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Abstract: This research aims to predict the irrigation indices of sodium adsorption ratio 

(SAR) and sodium percentage (Na%) using innovative machine learning (ML) techniques, 

including support vector regression (SVR) and Gaussian process regression (GPR). Thirty-

seven groundwater samples were collected, and the primary investigation indicated that Ca-

Mg-HCO3 and Na-HCO3 water types dominate the samples. The data is divided into two sets 

for training (70%) and validation (30%), and the models are tested with three statistical cri-

teria, including mean square error (MSE), root mean square error (RMSE), and determination 

coefficient (R2). The GPR algorithm showed better performance in predicting SAR and Na% 

than SVR since it provided the lowest errors. The implemented approach proved efficient for 

the sustainable management of agricultural water. 

Keywords: Groundwater quality, Irrigation indices, Machine learning, Nubian aquifer, Sudan 

 

1. INTRODUCTION 

Groundwater is one of the primary providers of irrigation water for agriculture in 

Sudan [1]. The utilization of groundwater for irrigation offers various benefits, in-

cluding dependability and regularity. Unlike surface water, which can be impacted 

by floods and droughts, groundwater is generally consistent and can ensure a contin-

uous supply of irrigation water [2]. This is crucial in areas with insufficient or unsta-

ble surface water supplies. Khartoum state is agricultural land with a high depend-

ency on groundwater for irrigation. The high reliance on groundwater for irrigation 

is due to the absence of surface water transporting systems and the high cost of de-

livering Nile water to agricultural lands [3]. As a result, and due to the expanding 

agricultural lands and over-pumping of groundwater aquifers, the groundwater qual-

ity for domestic and agricultural purposes is declining. Therefore, this research 
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attempts to evaluate the suitability of groundwater for irrigation using advanced 

computational artificial intelligence algorithms for sustainable crop production. 

Irrigation indices are useful parameters to study the suitability of groundwater for 

agricultural purposes. However, the calculation of these indices is often lengthy and 

time-consuming [4]; therefore, Artificial Intelligence (AI) techniques are proposed 

to reduce the calculation time and avoid calculation errors. The use of AI models in 

irrigation water management has been growing in recent years due to their ability to 

analyze large amounts of data and make accurate predictions [5–7]. For instance, [8] 

used support vector regression (SVR) and random forest (RF) to model the irrigation 

water quality of potential salinity, sodium percentage and permeability index in Bahr 

El-Baqr, Egypt. They indicated the robustness of these algorithms to support the de-

cision-making process for sustainable crop yield. [9] employed SVM and Gaussian 

process regression (GPR) for the simulation of SAR in three sub-watersheds in Iran. 

These studies demonstrated the potential of AI and ML as a tool for predicting vari-

ous water quality indices in irrigation systems and highlighted the importance of 

such predictions in improving water management practices and ensuring sustainable 

agriculture. 

This paper aims to examine the capability of support vector regression (SVR), 

and Gaussian process regression (GPR) to predict the spatial distribution of irriga-

tional water quality indices of sodium adsorption ratio (SAR) and sodium percentage 

(Na%). The results of this research improve irrigation water management and the 

efficiency and sustainability of agricultural production. 

 

2. MATERIALS AND METHODS 

2.1. Study area 

This study explores the suitability of groundwater for irrigation purposes in Khar-

toum state, Sudan (Figure 1). The area is characterized by a hot climate in summer, 

cold and dry in winter, and associated with an annual average precipitation of 115.7 

mm/year in the fall season [10]. The main geomorphological features are the Nile 

River which bounds the study area from the west. Geologically, the area is located 

in the Blue Nile rift basin, where three geological units dominate. Figure 1 illustrates 

the primary geological units observed in the study area. The Pan African basement 

rocks of the Precambrian age form the bottom of the Blue Nile basin [11]. These 

rocks are dominated by biotite granite, gneiss, and schist, mainly observed near 

Khartoum’s northern and eastern boundaries [12]. The Precambrian basement rocks 

are overlain by mudstone, sandy mudstone, conglomerates, and sandstone, which 

have been consolidated by limes, siliceous, and ferrous minerals. This rock accumu-

lation is known as Cretaceous Nubian Formation [13]. This formation also comprises 

evaporite deposits formed in a braided environment and dispersed throughout the 

Nile and Blue Nile Rivers [14]. The recent deposit of Quaternary age is observed in 

the surroundings of the Blue Nile and Nile Rivers and the western part of the study 

area. This geological unit is also known as the Gezira formation and comprises un-

consolidated sand, gravel, and silts. The Nubian sandstone, with an average thickness 
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of 300 m, serves as a primary groundwater aquifer in the study area [15]. This aquifer 

is classified as highly productive, with an average transmissivity of 700 m2/day [16]. 

