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Abstract: For signal processing, different algorithms can be applied to enhance the quality 

of measured datasets that contain simple or complex noises during the field survey. Treating 

these noisy data can be done using the discrete Fourier transform (DFT based noise filtering) 

which converts the data from time to a frequency domain but in some cases is not preferable 

due to its low noise suppression capability. Therefore, a robust and effective 2D inversion 

called the iteratively reweighted least-squares Fourier transformation (IRLS-FT) method is 

applied. In the framework of this inversion, the continuous Fourier spectrum is discretized 

using the series expansion to solve our inverse problem in the form of the expansion 

coefficients. Moreover, the Hermite functions are used as basis functions with the 

distinguishing feature of the Fourier transform eigenfunctions to facilitate and speed up the 

calculation of the Jacobian matrix without complex integration. In the robust inversion 

studied in the article, the Steiner weights are calculated through an internal iteration loop 

instead of Cauchy weights to overcome the problem of scale parameters. In this paper, the 

2D IRLS-FT inversion method is applied to synthetic magnetic datasets and their reduction 

to the pole. The results demonstrated that the method is very stable during the procedures as 

well as its robustness, resistance, and effectiveness in the process of noise rejection.  
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1. INTRODUCTION 

Most of the geophysical geomagnetic datasets measured during a field survey are 

likely to contain different amounts of noise; some are caused by the effects of the 

diurnal variation in the Earth’s magnetic field on the geophysical equipment, a 

situation encountered by many geophysicists during data acquisition. These noises 

strongly affect the processing and interpretation of the measured geophysical data. 

This demands the search for an effective process to reduce the noise prevalence. 

Fourier transform based filtering is considered to be one of the most important 

procedures to achieve such aims.  

In signal processing the discrete Fourier transform, which is referred to as DFT, 

can convert discrete noiseless or noisy time domain data sets to a discrete frequency 
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domain. It can be considered as an implemented procedure of the fast Fourier 

transform (FFT). Actually, there are several applications of the discrete Fourier 

transform (DFT) such as calculating the polynomial multiplication, obtaining 

numerous targets through the radar echoes, correlation analysis, and spectral 

analysis, as well as estimating the signal’s frequency spectrum, which is our main 

geophysical goal in this paper. For the purpose of noise reduction, Dobróka et al. [1] 

handled a one-dimensional (1D) inversion based Fourier transformation (S-IRLS-

FT) method which was developed and generalized to two-dimensional (2D) 

inversion, providing accurate and efficient results in the field of the reduction to the 

pole of the magnetic data sets [2]. Therefore, this study sheds light on the robust 2D 

inversion method, where the Fourier transformation is considered to be the solution 

of the overdetermined inverse problem. It is known that the optimal solution in the 

case of Gaussian noisy data can be estimated by using the simple or weighted least 

square method. But when dealing with more complicated noisy data such as outliers, 

the inversion-based FT method, which depends mainly on the iteratively reweighted 

least-squares Fourier transformation (2D IRLS-FT) method, plays an important role. 

In this projective filtering, the series expansion method can be used to discretize the 

continuous Fourier spectrum and calculate the expansion coefficients as a solution 

of the overdetermined inverse problem. Moreover, the Hermite functions are 

employed as the basis functions. The Jacobian matrix needs more time to be 

calculated where integration is required. This problem can be solved by using the 

Hermite functions as eigenfunctions of the Fourier transformation, which allow 

quick and accurate determination of the elements of the Jacobian matrix. It is 

demonstrated that the inversion of iteratively reweighted least square Fourier 

transformation (IRLS-FT) method can recalculate the Cauchy weights, but in this 

case the scale parameters should be known a priori. To solve this problem, the 

Steiner weights are calculated through an internal iteration loop instead of Cauchy 

weights by using the Steiner most frequent value (MFV) method [3, 4]. This process 

makes the inversion more robust and resistant. In this paper, the 2D-IRLS-FT 

method is applied to equidistant 2D synthetic magnetic data sets to test the noise 

rejection capability as well as the stability of the inversion procedures. 

