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Abstract: The thermal conductivity of rocks can be deduced from available data of explora-

tion wells such as core samples, cuttings, lithological descriptions and geophysical well logs. 

As the thermal conductivity of clastic sediments is lower than the conductivity of the crys-

talline basement, the sediments have a significant influence on the temperature distribution 

and heat flow density. We present a methodology for determining the thermal conductivity 

of clastic sediments using geophysical well logs and thermal conductivity data measured in 

laboratory. Our results are based on the data of 6 exploration wells. Several well log combi-

nations and thermal conductivity measurements from 70 core samples were used to work out 

the method. The lithological composition consisting of shale, sand and water was identified 

and the volumetric fractions of these components were derived from wireline logging data 

such as natural gamma ray, resistivity, bulk density and neutron porosity logs. The litholo-

gical composition was determined with Bayesian inversion applying the weighted least 

squares method. The effective thermal conductivity was computed by applying an appropri-

ate mixing law using the thermal conductivity values of the lithological components. The 

thermal conductivities derived from well logs were tested and new matrix thermal conduc-

tivity values were calculated using archive thermal conductivity measurements of core sam-

ples. The harmonic mean model proved to be the best mixing law, resulting in the best fit to 

laboratory measurements. The reliability of our model was also tested with the help of tempe-

rature measurements carried out in a well. Heat flow density determinations were carried out 

using the Bullard-plot technique with thermal conductivities calculated by our new method. 

In case of 6 wells, heat flow densities calculated by the new method are in the range of heat 

flow density values previously conducted but with substantially lower uncertainties. 
 

Keywords: thermal conductivity, mixing models, heat flow density, well log interpretation, 

geophysical inversion 

 

 

1. INTRODUCTION 

The utilization of geothermal energy in Hungary has a long tradition, because several 

geothermal reservoirs exist in the Tertiary and Quaternary sediments and buried 

karstified and fractured carbonates. Almost 70% of Hungary’s surface is covered by 

Tertiary and Quaternary clastic sediments. The average sediment thickness is 1–2 

km, but in the deepest troughs it reaches 5–8 km (Figure 1). As the thermal conduc-

tivity of clastic sediments is lower than the conductivity of the crystalline basement, 

the sediments have a significant influence on the temperature distribution and heat 
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flow density. The heat flow density is one of the most important quantities in geo-

thermal exploration, because it allows the prediction of subsurface temperature, and 

its local variations may originate from groundwater flow, which indicates the pres-

ence of a reservoir [1–3]. Its large scale distribution is also influenced by mantle and 

lithospheric processes, therefore it is an important control parameter in geodynamic 

models [4–5]. The heat flow density is determined using Fourier’s Law as the pro-

duct of the thermal conductivity of rocks and the temperature gradient measured in 

boreholes and wells. 

 

 
Figure 1 

The locations of the drilling projects in Hungary. The color scale represents the 

depth of the pre-Tertiary basement (after Kilényi et al. [6]) 

 

Detailed thermal conductivity data are required to separate the conductive and con-

vective heat flow density, for instance, in numerical models. It is impossible to ac-

quire thermal conductivity data with such resolution from laboratory measurements 

alone. Coring processes to obtain core samples are expensive techniques to reach a 

good spatial and depth resolution. Additionally, core samples can get damaged dur-

ing their transportation and laboratory measurement. However, well log data offer 

good resolution, and thus one of the main goals of this study is to develop a method 

to determine thermal conductivity of the Tertiary and Quaternary clastic sediments 

using well logs. 

One of the basic ways to establish a relationship between the thermal conductivity 

and well logs is to compute the lithological composition, usually consisting of shale, 

sand, marl and water, using openhole logging measurements (natural gamma ray, 
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density, neutron porosity, resistivity etc.) and then apply an appropriate mixing law 

amongst the components to obtain the thermal conductivity [7–10]. The mixture 

models describing the thermal conductivity of a rock can be grouped into (1) well-

defined physical models (Hashin and Shtrikman bounds) and (2) purely empirical or 

semi-empirical approaches (geometric, arithmetic or harmonic mean) [11]. 

