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Abstract: Diverse measured physical parameters using open-hole wireline logging methods
used for indicating source rock intervals and estimating total organic carbon (TOC) content
are compared. Different methods (i.e., Passey, Schmoker, Uranium and Clay Indicator) for
estimating TOC content in a data set of five wells from the Northern Sea (Norway) were
tested, making it possible to delimit the organic-rich source rock intervals in the wells and
estimate the TOC content for each well; results were compared with laboratory TOC data. It
was shown that Passey’s method is a robust tool to evaluate TOC content that is unlike other
methods, since it considers more physical parameters for the petrophysical evaluation (e.g.,
resistivity, level of maturity, porosity), making it the most accurate method to evaluate TOC
content. However, the other methods show good agreement with the measured TOC content.

Keywords: Total Organic Carbon Content, TOC, Passey, Schmoker, Clay Indicator, Uncon-
ventional reservoirs

1. INTRODUCTION

The increase in energy demand worldwide influenced by the increasing world pop-
ulation, domestic economies, and living standards has pushed the world oil and gas
industry to consider the importance of exploration and exploitation of unconven-
tional hydrocarbon deposits as conventional resource supplies diminish or become
unavailable to multinational companies.

From an economical point of view, reservoir quality and completion quality are fun-
damental geological/petrophysical parameters that can determine high hydrocarbon pro-
duction [1]. Since organic rich reservoir or source rock are characterized by low-to-ul-
tralow permeability and low-to-moderate porosity, hydrocarbon reservoir must be stim-
ulated to produce acceptable commercial quantities of hydrocarbon and such parameters
assist to evaluate the economical viability.

Reservoir quality describes the hydrocarbon potential, amount of hydrocarbon in
place, and hydrocarbon deliverability of the rock formation. These variables are a func-
tion of the key characterization parameters of organic rich reservoir, which include
TOC, thermal maturity, organic matter, mineralogical composition, lithology, effec-
tive porosity, fluid saturations, permeability, and formation pressure [2].

An integrated multidisciplinary approach is needed to assay an optimal petroleum
system analysis for the exploration stage since in practice data availability (cores, logs,
seismic data, geochemistry, geological studies) is limited [1]. Thus, petrophysical anal-
ysis can help to evaluate the hydrocarbon potential.
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A critical indicator of hydrocarbon resource to be studied is TOC, which is very
important when evaluating a potential organic shale gas reservoir [1]. TOC expresses
the amount of organic carbon present in the formation, which has been shown to
have a direct relationship with porosity and gas saturation [2].

Diverse well-log interpretation methods have been developed to assess accurate
TOC estimation [3-7], from empirical relations to multivariate statistical analysis or
inversion methods.

2. WELL-LOG RESPONSE TO ORGANIC MATTER
2.1. Integral and Spectral Natural Gamma Ray Logs

Integral and Spectral Natural Gamma Ray tools measures the natural radioactivity in
formations. The Integral and the Spectral Natural Gamma ray tools are composed of
a scintillation spectrometer that can detect and measure the natural gamma rays. The
Spectral Natural Gamma Ray tool records not only the number of gamma rays emit-
ted by the formation but also the energy of each and processes the information into
curves representing the amount of thorium (Th), potassium (K) and uranium (U)
present in the formation.

The use of Integral and Spectral Natural Gamma ray logs for detection of poten-
tial source rocks has proved to be particularly useful as it has been observed that
highly radioactive, black, organic-rich, and gaseous shales are potentially source
rocks [8], making these logs especially helpful to distinguish between clay-rich strata
and sandy or chalky layers, since it is common to have an abnormally high response
in the natural gamma ray log due to the enrichment of uranium in shales, as a result
of reductive environmental conditions during deposition [9].

2.2. Resistivity Logs

Numerous logging devices are offered for measuring the electrical resistivity of the
formation (i.e., non-focused electric logs, focused conductivity-induction logs, etc.).
Such logs have been used to distinguishing organic-rich intervals in the formation
because the presence of organic matter and hydrocarbon can result in alteration of
the formation resistivity [8]. Since these materials are usually nonconductive, a high
increase in the resistivity of the formation is expected.