 

2. 2D algorithm of the IRLS Fourier transformation 

In the framework of signal processing and interpretation enhancing methods, the 

algorithm of the Fourier transformation was further developed by the Department of 

Geophysics, University of Miskolc, Hungary. This algorithm was first handled in 

one-dimensional and generalized to two-dimensional Fourier transform. To convert 

from the space domain data to frequency domain data or vice versa, the Fourier 

transformation and its inverse are applied respectively. The two-dimensional Fourier 

transform can be written as: 

  

 𝑈 (𝜔𝑥 , 𝜔𝑦) = 
1

2𝜋
 ∫ ∫ 𝑢 (𝑥, 𝑦)

∞

−∞

∞

−∞
 𝑒−𝑗(𝜔𝑥𝑥+𝜔𝑦𝑦) 𝑑𝑥 𝑑𝑦,  (1) 
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where 𝑥 and 𝑦 are the spatial coordinates, ⍵𝑥 and ⍵𝑦 are the angular frequencies, 

and 𝑗 is the imaginary unit. The 2D space domain data sets can be obtained as a result 

of the 2D inverse Fourier transformation as the following: 

 

 𝑢 (𝑥, 𝑦) = 
1

2𝜋
 ∫ ∫ 𝑈 (𝜔𝑥 , 𝜔𝑦)

∞

−∞

∞

−∞
 𝑒𝑗(𝜔𝑥𝑥+𝜔𝑦𝑦) 𝑑𝜔𝑥 𝑑𝜔𝑦.  (2) 

 

𝑈 (⍵𝑥 , ⍵𝑦) is the 2D frequency spectrum which has to be discretized to facilitate 

the procedures of data processing and interpretation. Therefore, the method of series 

expansion is used to discretize the continuous Fourier spectrum by the following 

formula: 

 

 𝑈 (𝜔𝑥 , 𝜔𝑦) = ∑ ∑ 𝐵𝑛,𝑚 𝛹𝑛,𝑚 (𝜔𝑥, 𝜔𝑦)𝑀
𝑚=1

𝑁
𝑛=1 ,  (3) 

 

where 𝐵𝑛,𝑚 are the expansion coefficients that are calculated as the solution to the 

overdetermined inverse problem and 𝛹𝑛,𝑚 (𝜔𝑥 , 𝜔𝑦) are the basis functions. Inserting 

Equation (3) into Equation (2), the theoretical data can be defined as:  

 

 𝑢 (𝑥𝑘 , 𝑦𝑙)𝑡ℎ𝑒𝑜𝑟 = ∑ 𝐵𝑛,𝑚
𝑀
𝑖=1  

1

2𝜋
 ∫ 𝛹𝑛,𝑚 (𝜔𝑥 , 𝜔𝑦)
∞

−∞
𝑒𝑗(𝜔𝑥𝑥+𝜔𝑦𝑦) 𝑑𝜔𝑥 𝑑𝜔𝑦,  (4) 

 

where the following term 

 
1

2𝜋
 ∫ 𝛹𝑛,𝑚 (𝜔𝑥, 𝜔𝑦)
∞

−∞
𝑒𝑗(𝜔𝑥𝑥+𝜔𝑦𝑦) 𝑑𝜔𝑥 𝑑𝜔𝑦 

 

is an element of the Jacobian matrix 𝐺𝑘,𝑙
𝑛,𝑚

. Therefore, the Jacobian matrix can be 

considered as the inverse Fourier transform of the basis function and hence the 

theoretical data can be summarized as: 

 

 𝑢 (𝑥𝑘 , 𝑦𝑙)𝑡ℎ𝑒𝑜𝑟 = ∑ ∑ 𝐵𝑛,𝑚 𝐺𝑘,𝑙
𝑛,𝑚𝑀

𝑚=1
𝑁
𝑛=1 ,  (5) 

 

where 𝑘 = 1,2, … , 𝐾 and 𝑙 = 1,2, … , 𝐿 are the sequence numbers of the measurement 

points in 𝑥 and 𝑦 directions, respectively. Because of the fact that the frequency 

spectrum is given as an integral in the interval (-∞,∞), the basis functions should be 

given in the same domain, which can be achieved by using the Hermite functions 

and polynomials. The mathematical background of the Hermite polynomials was 

established by Laplace [5] and made more sophisticated by Hermite [6] to include 

the multidimensional polynomials. The scaled Hermite functions which are 

eigenfunctions of the inverse Fourier transformation can be defined as: 
 

 𝐻𝑛(𝜔𝑥, 𝛼) = 
𝑒

−𝛼𝜔𝑥
2

2  ℎ𝑛(𝜔𝑥,𝛼)