The behavior of different mixing models in case of sedimentary rocks was ana-

lyzed by several authors. In the work of Hutt & Berg [12] bulk thermal conductivities 

calculated by several mixing models (arithmetic mean, harmonic mean, geometric 

mean) were compared to values measured with a needle probe on 28 sandstone sam-

ples. The harmonic mean showed a good fit, whereas the arithmetic and geometric 

mean models overestimated the measured data. Brigaud et al. [7] mentioned the fact 

that the properties of certain lithotypes containing clay can change during drilling, 

causing systematic errors. In their work, the geometric mean model was identified 

as a suitable method to calculate the bulk thermal conductivity. Hartmann et al. [9] 

also concluded that the geometric mean mixing law can be a reliable choice in case 

of argillaceous and marly lithology. Fuchs et al. [11] provided a validity study of 

simple and generally used mixing models for a two-phase rock system based on the 

work of Clauser [13], which in turn was based on 1,147 laboratory measurements 

conducted on sandstone, mudstone, limestone and dolomite samples with the optical 

scanning method [14]. The geometric mean model seemed to be the best choice with 

a poor coefficient of determination (R2 = 0.62), thus they developed correction charts 

to increase the R2 values of mixing models. 

Drillings — where well-log data and thermal conductivity measurements are 

available — are needed to successfully elaborate the method. There are 12 explora-

tion wells in Hungary where these measurements are accessible (Figure 1), and the 

whole dataset of 6 drillings labeled Bo-1, Szh-II, S-I, Der-1, Mp-1, Sz-2 have been 

successfully collected, quality controlled and digitized. In the listed wells the fol-

lowing log types were available: spontaneous potential, natural gamma ray, resistiv-

ity, neutron porosity and bulk density logs. 

The thermal conductivity measurements on core samples were carried out with 

the Transient Line Source method [15] based on the work of Cull [16]. The average 

relative error of this measurement technique is 10–15% according to measurements 

performed on standard samples [15]. 70 core samples were used in the elaboration, 

and in most cases two or three measurements were made on the samples, thus alto-

gether 158 thermal conductivity measurements were taken into account. Regarding 

the rock types, 38 core samples fell into the group of pelites (clay, silt and marl) and 

32 core samples represented the group of psammites (sand, sandstones). The fluid 

content was preserved by waxing the samples. 

Our main goal was to elaborate a methodology for determining the thermal con-

ductivity of clastic sediments using geophysical well logs and to calculate the heat 

flow density in a quality-controlled way. Thus, improving the method of the deter-

mination of the thermal conductivity significantly increases the precision of the heat 

flow density calculation and can increase the reliability of thermal models. 
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2. METHODOLOGY 

2.1. Well log analysis 

A geophysical inversion algorithm based on a weighted least squares method was 

developed using the Mathcad software. The main goal of the inversion is to derive 

the volumetric fractions (pi) of the lithological components from wireline logging 

data such as natural gamma ray, resistivity, compensated bulk density and neutron 

porosity measurements. The lithological composition — determined with Bayesian 

inversion — is assumed to be a mixture of clay (cl), sandstone (ss), and water (w). 

The conventional inversion is based on maximum likelihood principle and the meas-

urement noise is assumed to be additive centered Gaussian noise. In the case pre-

sented, the sum of squares of the differences between the measured and the recalcu-

lated data is minimized to evaluate the best fitting parameter vector of the volumetric 

fractions. The correction for the input parameter vector of the inversion (∆p) can be 

calculated as follows [17]: 

 1 ,T−=Δp R F WΔy   (1) 
 

where F is the Jacobi’s matrix, W is the weighting matrix, ∆y is the difference vector 

between the observed and the calculated data, and R is the so-called iteration matrix, 

described as 

 .T=R F WF   (2) 
 

The probe response equations can be seen in Table 1. 

