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Abstract: In the study, we present a robust inversion method for calculating Hilbert trans-

form, a process that also provides resistance to outlier noise. The inversion-based Fourier 

transform process combined with the Most Frequent Value method (MFV) developed by 

Steiner can effectively make the Fourier transform more robust. The resistance of the robust 

Fourier transform process (IRLS-FT) to outliers and its outstanding noise suppression capa-

bility justify the method being tried in the field of seismic data processing. As the first stage, 

we present the production of the Hilbert transform based on a robust inversion, and as an 

application example we calculate the absolute value of the analytical signal that can be pro-

duced as an attribute gauge (instantaneous amplitude). The new algorithm is based on a dual 

inversion: we determine the Fourier spectrum of the time signal (channel) by inversion, and 

the spectrum obtained by the transformation required for the Hilbert transform is transformed 

into the time range with a robust inversion. The latter operation is carried out using the Steiner 

weights calculated using the Iterative Reweighting Least Squares (IRLS) method (robust in-

verse Fourier transform based on inversion). To discretize the spectrum of the time signal, 

we use the scaled Hermite functions in a series expansion. The expansion coefficients are the 

unknowns in the inversion. The new Hilbert transform procedure was tested on a Ricker 

wavelet loaded with Cauchy post-distribution noise. The results show that the procedure has 

remarkable resistance to outlier noises and noise suppression an order of magnitude better 

than that calculated by the conventional (DFT) method. 
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1. INTRODUCTION 

Attributes play an important role in seismic data processing and interpretation. They 

can be used to obtain certain information (physical or geometric parameters) that 

can’t be available before. Since the paper published by Taner et al. (1979), the sub-

ject area has expanded and significant development. Today, we can talk about a wide 

range of attributes, divide them into physical and geometric attributes, classify pro-

cedures according to whether they are applied before or after processing, interpreted 

on one or more seismic channels, etc. In developing and applying measurement and 

data processing procedures, it is important to manage and improve the signal-to-

noise relationship as much as possible. Fourier transform is often a priority in the 

creation of attribute stations. Szegedi and Dobróka (2014) proposed a robust Fourier 
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transform process (IRLS-FT) built on an inversion basis. In this paper, we demonstrate 

that the method works effectively in suppressing outlier noise and can repair the signal-

to-noise relationship by up to an order of magnitude. As a first step, we present the 

production of the Hilbert transform as part of a transformed robust/resistant inversion, 

which plays a decisive role in the definition of the complex channel.  

 

2. THE ANALYTICAL SIGNAL  

The starting point for calculating the basic attribute stations is the creation of an 

analytical signal (analytical or complex channel). The concept of analytical signal 

in data processing was introduced by the Nobel Prize laureate Hungarian physicist 

Dénes Gábor (1946). His ambition was to use the powerful mathematical tools of 

quantum mechanics in signal processing (using square-integrable complex func-

tions as elements of the so-called Hilbert space). To do this he introduced the ana-

lytical signal 

 𝑠(𝑡) = 𝑢(𝑡) + 𝑗𝑢𝐻(𝑡)  (1) 

 

where  

 𝑢𝐻(𝑡) =
1

𝜋
∫ 𝑢(𝜏)

∞

−∞

𝑑𝜏

𝜏−𝑡
  (2) 

 

is the Hilbert transform of the time signal. According to Equation (2), the Hilbert 

transform is generated as a convolution of the time signal u(t) with function 
t

1


− . 