√√
𝜋

𝛼
 𝑛! (2𝛼)𝑛

        where  ℎ𝑛(𝜔𝑥 , 𝛼) = (−1)𝑛 𝑒𝛼 𝜔𝑥
2 (

𝑑

𝑑𝜔𝑥
)

𝑛

 𝑒−𝛼 𝜔𝑥
2  (6) 
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 𝐻𝑚(𝜔𝑦, 𝛽) = 
𝑒

−𝛽𝜔𝑦
2

2
 ℎ𝑚(𝜔𝑦,𝛽)

√√
𝜋

𝛽
 𝑚! (2𝛽)𝑚

        where  ℎ𝑚(𝜔𝑦, 𝛽) = (−1)𝑚 𝑒𝛽 𝜔𝑦
2 (

𝑑

𝑑𝜔𝑦
)

𝑚

 𝑒−𝛽 𝜔𝑦
2,  (7) 

 

where 𝛼 and 𝛽 are the scale factors. In that case, the Jacobian matrix can be written as: 

  

 𝐺𝑘,𝑙
𝑛,𝑚

 = 
(𝑗)𝑛+𝑚

√𝛼𝛽4  𝐻𝑛
(0)

 (
𝑥𝑘

√𝛼
) 𝐻𝑚

(0)
 (

𝑦𝑙

√𝛽
) ,  (8) 

 

where 𝐻𝑛
(0)

and 𝐻𝑚
(0)

are the non-scaled Hermite functions. By applying Equation (8), 

a fast solution to the forward problem can be provided using Equation (5). It is 

important to note that the total number of the unknown series expansion coefficients 

can be calculated according to = 𝑁 + (𝑀 − 1)𝑁 = 𝑁𝑀, which is the same for the 

measured data as 𝑆 = 𝐾 + (𝐿 − 1)𝐾 = 𝐾𝐿. It can be seen that the Jacobian matrix 

does not include integration, which makes the inversion procedures faster and less 

time-consuming. For simplification, the notations 𝑢 (𝑥𝑘  , 𝑦𝑙) =  𝑢𝑠, 𝐵𝑛,𝑚 =  𝐵𝑖 and 

𝑢𝑠 =  ∑ 𝐵𝑖 𝐺𝑠,𝑖
𝐼
𝑖=1  can be used to estimate the general element of the deviation vector 

using the following formula: 

 

 𝑒𝑠 = 𝑢𝑠
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − ∑ 𝐵𝑖 𝐺𝑠,𝑖

𝐼
𝑖=1 ,  (9) 

 

where 𝑖 = 1, … , 𝐼 and 𝑠 = 1, … , 𝑆. By calculating the deviation vector, the inverse 

problem can be continued in a straightforward manner. 

 

3. THEORETICAL ALGORITHMS OF THE INVERSION METHOD 

As a method of linearized geophysical inversion, the least-squares method can be 

used to solve sets of linear equations for quick procedures. Legendre [7] was the first 

to publish a clear and concise exposition of the least-squares method. It is well 

known that the least-squares inversion method is more effective when dealing with 

data of Gaussian noise (regular noise). It can be used to calculate the misfit between 

the measured and predicted data by estimating their deviation vector from the 

following formula: 

 𝐸2 = ∑ 𝑒𝑘
2𝑁

𝑘=1 .  (10) 

 

This 𝐿2 norm of the deviation vector can be minimized to give the normal equations:  

 

 GT G 𝐵 = GT 𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑. (11) 

 

Actually, most of the data measured during the field survey include different 

amounts of irregular noise such as outliers. For this reason, the deviation vector of 

another norm called the weighted norm is minimized to obtain stable and quick 

inversion procedures like the following: 

https://en.wikipedia.org/wiki/Adrien-Marie_Legendre
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 𝐸𝑤 = ∑ 𝑤𝑘  𝑒𝑘
2𝑁

𝑘=1 ,  (12) 

 

where 𝑤𝑘 is defined as Cauchy weights, which can be given as: 
 

 𝑤𝑘 =  
𝜎2

𝜎2+ 𝑒𝑘
2.  (13) 

 

But in this case, the inversion procedures can be continued only when the scale 

parameter (𝜎2) is known a priori. The solution of this problem can be realized by 

applying the most frequent value (MFV) method of Steiner to estimate the Steiner 

weights through an internal iteration loop using the following formula: 
 