Table 1 

Petrophysical descriptors 

Petrophysical descriptor Unit Equation 

Natural gamma ray μR/h 1 1 2 2 1 2 3( ) (1 )GR p p p p=  +  + − − p  

Bulk density g/cm-3 
1 1 2 2 1 2 3( ) (1 )b p p p p =  +  + − − p  

Neutron porosity v/v 
1 2 31 2 1 2( ) (1 )N N N Np p p p =  +  + − − p  

Resistivity ohmm 

1 2

2

1 2 1 1

4 (1 )
( )

2 (1 )

m

t
m

w
w

w cl cl

p p
R

S p p p p
a R

a R R R

 − −
=

    − −
   + − 

   

p  

Nomencla-

ture: 
  

p1 Volume fraction of clay ΦN1 Neutron-porosity of clay 

p2 Volume fraction of sand ΦN2 Neutron-porosity of sand 

γ1 Natural gamma ray of clay ΦN3 Neutron-porosity of water 

γ2 Natural gamma ray of sand Rcl Resistivity of clay 

γ3 Natural gamma ray of water Rw Resistivity of water 

ρ1 Bulk density of clay Sw Water saturation 

ρ2 Bulk density of sand a Tortuosity factor 

ρ3 Bulk density of water m Cementation exponent 
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The measured data is often characterized by different degrees of uncertainty. In order 

to take this effect into consideration, a given weight proportional to the uncertainties 

is contributed to the solution. The applied weighting matrix is symmetric and its 

diagonal elements are the reciprocal of squares of the particular measurement’s 

standard deviations, which were determined by the sample standard deviation for-

mula along a clear lithological zone. 

To examine the statistical features of the estimated parameters, their covariance 

matrix has been determined in each depth point which includes the squares of the 

parameters’ standard deviation values in its main diagonal: 
 

 
, ,i i i = C   (3) 

 

where σi is the standard deviation of the ith parameter and C is the covariance matrix 

of the calculated model parameters in a given depth point. 

 

2.2. Mixing models 

Several mixing models were applied in this work. These are the four most frequently 

used models: arithmetic, geometric, harmonic means and the Hashin-Shtrikman 

bounds. Calculating the bulk thermal conductivity (λb) of a two-component rock sys-

tem involves the thermal conductivity of the matrix (λm), the effective porosity (Φ), 

and the thermal conductivity of the pore content (λp). Using the sensitive relationship 

between porosity and bulk thermal conductivity is the root of every mixing model: 

the thermal conductivity of the pore fluid is fairly low regarding the matrix thermal 

conductivity. Porosity and the volumetric fraction of matrix can be derived from ge-

ophysical well logs. 

 

2.2.1. Arithmetic and harmonic mean 

Frequently used approaches are the arithmetic and harmonic mean, both of which 

are based on a layered model where the thermal conductivity depends on the direc-

tion of the heat flow density. If the heat flow is parallel to the layering, the bulk 

thermal conductivity is equal to the arithmetic mean of the lithological components 

(matrix and pore content) weighted by their volumetric fractions [11]:  
 

 (1 ) .b m p    = −  +    (4) 

 

Assuming heat flow density perpendicular to the layering, the harmonic mean can 

be used to calculate the bulk thermal conductivity: 

 
1

.
1b

m p


 

 

=
−

+

  (5) 

 

According to Voigt [18] and Reuss [19], these mixing models can be defined as the 

upper (arithmetic) and lower (harmonic) bounds of the thermal conductivity. 
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2.2.2. Hashin–Shtrikman bounds 

Narrower bounds can be derived by the theory of Hashin and Shtrikman [20]. The 

upper bound represents a geometry assuming fluid-filled, spherical pores in a solid 

rock matrix: 

 .
1 (1 )

( ) 3

U

HS m

p m m


 



  

= +
−

+
−

  (6) 

 

The lower bound can be derived by assuming a geometry where the solid fraction is 

represented as spherical grains suspended in a fluid: 
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1
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HS p
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−
= +

+
−

  (7) 

 

Theoretically, the thermal conductivities of rock samples should fall in between 

these bounds. 

