22 Wang and Siau, 2019, pp. 61-63. 
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unencountered situations.23 There are three primary types of ML: supervised 

learning, unsupervised learning, and reinforcement learning. In supervised 

learning, algorithms are trained on labelled data with correct answers, with 

the aim to generalise learned patterns to new, unlabelled data. Unsupervised 

learning involves analysing data that lack labelled correct answers, with 

algorithms tasked with discovering hidden patterns and structures, such as 

clustering similar items or reducing dimensionality. In reinforcement 

learning, algorithms interact with the environment, adjusting their strategies 

based on feedback to maximise rewards or minimise penalties.24 

A special and widely applicable subtype of ML is deep learning (DL), 

used for its ability to learn from highly complex datasets. Deep learning also 

uncovers patterns in data but employs different techniques. Both 

methodologies (DL and ML) start out with training using sample data and 

models, during which they establish relevant connections between different 

data points. Following this, they undergo an optimisation process to 

ascertain the most precise weighted values among these connections and to 

ensure that the model aligns as closely as possible with the data. 

DL employs artificial neural networks with numerous layers, hence the 

term “deep”. These networks can recognise intricate patterns within data, 

allowing them to address highly complex tasks.25 Rather than manually 

defining features or rules, deep neural networks learn implicit patterns and 

structures through layers of data transformations. Each layer processes input 

data and generates output features, which then serve as input for subsequent 

layers, allowing for a progressive abstraction and broader generalisation of 

the data.26 

Some of the most commonly utilised DL networks are convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs). CNNs are 

particularly efficient in analysing images and video content by utilising 

convolutional layers to extract local features and reducing the 

dimensionality of input data. Conversely, RNNs are adept at handling 

sequential data such as text or time series, utilising recurrent connections 

between neurons to model temporal dependencies.27 

                                                           
23 Janiesch, Zschech and Heinrich, 2021, p. 686. 
24 Carleo et al., 2019, p. 045002-5. 
25 Bengio, Lecun and Hinton, 2021, p. 60. 
26 Mu and Zeng, 2019, p. 1745. 
27 Janiesch, Zschech and Heinrich, 2021, pp. 688-690. 



490  Zvonko Trzun 

 

 

 

CNNs have achieved remarkable results in areas such as object 

recognition, image classification, face detection, medical diagnostics, and 

other domains where visual data analysis is utilised. The main characteristic 

of CNNs is the use of convolutional layers, alongside which CNNs typically 

involve pooling layers that serve to reduce the dimensionality and 

computational complexity of the model. The aim is to aggregate and 

summarise information from convolutional layers, thereby facilitating the 

further processing and interpretation of features. 

A key advantage of CNNs is their ability to automatically learn 

hierarchical features from input data. In this sense, CNNs seek to simulate 

the functioning of the central nervous system of living organisms, namely 

the brain. Similar to our biological nervous system, CNNs consist of simple 

processing units whose task is mutual communication through a high 

number of connections.28 Instead of manually defining features or patterns, 

CNNs use data-driven learning through an iterative process of optimising 

network weights to minimise prediction errors. An activation function (often 

referred to as a transfer function) is then used for further information 

transfer. Some of the most common ones are the threshold function, the 

piecewise linear function, and the sigmoid function. 

The technique of using CNNs has attained outstanding results in many 

tasks, at times surpassing human capabilities. It is applied in image 

recognition, object detection and segmentation, medical diagnostics, natural 

language translation, time series analysis, and much more – including 

autonomous driving through the analysis of geospatial data. However, it is 

important to emphasise that the level of accuracy and reliability of these 

techniques still varies depending on the data presented and the quality of the 

training process. 

 

6. Problems and Limitations of AI Training 

 

Below are some of the most common issues encountered with the 

techniques discussed above. 

 

6.1. Data Bias 

If the training dataset is not sufficiently diverse or representative, the 

algorithm may learn biased patterns and become unbalanced in its 

predictions. Data bias, also known as dataset imbalance, is caused by a 
                                                           
28 Li et al., 2021, pp. 6999-7002. 
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situation where certain classes or categories have a greater number of 

examples in the dataset compared to other classes. This phenomenon often 

occurs in real-world datasets due to natural variations or irregularities in the 

data collection process and can result in unfair models that prefer dominant 

classes, while neglecting or misclassifying less represented ones.29 For 

example, in a dataset aimed at recognising armoured vehicles, there might 

be more images of Abrams tanks than images of other tanks. If a CNN is 

trained on such a dataset, there is a risk that the model will recognise 

Abrams tanks better than other armoured vehicles, which will subsequently 

be recognises with significantly lower reliability. 