 𝜀𝑗+1
2 = 3 

∑
𝑒𝑘

2

(𝜀𝑗
2+ 𝑒𝑘

2)
2

𝑁
𝑘=1

∑ (
1

𝜀𝑗
2+ 𝑒𝑠

2)

2
𝑁
𝑠=1

 .  (14) 

It is obvious that at the starting step (𝑗 = 0), the Steiner scale factor 𝜀0 ≤

 
√3

2
 (𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛) can be used to calculate the Steiner scale factor of the next step 

𝜀𝑗+1
2  and this process continues until the stop-criterion is met, which can be also 

achieved by using a fixed iterations number. Therefore, the Cauchy weights can be 

replaced by the Cauchy-Steiner weights as the following: 
 

 𝑤𝑘 =  
𝜀2

𝜀2+ 𝑒𝑘
2 .  (15) 

 

It is important to note that the inverse problem has become nonlinear because of 

using the Cauchy-Steiner weights; thus, its solution can be obtained sequentially by 

implementing the iteratively reweighted least-squares (IRLS) method. First, the 

elements of the series expansion coefficients at the 0th order step (𝐵(0)) are generated 

from the non-weighted least-squares method to calculate the predicted data from 

𝑢𝑘
(0)

=  ∑ 𝐵𝑖
(0)

 𝐺𝑘𝑖
𝑀
𝑖=1  and in that case, the deviation vector can be estimated from 

𝑒𝑘
(0)

=  𝑢𝑘
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑢𝑘

(0)
. Then the weights are given as: 

 

 𝑤𝑘
(0)

=  
𝜀2

𝜀2+ (𝑒𝑘
(0)

)
2 .  (16) 

 

Now the misfit between the measured and calculated data can be determined at the 

first iteration step as the following: 
 

 𝐸𝑤
(1)

= ∑ 𝑤𝑘
(0)

 𝑒𝑘
(1)2

𝑁
𝑘=1  .  (17) 

 

The minimization of Equation (17) leads to the following linear normalized 

equations as: 

 GT W(0) G 𝐵(1) = GT W(0) 𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, (18) 
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where W(0) is the weighting matrix. It can be seen that the expansion coefficients at 

the 1st iteration step (𝐵(1)) are calculated from Equation (18) of linear weighted least-

squares method, which can be used to estimate new predicted data from 𝑢𝑘
(1)

=

 ∑ 𝐵𝑖
(1)

 𝐺𝑘𝑖
𝑀
𝑖=1 , and hence the deviation vector is 𝑒𝑘

(1)
=  𝑢𝑘

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −  𝑢𝑘
(1)

. Again, 

the weights can be calculated from 𝑤𝑘
(1)

=  
𝜀2

𝜀2+ (𝑒𝑘
(1)

)
2 which is required to compute 

the new misfit function 𝐸𝑤
(2)

= ∑ 𝑤𝑘
(1)

 𝑒𝑘
(2)2

𝑁
𝑘=1  and obtain 𝐵(2) through its 

minimization. This process is continued and repeated over the 𝑗th iteration step as 

the following: 

 GT W(j-1) G 𝐵(𝑗) = GT W(j-1) 𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 . (19) 

 

When the criterion is met at the last iteration step, the series expansion coefficients 

are accepted as a solution to the inverse problem. 

 

4. A GEOPHYSICAL APPLICATION OF THE 2D IRLS-FT INVERSION METHOD 

In general, one of the most important applications of the Fourier transformation is to 

enhance the quality of the measured data through its sensitivity and ability to 

suppress noisy data. Therefore, this paper concerns a geophysical application to test 

the traditional Fourier transform (DFT) as well as the two-dimensional iteratively 

reweighted least-squares (2D IRLS) inversion method on geomagnetic datasets. 

Before dealing with the geophysical magnetic data, it is necessary to recall the 

dipolar nature of the Earth’s geomagnetic field. Any magnetic body buried beneath 

the ground, especially located at the intermediate latitudes, can produce an anomaly 

consisting of two parts (positive and negative). The exact location of this causative 

body lies between these two parts [8]. This property changes the shape of the 

magnetic field due to the inclination and orientation of the induced magnetization 

vector from the magnetic poles to the equator and causes difficulty in detecting the 

exact shapes and locations of the magnetized causative sources. This problem can be 

solved only when the total magnetic field is reduced to the northern or southern 

Earth’s poles or equator to avoid the inclination and polarity effect and to locate the 

anomaly directly above the center of the causative body [9, 10]. Reduction to pole 

(RTP) enables us to detect the anomaly source position more accurately.  