Also, clay content in shale gas intervals may be variable (30—70%), which may
lower the resistivity of the rock as a function of the cation exchange capacity (CEC),
which is the quantity of positively charged ions that a clay mineral can accommodate
on its negatively charged surface [10], and which varies with the type of clay and
mixed layers [9].

Some other factors may affect the resistivity readings in a log. The presence of
different minerals in complex geological formation plays an important role in the
formation evaluation. Commonly, pyrite in organic-rich intervals can produce a de-
crease in resistivity response if the volume is significant [2].



118 Rafael Valadez Vergara

2.3. Density Log

Formation density log measures the electron formation density, which is directly
related to the true bulk density. True bulk density depends on the composition of
the rock matrix material, formation porosity, and density of the fluids filling the
pore space.

Organic matter density-log-based interpretation in sedimentary rocks lies in the
fact that the presence of organic matter (kerogen) reduces the density of the rock due
to its relatively low density. Furthermore, kerogen matrix density is usually very low,
meaning that kerogen volume is not estimated accurately and consequently porosity
will be overestimated [9].

2.4. Sonic Log

The sonic log allows us to determine the porosity of the formation by means of the
recorded transit times (At) of the acoustic waves, whose value is the inverse of the
velocity of the P waves. The transit time is related to the capacity of the formations
to transmit acoustic waves, which is related to the lithology present in the formation
as well as the texture of the rock, which means the porosity and the types and distri-
bution of fluids (i.e., water, gas, oil, kerogen, etc.) present in the pore space.

Kerogen and gas have high acoustic transit times. Fertl and Chilingar [8] mention
that kerogen exhibits an interval transit time in the range of 150 to 185 usec/ft; thus,
the sonic log can be calibrated to TOC content due to the high transit time of organic
matter. In practice, the use of the sonic log for determining TOC is improved when
it is combined with other logs [9].

2.5. Neutron Log

The neutron log is considered a radioactivity log, and a porosity log as well as the
density log. The neutron and density logs differ in that the neutron register continu-
ously emits high-energy neutrons through a radioactive source placed in the probe,
while the density log measures the electron formation density. The neutrons interact
with the hydrogen present in the fluids found in the pores of the rocks and the thermal
neutron readings obtained are indirectly related to the porosity of the rocks.

The neutron log responds to the amount of hydrogen present in the formation,
which is related to the fluids found in the pores of the rocks. In clean formations,
where water, gas, or oil are found in the pores, the neutron record will measure the
number of pores that are saturated with these fluids, that is, the porosity of the for-
mation.

The compensated neutron log is one of the least used conventional records for the
detection and evaluation of organic matter and the productive potential of oil and gas
shales. Neutron records are affected by hydrogen in organic matter and hydrogen in
the hydroxyl (OH-) in clays, in addition to the hydrogen in water and any liquid or
gaseous hydrocarbons present in the formation [9].
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3. METHODOLOGY

Based on the response of organic matter in borehole logs several authors have pro-
posed different techniques to identify and estimate the amount of TOC content in
organic-rich shale formations. Employing some of these techniques, qualitative
methodologies (Figure 1) and quantitative methodologies (Figure 2) were developed
for identifying and estimating TOC content.

3.1. Delimitation of source rock intervals: Qualitative approach
The qualitative approach is based on a discriminant function proposed by Meyer and
Nederlof [11], using the acoustic and resistivity logs as follows:

D = —6.906 + 3.186 log,, At + 0.487 logy o Rys , (1)

where At is in ps/ft and Rys is the resistivity corrected to a standard temperature of
75 °F (24 °C). Quantity D is interpreted qualitatively according to its sign, if D is
positive, the formation is a probable source rock; if D is negative, the rock is proba-
bly barren; and if D is zero, the case is considered undetermined.
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Figure 1
Discriminant Function workflow based on the method developed by Meyer and
Nederlof [11]. Misclassifications due to thin-layer effects, heavy minerals presence,
uncompacted soft formations, high density/velocity formations may occur,
so careful evaluation should be conducted.
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3.2. Quantification of TOC: Quantitative approach