Employing biased algorithms in autonomous weapons systems would 

negatively impact already marginalised groups. The solution to this problem 

involves collecting a larger and more diverse dataset, along with additional 

data collection for less represented classes, and applying techniques such as 

data augmentation (generating new examples from existing data) or 

adjusting weights in learning algorithms to account for class imbalances in 

the sample. 

 

6.2. Overfitting 

Overfitting is a common problem in the context of CNNs. When a CNN 

becomes too tailored to the training dataset, it can lose the ability to 

generalise to new data. Solutions for overfitting include using regularisation 

techniques such as dropout, early stopping, and gradient normalisation. 

Overfitting can occur for various reasons. One of the main causes is 

the complexity of the model. If the model is too complex and has too many 

parameters relative to the amount of available data, it may learn overly 

complex patterns that are not necessarily relevant to the general population 

of data. The model develops excessive adaptations to the sample used 

during training, while losing the ability to generalise to new data acquired 

later. Unlike human problem solving, which is inherently flexible and 

capable of adapting to new and diverse challenges, machine-learning 

systems are usually not transferable to entirely different problem contexts.30 

Overfitted models have poor generalisation ability with regard to new 

data, resulting in poor performance in real-world applications. For example, 

if an overfitted model is used for image classification, incorrect predictions 

                                                           
29 Ntoutsi et al., 2020, pp. 4-5. 
30 Surden, 2021, p. 175. 
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may ensue when the model is applied to images that were not present in the 

training dataset. 

Fortunately, there are various strategies for addressing overfitting (if a 

larger training dataset is not available). One of the most common strategies 

is regularisation, which involves adding additional constraints to the model 

to prevent overfitting. This can include techniques such as dropout, where 

certain neurons are randomly excluded during training, as well as cross-

validation and early stopping. 

 

6.3. Scarcity of Data 

Under particular circumstances, acquiring the sufficient volume of data for 

training a CNN may present challenges, particularly in cases involving 

constrained datasets, such as those pertinent to medical diagnostics. The 

process of data collection for scientific inquiry can similarly involve 

significant costs, time investments, or ethical considerations. Moreover, 

impediments of a technical or legal nature might obstruct access to extant 

datasets. Irrespective of the underlying factors contributing to these 

obstacles, the scarcity of data can curtail the CNN's capability to learn 

general patterns and structures.31 

An effective strategy to address this scenario involves employing 

transfer learning methodologies, wherein the model undergoes training on a 

comparable yet more expansive dataset. Along with regulating the quantity, 

it is imperative to oversee the quality, particularly the representativeness, of 

the training data. This entails processes such as filtering, cleansing, and 

normalising the data to eliminate any problematic or incongruous 

instances.32 

 

6.4. Interpretability 

The interpretability of CNNs, or the ability to understand and explain their 

predictions, also poses a significant challenge. Given that CNNs are 

complex models with numerous parameters, it is difficult to discern the 

features or patterns utilised by the model to make decisions. 

Interpretability could prove to be a crucial aspect in the context of 

public trust in AI, as it helps understand why models have made certain 

decisions and how they have arrived at their predictions. Public trust is 

particularly vital in critical domains such as medical diagnostics, finance, 

                                                           
31 Janssen et al., 2020, p. 2. 
32 Bansal, Sharma and Kathuria, 2022, p. 8. 
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and legislative issues33 — but perhaps most notably in the realm of military 

decision-making. 

There are several approaches to interpretability in machine learning. 

One of them is feature visualisation, where techniques like heatmaps and 

saliency maps are employed to display the relevant features of input data 

that have influenced the model's final decision. Additionally, attribution 

methods such as LIME (Local Interpretable Model-agnostic Explanations) 

approximate any black-box ML model to a local, interpretable model. 

 

6.1.1. Introducing Noise into Data During Wartime 

 

In wartime conditions, the adversary will likely undertake all available 

actions to disrupt the process of training AI models or to corrupt established 

connections. Introducing noise into field data poses a significant problem in 

the realm of data analysis and machine learning. Noise can be defined as 

unwanted additions to or disturbances in data and can be introduced from 

various sources. Noise can compromise the accuracy and reliability of data 

analysis or model predictions. For example, in image recognition or object 

detection in images, the presence of noise can lead to incorrect 

classifications or inaccurate predictions. Furthermore, noise can reduce the 

interpretability of analysis results by making it difficult to distinguish 

relevant signals from unwanted interference.34 Finally, noise can increase 

the complexity of the model and consume resources for data processing and 

learning. 