 

2.2.3. Geometric mean 

The geometric mean model is the most popular approach. It is a pure empirical for-

mula providing a simple mathematical expression to calculate the bulk thermal con-

ductivity (see e.g. [11]): 

 1 .b m p

   −=    (8) 

 

2.2.4. Thermal conductivity of lithological components 

The most critical part of calculating the bulk thermal conductivity is choosing an 

appropriate mixing law and using correct thermal conductivity values for the given 

components. In this work, a three-component lithological model was utilized, which 

means a mixture of clay, sandstone and water as pore fluid. The thermal conductivity 

of the sandstone and clay parameter was chosen after the work of Dövényi & 

Horváth [21]. The Tertiary and Quaternary sediments of the Pannonian Basin can be 

divided in two broad lithological categories: pelites (including clay, claystone and 

marl) and psammites (including sand, sandstone and gravel). This classification was 

implemented on core samples used in Dövényi & Horváth’s laboratory measure-

ments [21]. They established thermal conductivity – depth functions and calculated 

the matrix thermal conductivity of pelites and psammites using the geometric mean 

with porosity values derived from the national porosity trend of Hungary (Figure 2). 

Thus, in the first step, the conductivity of the sandstone (psammites) and clay pa-

rameter (pelites) was set to 4.2 and 2.8 W/(m*K), respectively. 
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2.3. Heat flow density 

The final step of the methodology is calculating the heat flow density. It can be 

determined by Fourier’s law: the product of thermal conductivity and temperature 

gradient.  

 

2.3.1. Bullard plot 

Other methods are also available for calculating the heat flow density. For our da-

taset, the Bullard-plot technique was the most suitable method for the heat flow den-

sity determination. Assuming an isotropic, horizontally layered medium where the 

heat flows only in vertical direction, the following equation can be used: 
 

 0

1

,
i

j

i

j j

z
T T q

=


= +    (9) 

 

where Ti [°C] is the measured temperature in the ith depth, T0 [°C] is the surface 

temperature, q [mW/m2] is the heat flow density. The summation — to the ith depth 

of the quotient of the depth interval (Δzj) and the thermal conductivity [W/(m*K)] 

derived from our methodology — is called thermal resistance. Plotting the measured 

temperatures as a function of thermal resistance, a linear fitting can be applied to the 

data. The slope of the linear fit will describe the heat flow density (Figure 3). 

It is important to take into consideration the temperature and pressure dependence 

of thermal conductivity. Increasing temperature will have a negative effect on the 

thermal conductivity; on the other hand, increasing pressure with depth will lead to 

higher thermal conductivity. For temperature correction, we used Sommerton’s for-

mula [22]: 
 

 200.253 3 0.64

20 20 20 2010 ( 293) ( 1.38) (1.8 10 ) 1.28 ,T T T
    − − − − = −  −  −     +     (10) 

Figure 2 

Thermal conductivity vs. depth functions of pelites (a) and psammites (b) based on 

laboratory Transient Line Source measurements (Dövényi & Horváth [21]) 
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where T [°C] is the temperature and λ20 [W/(m*K)] is the measured thermal conduc-

tivity at room temperature. For pressure correction the formula of Fuchs & Förster 

[10] was applied: 

 
(0.0088 0.0067)

(1.095 0.172) ,lab

p lab p
   −

=  −    (11) 
 

where p is assumed to be in situ pressure in MPa and λlab [W/(m*K)] is the thermal 

conductivity measured at the surface. The first step was applying the temperature 

correction, then the temperature corrected thermal conductivity was replaced in the 

formula of the pressure correction as a second step of the correction. Finally, the 

corrected thermal conductivity values were used in Equation (9). 

 

 
Figure 3 

The Bullard plot: linear fit between the temperature (T) and thermal resistance (R). 

The slope and the intercept of the linear fit give the value of the heat flow density 

(q) and surface temperature (T(0)), respectively. CIq,95% and CIT(0),95% are the 95% 

confidence intervals of the slope and intercept. 