Given that there is relatively minimal recharge from rainfall, the Nile River and 

ephemeral streams are the primary sources of groundwater recharge to the Nubian 

formation. As a result, groundwater levels range from 294 m in the southern parts  to 

366.6 m in the central part (Figure 2). Consequently, groundwater flows mainly from 

the western to the eastern and from northern to southern parts of the region [17]. 

 

 

 
 

Figure 1 

The geographical location and the main geological units  

in the study area modified after [10] 

 



42             M. A. A. Mohammed – S. I. Abba – N. P. Szabó – P. Szűcs 
 

 

 
Figure 2 

The water level map shows the main groundwater flow direction in the study area 

 

2.2. Groundwater sampling 

As part of the “zero thirsty” program administered by the Sudanese government, the 

Khartoum State Water Corporation collected 37 groundwater samples between Oc-

tober 2018 and December 2020. The groundwater samples were collected from pub-

lic and privately owned groundwater wells with a depth ranging from 100 to 250 m 

[18]. The groundwater samples were analyzed in the labs of Groundwater and Wa-

dies Directorate for ten physiochemical parameters. The parameters include total 

dissolved solids (TDS), hydrogen ion activity (pH), electrical conductivity (EC), cal-

cium (Ca), magnesium (Mg), sodium (Na), bicarbonate (HCO3), chloride (Cl), and 

sulfate (SO4) concentration.  

 

2.3. Irrigation indices 

The quality of irrigation water and its suitability for various crops are assessed using 

irrigation water quality indices [19]. There are several different irrigation water in-

dicators; however, in this research, two indices are used for the management of irri-

gation water, including Sodium Adsorption Ratio (SAR) and sodium percentage 

(Na%). SAR indicates the amount of sodium in water and how it could impact crops 

and soil [20]. Low SAR levels are often regarded as acceptable for irrigation, 
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whereas high SAR values can cause soil dispersion and poor crop development. The 

overall amount of sodium in the water is also determined by the sodium percentage 

(Na%) in which the concentration of all ions is in meq/L. In general, SAR and Na% 

measures the concentrations of Na+ relative to the major cations including Ca, Mg, 

and K. However, in central Sudan hydrogeological system the concentration of K is 

low as a result, it is usually neglected in the hydrochemical analysis. The following 

formulas (Equations 1–2) are used to determine the irrigation indices. 

𝑆𝐴𝑅 =
𝑁𝑎+

√𝐶𝑎2+ + 𝑀𝑔2+

2

, 
 

(1) 

𝑁𝑎+% =
𝑁𝑎+

 𝐶𝑎+2 + 𝑀𝑔2+ + 𝑁𝑎+
∗ 100, 

(2) 

 

2.4. Machine learning models 

In this study, two machine learning models were utilized for predicting irrigation 

indices: Gaussian process regression (GPR) and support vector regression (SVR). 

The data set was divided into two parts, with 70% used for calibrating the machine 

learning models and the remaining 30% used for validating the models. The analysis 

of the machine learning algorithms was conducted using MATLAB software.  

 

2.4.1. Gaussian Process Regression (GPR) 

In this study, Gaussian Process Regression (GPR) was employed to predict the irri-

gation indices based on the concentration of the physiochemical parameters. Gauss-

ian process regression aims to reconstruct the underlying signal by removing the 

contaminating noise. For a deeper understanding of the Gaussian Process Regression 

(GPR) method, one can refer to [21] and [22]. The Gaussian radial basis function 

(RBF) kernel is one of the most popular kernels used in Gaussian Process Regres-

sion, and it can model non-linear relationships between the input variables and the 

target variable. The parameter of the GPR models was optimized by using a repeated 

10-fold cross-validation method to prevent overfitting. 

 

2.4.2. Support Vector Regression (SVR) 

Support Vector Regression (SVR) is a machine-learning technique that utilizes ker-

nels to map the input space to a high-dimensional feature space, allowing for non-

linear mapping [23]. The goal of SVR is to reduce both prediction errors and model 

complexity simultaneously. The optimization problem is solved using Lagrange 

multipliers and results in a set of support vectors that define the boundary. The pre-

diction for a new data point is then made based on the support vectors and their 

weights. In this study, the Support Vector Regression (SVR) method was imple-

mented using MATLAB and the model’s parameters, including the choice of kernel 

function and the value of the parameter, were determined through a parameter tuning 
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process using a random search method [24]. For a more detailed understanding of 

the SVR method, one can consult [25]. 

