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Abstract: One of the primary responsibilities of a reservoir engineer is to evaluate the per-

formance of hydrocarbon reservoirs to estimate the original hydrocarbons in place, reserves, 

ultimate oil/gas recovery factor. This responsibility becomes complicated in the case of wa-

ter-drive reservoirs due to the high uncertainty associated with aquifer properties, including 

rock properties and aquifer geometry. This paper presents a new method to find the optimum 

aquifer model based on the root mean square error (RMSE) values by using MBAL software. 

The study investigated the transmissibility between the X, Y, and Z reservoirs in the field. 

Additionally, the original oil-in-place (OOIP) was estimated by using material balance equa-

tion and Monte Carlo concepts. 

 

Keywords: aquifer, reservoir performance, MBAL, prediction production, Monte Carlo 

simulation. 

 

1. INTRODUCTION 

Water influx into the reservoir comes from various sources, including aquifers, water 

injection wells, and surface water recharge from outcrops. It contributes to the driv-

ing mechanism used for hydrocarbon production. Other mechanisms affecting hy-

drocarbon production include gravity segregation, gas-cap drive, fluid expansion, 

connate water compressibility, and formation compressibility [1–4]. 

Accurately estimating water influx volumes in a reservoir during production is 

crucial for various applications, including material balance equation (MBE), reser-

voir simulation, production scheduling, and developing strategies for optimizing hy-

drocarbon recovery [5]. To achieve high accuracy in reservoir simulation and pro-

duction prediction, it is crucial to select an appropriate aquifer model that can effec-

tively capture the dynamic behavior of the aquifer system. Characterizing aquifers 

for modeling purposes can be challenging due to the high levels of uncertainty asso-

ciated with their properties, including permeability, porosity, size, pore size geome-

try and distribution (PSD), capillary pressure (Pc) and water encroachment angle [6]. 

The purpose of this work is to conduct a case study in the SABA field in order to 

choose the most optimal aquifer model that exhibits the lowest Root Mean Square 

Error (RMSE). This will aid in enhancing our comprehension of reservoir perfor-

mance, as well as predicting production conditions from the year 2021 to 2031. 
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Petroleum engineers have multiple methods to estimate hydrocarbon reserves, 

including analytical techniques such as volumetric or material balance estimates, as 

well as numerical methods such as 3D reservoir simulation models [7]. Material bal-

ance modeling and analysis is a commonly used analytical method, allowing for a 

comprehensive understanding of reservoir performance, drive mechanisms, and es-

timation of volumes in place. This is almost the main purpose of the MBE where 

dynamic reservoir data, including production history and changes in fluid properties, 

to estimate the original oil in place and gas initially in place. For instance, in water 

drive reservoirs, determining the initial oil in place or the amount of oil produced at 

a specific time interval requires knowledge of the amount of water influx into the 

reservoir. Similarly, incorporating the aquifer into a reservoir simulation model can 

help minimize model uncertainties when water influx into the reservoir is substantial. 

Therefore, the main objective of this research is to study and evaluate a water-

drive oil reservoir performance by material balance concept using MBAL software 

[8]. The study mainly investigates the following reservoir aspects: 

 

1. Evaluate water influx models. 

2. Estimate Oil initial in Place by using MBE concept. 

3. Investigate transmissibility effect. 

4. Prediction of oil production. 

5. Determine the drive mechanisms. 

 

2. LITERATURE REVIEW 

The material balance equation hypothesis was first presented in 1935 by Schilthuis 

[8]. It states that the volume of the reservoir remains constant, and the volumetric 

balance between underground withdrawals (cumulative production) must be equal 

to the expansion of fluids in the reservoir due to pressure drop. Accurately estimating 

water influx into petroleum reservoirs is crucial for various applications, including 

material balance calculations, reservoir simulation studies, production forecasting, 

and developing strategies to optimize hydrocarbon recovery [5].  

There are several aquifer models to calculate cumulative water influx into the 

reservoir. Each model has its assumptions based on the outer boundary conditions 

(finite or infinite), flow geometry (steady state, semi-steady state or unsteady 

state), flow regimes (linear edge water drive, bottom edge water drive or edge wa-

ter drive) and on the degree of pressure maintenance (active water drive, partial 

water drive or limited water drive) [9–12]. A. F. Van Everdingen, [13] developed 

a method to combine MBE with the water influx equation to obtain reliable results 

of OOIP. The method was developed for an oil reservoir without a gas cap and for 

both linear and radial flow systems. M. Mcdowell [14] studied the effect of for-

mation permeability and aquifer size on the behavior of a water drive reservoir. 