The guantitative approach for estimating the TOC content uses linear approximation
methods, for which a theoretical overview will be given in the following subchapters.
These methods are based on the linear correlation that exists between the well log’s
response to content of organic matter in the formation. The general methodology is
shown in Figure 2 and it is explained along these lines: utilizing TOC from core
samples, different regression analyses can be performed employing diverse well
logs, and the combination of well logs in the form of derivate log indicators (e.g.,
clay indicator, delta log R) so the linear best fit parameters (i.e., slope and intercept)
can be obtained and applied to calculate a TOC curve. The Pearson correlation co-
efficient between TOC content from core data and well log readings should be equal
or over + 0.7 for each regression analysis so that a continuous TOC log can be esti-
mated. After that, a comparison between TOC from core data and the estimated TOC
is done by obtaining the coefficient of determination and root-mean-square error to
ensure the quality of the estimation.
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Figure 2

Proposed quantitative methodology workflow for estimating TOC content

3.2.1. Uranium Spectral Gamma-Ray Response Method

Various studies [8, 12,13] have shown that gamma ray spectral logging data can be
used for characterizing source-rock potential. This is due to the fact that generally
most organic-rich sediments are deposited from areas of high organic productivity
through reasonably calm waters, where the supply of bottom oxygen is minimal,
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leading to enrichment in uranium [13]. The characteristic uranium accumulation and
high TOC values in organic- rich reservoirs has led to the idea that the use of radio-
active elements as tracers can help to define the source rock in a formation and its
TOC content.

Beers and Goodman [12] analyzed several hundred rock samples from Paleozoic
black shales where a marked linear correlation between TOC (in percentage) and
uranium content (in ppm) is exhibited, demonstrating that an empirical relationship
between these variables can be established as follows:

TOC(U) = A -w(U) + B, )

where w(U) is the well log-derived uranium content in ppm; A and B are regional
empirical constants. An advantage of using spectral gamma ray logging information
is that it allows continuous monitoring of the source rock potential of shale in both
open and cased wellbores [13].

3.2.2. Density Log Method

Schmoker [3] was the first to propose an estimation of TOC using density logs in the
Appalachian Devonian Shale, USA. He found that there was an inverse proportional
relationship between TOC and formation rock density. In a later study Schmoker and
Hester [14] suggest a more generalized equation for calculating organic-carbon con-
tent from density logs:

TOC(pg) = A%—B. 3)

Later, Decker et al. [15] tested such hypothesis in Michigan Basin, proving that TOC
and bulk density are linearly related in such a way that TOC increases with decreas-
ing shale density. This method is based on the fact that variations in organic content
can cause significant changes in the bulk density of the formation, since organic
matter has a density of about 1.0 g/cm?, while the shale mineral matrix has an average
density of about 2.7 g/cm?®. Therefore, the variation of organic matter abundance can
be computed from formation density logs [3]. However, variations in density pro-
duced by other causes (i.e., mineralogy) must be taken into account; for instance,
Decker et al. [15] observed that pyrite content highly affects TOC estimation.

3.2.3. Clay Indicator Method

Zhao et al. [6] proposed a new overlying method for estimation TOC from gamma
ray log and porosity logs (i.e., neutron and density logs). This clay indicator method
is based on the physical dependence and correlation between the apparent neutron
porosity ¢, and density porosity ¢p,, and was referred to by Zhao et al. [6] based
on studies performed by Mao [16]. This physical dependence is used to calculate the
clay indicator (I.;):

It = ¢ng — Ppa- (4)
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The clay indicator index is the difference between the apparent neutron and density
porosities, and it has been found that the clay indicator can be employed to estimate
the clay volume in source rocks which contain non-significant amounts of gas, where
the neutron log can be affected by the excavation effect.

Moreover, it has been observed that the clay indicator has a similar response to
the gamma ray logs in non-source rocks, although the difference between the gamma
ray log and the clay indicator index in source rocks intervals is larger than those for
non-source. Thus, the gamma ray log and the clay indicator can be used, if displayed
in the same track and properly scaled, to differenced intervals of source rock from
organic-lean intervals.

The separation between the two curves is expressed as follows:

Ad = GR" -1}, (©)
where
GR' = — R CRieyt (6)
GRright_GRleft
and
Icl_lcl e
e — ()

-1 4
Clrignt ™ Clieft

where GR is the observed log value in API units, GR;.¢; and GR;4p are the left and
right scale limits of the GR curve in API, and I and Iet,i g, are the left and right
scale limits of the clay indicator curve.