 

2.4.3. Models Performance 

In this study, the accuracy of the predicted and observed data was evaluated using 

three widely used metrics: root mean square error (RMSE), mean absolute error 

(MAE), and coefficient of determination (R2). To accurately reflect the overall accu-

racy of the machine learning models, only the evaluation metrics for the validation 

set are calculated. The performance metrics are measured using the following equa-

tions (Equations 3–5) 

𝑀𝐴𝐸 =  
∑ |𝑂𝑖−𝑃𝑖|𝑛

𝑖=1

𝑛
  , (3) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

𝑛
 , 

(4) 

𝑅2 = [
∑ (𝑂𝑖 − 𝑂𝑎𝑣𝑒)(𝑃𝑖 − 𝑃𝑎𝑣𝑒)𝑛

𝑖=1

√∑ (𝑂𝑖 − 𝑂𝑎𝑣𝑒)2(𝑃𝑖 − 𝑃𝑎𝑣𝑒)2𝑛
𝑖=1

]

2

, 
(5) 

 

where Oi and Pi are, respectively, the observed and predicted values, with their av-

erage values represented by Oave and Pave, respectively, and n is the sample size in 

the validation set.  

 

3. RESULTS AND DISCUSSION 

3.1. Hydrochemical facies 

The hydrochemical facies is studied with the aid of the Chadha [26] diagram (Figure 

3). In this diagram, the difference between major cations (Ca + Mg) − (Na + K) and 

anions (HCO3 − (SO4 + Cl)) is used to detect the groundwater types (Figure 3). Con-

sequently, four groundwater facies are revealed as Na-Cl, Ca-Mg-SO4/Cl, Na-HCO3, 

and Ca-Mg-HCO3. The majority of the groundwater samples (67.5%) fall in Ca-Mg-

HCO3 water type, which indicates the influence of groundwater recharge on ground-

water chemistry. The locations of these samples are within the influence of the Nile 

River, which is 12 km [3]. The groundwater type gradually changes from the western 

to the eastern parts of the study area from Ca-Mg-HCO3 to Na-HCO3 water type. 

This change is likely due to ion exchange or the replacement of Ca and Mg with Na. 

As a result, 16.2% of groundwater samples are identified as Na-HCO3 water type. 

8.1% of the samples are classified as Ca-Mg-SO4/Cl resulting from reverse anion 

exchange in which HCO3 is replaced by Cl in groundwater. The continuation of cat-

ion and reverse anion exchange leads to the Na-Cl facies. In this study, 8.1% are 

classified as saline water. It can be concluded that the hydrochemical characteristics 
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of groundwater in the eastern Nile River are mainly influenced by groundwater re-

charge and ion exchanges. 

 

 
Figure 3 

Chadha diagram showing the main groundwater facies of the collected samples 

 

3.2. Irrigation indices 

3.2.1. Sodium adsorption ratio (SAR) 

The SAR ranged from 0.27 to 13.8. The classification of groundwater samples is 

represented in Figure 4 (USSL diagram). Groundwater is divided into four groups 

based on SAR: excellent with SAR < 10 (S1); good (SAR ranges from 10 to 18 (S2)); 

doubtful, in which SAR ranges from 18 to 26 (S3); and unsuitable with SAR > 26 

(S4) [20]. In general, SAR is influenced by the concentration of Na relative to the 

other cations, such as Ca and Mg. In practice, groundwater is usually classified by 

conjugation of SAR with EC, since irrigation water with high salinity stimulates the 

ion exchange process and thus affects the adsorption of water by plants. Salinity. 

Based on EC, groundwater is classified as water with low (C1), medium (C2), high 

(C3), and very high (C4) salinity hazards. As a result, 59.4% of the groundwater 

samples are associated with low SAR (S1) and medium salinity hazard (C2). This 

class is considered excellent for irrigation purposes. 35% of the samples are pro-

jected in S1C3 class with low alkali and high salinity hazard. This class might not 
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affect the soil permeability however, high salinity may influence the growth of sa-

linity-sensitive plants and thus reduces the crops yield. One sample (S16) is plotted 

in S2C3 class with medium alkali and high salinity hazards. S27 is classified as un-

suitable for irrigation since it is associated with high alkali and high salinity hazards 

(S4C4). This persistent use of this sample for irrigation will damage the soil perme-

ability by incorporating Na within the soil particles and affect the growth of plants.  