 

2.3.2. Error propagation 

It is important to define the uncertainty of the heat flow density. The Gaussian error 

propagation formula was applied for this purpose: 

 

 

2

2 2 cov( , ) ,
if x i ji i j

i i j

f f f
s x x

x x x




         
   +                  
    (12) 
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where sf is the standard deviation of the f function, σxi is the standard deviation of the 

parameter xi and cov is the covariance of the parameters. 

The standard deviations and covariances of the clay, sand and water parameters 

derived from the geophysical inversion were used for calculating the error propaga-

tion of the thermal conductivities using Equation 12. The effects of the temperature 

and pressure corrections were also taken into consideration. The final step was to 

calculate the error propagation of the thermal resistances using the calculated stand-

ard deviations of the thermal conductivities. 

Applying the Bullard-plot technique, the error propagation of the thermal re-

sistances and the uncertainty of the temperature values were also used as weights for 

the linear fit after the work of York [23] and York et al. [24] (Figure 4). Subse-

quently, the standard deviation of the slope of the linear fit was assumed to be the 

error propagation of the heat flow density. 

 

 
Figure 4 

The Bullard plot: weighted linear fit between the temperature (T) and thermal re-

sistance (R). The slope and the intercept of the linear fit give the value of the heat 

flow density (q) and surface temperature (T(0)), respectively. CIq,95% and CIT(0),95% 

are the 95% confidence intervals of the slope and intercept. 

 
3. RESULTS 

3.1. Lithological model 

Our main purpose is determining the thermal conductivity of Tertiary and Quater-

nary clastic sediments in order to build a lithological model that not only represents 

realistically the sediments filling in the Pannonian Basin but provides a statistically 

satisfying result after the inversion process. 
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In a stratigraphy-sedimentology study Juhász [25] synthesized the main lithofa-

cies units common in the Pannonian s.1. sequence of the Neogene subbasins consid-

ering the new unified lithostratigraphic nomenclature. On the basin plain basal marls 

formed beginning with calcareous marl grading into argillaceous marl upwards, 

which consists of the Endrőd Formation. The Szolnok Sandstone Formation repre-

sents the deep-water turbidite sequence of fine-grained sandstones transported from 

the shelf edge to the deep sea (Figure 5). Afterwards both the delta and basin slope 

sediments reach huge thicknesses, built up by argillaceous marls and siltstones with 

sandstone interbeds. This depositional environment contains the Algyő Formation. 

In the deltaic environments a large amount of littoral sediments deposited, forming 

a thick, sandy, continuous lithofacies association which comprises the Újfalu For-

mation (Figure 5). The Zagyva Formation represents fluvial or alluvial sediments 

concentrated in particular regions with thin lignite beddings in some areas; however, 

in the northern part of the Pannonian Basin thicker lignite and brown coal beds 

formed — called the Bükkalja Member — because of the negligible amount of sed-

iment input. 

 

 
Figure 5 

Generalized cross-section of the characteristic depositional environments  

in the Late Miocene [26] 

 
All of the mentioned formations are penetrated by the examined exploration wells, 

although some of the drillings reached the Lower Badenian (Middle Miocene) sedi-

ments. The Lower Badenian cycle of sedimentation comprises the Hidas Formation 

forming brown coal beds with argillaceous sand, sandy clay marls and clay 
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interbeddings. The Szilágy Formation represents a pelagic lithofacies with well lay-

ered silty or fine-grained sandy clays, clay marls, and marls. This sedimentary cycle 

ended with regression in the end of the Badenian, with the Kozárd Formation repre-

senting a new period of transgression in the evolution of the basin. The sequence 

deposited in littoral or even paludal, shallow and deep sublittoral environments is 

diversified mainly by arenose sands with aleurite bands. The neritic or shelf facial 

Tinnye Formation seems to laterally interfinger with the Kozárd Formation consist-

ing of layered clay marls with sandstone and aleurit interbeds. 

To emphasize the conclusions of the stratigraphy, we summarize the main rocks 

occurring in this study: sandstone, argillaceous sand, sandy clay, silty clay, clay, clay 

marl, argillaceous marl, marl, aleurit, lignite and brown coal bands. On the basis of 

the listed elements, a lithological model assumed to be a mixture of clay, sandstone 

and water is acceptable. 