Resolving the problem of noise in input data requires the application 

of various strategies and techniques. One possible approach is the 

application of data filtering and cleaning, where algorithms are used to 

detect and remove noise. This technique may involve the use of different 

filters such as median filters or averaging. Another possibility is to apply 

techniques which reduce the model's sensitivity to noise. This might include 

employing robust algorithms that are more resilient to data noise or utilising 

regularisation techniques to avoid overfitting on data corrupted by noise.35 

The strategy of introducing noise can be viewed as a type of electronic 

warfare or, alternatively, a form of tactical deception. Injecting noise into 

the visual identification of equipment by adversarial systems can be 

                                                           
33 Rodrigues, 2020, p. 2. 
34 Xiong et al., 2006., pp. 305-307. 
35 Gupta and Gupta, 2019, pp. 471-472. 
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executed through diverse methods, contingent upon the precise technical 

attributes of the image recognition system being used. Here are a few 

possible scenarios.  

The first is image manipulation, which means altering or distorting the 

appearance of one's equipment to make it less recognisable to adversary 

systems. This may include adding false details, altering colours or textures, 

or even completely changing the visual shape to deceive image recognition 

algorithms. The problem of image manipulation is particularly significant 

with the advent of deep-fake technology. Innovative tools are being 

developed to detect such manipulations and uncover genuine information,36 

but at the same time, new methods for even more sophisticated image and 

video manipulation are being constantly revealed.37  

The second is masking, which means employing camouflage 

techniques to hide equipment. This can entail using colours and patterns that 

blend seamlessly with the surroundings. Additionally, natural cover or 

artificially created shapes may be utilised to integrate the equipment into the 

environment, making it less conspicuous to sensors. Furthermore, 

equipment can be coated with reflective materials to disrupt enemy IC or 

laser sensors. 

The third is distorting sensor data, which implies disrupting the 

operation of sensors or cameras using flashes, laser devices, or other devices 

that could interfere with or overload enemy sensors. 

And finally, there is the injection of false data, namely introducing distorted 

facts or images into the training set of the opponent's system, leading it to 

draw incorrect conclusions. This can be done by sending false signals or 

data through electronic communication channels, or even by hacking the 

opponent's system while it is still in the training phase.38,39 

Employing such tactics carries significant implications, including 

potential ethical and legal ramifications. While the methods described may 

indeed disrupt the adversary's recognition systems, they also pose risks of 

unintended consequences or misinterpretations of the battlefield situation. 

Specifically, such tactics could lead to false negatives, where AI systems 

fail to identify the adversary's assets or combatants accurately, but also lead 

to false positives, where the adversary's AI wrongly identifies civilians and 

                                                           
36 Lee et al., 2023, pp. 3-4. 
37 Zhang, Li and Chang, 2024, p. 4. 
38 Tufail, Batool and Sarwat, 2021, p. 3. 
39 Gong and Wang, 2023. 
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their vehicles or structures as military targets. Given these risks, the 

legitimacy of such tactics is subject to scrutiny. The use of noise can be 

interpreted as a form of unfair combat or a violation of international rules of 

warfare, especially if it results in unjustified civilian casualties or 

unnecessary destruction. 

In their paper “Intriguing Properties of Neural Networks”, Szegedy et 

al. (2014)40 introduced the concept of an “adversarial example”, which 

refers to an example created with the aim of manipulating or inducing errors 

in deep learning models. The authors acknowledge that deep neural 

networks (DNNs) are ‘powerful learning models that achieve excellent 

performance on visual and speech recognition problems,’ but they also point 

out two counter-intuitive properties of deep neural networks. The first is a 

significant question regarding the conjecture that neural networks 

disentangle variation factors across coordinates. The second is related to the 

stability of neural networks with respect to small perturbations to their 

inputs. Unlike intuitive thinking, DNNs (which otherwise generalise well on 

the task of object recognition) may react even to very small perturbations, 

carefully crafted so that the DNN completely misidentifies the object 

category in the presented image. 

