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Abstract: We studied the performance and accuracy of some basic segmentation techniques 
in the analysis of the pore space and matrix voxels obtained from a 3D volume of X-ray 
tomographic (XCT) grayscale rock images. The segmentation and classification accuracy of 
unsupervised (K-means, modified Fuzzy c-means, Minimum cross-entropy, and Type-2 

ere tested using an XCT tomogram of 
a carbonate reservoir rock. K-fold- cross-validation techniques were applied in the evaluation 
of the accuracy of the unsupervised and supervised machine learning classifiers. The average 
porosity obtained was 31  good agreement with the ground truth image obtained by 
manual segmentation. In general, the accuracy of segmentation results can be strongly 
affected by the feature vector selection scheme, since it is difficult to isolate a particular 
machine learning algorithm for the complex phase segmentation problem. Therefore, our 
study provides a segmentation scheme that can help in selecting the appropriate machine 
learning techniques for phase segmentation. 
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1. INTRODUCTION 

Micro X-ray computed tomography (XCT) images of a reservoir rock sample can 
help in the characterization of pore space and assist in modeling pore-network 
geometries. A 3D pore-network representation can improve the understanding of the 
evolution of permeability and porosity of a rock sample [1]. X-ray computed 
tomography images, also known as tomograms, consist of a cubic array of 
reconstructed linear X-ray attenuation coefficient values (also known as pixel 
values). Accurate image segmentation is the first step toward pore-network modeling 
and analysis [2]. Image segmentation is the process of classifying similar values of 
image gray intensity into distinct groups or classes using machine learning 
(unsupervised or supervised) segmentation algorithm. Porous materials such as 
carbonates contain areas of void, called the pore space, as well as a number of distinct 
mineral components, each with a comparatively uniform density and consequently a 
similar gray value. There are some difficulties in acquiring a clear distribution 
separating the pore phase from the mineral phase. These difficulties arise from low 
density pore inclusions (e.g., microporosity, clays) below the image resolution, 
which make it difficult to distinguish between solid phase and the pore phase.  
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There have been intensive studies to improve segmentation methods for better 

quantitative characterization of pore space feature. Iassonov et al. [3] broadly 
classified segmentation algorithms into globally and locally adaptive segmentation. 
The fundamental concept behind the global thresholding scheme is that a single gray 
value is selected as a threshold value separating one phase from the other. There are 
many subcategories under the scheme, and the most commonly used is the histogram 
shape (triangulation) [4]. In locally adaptive segmentation the segmentation decision 
is made for each pixel taking into consideration the neighboring pixels. Utilization 
of local information helps in reducing the effects of some image artifact. One 
repeatedly used method is the probabilistic fuzzy c-means [5], which belongs to the 
unsupervised segmentation category but requires high computational power. In other 
works, such as Cortina-Januchs et al. [6], a combination of different algorithms is 
used where they applied clustering and artificial neural network (ANN) to segment 
binary soil images. whereas Khan et al. [7] used the supervised technique least-
squares support vector machine (LS-SVM) for segmentation of XCT rock images. 

Machine learning and neural networks were developed to mimic human sight and 
were initially used for speech and image recognition [8], [9]. They were soon used for 
the resolution enhancement of, for example, satellite images [10] and medical images 
[11] like magnetic resonance imaging [12] and computed tomography (XCT) [13]. 

Unsupervised learning is a machine learning technique where there is no need to 
supervise the model. Instead, the model is allowed to work on its own to discover 
information. It mainly deals with unlabeled data. 

Supervised learning uses collected data or produces a data output from previous 
experience. It helps to optimize performance criteria using experience. A supervised 
learning model uses training data to learn a link between the input and the outputs. 
This link is used to sort out information, similarly to the training data from an 
unknown data set. Several algorithms can be used in the supervised approaches (e.g. 
support vector machine, neural network, linear and logistics regression, random 
forest, and classification trees). The classification and interpretation tasks determine 
which of the many available segmentation routines should be used [14].  