Also, he studied the way of the natural water influx changes with the pressure 

maintenance programs. 
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Dougherty [15] presented a method to predict the performance of a water-drive 

reservoir and to make optimal calculations of reservoir size, aquifer size, aquifer ge-

ometry and the fluid conductivity between the reservoir and the aquifer. Belhouchet 

[6] suggests a new empirical model for enhancing the reservoir characteristics using 

well log permeability prediction, and impact on production. Dejean and Blanc [16] 

presented several statistical methods dealing with the uncertainties in the reservoir pa-

rameters. The statistical methods are (a) Experimental Design, (b) Response Surface 

Methodology and (c) Monte-Carlo methods. Integrating these techniques enables to 

build a simplified model of a process and to estimate the uncertainties on the response 

predictions. Marques and Trevisan [17] investigated uncertainties in reservoir man-

agement and explored various models for quantifying water influx into reservoirs. 

Based on their findings, Marques and Trevisan concluded that the Carter & Tracy 

model provides accurate results in most cases studied, except for very small aquifers. 

Also, they concluded that Fetkovich model provided accurate estimates for Original 

Oil in Place (OOIP) in small aquifers. However, as the aquifer size increased, the 

model’s accuracy began to decline, and the errors in its predictions became more pro-

nounced. In addition, they found out that Leung modified model is the highest accu-

racy model in their study [17]. In 2019, Mahmoud and his colleagues [18] used some 

artificial intelligence (AI) techniques to estimate the oil recovery factor (RF) for water-

drive sandy reservoirs. They presented an empirical correlation to estimate RF with 

7.95% AAPE according to their study. Onuka and Okoro [8] used MBAL software to 

predict the performance of a water-drive oil reservoir. They used only two aquifer 

models (Schilthius steady state and the Hurst-Van Everdingen unsteady state models). 

They found that the difference in RF between both models was 0.4067 MM STB (stock 

tank barrel). 

 

3. METHODOLOGY 

Figure 1 describes how the processes in MBAL will be done to achieve the objec-

tives in this study. By using Petroleum Experts MBAL software, an iterative nonlin-

ear regression is used to find automatically the best mathematical fit for aquifer 

model. Energy plot and prediction tools in MBAL were used to determine the drive 

mechanisms and the forecasting of oil production respectively. 

The Root Mean Square Error (RMSE) is a commonly used metric to evaluate 

how well a model’s predicted values match actual observations [19–21]. It calculates 

the square root of the average of the squared differences between predicted and ob-

served values. The RMSE provides a measure of predictive power by aggregating 

individual differences, also known as residuals: 

 

𝑅𝑀𝑆𝐸 =  √∑ (𝑋𝑜𝑏𝑠,𝑖−𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)𝑛
𝑖=1

2

𝑛
    (1) 

 

where represents Xobs,i the i-th observed value and Xmodel,i denotes the i-th modelled 

value. 
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Figure 1 

Flowchart of the applied evaluation algorithm 

 

4. SABA FIELD CASE STUDY 

SABA field is divided into three reservoirs (reservoir X, Y, and Z). The main source 

is supported by an aquifer and is separated by two important faults that play a sig-

nificant role in its structural and saturation conditions. Figure 2 shows the cross-

section sketch of the studied field. 

Exploration drilling began in 1971, and the production stage started in late 1985 

with the X1 well. The initial reservoir pressure declined from 330.8 bar (approximately 

equal to 4,800.58 pounds per square inch [psi]) to 310 bar (4,501.18 psi) in the first 

four years of production. A secondary gas cap developed and occupied nearly 7.5% of 

the reservoir space, leading to gas breakthrough in some wells. To maintain the optimal 

reservoir pressure of 295 bar (4,278.91 psi), water injection in wells X3 and X6 started 
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in September 1991, maintaining the average reservoir pressure at about 284 bars 

(4,125.59 psi). The cumulative oil production is 4.85 MM m3 (171,034 MM ft3) with 

a recovery factor of about 20.79%. Table 1 and Table 2 illustrate X, Y and Z reservoirs 

data and pressure-volume-temperature (PVT) of X reservoir respectively. 