 

  
Figure 6 

Crossplots of the measured and recalculated logs in case of gamma ray (a) and 

neutron porosity (b) logs. GR and NPHI indicate the measured data, GR_TH and 

NPHI_TH mean the recalculated values 

 
Our results confirm the pertinence of this lithological model, which can be verified 

by the fitting of the recalculated log data and the standard deviations of the estimated 

parameters. The crossplots in Figure 6 show a good fit between the measured and 

recalculated data. Similarly, the example interval presented in Figure 7 also shows 

that the recalculated gamma ray, bulk density, neutron porosity and resistivity log 

fitting satisfyingly well to the original measured data. The model was also confirmed 

by examining the average standard deviation values of clay, sandstone, and water 

fractions which are 5.4%, 4.8% and 2.7%, respectively. Nevertheless, there are depth 

sections where the inversion is uncertain, probably due to the poor quality of meas-

urement techniques, but fortunately the core sampling intervals are not affected. 
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Figure 7 

Results of the inversion from the Sz-2 well consisting of Lower Pannonian  

(Late Miocene) sediments. Input curves are light blue and dash lined, recalculated 

curves: black: natural gamma ray, red: resistivity, orange: bulk density, pink:  

neutron porosity, result curves: green: volume fraction of clay, yellow: volume 

fraction of sandstone, purple: porosity filled with water. The shaded areas define 

the standard deviations of each variable. Last column represents the lithological 

model: green: volume fraction of clay, yellow: volume fraction of sandstone,  

blue: pore water. 
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3.2. Thermal conductivity 

3.2.1. Thermal conductivities calculated using matrix thermal conductivities after 

the work of Dövényi & Horváth [21] 

The bulk thermal conductivities — calculated by using different mixing models — 

were compared to laboratory measurements conducted on core samples, thus several 

thermal conductivity logs were created (Figure 8). 

 

 
Figure 8 

Bulk thermal conductivity values calculated by various mixing models: (a) and (b) 

represent the results of the Sz-2 and Mp-1 wells respectively, in case of intervals 

including clayey, marly,silty sections interbedded with fine grained sandstones 

contaminated with clay; (c) introduces the result of Sz-2 representing a section 

containing multiple sandstone interbeds. Purple circles are the measured thermal 

conductivites; in case of (b) red triangles define the error of laboratory measure-

ments. Description of logs: dark red, H-Sh+: upper Hashin–Shtrikman bound, dark 

yellow, H-Sh-: lower Hashin–Shtrikman bound, green, HM: harmonic mean, dark 

blue, GM: geometric mean, pink, AM: arithmetic mean 
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Crossplots of each mixing models were created for better visualization (Figure 9). 

The first noticeable phenomenon, also concluded by Hartmann et al. [9], is that in 

the case of an analogous mineral composition the geometric mean model closely 

follows the lower Hashin-Shtrikman bound, corresponding to a rock model repre-

senting spherical grains suspended in a fluid (Figures 8, 9c and 9d). In case of pelitic 

samples, most of the mixing models overestimate the thermal conductivity based on 

laboratory measurements. Only the harmonic mean gives a better estimation (Figure 

9e), though this fit is also poor. All of the mixing models underestimate the psam-

mitic samples and are incapable of giving higher thermal conductivity values than 4 

W/(m*K), which can be explained with the low, 4.2 W/(m*K) matrix thermal con-

ductivity. From these phenomena it is clearly visible that for better fit between the 

calculated and measured values, lower matrix thermal conductivity is needed for the 

pelite parameter and a higher value for the psammite. 