In the frequency domain, this relation can be written as 
 

 ( ) ( ) ,
1









−=
t

tutuH


FFF   (3) 

 

where F  denotes the Fourier transform. As ( )


sgn
1

j
t

−=








−F , introducing 

the notation 
 

 ( ) ( ) tuU F=    (4) 

 

one can write 
 

 ( ) ( ) ( ) ( ) HH UUjtu =−= sgnF ,  (5) 

 

giving the Hilbert transform as 
 

 ( ) ( ) HH Utu -1F= .  (6) 
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It can be seen that when calculating the Hilbert transform the Fourier transform and 

its inverse are to be used. It is well known that the traditional DFT and IDFT algo-

rithms are noise sensitive in case of non-Gaussian noise in the data set. To define a 

robust procedure an inversion-based Fourier transform method (IRLS-FT) was in-

troduced by Dobróka et al. (2017). In order to use the noise-rejection capacity of the 

method we can use IRLS-FT in calculating ( )U  as 

 

 ( ) ( ) tuU IRLSF=   

 

with IDFT in Equation (6). A full inversion-based method can be produced when the 
1−

IRLSF  procedure is used also in Equation (6). 

 

3. REFLECTION STRENGTH ATTRIBUTE AND ITS NOISE SENSITIVITY 

Once the analytical signal (6) is known, the attributes can be produced. The reflec-

tion strength (instantaneous amplitude, paving) is further examined as an example, 

which is the absolute value of the analytical signal 
 

 𝐴(𝑡) = √𝑢(𝑡)2 + 𝑣(𝑡)2.  (7) 

 

The noise sensitivity of this attribute is illustrated using the Ricker wavelet (Ricker, 

1953) shown in Figure 1 (in blue). The time series shows a 10 Hz wave packet lo-

calized at 0.1 sec with a sampling interval of 0.005 sec in the [–1,1] (sec) domain. 

The data set (I) was generated by adding Gaussian noise (with a standard deviation 

of 0.0025 and zero mean) to the noise-free data. A data system (II) with outlier errors 

was created by generating noise following the Cauchy distribution of scale parameter 

ε = 0.04. Figures 1–3 show the reflection strength channel calculated by the conven-

tional process for noise-free inputs laden with Gauss noise (I) and Cauchy noise (II). 

Hilbert’s transformed functions were carried out using the discrete Fourier transform 

process (DFT) and its inverse (IDFT).  

 

 
Figure 1. The noiseless time domain Ricker wavelet (blue) and  

noiseless reflection strength (red) 
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Figure 2. The noisy Ricker wavelet (data set I) (blue) and noisy reflection strength 

(red). The discrete Fourier transform method (DFT) and its inverse (IDFT) were used.  

 

 

 
Figure 3. The noisy Ricker wavelet (data set II) (blue) and noisy reflection strength 

(red). The discrete Fourier transform method (DFT) and its inverse (IDFT) were used. 

 

It can be seen that the reflection strength gauge calculated on the basis of the data 

system containing outliers II is particularly noisy. To characterize noise sensitivity, 

we introduce  

 

 𝑑 =  √
1

𝑁
∑ (𝐴(𝑛𝑜𝑖𝑠𝑦)(𝑡𝑘) − 𝐴(𝑁𝑜𝑖𝑠𝑒−𝑓𝑟𝑒𝑒)(𝑡𝑘))2𝑁

𝑘=1   (8) 

 

distance in the data space, which is d(I) = 0.0240 for data set I and for the data set II 

the distance d(II) = 0.0444 (N being the number of the samples). Figure 3 justifies 

the development of a Hilbert transform process more resistant to outlier noise. Since 

Hilbert’s transformed training is based on the traditional Fourier transform (DFT), it 

is obvious that the inversion-based Fourier transform procedure (IRLS-FT) utilizing 

Steiner weights (Szegedi and Dobróka, 2014) is used to solve the task. 
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4. THE INVERSION-BASED FOURIER TRANSFORM (IRLS-FT) 

The Fourier transform links the time domain of the signal registration and the fre-

quency domain of the signal test according to the following formulas: 

 

 𝑈(𝜔) =
1

√2𝜋
∫ 𝑢(𝑡)𝑒−𝑗𝑤𝑡𝑑𝑡

∞

−∞
,  𝑢(𝑡) =

1

√2𝜋
∫ 𝑈(𝜔)𝑒𝑗𝑤𝑡𝑑𝜔

∞

−∞
 .  (9) 