 

 

Figure 2 

Geological cross-section sketch of SABA field 

 

Table 1 
Data of the reservoirs in Saba hydrocarbon field 

Parameter Unit Reservoir X Reservoir Y Reservoir Z 

Reservoir area 103 ft2 35520.87 20451.41 11840.29 

Elevation height ft 590.5512 295.2756 213.2516 

Average porosity % 9.2 3.4 3.3 

Connate water saturation % 21.6 21.6 21.6 

Initial reservoir pressure Bar (psi) 330.8 (4801) 330.8 (4801) 330.8 (4801) 

Reservoir temperature C˚ 140 140 140 

Original oil-in-place 
MM m3    

(MM ft3) 

22.199 

(783.9503) 

2.362 

(83.4132) 

0.9585 

(33.8491) 

Average permeability mD 113 160 28 

Aquifer volume 
103 m3    

(103 ft3) 
460 (16245) 300 (10,595) 250 (8829) 

Water inflow constant 
m3/bar 

(ft3/psi) 
228.4 (556) – – 

 

Table 2  

PVT fluid and contents properties for reservoir X  

Parameter Unit Value 

Solution gas-oil ratio ft3/ft3 259 

Oil gravity kg / m3 817 

Gas specific gravity Sp. Gravity 0.89 

Mole percent H2S % 0 

Mole percent CO2 % 5 

Mole percent N2 % 1.2 

Water salinity PPM 200000 

Oil formation volume factor m3/Sm3 1.93 

Reservoir oil viscosity mPa. sec 0.193 
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5. RESULTS AND DISCUSSION 

This study aimed to evaluate different aquifer models by comparing the measured 

and simulated reservoir pressures using the Root Mean Square Error from the start 

to the end of production history. A reservoir model called tank modeling was cre-

ated using MBAL software, assuming no communication between reservoirs as 

sketched in Figure 3. The evaluation of aquifer models was conducted through 

history matching in MBAL and using regression and best-fit tools in analytical and 

graphical methods. 

 

 

Figure 3 

Single tank model assuming no communication between the reservoirs 

 

Table 3 and Figure 4 show that the small pot aquifer model has the lowest RMSE 

equals to 2.306568 with OOIP equal to 23.371 MM m3 (825.3391 MM ft3) while 

Hurst steady state aquifer model has the highest RMSE equal to 17.59313 with OOIP 

equal to 35.4277 MM m3 (1251.1174 MM ft3).  

The evaluation of different aquifer models showed that the RMSE values of al-

most aquifer models were relatively similar due to the small size of the aquifer, 

which lacked sufficient energy to push the oil for an extended period. As a result, 

injection was started after seven years to maintain reservoir pressure. 
 

Table 3 
Evaluation results of aquifer models 

Aquifer Model RMSE 
OOIP 

(MM m3) 

OOIP 

(MM ft3) 

Small Pot 2.306568 23.371 825.3391 

Schilthuis steady state 12.56471 35.4277 1251.1174 

Hurst steady state 17.59313 25.2682 892.3381 

Hurst-Van Everdingen – Odeh radial aquifer 2.312731 22.718 802.2786 

Hurst-Van Everdingen – Dake radial aquifer 2.498694 22.8464 806.8130 

Hurst-Van Everdingen – Dake linear aquifer 2.402589 22.8831 808.1090 
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Aquifer Model RMSE 
OOIP 

(MM m3) 

OOIP 

(MM ft3) 

Hurst-Van Everdingen – Dake bottom aquifer 2.31206 22.718 802.2786 

Fetkovich Semi Steady State radial aquifer 2.430987 23.0666 814.5893 

Fetkovich Semi Steady State linear aquifer 2.719428 20.4745 723.0501 

Fetkovich Semi Steady State bottom aquifer 2.314439 23.0391 813.6181 

Fetkovich Steady State radial aquifer 2.539608 23.1492 817.5063 

Fetkovich Steady State linear aquifer 2.641346 23.0574 814.2644 

Fetkovich Steady State bottom aquifer 2.314371 22.8877 808.2715 

Cater – Tracy 2.46166 23.2363 820.5822 

 

 

 

Figure 4 

Predicted OOIP and RMSE values of the aquifer models 

 

Figure 5 illustrates the pressure profile of the small-pot aquifer model, obtained 

through an analytical approach. The figure displays three distinct datasets, the starred 

data points represent the pressure profile derived from actual input data, the blue 

curve represents the simulation model of the pressure profile when an aquifer is pre-

sent, and the red curve represents the simulation model of the pressure profile in the 

absence of an aquifer, characterizing a volumetric reservoir. Analysis of this figure 

unequivocally reveals that the reservoir cannot be categorized as a volumetric reser-

voir. This conclusion is supported by the absence of alignment between the red curve 