According to the observations of Zhao et al. [6] there is strong correlation be-

tween Ad and the kerogen content, with the separation increasing as the kerogen
increases. Therefore, a linear relationship has been established to estimate TOC

clieft

TOC(Ad) = A- Ad + B, (8)

where A and B are the slope and intercept. This method has been proposed for use
where the Delta Log R method has proven to be unsuccessful because abnormal Rt
values have been read. Also, it has the advantage that the gamma ray and clay indi-
cator curves overlie each other in non-source reservoirs with oil or water. Moreover,
this method is applicable to formations that present excess radioactivity source rocks
with little or no K-feldspar.

3.2.4. Passey’s Delta Log R method

Passey et al. [4] developed a technique known as Delta Log R. This method employs
sonic travel time (At), or other common porosity curves (i.e., bulk density and neu-
tron porosity) and true formation resistivity (R) curves scaled such as a ratio of 50
us/ft or 164 ps/m to one resistivity cycle. When both curves are overlaid on the same
track organic-rich intervals can be recognized by separation and non-parallelism of
the two curves; such separation forms the delta log R distance (Alog R).
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It has been observed that a linear relationship exists between Alog R and TOC
content, which is also a function of level of organic maturity (LOM). By means of
many tests and samples, Passey et al. [4] established a mathematical expression to
calculate the TOC related to Alog R and LOM:

TOC = (A lOg R) % 10(2.297—0.1688><LOM) ) (9)
The Alog R is measured by the following equation for a sonic log
AlogR = log10(R/Rpasetine) + 0.02 - (4t — Atpgseiine) (10)

where Ry gsetine 1S the resistivity corresponding to the Atpaseline Value when the
curves are baselined in fine grained non-source, clay-rich rocks.

Passey’s method is considered to be independent of porosity changes, because
the sonic and resistivity curves are both functions of the porosity in a given lithology,
so once a baseline is established in a given interval, a comparable magnitude varia-
tion in porosity will affect the responses of both curves [4]. That is to say, an increase
in porosity will result in an increase in At values, but it also means an increase in the
volume of conductive water, followed by a proportional decrease in resistivity read-
ings. Hence, the amount of increased porosity results in deflections of similar mag-
nitude in both porosity curves.

4. CASE STUDY: NORWEGIAN NORTHERN SEA

Five wells were analyzed to identify the source rock potential intervals and TOC
estimation applying the previous methodology. The well-logs data set was provided
by MOL Ltd. in the framework of internship practice at their Petrophysics Depart-
ment in Szolnok, Hungary.

The five wells contain geochemical data from cores, corresponding to Total Or-
ganic Carbon (TOC). Caliper (CALI), Borehole Bit Size (BS), Natural Gamma Ray
(GR), Deep Resistivity (RD), Sonic (DT), Density (RHOB) and Neutron-Porosity
(NPHTI) logs were recorded for each well, while Uranium Spectral Gamma Ray (U-
SGR) was also recorded for Wells 1 and 3 (Figure 3).

4.1. Well-1

Because similar results were obtained in the other four wells, Well 1 is shown as a
typical case applying the methodology proposed. The logs of measured data are
shown in Figure 3. The depth is displayed in Track 1, starting from 60 m. The caliper
and borehole bit size are given in the second track, while the natural gamma ray and
uranium spectral gamma ray are shown in Track 3 with a GR baseline at 60 GAPI.
In Track 4, sonic and deep resistivity logs. Density and neutron porosity logs are
displayed in Track 5 and TOC data from cores are displayed in the last track.
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Analyzing the data from logs, it can be noticed that there is an increased in ura-
nium spectral gamma ray readings, from an average value of 0.91 ppm in the bottom
part of the formation to values of tens of ppm at the top part. The density log shows
in general complex behavior; however, a marked overall decrease in density towards
the top of the formation can be seen, and this is followed by an increase in the sonic
and neutron porosity log from an average porosity value of 73.1 us/ft to values
around 110 ps/ft for the latter, and from an average value of 0.13 v/v to values around
0.3 v/v for the former. The resistivity log shows a decrease in conductivity at the top
of the formation. The behavior of the measured variables at the top of the formations
agrees well with the high TOC values from the core, as was expected from the well

log response due to organic matter enrichment.
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From the discriminant function (Equation 1), in Figure 4 it can be seen that D is a
positive value between 60 m and 87 m depth, indicating the boundaries of a possible
organic-rich interval, confirmed by the TOC core data in Track 6 from Figure 3.