 

The frequency spectrum U(ω) is a Fourier transform of the time signal u(t), which is 

usually a continuous function of the complex value. When using series expansion 

based discretization, the spectrum is written in terms of a suitably chosen system of 

basis functions: 

 𝑈(𝜔) =  ∑ 𝐵𝑛Ψ𝑛
𝑀
𝑛=1 (𝜔) ,  (10) 

 

where 𝐵𝑛 denotes the complex expansion coefficients, Ψ𝑛(ω) denotes the n-th known 

basis function, and M is the total number of the basis functions. If the Fourier trans-

form is understood as an overdetermined inverse problem, we must first designate 

the direct problem, which is the inverse Fourier transform, defined in the case of the 

k-th measurement datum as 
 

 𝑢(𝑒𝑙𝑚)(𝑡𝑘) = 𝑢𝑘
(𝑒𝑙𝑚)

=
1

√2𝜋
∫ 𝑈(𝜔)𝑒𝑗𝜔𝑡𝑘𝑑𝜔

∞

−∞
.  (11) 

 

Combining the above equations, the calculated (theoretical) data can be determined 

according to the following system of linear equations: 
 

 𝑢(𝑒𝑙𝑚)(𝑡𝑘) = 𝑢𝑘
(𝑒𝑙𝑚)

= ∑ 𝐵𝑛𝐺𝑘𝑛
𝑀
𝑛=1 ,  (12) 

 

where 
 

 𝐺𝑘𝑛 =  
1

√2𝜋
∫ Ψ𝑛

∞

−∞
(𝜔)𝑒𝑗𝜔𝑡𝑘𝑑𝜔 =  ℱ𝑘

−1{Ψ𝑛(𝜔)}   (13) 

 

is the Jacobi matrix. The deviation vector of measured and calculated data is given by 

 

 𝑒𝑘 = 𝑢𝑘
(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

− 𝑢𝑘
(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)

= 𝑢𝑘
(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

−  ∑ 𝐵𝑛𝐺𝑘𝑛
𝑀
𝑛=1 .  (14) 

 

The expression contains the expansion coefficients, which are determined by mini-

mizing some norm of the deviation vector. Knowing the expansion coefficients, the 

spectrum can be determined at any frequency as 

 

 𝑈(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)(𝜔) = ∑ 𝐵𝑛
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑Ψ𝑛(𝜔)𝑀

𝑛=1 .  (15) 

 

On an overly noisy data system, we demonstrated that the inversion-based Fourier 

transform achieves an order of magnitude better signal-to-noise ratio than the tradi-

tional DFT process. 
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5. THE ROBUST GENERATION OF HILBERT TRANSFORM 

To produce the Hilbert transform we need to know the U(ω) spectrum of the signal. 

To improve the signal-to-noise ratio, the Fourier transform is performed by the 

IRLS-FT method, and then the spectrum is multiplied by the function -j sgn(ω). We 

then return to the time domain by an inverse Fourier transform. This can be done by 

applying IDFT and also by using an inversion-based inverse Fourier transform. The 

latter procedure can be performed by robust inversion defined here. The starting 

point is the expression of the inverse Fourier transform 

 

 𝑈(𝜔) =
1

√2𝜋
∫ 𝑢(𝑡)𝑒−𝑗ω𝑡𝑑𝑡 .

∞

−∞
  (16) 

 

The direct problem is given by the formula of the Fourier transform, where the time 

function u(t) is discretized in the form of a series expansion 

 

 𝑢(𝑡) = ∑ 𝐵𝑛Ψ𝑛(𝑡)𝑀
𝑛=1 .  (17) 

 

After substitution, the following formula is obtained for the k-th sampling element 

of the spectrum 
 

 𝑈𝑘(𝜔𝑘) = ∑ 𝐵𝑛
𝑀
𝑛=1  

1

√2𝜋
∫ Ψ𝑛

∞

−∞
(𝑡)𝑒−𝑗𝜔𝑘𝑡𝑑𝑡 = ∑ 𝐵𝑛𝐺𝑘𝑛

𝑀
𝑛=1 ,  (18) 