(representing the model without an aquifer) and the actual pressure profile. Con-

versely, good matching is achieved when utilizing the small-pot aquifer model, as 

evident from the performance of the blue curve. 
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Figure 5 

Analytical method used for calculating the reservoir  

pressure profile with/without aquifer influx 

 

Figure 6 shows the F-We versus Et graphical method, where the symbol F stands for 

cumulative fluid withdrawal. This is the total volume of fluids that have been with-

drawn from a reservoir, including oil, gas, and water. We symbol represents the cu-

mulative water influx and Et represents the total formation volume factor. The best-

fit tool was used in the graphical method to obtain a good match between the meas-

ured points (blue points) and the calculated points represented by a straight line. The 

OOIP obtained from both the graphical and analytical methods is equal to 23.371 

MM m3 (825.3391 MM ft3).  

 

 

Figure 6 

Graphical method using the F-We versus Et relation 
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In situations where both methods yield distinct OOIP values, the analytical method 

proves to be the more dependable option. This preference arises from the fact that 

the graphical method relies on graphical interpretation and assumptions that may not 

always hold true in complex reservoirs. It is more suitable for simplified cases and 

may be less accurate when dealing with reservoirs that have unconventional behav-

iors or complex geological features. 

We assume that SABA field is divided into three reservoirs (X, Y and Z reser-

voirs); they are separated by two faults. The first fault is located between X and Y 

reservoirs. Another one separates Y and Z reservoirs. Thus, it is very important to 

find out whether there is a transmissibility between the reservoirs through the faults 

(opened/permeable faults) or not (closed/impermeable faults). Figure 7 shows a 

multi-tank model created by MBAL software assuming that there is communication 

between the reservoirs. T1 and T2 in Figure 7 represents the transmissibility between 

reservoirs X and Y and between Y and Z reservoirs, respectively.  

 

 

Figure 7 

Multi tank model assuming full communication between the reservoirs 

 

Table 4 presents the transmissibility values (T1 and T2). Before using the regression 

tool, the transmissibility values were assumed to be equal 1 m3/day*mPa*s/bar be-

cause there is no available data. After using the regression tool in MBAL software, 

the values of transmissibility between X and Y reservoirs (T1) and Y and Z reser-

voirs (T2) are equal to 6.93416*10–9 and 1.38694*10–8 m3/day*mPa*s/bar, respec-

tively. It is observed that the transmissibility values after using the regression tool 

are very small (neglectable values), which indicates that both faults can be consid-

ered as closed/impermeable faults. 

Table 4 

Transmissibility values obtained by regression tools  

Regression 

Transmissibility, m3/day*mPa*s/bar 

Reservoirs X and Y 

(T1) 

Reservoirs Y and Z 

(T2) 

Before regression 1 1 

After regression 6.93416*10-9 1.38694*10-8 

 

The MBAL software provides Monte Carlo tool to calculate the OOIP. Statistical 

distributions signify the different factors in determining reserves, including PVT 

properties and pore volume. Table 5 presents the input data utilized for the statistical 
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distribution, which is used to determine the OOIP by using Monte Carlo tool. Due 

to the uncertainty in the area, thickness and porosity values, triangular distribution 

type was used to specify the lower limit the upper limits (minimum and maximum) 

and the mode (most frequent value). The other parameters are fixed values because 

they were measured in the lab with accurate equipment. 

Table 5 
Statistical parameters of the reservoir properties  

Parameter Distribution 

type 

Unit Mini-

mum 

Maxi-

mum 

Mode 

Area Triangular MM ft2 32.3  36.6 35.5 

Thickness Triangular ft 525 623 590 

Porosity Triangular Percent 7 12 9.2 

Oil saturation Fixed value Fraction 0.784 – – 

Solution GOR Fixed value ft3 / ft3 259 – – 

Oil gravity Fixed value Kg / m3 817 – – 

Gas gravity Fixed value Sp.gr 0.89 – – 

 

Table 6 summarizes estimated OOIP values by Monte Carlo tool which contains 

three probabilities values, i.e., P10, P50 and P90. P10 is the value that is exceeded 

by 10% of the simulated outcomes. This is often referred to as the “low case” or 

“worst case” scenario.  