 
Figure 9 

Crossplots of thermal conductivity values measured in laboratory and thermal con-

ductivity values calculated by each mixing models using matrix thermal conductivi-

ties, after the work of Dövényi & Horváth [21] 
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3.2.2. Calculating new matrix thermal conductivities 

The end-member thermal conductivities of Dövényi & Horváth [21] mentioned in 

Section 2.2.4 were used for this task with some modifications. An overview of the 

process can be seen in Figure 10. Thermal conductivities of laboratory measure-

ments were used for the calculation and porosity values — extracted from our litho-

logical inversion — were assigned to the samples. The porosity-thermal conductivity 

dataset was divided into two major groups: pelites and psammites. Evaluating the 

pelite and psammite end-member thermal conductivity as a first step, a weighted 

least squares inversion was applied using the standard deviations of laboratory meas-

urements as weight factors. Two models were investigated: in the first model, the 

geometric mean was utilized as response function and in the second model the har-

monic mean was employed. As a result, new matrix thermal conductivity values 

were evaluated. In case of both models a decrease in the pelite thermal conductivity 

and an increase in the psammite thermal conductivity could be observed, in line with 

our expectations (Table 2). 
 

Table 2 

Result of the matrix thermal conductivity calculations 

 
Pelite Psammite 

Model 1 2.244 W/(m*K) 4.909 W/(m*K) 

Model 2 2.616 W/(m*K) 6.667 W/(m*K) 

 

In the second step, the mixing models detailed in Section 2.2  were recalculated for 

Model 1 and Model 2; thus, new crossplots were prepared as a final result (Figures 

11 & 12). Crossplots of Model 1 can be seen in Figure 11. The first noticeable phe-

nomenon — in comparison with results in Figure 9 — is that the sets of points are 

less centralized in the middle section due to the higher psammite thermal conductiv-

ity value. In the case of Model 1 the geometric mean mixing model (Figure 11d) 

seems to be the best approximation for calculating the thermal conductivities, as the 

data points are located near the line of 45 degrees indicating the best fitting. In Figure 

12 the crossplots of Model 2 are represented. A much more scattered overall picture 

is visible compared to both Figure 9 and Figure 11; however, the harmonic mean 

model seems to provide the most appropriate result when applying Model 2 (Figure 

12e). The geometric mean mixing model for Model 1 and the harmonic mean mixing 

model for Model 2 have given completely acceptable results for the two major 

groups (pelites and psammites). Examining the root-mean-square (RMS) values 

(standard deviation of the estimate) of the models given, no significant difference 

can be identified: 0.71 W/(m*K) for Model 1 with the geometric mean mixing model 

and 0.79 W/(m*K) for Model 2 with the harmonic mean mixing model. Therefore, 

it was necessary to test these models with a different method and choose the most 

reliable parameter set. 
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Figure 10 

Flow chart of the process of calculating new matrix thermal conductivities (TC) 
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Figure 11 

Crossplots of thermal conductivity values measured in the laboratory and thermal 

conductivity values calculated by each mixing models using Model 1 parameter set 
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Figure 12 

Crossplots of thermal conductivity values measured in laboratory and thermal con-

ductivity values calculated by each mixing models using Model 2 parameter set 
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3.3. Temperature recalculation in the well Sz-2 

The applicability of the results presented in the previous chapter was examined with 

the help of temperature measurements carried out in the well named Sz-2. The reason 

for selecting this particular well is that the most accurate temperature measurements 

were accomplished in it because the well had been in steady-state condition for two 

years before the measurements were carried out; therefore, the heat flow density, 

which is the basis of our methodology of testing, was determined with high precision 

(q = 85 ± 6.375 mW/m2). Assuming an isotropic, horizontally layered medium where 

the heat flows only in vertical direction, the following equation can be obtained for 

temperature: 

 1 ,s
i i

i

q
T T z


−= +   (13) 

where qs is the surface heat flow density [mW/m2], Ti [°C] is the temperature, λi 

[W/(m*K)] is the thermal conductivity at ith depth, and Δz [m] is the depth increase. 