 

where 
 

 𝐺𝑘𝑛 =  
1

√2𝜋
∫ Ψ𝑛

∞

−∞
(𝑡)𝑒−𝑗𝜔𝑘𝑡𝑑𝑡 =  ℱ𝑘{Ψ𝑛(𝑡)}   (19) 

 

is the Jacobi matrix, the elements of which can be thought of as Fourier transforms 

of the basis function system. The calculation of the complex integral in the formula 

can be avoided by choosing the basic functions of series expansion from the eigen-

functions of the Fourier transform. 

 

6. CHOOSING BASIS FUNCTION SYSTEM – THE HERMITE FUNCTIONS 

The Hermite functions have been chosen as basis functions because in the case of 

inverse problems it is advised to use complete, orthonormal function systems to re-

duce the number of unknown parameters and to improve the stability of the inversion 

procedure. The Hermite functions require proper scaling because in geophysical ap-

plications the frequency covers a wide range. The scaled Hermite polynomials can 

be calculated using the Rodriguez formula  

 
22

)1(),( 
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−= e

d

d
eh

n

n

n   (20) 

 

and can be determined by the recursive formula (Gröbner and Hoffreiter, 1958) 
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where α is a scaling factor. The first and second Hermite polynomials are  
 

 h0(ω,α)=1  (22) 

 

 h1(ω,α)=2αω.  (23) 

 

The scaled Hermite polynomials fulfil the condition of orthogonality  
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In the formula, δnm denotes the Kronecker-delta symbol. The scaled Hermite function 

can be defined as 

 

n

n
n

n

he
H

)2(!

),(
),(

2

2












=

−

,  (25) 

 

where hn(ω,α) denotes the n-th scaled Hermite polynomial. Thus the introduced Her-

mite functions are orthonormal 

 nmmn dHH  =


−
),(),( .  (26) 

 

To get a fast and simple formula for the calculation of Jacobi’s matrix a special fea-

ture of the Hermite functions was used. As we can see earlier, Gk,n is the inverse 

Fourier transform of the basis function. This is the main reason for selecting the 

Hermite functions because their non-scaled versions are eigenfunctions of the Fou-

rier transform (Vaidyanathan, 2008) 
 

  )()()( )0()0( n

n

n HjtH −=F   (27) 

 

and can be written for the inverse Fourier transform 
 

  )()()( )0(0 tHjH n

n

n =-1F .  (28) 

 

The Jacobi matrix can be expressed by the scaled Hermite functions Hn(ω,α) as  
 

 






deHdeHG kk tj

n

tj

nnk == 


−



−

)(
2

1
),(

2

1 ')0(4
,

. (29) 



16                                    Omar Al Marashly – Mihály Dobróka 
 

 

 

Introducing the following notations  

 ' 't t = , ' = , ' t
t


=   (30) 

 

it can be computed easily that 
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== )'(
1

')'(
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n

tj

nnk HdeHG k 1-F .  (31) 

 

Jacobi’s matrix can be written again based on Equation (15) 
 

 







==



t
HjtHjG n

n

n

n

nk

)0(

4

')0(

4, )(
1

)()(
1

.  (32) 

 

This is a very important result because the Jacobi matrix can be derived quickly 

without integration. The discretized form of the spectrum can be written according 

to Equation (3) using the scaled Hermite function system, where the expansion co-

efficients Bn are defined (including the expression of the Jacobi matrix) in the frame 

of the over-determined inverse problem. This inverse problem is highly over-deter-

mined because the number of measurement data is much higher than that of the pa-

rameters (N > M). In the case of the Least Squares method (LSQ), the L2 norm of 

the deviation vector is minimized 

 

 .min)()(
0

2

,

1

)(

1

2)()(

1

2

2 
====

=−=−==
M

n

nkn

N

k

measured

k

N

k

theor

k

measured

k

N

k

k GBuuueE  (33) 

 

The well-known normal equation can be derived from the above condition in the 

following form 

 .measuredTT uB


GGG =   (34) 

 

After this, we can estimate the complex series expansion coefficients 

 

 .)( 1 measuredTT uB


GGG
−=   (35) 

 

With this, the real and imaginary part of the Fourier spectrum can be calculated at 

any frequency by Equation (3). The LSQ method gives optimal results in the case of 

a Gaussian distributed data set. 