For magnetic data processing, Nuamah and Dobróka [11] applied the algorithms 

of the DFT and 2D inversion based Fourier transformation (IRLS-FT) methods to 

non-equidistantly measured magnetic data. In this paper, two-dimensional synthetic 

magnetic datasets were generated which were then contaminated with random noise 

to simulate measured data. The Kunaratnam method [12] was applied to calculate 

these synthetic data above a “U”-shaped magnetic body with a surface ranging from 

–10,000 m to 10,000 m in both 𝑥 and 𝑦 coordinates and a total field anomaly of 200 

nT. The values of the magnetic inclination and declination, which selected depending 

mainly on the geographical locations, were 63° and 3° respectively (for a hypothetical 

Hungarian location). The measurement points were sampled equidistantly every 
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500 m in both 𝑥 and 𝑦 directions (grid cell size = 500 m), so the total number of the 

measurements was 1681. The total intensity magnetic map of the noise-free magnetic 

datasets is shown in Figure 1. A close examination of this map shows that the U shaped 

magnetic body is characterized by the presence of relatively high and low magnetic 

anomalies of different magnitudes ranging from –250 nT to 100 nT. 
 

 
Figure 1. The noise-free synthetic magnetic dataset 

 

The two-dimensional traditional Fourier transformation (2D DFT) algorithm is used 

to convert these magnetic datasets from space domain to frequency domain, resulting 

in a 2D amplitude Fourier spectrum of noise-free data with the interval (0.5 × 1011 

to 4 × 1011) as shown in Figure 2. It is clearly seen that the limits of 𝑥 and 𝑦 

coordinates were simplified to be from –0.001 to 0.001 (the Nyquist interval of 

spectrum) to obtain a suitable scale in the wavenumber domain. 
 

 
Figure 2. The 2D amplitude spectrum of the noise-free magnetic data using DFT 
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For the purpose of clear and easy magnetic data interpretation, the magnetic 

measurements were reduced to the pole (𝐼 = 90°) in the frequency domain using the 

following formula: 
 

 𝑅( 𝑢 , 𝑣 ) = 𝑇( 𝑢 , 𝑣 ) 𝑆( 𝑢 , 𝑣 ) ,  (20) 

 

where 𝑇( 𝑢 , 𝑣 ) is the 2D Fourier transform of the data and 𝑆( 𝑢 , 𝑣 ) is the 

frequency domain operator of the pole reduction [10]. To get the calculated data 

[𝑅( 𝑢 , 𝑣 )], a 2D inverse Fourier transformation is applied again to the above-

mentioned spectrum. This procedure leads to the transformation from frequency to 

space domain to obtain the calculated data in the form of a magnetic map reduced 

to the pole, as in Figure 3. 
 

 
Figure 3. The reduced-to-pole magnetic dataset using DFT 

 

It is clearly seen that the noise-free reduced-to-pole magnetic map calculated by the 

2D DFT algorithm has values ranging from 50 nT to 250 nT, which is a little higher 

than that of the noise-free magnetic data in Figure 1, but in general both have similar 

magnetic characteristics. To test the noise sensitivity and the capacity of noise 

suppression, the generated synthetic magnetic datasets should be contaminated with 

random noise of Cauchy distribution. Figure 4 shows the same magnetic data after 

adding a Cauchy noise of scale parameters 0.03. It is noticed that the noisy magnetic 

map totally differs from the noise-free datasets in Figure 1 in both anomaly shapes 

and magnetic amplitudes. The anomaly contour lines are sharply curved and 

disconnected as well as displaying more spikes, resulting in quite higher magnetic 

values (from –500 nT to 400 nT) compared to the noise-free datasets. 
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Figure 4. The noisy synthetic magnetic dataset 

 

Similarly, the traditional Fourier transformation (2D DFT) is applied to the above-

mentioned noisy magnetic datasets to obtain the 2D Fourier spectrum in Figure 5. 