In this paper, two unsupervised and two supervised methods were used to 
segment the pixels in the tomographic image. The unsupervised approaches were the 
K-means and the Fast and Robust Fuzzy c-Means (FRFCM) [15] clustering 
techniques. The supervised algorithms were two different entropy techniques: the 
Minimum Cross-Entropy (MINCE), and Type-2 Fuzzy Entropy (T2FE) algorithms. 
To compare the results and measure the accuracy of the segmentation, we applied 

10 k-fold cross-validation algorithms.  
The aims were to identify the classification scheme that (1) is best at segmenting 

the pore space and (2) is the most accurate for determining the porosity. A schematic 
illustration of the applied workflow is shown in Figure 1. 
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Figure 1 

Flow chart describing the applied methodology 
 

2. MATERIALS AND METHODS 

2.1. Rock sample 

 
Figure 2 

a. Are sample location and sample dimensions used for XCT scan,  
b. sample depth lithology and measured porosity.  

c. tomographic image used for this study and image histogram 
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For the analysis, a sample of shallow marine Sarmatian limestone [16] was used. 
The sample came from a cored section of a well drilled in the Mid-Hungarian 
Mega-Unit on the Northern part of the Somogy-
depth of the sample is 1967 m. The microscopic analysis showed a micritic matrix. 
Fossils such as foraminifers, algae, and other skeletal fragments were present in 
the sample [16]. The He porosity and Hg permeability were 28% and 55 mD, 
respectively. A cylindrical plug was taken from the main core with a diameter of 2 

-CT acquisition. The sample was scanned by micro CT. For the study, one 
tomogram was used. To avoid artifacts occurring on the edges of the scanned sample 
a subvolume was extracted for segmentation. The resolution of the extracted sub-

(Figure 2). 
 
2.2. Thresholding by entropy 

2.2.1. Thresholding using minimum cross entropy 

Entropy is a thermodynamic quantity used in physics; it was introduced by German 
physicist Rudolf Clausius in the second half of the 18th century. It measures the 
disorder of a system and the spontaneous dispersal of energy as a function of 
temperature. In physics, the notion of entropy is typically regarded as a measure of 
the degree of randomness and the tendency of physical systems to become less and 
less organized. In 1870, Willard Gibbs gave a general entropy expression for a 
thermodynamic system as:  
  (1) 
 

where  is the probability that the system is at state . In 1877, Ludwig Boltzmann 
quantified entropy of an equilibrium thermodynamic system as: 
 

 , (2) 
 

where  is entropy,  is the Boltzmann constant, and  is the number of states in 
the system.  

In 1949, Claude Shannon redefined the entropy concept of Boltzmann/Gibbs as 
a measure of uncertainty regarding the information content of a system [17]. In 
information theory, entropy measures the amount of uncertainty of an unknown or 
random quantity [18].  

Many entropy-based thresholding methods exist in the literature. These methods 
can be categorized into three groups: entropic thresholding, cross-entropic 
thresholding, and fuzzy entropic thresholding [18]. Cross-entropic thresholding 
formulates the thresholding as the minimization of an information-theoretic distance 
[19]. Entropy could be used also as a measure of separation that separates the 
information into two regions, above and below an intensity threshold  [20]. Entropic 
thresholding considers the image foreground and background as two different 
signal sources so that when the sum of the two-class entropies reaches its maximum, 
the image is said to be optimally thresholded  [19]. When the minimum cross-
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entropy criterion is applied to threshold segmentation, it refers to searching for the 
threshold that can minimize the information content before and after segmentation.  

The simplest and most direct scheme for threshold selection would be to iterate 
through all possible threshold values and to select th threshold that corresponds to 
the minimum of the cross-entropy. 

 
2.2.2. Type-2 fuzzy entropy thresholding: 

A classical set  can be defined as a collection of elements that can either belong to 
or not belong to set . In contrast, a fuzzy set is a collection of objects without clear 
boundaries or well-defined characteristics. There are two types of fuzzy sets. A 
Type-I fuzzy set , in a finite set, X = {x1, x2 n} may be represented as in 
Equation (3): 
 A(x) | x  A  (3) 
 

where and (x) is called the membership function, which 
measures the closeness of  to  and which can only take a single value. In a Type-
2 fuzzy set, a range of membership values is used instead of a single value. If  is a 
Type-2 fuzzy set, then: 
 

 , (4) 
 

In the above definition,  , and  are the upper and lower membership 
functions, respectively. 