P50 is the median value of the simulated outcomes. This is often referred to as 

the “most likely” or “base case” scenario. P90 is the value that is exceeded by 90% 

of the simulated outcomes. This is often referred to as the “high case” or “best case” 

scenario. Mean is the average of all the simulated outcomes. The P10, P50, P90, and 

Mean values are affected by a number of factors, including: 

1. The probability distributions of the input variables. 

2. The number of simulations performed. 

3. The random number generator used. 

 

  Table 6 
OOIP values estimated by Monte Carlo tool and MBE 

Method OOIP, MM m3 OOIP, MM ft3 

Monte Carlo 

P10 18.8344 665.1312 

P50 23.4051 826.5441 

P90 28.1044 992.4985 

Mean 23.2571 821.3175 

MBE, Small pot aquifer 23.371 825.3391 

 

Figure 8 shows the results of OOIP statistical distributions from Monte Carlo tech-

nique in MBAL software. The highest probability value (P90), the lowest probability 

value (P10) and the median probability value (P50) of OOIP are equal to 28.1044 

MM m3, 18.8344 MM m3 and 23.4051 MM m3 respectively. 
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Figure 8 

Volumetric reserve probability distribution obtained by Monte Carlo simulation 

 

To understand and analyze the reservoir performance it is crucial to know the con-

tribution of each drive mechanism and how it changes during production. Figure 9 

shows that the dominant drive mechanism from the beginning of production to 

around 1999 was water influx, with a drive index of around 0.5 in 1999. After that, 

due to continuous water injection, the water injection drive index gradually increased 

and became the dominant drive mechanism. By 2021, the water injection drive index 

was equal to 0.7. The fluid expansion and pore volume compressibility drive mech-

anisms are very weak in this reservoir. 

 

 

Figure 9 

Energy plot of reservoir X 
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One of the objectives of this study is the production prediction of reservoir X for the 

next ten years. MBAL software provides this technique under name “production pre-

diction” option. Before using production prediction tool one condition must be 

achieved. The condition states that there must be very good matching between the 

production history data and the simulation model. This condition was done as it was 

shown in Figure 5. 

Figure 10 shows oil and water saturation versus date. Water saturation (red curve) 

increases, oil saturation (blue curve) decreases. From 2008, water saturation and oil 

saturation curves changed very slowly because some wells were shut in. Figure 11 

shows, the water cut and oil recovery factor versus date. Water cut (blue curve) in-

creases rapidly. It is expected to be around 90% in 2031, which is so high value. To 

reduce the water cut, shutting down all wells for a certain period or changing the 

perforation interval position above the previous one can be considered as solutions. 

The oil recovery factor (red curve) is expected to be around 0.2 (20%) in 2031, which 

is low. This is due to the high water cut and heterogeneity of the reservoir. To max-

imize oil recovery and support reservoir pressure, using polymer water injection 

could be a good solution because it can improve the sweep efficiency of the water-

flood by reducing channeling and fingering. 

Figure 12 shows cumulative oil production and tank pressure versus date. Cumu-

lative oil production (green curve) increased rapidly from the beginning of produc-

tion until around 2008, then slowed due to well shut-ins and high-water cuts. 

 

 

Figure 10 

Oil saturation and water saturation versus time 
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Figure 11 

Water cut and oil recovery factor versus time 

 

 

Figure 12 

Cumulative oil production and tank pressure versus time 

6. CONCLUSIONS 

In summary, the OOIP values were calculated using MBE, Monte Carlo P50, and 

volumetric methods, resulting in slightly different estimates. The faults between res-

ervoirs X and Y and Y and Z appear to be impermeable based on their negligible 
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transmissibility values. After matching the simulation model and production history, 

the predicted oil recovery factor and cumulative oil production in 2031 are slightly 

higher than their 2021 counterparts. Due to the small aquifer size, the RMSE values 

of aquifer models are similar, leading to similar OOIP values. The best aquifer model 

was identified as the small pot model with the lowest RMSE value and a volume of 

414.22 M m3, compared to the input data’s value of 460 M m3. 

To improve the understanding of the reservoir performance, it is suggested to 

utilize static and full 3D reservoir simulations. For more reliable results from MBAL, 

production history matching using the production history of all wells in the field is 

recommended instead of relying solely on cumulative tank production history. The 

production prediction results indicate a low incremental oil production over the next 

10 years, which could be attributed to low sweep efficiency and high-water salinity. 

To enhance reservoir production, occasional acidizing to dissolve depositions and 

polymer flooding to decrease the mobility ratio could be considered. Other methods 

can be suggested using surfactants or microbial [22–23]. 
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