 

 
Figure 5. The 2D amplitude spectrum of the noisy data using DFT 

 

Compared to the 2D amplitude spectrum of the noise-free data in Figure 2, the 

amplitude Fourier spectrum of the 2D noisy data is totally deformed, which reflects 

the quite high sensitivity of the traditional Fourier transformation (2D DFT) 

algorithm to the added noise. Again the 2D inverse Fourier transform is applied to 
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the noisy data, demonstrating to what extent the traditional Fourier transformation 

treats or enhances the highly deformed noisy data. The reduced-to-pole space 

domain data (RTP) using DFT are calculated in Figure 6. 
  

 
Figure 6. The reduced-to-pole noisy magnetic dataset using DFT 

 

 

It is clearly seen that the calculated pole reduction of the noisy magnetic datasets 

using the familiar Fourier transformation (DFT) is extremely distorted. The evidence 

of the distortion obviously appears in the remains of the added Cauchy noise 

simulating the outlier effect. In addition to that, the contour lines became more 

curved and highly deformed compared to the generated noisy magnetic datasets in 

Figure 4, causing very high magnetic values ranging from 50 nT to 550 nT. The 

results are compared to those found by Nuamah and Dobróka [11] demonstrating the 

low noise rejection capability of the conventional Fourier transformation (2D DFT). 

Therefore, this is the proper stage to implement an algorithm of a robust Fourier 

transformation inversion method to remove and suppress the outlier’s effects. This 

can be achieved by using the iteratively reweighted least-squares Fourier 

transformation (2D IRLS-FT) method. For comparison, the same generated noisy 

data in Figure 4 are subjected to the 2D IRLS Fourier transformation to obtain the 

2D amplitude spectrum in Figure 7. The results show sufficient improvements by 

using the inversion-based FT method compared to the 2D amplitude spectrum 

obtained by the traditional Fourier transformation (DFT) in Figure 5. In the new 

spectrum with IRLS, most of the defects that appeared with DFT have been removed, 

and it is very similar to the 2D amplitude spectrum of the noise-free magnetic 

datasets calculated by DFT (see Figure 2).  
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Figure 7. The 2D amplitude spectrum of the noisy data using IRLS-FT 

 

To prove the success of the inversion-based FT method, the reduction to the pole of 

the same noisy magnetic datasets is calculated using the inverse Fourier 

transformation of the IRLS, as shown in Figure 8. 

   

 
Figure 8. The reduced-to-pole noisy magnetic dataset using IRLS-FT 

 

It is clearly seen that the quality of the proceeded data obtained by the 2D IRLS-FT 

method has been greatly enhanced. A close examination of the reduced-to-pole space 

domain data calculated by the IRLS method in Figure 8 indicates that smooth and 
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continuous contour lines are established compared to the previously curved and 

discretized contours of the reduced-to-pole noisy data calculated by the conventional 

Fourier transformation (DFT) in Figure 6. In addition, the applied inversion method 

solved the problem of outliers that appeared clearly in the noisy RTP magnetic map 

of the DFT method. Moreover, the reduced-to-pole magnetic map estimated by the 

2D IRLS-FT  inversion method is extremely similar to that of the noise-free 

reduction to pole space domain data (Figure 3) in both anomaly shape and magnetic 

amplitudes (50 nT to 250 nT). All results are in agreement with those obtained by 

Nuamah and Dobróka [11]. According to the results shown in this paper, the 

iteratively reweighted least-squares Fourier transformation (2D IRLS-FT) method is 

outlier-resistant and quite robust, demonstrating great success in the framework of 

noise rejection capability for processing magnetic data measurements. 

 

5. CONCLUSIONS 

In signal processing, the discrete Fourier transform (DFT) is one of the most 

frequently used methods for processing datasets but when dealing with complex 

noisy data containing outliers, it is not the proper solution. Therefore, this paper 

applied a robust inversion method called the iteratively reweighted least-squares 

Fourier transformation (2D IRLS-FT) to achieve such an aim. In the method, the 

Fourier transformation was considered as the solution of the inverse problem with 

the help of Steiner weights for scale parameters determination. For high quality and 

quick procedures of our inversion, the Hermite functions were defined as basis 

functions using the special character of the Fourier transform eigenfunctions. The 

expansion coefficients were calculated through the discretization process of the 

continuous Fourier spectrum by using the series expansion. Based on the results  

from reduction-to-pole magnetic datasets shown in this paper, which confirmed 

previous work, it can be concluded that in the case of Cauchy noise the 2D IRLS-FT 

method is extremely effective, robust, and has a higher noise rejection capability 

than the DFT method. 
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