After the qualitative evaluation, the regression analysis to establish the linear
models for estimating the TOC content was performed considering the physical re-
lationships established in Equations (2), (3), and (8). It is important to mention that
for estimating TOC using Passey’s method it is necessary to know the level of ma-
turity of the organic matter, as is stated by Equation (9). However, it was not possible
to get such information directly from lab measurements, therefore using Equation
(9) proposed by Passey et al. (1990) is not feasible. Consequently, a modification to
the technique has been made. Instead of using Equation (9), in the regression analy-
sis the procedure between TOC measured values and delta log R was conducted ad-
justing a best-fit linear curve expressed as follows:

TOC =A-AlogR +B. (11)

The results from applying the linear approximation methods to Well 1 are shown in
Table 1. It can be stated that the input variable delta log R distance is strongly cor-
related to the TOC core by the linear estimation model. The pair resistivity/neutron
and resistivity/density present the highest value of correlation among the pairs; how-
ever, the difference between the other linear models is not significant, excluding the
density log as an input variable, where the correlation between the density log and
the TOC from the core is especially poor or uncorrelated at 0.24.

After the correlation analysis was done, the TOC log curves were estimated and
are shown in Figure 4. Despite of the correlation constraint imposed on the method-
ology (Figure 2), for illustrative purposes, the density method results were used to
calculate a TOC log curve.

Table 1
Regression analysis results. A and B are the regression coefficients, and
r is the Pearson’s correlation coefficient.

Method A B r
U-Spectral Gamma Ray 0.4324 0.7131 0.84
Density 117.58 -44.049 0.24
Clay Indicator 10.4795 0.2638 0.86
Passey (Sonic) 2.4006 0.9303 0.90
Passey (Neutron) 2.4895 0.8973 0.91
Passey (Density) 3.2447 0.8816 0.91
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Figure 4
Discriminant function and estimated TOC logs. TOC P-Sonic: Passey’s resistiv-
ity/sonic method; TOC P-Neutron: Passey’s resistivity/neutron method; TOC P-
Density: Passey'’s resistivity/density method; TOC Clay In: Clay Indicator method;
TOC Density: Density Method; and TOC U-SGR: Uranium Method.

From Figure 4 it is visually clear that estimated TOC log curves follow a similar

trend to the values of TOC from core data. A more precise analysis was done when

calculating the coefficient of determination and root-mean-square error, which com-

pared the estimated TOC log curve values to TOC from cores. Results are shown in
Table 2.

Table 2

Statistical analysis: Coefficient of determination (R?) and

root mean-square error (RMSE)

Method R? RMSE
U-Spectral Gamma Ray 0.71 0.8701
Density 0.02 2.0268

Clay Indicator 0.74 0.7110
Passey (Sonic) 0.76 0.6400
Passey (Neutron) 0.81 0.8655
Passey (Density) 0.78 0.6134
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From Table 2 it is clear that the resistivity-neutron pair from Passey’s method gives
the highest coefficient of determination value, 0.81, and a 0.8655 RMSE. The resis-
tivity/density pair gives the lowest RMSE value, 0.6134, with a 0.7805 coefficient
of determination. Uranium and Clay methods show a good performance, with 0.71
coefficient of determination and 0.8701 root-mean-square error, and 0.74 coefficient
of determination and 0.7110, respectively. The Schmoker method shows poor per-
formance in predicting data for Well 1, with a coefficient of determination of 2.27%
and an RMSE of 2.0268.

It can be seen that visually there is quite a good match between measured and
estimated TOC values, but summarized uncertainties show higher values. An expla-
nation to this can be that with TOC range uncertainties varies, that is to say, as we
go down, especially below 2.0% wt. TOC, uncertainties become even higher and
errors will grow apparently. Thus, to prove that lower TOC values can caused un-
certainties, a TOC cut-off higher than 2.0% was considered for calculating the accu-
racy between measurements and estimations.