Adversarial attacks involve making slight alterations to input data, 

introducing changes so subtle that they are practically imperceptible to the 

human eye. On the other hand, DNNs can become “confused” and produce 

erroneous object detections on images manipulated by adversaries. An 

illustrative instance of such an attack is the image of a panda, initially 

identified by a DNN with a confidence of 57.7%. However, after injecting 

noise into the image, the DNN incorrectly classified the object as a gibbon 

with an exceedingly high confidence level of 99.3%.41 Similarly, 3D-printed 

toy turtles were persistently misidentified as rifles by the targeted AI.42  

Some methods can enhance the resilience of DNNs against attacks, 

like expanding capacity (by incorporating more connections into a DNN) 

and adversarial training (training DNNs where each input is adjusted by a 

synthetic adversary before being processed by the network). While these 

approaches enable DNNs to maintain some level of accuracy in the face of 

attacks, they are particularly resource-intensive, demanding substantially 

                                                           
40 Szegedy et al., 2014, p. 2. 
41 Goodfellow, Shlens and Szegedy, 2014, p. 3. 
42 Athalye et al., 2018, p. 284. 
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more storage and computational resources. Consequently, they become 

highly impractical for everyday usage.43 

The adversary attacks described above involve modifications to 

images that are almost imperceptible to the human eye before being 

presented to the DNN. However, if more significant alterations are applied 

(physical adversarial perturbations), the outcomes become even more 

striking. This relates to the previously discussed ability to deceive image 

recognition models, as numerous studies have shown the effects of 

alterations that the human brain notices but is not deceived by them, while 

AI algorithms struggle to interpret them accurately. These studies 

demonstrate that even by adding small stickers to the surface of an object 

that the attacker seeks to conceal (e.g., a military vehicle) a significant 

number of misidentifications ensue.44 Equally vulnerable are today's 

commercially available autonomous driving models that can be easily 

disguised as changes to traffic signs and fake obstacles by malicious 

attackers.45 The placement of counterfeit lane markers is particularly 

dangerous, as it can easily cause vehicles to veer off their intended path of 

travel. Adversary attacks have been presented in Figure 1. 

                                                           
43 Gilles, 2020, p. 19. 
44 Brown et al., 2017, pp. 4-5. 
45 Eykholt et al., 2018, p. 1626. 
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Figure 1 Different kinds of adversary attacks: adding noise to training data 

(left) and using camouflage (right). 

 

 
Source: original author’s work. 

 

Different strategies are being taken into consideration in the literature 

as responses to adversarial attacks. These countermeasures can be broadly 

classified into three main categories: 1) gradient masking, which aims to 

conceal or obscure the gradient information of the classifier, 2) robust 

optimisation, which involves the re-learning of the parameters of a DNN 

classifier, and 3) adversarial examples detection, which focuses on 

identifying adversarial examples and preventing them from being fed into 

the classifier.46 However, considering that the attacker always plays an 

active role, meaning they are the first to discover the new methods of 

provoking false detections to which the defending side must then find a 

response, we can conclude that the advantage lies on their side. 

 

7. The Analysis: Perceived Benefits and Drawbacks of AI-driven 

Military Systems 

 

Although autonomous, AI-driven military systems such as UAVs, UGVs, 

unmanned surface vehicles (USVs), and unmanned underwater vehicles 

(UUVs) have yet to see extensive implementation on battlefields, the 

potential they hold motivates military leadership to continually push for 

their accelerated development. This chapter will present a brief analysis, 

                                                           
46 Xu et al., 2020, p. 161. 
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focusing on the major benefits and drawbacks of fully autonomous military 

systems as they are perceived today. 

 

7.1. Advantages 

Reduced Risk to Human Lives: One of the most compelling arguments in 

favour of autonomous military systems is their ability to minimise the risk 

to human militaries. By deploying unmanned vehicles and drones, 

combatants can conduct reconnaissance, surveillance, and even combat 

operations without endangering soldiers’ lives. Autonomous systems can 

navigate through unsafe terrain, detect and disarm explosives, and engage 

enemy targets. Autonomous systems can also be utilised for logistical 

support and supply delivery, further moderating the exposure of human 

personnel to potential threats.  

Enhanced Situational Awareness: Autonomous systems equipped with 

advanced sensors and surveillance capabilities provide real-time situational 

awareness to military commanders and personnel. This comprehensive 

understanding of the battlefield facilitates s strategic decision-making while 

minimising the need for soldiers to physically scout enemy positions or 

gather intelligence in dangerous areas. 