 

3.2.2. Sodium percentage (Na%) 

The principle of Na% is almost similar to that of SAR in which the percentage of 

Na+ relative to the cations of Ca and Mg is measured. Na is incorporated into the 

clay minerals sheets while the other cations are removed, which affects the infiltra-

tion of water to the plant’s root. The exchange results in two types of soils, saline 

soils formed when Na reacted with Cl while the alkaline soil when Na reacted with 

HCO3 in the irrigation water [27]. In this study, Na% varied between 7.8% to 77.3 

%. On the basis of Na%, groundwater is classified as excellent for irrigation, good, 

acceptable, doubtful and unsuitable. The groundwater samples are plotted in Wil-

cox’s (1948) diagram (Figure 5). Accordingly, 64.8% of the groundwater samples 

are projected in the excellent class zone. This class is associated with low salinity 

and alkali hazard. 21.6% of the samples are classified as good for irrigation with 

relatively high salinity and low alkali hazard. The permissible water class included 

10.8% of the groundwater samples with high alkali hazard and relatively low salin-

ity. The groundwater in this class is mostly influenced by the rock type. Only one 

sample is described as doubtful for irrigation purposes, and this sample is highly 

influenced by salinity. 

 
Figure 4 

The USSL diagram shows the classification of groundwater based on SAR 
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Figure 5 

The Wilcox diagram shows the classification of groundwater based on Na % 

 

3.3. Modeling of irrigation indices 

In this study, the SAR and Na values were estimated using the GPR and SVR models. 
These methods are applied to overcome the limitation of the conventional method 

for calculating irrigation groundwater quality indices. The analyzed parameters are 

considered the input, while the calculated irrigation indices using a statistical (con-

ventional) approach are considered the output. Experimental data were categorized 

into training and testing, and the performance of each model was evaluated based on 

the R2, MAE, and RMSE during the testing stages, as shown in Table 1. In general, 

the developed models provide adequate modeling of the SAR parameter in ground-

water and produce satisfactory estimates based on the performance criteria. How-

ever, the results for SAR estimation showed that the GPR model was the best per-

former, with the highest R2 value of 0.99 and the lowest error performance values, 

including MAE = 0.0001 and RMSE = 0.01, in the validation phase (Table 1). The 

error, as usual, in the training phase is higher than in the validation and testing phase. 

The prediction of SAR using SVR modeling showed a lower R2 value of 0.99 and 

the lowest error performance values, including MAE = 0.05 and RMSE = 0.22. 

As in SAR modeling, the GPR showed higher performance in the prediction of 

the Na% parameter in groundwater. The performance measures showed a reasonable 

estimate for the parameter. The modeling of Na% outcomes using GPR showed R2 

value of 0.99 and low error performance values, including MAE = 0.003 and 

RMSE = 0.05 in the validation phase. In the training phase, a higher error is indicated 

by RMSE and MAE. The SVR model also showed a high performance with an R2 

value of 0.98 and error performance values of MAE = 5.14 and RMSE = 2.26 in the 

validation phase.  
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The scatter plot between the observed and predicted parameters (Figure 6) 

showed a reasonable correlation. The measured values of SAR and Na% are pro-

jected near the 1 : 1 line; as a result, the obtained values can be successfully used to 

evaluate the suitability of groundwater for irrigation purposes. 

Table 1 

Results of machine learning-based models in the training and testing phase 

Model-  

Index 

Training Phase Testing Phase 

R2 MAE RMSE R R2 MAE RMSE R 

GPR-SAR 0.99 0.0001 0.01 0.99 0.99 0.0001 0.01 0.99 

GPR-Na% 0.99 0.009 0.09 0.99 0.99 0.003 0.06 0.99 

SVR-SAR 0.96 0.103 0.32 0.98 0.99 0.05 0.22 0.99 

SVR-Na% 0.96 7.50 2.73 0.98 0.96 5.14 2.26 0.98 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6 