Table 3

Statistical analysis for a 2.0% wt. TOC cut-off: Coefficient of determination (R?

and root- mean-square error (RMSE)

Method R? RMSE
U-Spectral Gamma Ray 0.83 1.1554
Density 0.94 1.4865

Clay Indicator 0.81 1.3359
Passey (Sonic) 0.91 1.1475
Passey (Neutron) 0.83 1.139
Passey (Density) 0.97 0.7018

Comparing the results from Tables 2 and 3 it can be confirmed that intervals with
poor TOC content make uncertainties higher, and thus, errors will grow significantly.
For example, estimation from Passey’s method using the sonic log considering the
TOC cut-off presents a higher R? (i.e., 0.91) than without the cut-off (R?= 0.76).
Also, the Schmoker method proved a much precise estimation in intervals where
TOC content is higher than 2.0%, giving R?= 0.94; this might be explained by this
method being based on the assumption of a high organic-rich, low-porosity and low-
permeability shale formation.

5. CONCLUSIONS

Different methods for estimating TOC content by means of wireline logs were ana-
lyzed showing relevance for particular cases. This is due to the fact that different
petrophysical properties of the formation are taken into account in different well-log
records. An important step for source rock potential evaluation is the delimitation of
the formation into organic-rich source rocks and organic-lean rocks; the use of a
discriminant function has proved to be a certain tool to visually trace the boundaries
between non-source and source rock intervals.
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The Uranium Spectral Gamma Ray method has shown good performance for es-
timating TOC content when compared against TOC values from the core, where U-
SGR reading were available. This method is one of the first methods to be developed
and is based on the fact that an increase in spectral gamma-ray readings can be highly
correlated to TOC content in a shale formation, mainly considering lithological fac-
tors. However, careful evaluation should be done in the case of complex radioactive
mineralogical formations.

The Clay indicator method not only takes into account the radiative response of
the organic matter measured by the gamma-ray log, but also includes the effect of
the kerogen, by means of the neutron and density porosity used to calculate the clay
index curve. This method has given good results for Well 1 (R?= 0.74), Well 2
(R?=0.70), and Well 5 (R?>= 0.56).

The Passey method has shown to be the most reliable method of the empirical
approaches since it takes into account not only the effect of the kerogen reflected in
the porosity logs but also considers the compaction and burial history of the for-
mation, by means of increasing resistivity response with a higher level of organic
maturity. This last fact also appears to be limiting for applying this method, as in this
study no data for LOM were available. However, following a good calibration pro-
cedure, it was possible to establish models for estimated TOC content.

The Schmoker method shows, in general, low performance based on R? values.
This might be implied by the fact that this method requires some assumptions to be
fulfilled such as that mineral composition is constant and porosity of the shale is low
and constant all over the formation, so that variations in the density log can be at-
tributed to the presence or absence of low-density organic matter. In general, it was
noticed that the Schmoker method underestimates the TOC content in the source
rock interval.

Finally, it is highly recommended to employ a combination of different tech-
niques for estimating TOC content due to the fact that each well-log tool responds
to different petrophysical properties, so results are ensured to be more accurate when
compared against others. Borehole conditions should be checked by means of a cal-
iper and borehole bit size since the quality of the porosity logs can be highly affected
by this.

The Clay, Uranium, and Schmoker methods have demonstrated that they are ac-
ceptable as an alternative when there is a lack of resistivity data or abnormal Rt
readings and the Passey method cannot be performed. Also, those methods are LOM-
independent estimations of TOC content.

In addition, it is suggested to implement a more complex model that relates not
just two wireline logs or parameters but using all the data available — uranium
gamma-ray spectroscopy, density, neutron, sonic, and resistivity logging — applying
multivariate statistical regression and inversion methods, i.e., the interval inversion
suggested by Dobroka et al. [17] and further developed by Szabo and Dobroka [7].
This is recommended since the petrophysical model used in the studied methods
oversimplifies the reality, and it would allow more complex and accurate models to
be used considering not only the non-clay minerals, silt and clay, and the water
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volume, but also mobile, capillary and clay-bound water, also in addition to free
hydrocarbons and absorbed gas in the porosity.
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