 

To make the Fourier transform more robust an Iteratively Reweighted Least Squares 

(IRLS [5]) method using Cauchy weights was implemented. To achieve the optimal 

values of the unknown parameters (Bn) the following weighted norm is minimized 
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where the weighs are defined as  
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and the k-th element of the deviation vector is  

 

 
theor

k

measured

kk uue −= .  (38) 

 

The scale parameter ε of the Cauchy distribution is not a priori given because the 

data residuals change from iteration to iteration (Steiner, 1997). The weighted norm 

gives reliable results for inverse problems even if the measured data set contains 

outliers. The j-th iteration step of the normal equation is 

 

 measuredjTjjT uB )1()()1( −− = WGGWG .  (39) 

 

This iteration is repeated until a proper stop criterion is met. Finally, the Fourier 

spectrum can be calculated at any frequency by using Equation (10). 

 

7. NUMERICAL TESTS  

In Figures 1, 2 and 3, examples were shown of noise-free and the absolute value of 

the analytical signal (reflection strength) calculated with a Ricker wavelet laden with 

Gaussian and Cauchy distributed noise. In Figures 4 and 5, the absolute value of the 

analytical signal (the reflection strength, as the first seismic attribute) generated by 

the robust inversion-based Fourier transforms of the same input signals is illustrated. 

Of course, our method for noise-free input provides the same result as the Fourier 

transform using the traditional DFT process. In the case of input data system I (Gauss 

noise), the inversion-based Hilbert transform in Figure 4 shows that it is less noisy 

than the data in Figure 2 produced by the traditional method. The slight improve-

ment is characterized by a distance of d(I) = 0.0183 in the data space. However, 

significant improvement is reflected in the processing of data system II (Cauchy 

noise) using the robust inversion method defined with Steiner weights as shown in 

Figure 5. Here, compared to Figure 3, we can see an almost complete suppression 

of the effect of the outlier data, which is caused by the distance in the data space 

d(II) = 0.0033. There is nearly an order of magnitude difference between the data 

space distances obtained by the traditional (d(II) = 0.0444) and inversion-based 

(d(II) = 0.0033) Fourier transform processes.  
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Figure 4. Results after applying the new algorithm on the noisy signal using 

Gaussian noise distribution (data set I) 

 

Figure 5. Result after applying the new algorithm on the noisy signal using  

Cauchy distribution noise (data set II), we can see that the result is  

very effective on those type of noises 

 

The above results confirm a significant improvement in signal/noise when using a 

robust inversion-based Fourier transform and an inverse Fourier transform built on 

a robust inversion basis to produce the Hilbert transform.  

 

8. CONCLUSIONS  

The new IRLS inversion-based Fourier transform method has been demonstrated to 

achieve high noise resistance to excessively noisy data. In this paper, we used this 

procedure in the calculation of the Hilbert transform. The algorithm presented is 
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based on a dual inversion, on the one hand, we apply IRLS-FT to the Fourier trans-

form and, on the other hand, after the production of the transformed spectrum of 

Hilbert, the inverse Fourier transform is also calculated using an inversion-based 

robust/resistant process. Although dual inversions require a significant calculation 

time compared to traditional DFT/IDFT transform, the numerical example presented 

shows that we can achieve a high degree of improvement with the inversion-based 

Hilbert transform process. Given the current capacity and speed of computers, it is 

likely that in some practical cases the extra computing time will be tolerable. 
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