As the heat flow density is known (q = 85 ± 6.375 mW/m2), furthermore the thermal 

conductivity as a log is also known for both Model 1 and Model 2, it is feasible to 

recalculate the temperature in any particular depth point and compare it to the tem-

perature value measured in the well. The results are shown in Figure 13. The purple 

dots indicate the temperature measurements, the lines mark the recalculated temper-

ature logs in case of Model 1 (blue) and Model 2 (red) with a fixed heat flow density 

value. It is clearly noticeable that the temperature log using Model 2 parameter set 

follows the measured temperatures more precisely, meaning that the harmonic mean 

model seems to be the best approximation for determining thermal conductivity. 

Based on this result, Model 2 was used for redetermination of heat flow density in 

the studied wells. 

 
Figure 13 

Recalculation of temperature in the Sz-2 well using Model 1 (blue line) and  

Model 2 (red line) 
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4. DISCUSSION 

4.1. Thermal conductivity 

A method was elaborated to calculate the thermal conductivity of Tertiary and 

Quaternary clastic sediments in Hungary taking into account 158 thermal conduc-

tivity measurements on core samples. After calculating the thermal conductivities 

using matrix parameters after the work of Dövényi & Horváth [21], it was clearly 

visible that the calibration was not satisfactory (Figure 9) and lower matrix thermal 

conductivity for the clay parameter and a higher value for the sand parameter were 

needed. With the new matrix thermal conductivity values a better result could be 

achieved. 

 

4.2. Heat flow density 

The heat flow density in the studied wells was determined by the Bullard plot pre-

sented in Section 2.3.1 in which the thermal conductivity values were calculated with 

Model 2 parameter set, as it was the best approximation. The temperature data were 

collected from the Geothermal Database of Hungary (GDH) [27] which contains 

more than 14,000 temperature data; furthermore, uncertainties were assigned for the 

temperature values based on the quality scale of GDH. The error propagation of heat 

flow densities was also estimated by the technique presented in Section 2.3.2. In 

Figure 14 the studied wells are listed and the comparison between the heat flow 

density values from previous works (red points) [21, 28–31] and the values of our 

calculations (blue points) are shown. The black linesindicate the error bars of heat 

flow density values. It is clearly visible that our results are within the error range of 

the former heat flow density determinations, but our error values have decreased. 

Except for one well (named S-I), all recalculated heat flow densities are slightly 

higher but each value is within the bars of error found in the literature. For example 

in case of Well Sz-2 the previously determined 85 ± 6.375 mW/m2 heat flow density 

has increased to 86.18 ± 2.84 mW/m2. It can be said that the method established may 

be adequate to estimate the thermal conductivity in wells where no core sample was 

brought up. However, it should be mentioned that not only thermal conductivity 

plays an important role in properly estimating the heat flow density. The quality of 

temperature data and well logs also change from well to well, so these differences 

should be taken into consideration. 

At this point our methodology has been successfully applied on 6 drilling wells. 

These wells were examined separately, but it is important to view our results on a 

larger scale. Figure 15 illustrates the heat flow density map of Hungary [32] and 

the locations of wells studied. Next to each well the recalculated heat flow density 

values are indicated with their error. It can be said that all heat flow densities fitting 

into the map on a regional scale, i.e. there is no contradiction between the map and 

our results. 
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Figure 14 

Comparison between the heat flow density values in different wells  

from previous works (red points) [21, 28–31] and the values of our calculations 

(blue points) with error bars (black lines) 

 

 

 
Figure 15 

Heat flow density map of Hungary [32] and the wells studied  

with the recalculated heat flow density values with their error 
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5. CONCLUSIONS 

After examining 6 drilling projects, our conclusion is that the thermal conductivity 

of clastic sediments in Hungary can be calculated by a harmonic mean model in 

which the volumetric fractions of clay, sand and water are present. This perception 

was tested by the temperature recalculation in the well named Sz-2. 

A methodology was successfully elaborated for determining the thermal conduc-

tivity of clastic sediments using geophysical well logs and calculating the heat flow 

density and its error in a quality controlled way, which significantly increases the 

precision of the heat flow density calculation. With our method the error rate of the 

calculations of heat flow density has been successfully reduced. However, besides 

the thermal conductivity, the quality of temperature data and well logs play an im-

portant role in properly estimating the heat flow density.  
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