Scatter plot between the observed and predicted value of (a) SAR-GPR,  

(b) SAR-SVR, (c) Na %-GPR, and (d) Na %-SVR 
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The correlation between the irrigation indices of SAR and Na % and major physio-

chemical parameters is conducted to reveal the influence of each parameters on the 

predicted irrigation indices (Figure 7). SAR is highly correlated with Na+ with cor-

relation coefficient (R) of 0.99, TDS (R = 0.86), and EC (r = 0.83). This reflect the 

high impact by of these parameters on SAR values. EC and TDS are the salinity 

parameters which is in general have great influence on SAR and thus, the suitability 

of groundwater for irrigation purposes. On the other hand, SAR has moderate with 

Mg2+ (R = 49), and low correlation with Ca2+ (R = 0.085). The low correlation indi-

cate the leaset influence of these cations on SAR values. As in SAR, Na% has high 

correlation with Na+ (R = 0.76) and TDS (R = 0.70). Moreevre, it has moderate cor-

relation with EC (R = 0.67) and low correlation with Ca2+ and Mg2+. The low corre-

lation of SAR and Na % with Ca2+ and Mg2+ is likely due to the low concentration 

of these cations relative to Na+. Additionally, the low correlation could be due to the 

effect of other dissolved ions on SAR value, such as HCO3, SO4, and Cl. These ions 

can interact with calcium and magnesium ions, altering their concentrations and ul-

timately affecting the SAR value [23]. 

 

 
Figure 7 

Correlation between irrigation indices and physiochemical parameters 
 

Based on the predicted values of irrigation indices, GIS environment is used to map 

the spatial distribution of SAR and Na% concentrations in groundwater and the re-

sults are illustrated in Figure 8 and Figure 9, respectively. For SAR, the western 

parts of the study area are associated with low values of SAR, likely due to the in-

fluence of groundwater recharge on groundwater samples. The highest values in the 

southern and central parts are generally due to the high mineralization of groundwa-

ter samples due to the dissolution of halite minerals within the Nubian formations 

[28]. The variation of Na% shows a similar trend to that of SAR as the central and 
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southern parts depict high concentrations relative to the rest of the study area. In 

general, evaluating groundwater use for agricultural purposes is comprehensively 

achieved by considering combined indices.  It can also be said that the use of a certain 

type of water depends on the type of plant and its tolerance to salinity or its sensitiv-

ity to a certain parameter. The type of soil, whether it is acidic or alkaline, is also 

influencing plant growth. The quantity of water that a particular plant needs for 

growth may be related to one index rather than the other.  

The results of irrigation indices modeling using machine learning techniques 

showed a resealable match with the conventional method. Consequently, the quality 

of groundwater for agricultural purposes in the north Khartoum area can be evaluated 

solely with ML techniques. It can be concluded that machine techniques such as GPR 

and SVR can effectively simulate irrigation indices and other hydrochemical param-

eters in a time and cost-effective way when large water quality data is recorded. In 

order to improve groundwater quality assessments and management, the application 

of artificial intelligence is recommended for sustainable groundwater resource man-

agement. The geospatial mapping of the predicted values of the irrigation indices 

allow examining the capabilities of the SVR and GPR to be used instead of the con-

ventioal methods which area lengthy and prone to calculations error. Further, the 

produced models can be applied freely in systems with similar hydrogeological con-

ditions. However, simultaneous use of GIS and ML algorithms is preferable to pro-

vide a continuous mapping of the indices and allow evaluation of the spatial uncer-

tainty. For instance, pixels-based analysis can be conducted using the mean of the 

predicted values of the irrigation indices. 

 

 
Figure 8 

The spatial variation of SAR in the study area 
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Figure 9 

The spatial variation of Na% in the study area 

 

4. CONCLUSIONS 

In this research, two computational machine learning (ML) algorithms (GPR and 

SVR) integrated with GIS were used to evaluate the suitability of groundwater for 

irrigation purposes based on SAR and Na%. This approach is followed to overcome 

the limitations of the conventional assessment of the irrigation indices. Based on the 

modeling results, the conclusions can be summarized as follows: 

• The initial analysis revealed that the groundwater samples are dominated by 

Ca-Mg-HCO3 and Na-HCO3 water types resulting from groundwater re-

charge and ion exchange processes. 

• The observed irrigational indices indicated that the majority of the ground-

water samples (60%) are for excellent agricultural purposes. The remaining 

samples are mostly influenced by high salinity resulting from rock-water in-

teractions. 

• GPR and SVR resulted in reasonable to good predictions of irrigation indi-

ces. However, the GPR algorithm showed the best performance, with the 

lowest error values. 

• The GIS environment is successfully used to map the spatial distribution of 

the predicted groundwater irrigation indices. However, the integration of 

GIS and ML models is recommended for effective geospatial uncertainty 

analysis. 
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