Reduced Psychological Impact: Warfare can have significant 

psychological effects on soldiers, including post-traumatic stress disorder 

(PTSD) and other mental health issues. By leveraging autonomous systems 

for combat and support operations, military forces can potentially reduce the 

psychological burden on human personnel, sparing them from the trauma 

associated with direct engagement in conflict. 

Humanitarian Considerations: By employing autonomous systems to 

carry out missions with precision and efficiency, militaries can strive to 

minimise civilian casualties and collateral damage, thereby upholding the 

principles of proportionality and distinction in an armed conflict. 

Autonomous systems can execute missions with minimal deviation from 

objectives, and their precision is particularly valuable in targeted strikes 

against high-value targets surrounded by civilians. 

The ability to operate 24/7: Unlike human soldiers who require rest 

and sleep, autonomous systems can operate continuously, with the capacity 

of providing persistent surveillance and monitoring. This enables militaries 

to maintain constant vigilance over large areas for extended periods, 

improving situational awareness and response times. 
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Cost-Efficiency: While the initial development and procurement costs 

of autonomous systems can be high, they often prove cost-effective in the 

long run. Compared to retaining large standing armies or deploying manned 

aircraft, autonomous systems are more affordable to deploy and maintain, 

particularly in prolonged conflicts. 

 

7.2. Disadvantages 

The Risk of the Autonomous System Executing Incorrect Actions: Perhaps 

the most significant drawback of autonomous military systems is the risk 

that they may not function as intended. Despite their precision, autonomous 

systems are not immune to errors or malfunctions. Software glitches, 

communication failures, or misinterpretation of data can lead to 

unintentional consequences, including civilian casualties or friendly fire 

incidents. The potential for these systems to malfunction raises significant 

concerns regarding their reliability and safety. In the preceding sections, we 

have outlined the methods through which our adversaries might intervene 

and disrupt the AI training process. In such an event, autonomous systems, 

although designed to target specific objectives with precision, may 

mistakenly identify and engage non-combatants or civilian infrastructure. 

Miscommunication, faulty identification algorithms, or inaccurate 

situational awareness may also lead to friendly fire incidents.  

Technical Failures: Just as in case of any other technical object, 

autonomous systems are also susceptible to technical failures, including 

hardware malfunctions, software glitches, and sensor errors. These failures 

may be caused by manufacturing defects, environmental factors, or wear 

and tear over time, leading to disruptions in operation and potential mission 

failure. Accessing and servicing autonomous systems deployed in remote or 

hostile environments can pose logistical challenges, potentially leading to 

delays in maintenance and reduced system availability. On the other hand, 

poor reliability erodes trust and confidence in autonomous systems among 

operators, commanders, and stakeholders. Concerns about the system's 

ability to perform reliably under operational conditions may lead to 

hesitancy in relying on autonomous capabilities, resulting in a reluctance to 

fully integrate these systems into military operations. 

Ethical and Moral Concerns: Concerns about accountability, decision-

making ethics, and the potential for autonomous weapons to violate 

international humanitarian law raise profound moral questions. The lack of 
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human oversight in critical decision-making processes can lead to 

unintentional consequences and ethical breaches. 

Lack of Emotional Intelligence and Contextual Understanding: 

Autonomous systems lack the emotional intelligence and contextual 

understanding of human soldiers. They may struggle to interpret complex 

social and cultural dynamics, leading to misjudgements or inappropriate 

responses in sensitive situations. Additionally, the absence of human 

intuition and empathy can hinder their ability to make nuanced decisions in 

dynamic and unpredictable environments. 

Legal and Regulatory Challenges: The existing legal frameworks 

governing the use of autonomous vehicles and weapons are insufficient to 

address the complex challenges autonomous systems pose. Questions 

regarding accountability, liability, and compliance with international 

humanitarian law remain unresolved. Establishing clear regulations and 

norms for the use of autonomous military systems is essential to mitigate the 

risks associated with their deployment. 

 

7.3. Conclusion of the Analysis 

The preceding comparison clearly illustrates the numerous benefits of 

autonomous systems, with the greatest one certainly being the potential to 

save the lives of soldiers and civilians in war zones. Considering these 

arguments, the implementation of AI-driven systems, as swiftly and 

extensively as possible, enjoys almost unquestionable support. However, 

what alters the conclusions of the analysis is the risk that autonomous 

systems may fail to fulfil their mission or even commit errors so severe that 

they could endanger friendly troops and civilians (Figure 2). 
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Figure 2 The malfunctioning of a Figure 1: Different kinds of adversary 

attacks: adding noise to training data (left) and using camouflage (right). 

As a result of this threat, we believe that the deployment of fully autonomous 

systems is still premature, at least until issues stemming from sensor errors, 

enemy electronic warfare, and insufficiently robust AI models are 

addressed.  

 

 
Source: original author’s work. 

 

Several authors maintain that autonomous weapons need to be used 

along with intelligible human control to comply with legal and ethical 

norms – in other words, the use of weapons without meaningful human 

control should be prohibited. Fully autonomous weapons systems do not 

allow a human to make a legal and moral judgment as to whether the effects 

of an attack are acceptable. A treaty that would restrict the use of 

autonomous military systems should not be built around specific existing 

technologies but rather based on the idea of how technology may evolve and 

how it could be used in the future.  

Controlling lethal autonomous weapons systems (LAWS) is 

imperative to ensure adherence to international law, particularly the 

principles of distinction, proportionality, and precautions in attacks as 

delineated by International Humanitarian Law (IHL). Human judgment 

plays a pivotal role (and should not be excluded from the decision-making 

chain) in ensuring that the potential deployment of LAWS is consistent with 
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international legal norms and IHL standards. Consequently, there is a 

critical need for maintaining and enhancing human-machine interaction, 

where human decision-making continues to hold superiority over decisions 

made exclusively by AI.  

 

8. Summary 

 

In this paper, we have presented an assessment of the development of 

disruptive technologies. These technologies vary in terms of their 

capabilities, acceptance, and dissemination. Using unmanned aerial vehicles 

(UAVs) and unmanned ground vehicles (UGVs) as examples, the 

assessment reveals that UAVs have already established themselves as 

widely adopted, high-capability technology, while UGVs are still searching 

for their place within global armed forces. 

Moreover, the acceptance and applicability of AI within military 

systems have been thoroughly assessed. Despite considerable progress in 

the processing of images and real-time video transmissions, the potential for 

the misidentification of observed objects remains significant. Granting 

complete autonomy to current AI-driven systems could also entail a notable 

risk of inadvertent engagement with civilian or neutral targets. Such 

occurrences may arise from the absence of adequate sensors or models, or as 

a result of adversary attacks. 

The implications of the aforementioned errors in AI-powered military 

systems diverge in severity, though none of these can be dismissed as 

insignificant. For example, AI may incorrectly classify an enemy vehicle or 

weapon, leading to the selection of inappropriate weaponry or tactical 

manoeuvres. Additionally, mistaking a friendly vehicle for an adversary 

could result in incidents of friendly fire and fratricide. In view of the 

attained capabilities and vulnerability to adversary attacks, it currently 

appears unfeasible for AI to effectively monitor the movements of multiple 

entities and swift changes on the battlefield while maintaining the requisite 

high level of situational awareness. If granted complete autonomy, AI-

driven military systems would need to accurately and flawlessly distinguish 

between friendly troops, enemy combatants, and unarmed civilians. AI 

should be able to discern whether a person is carrying a weapon or any other 

item and adjust its responses accordingly, with only the highest level of 

reliability deemed acceptable. 
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Considering the stated factors, further advancement in manned-

unmanned teaming (MUM-T) is predictable. This concept involves a team 

where the human-operated unit plays a pivotal role, with AI-driven units 

providing support and protection. These AI units will likely gain more 

autonomy and take on complex tasks over time, but the central unit will 

always remain under human control. The MUM-T approach is evolving 

towards “human-on-the-loop” supervised autonomy, where AI units manage 

routine tasks while humans make critical decisions. This trend is expected to 

persist for years or decades, with thorough testing and a legal framework 

required to ensure safety and compliance with international humanitarian 

law. 

In the final chapter, an analysis was conducted regarding the 

advantages and disadvantages of fully autonomous systems. Arguments 

supporting the potential to save the lives of soldiers and civilians serve as 

the primary motivation for the eventual deployment of such technical units, 

ideally in significant numbers. However, numerous still-unresolved issues, 

ranging from hardware and software imperfections to insufficient resilience 

against enemy attacks, warrant caution. With the declining number of young 

people willing to enlist in the military, it is almost certain that autonomous 

systems will eventually assume a significant share of tasks currently reliant 

on human soldiers. Nevertheless, insistence on such a fundamental 

transition must be tempered until the aforementioned issues have been 

addressed, as unsuccessful experiments will be paid for in blood and human 

lives. 
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