A digital image, IGr,  N pixels, where each pixel has a position 
defined by (m; n). The image has L intensity values that are stored in the pixels. In 
this context, the distribution of the intensity levels on the image can be represented 
by a histogram that can also be normalized as H = {h0, h1 L-1}. Each value, , 
is computed using Equation (5): 
 

  , (5) 
 

where  is a level of intensity ( ) and  is the total number 
of pixels contained in the image. The term ultra-fuzziness can be used as a metric 
associated with a fuzzy set. It gives a 0 value when the membership values can be 
represented without any uncertainty. However, the value rises to 1 when membership 
values can be specified within an interval. For a digital image, the ultra-fuzziness for 
the  level of intensity is defined as  
 

 ,  (6) 
 

Fuzzy entropy measure is a concept used to assess the amount of vagueness within 
a fuzzy set. The type II fuzzy entropy for a threshold is therefore given as: 
 

 , , (7) 
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The sum of all the entropies for the  levels is the total entropy defined as: 
 

 , (8) 
 
2.3. Image thresholding by clustering  

2.3.1. K-means thresholding 

Cluster analysis is a concept used to organize observed data into a meaningful 
structure by discovering the natural grouping(s) of a set of patterns, points, or 
objects, to gain further insight from them. In such a structure, the similarities 
between objects in the same group are high while the similarities between objects in 
different groups are low. 

Hierarchical clustering is a method of cluster analysis where the algorithm builds 
a hierarchy of clusters either in agglomerative or divisive mode. In the cases of 
partitional clustering algorithms, the algorithms find all the clusters simultaneously, 
as a partition of the data, and do not impose a hierarchical structure. The most 
popular and simplest partitional algorithm is -means clustering [21]. It is a simple 
unsupervised learning procedure. The calculation consists of two separate phases. 
The first phase is for the initializing  centroids. In the second phase, each data point 
is assigned to its closest centroid. The initial centroids are iteratively updated to the 
mean of the constituent data points. The algorithm finally converges when no further 
change occurs in the assignment of data points to the centroids. In this state, the 
points in any cluster have a minimum distance to the corresponding centroid. Several 
methods can be used to define the distance of the nearest centroid. Among them, 
Euclidean distance is one of the most frequently used approaches. 

 
2.3.2. Fuzzy c-means clustering (FCM) 

FCM is superior to hard clustering as it has more tolerance to ambiguity and retains 
more original image information [15]. The concept of characterizing an individual 
point s similarity to all the clusters was introduced by Zadeh (1965) [22]. The key to 
Zadeh s idea is to depict the similarity a point shares with each cluster by a 
membership function. Additionally, the sum of the memberships for each sample 
point must be unity. Each sample will have a membership in every cluster. 
Memberships close to unity signify a high degree of similarity between the sample 
and a cluster, while memberships close to zero imply little similarity between the 
sample and that cluster. The net effect of such a function for clustering is to produce 
fuzzy c-partitions of a given data set [22]. FCM value uses an iterative optimization 
of an objective function based on a membership function [23]. A local extremum of 
this objective function indicates an optimal clustering of the input data [24].  

FCM has been used in image segmentation [25] [15], and it proved effective for 
images with simple texture and background [15]. Nonetheless, it fails to segment 
images with complex textures and background or images corrupted by noise because 
it only considers gray-level information without considering the spatial information 



Phase segmentation optimization of micro x-ray computed tomography reservor rock images    69 
 

 
[15]. To resolve the problem, one popular idea is to incorporate the local spatial 
information in an objective function to improve the segmentation effect [15]. Lei et 
al. [15] proposed an improved FCM algorithm based on morphological 
reconstruction, and membership filtering (FRFCM). By introducing a morphological 
reconstruction operation, the algorithm manifests tolerance to the noise presented in 
the image. Consequently, image details are preserved. In the next step, the 
membership partition is replaced by membership filtering that depends only on the 
spatial neighbors of the membership partition [15].  

The FRFCM algorithm can be summarized as follows: 
Step 1: Set the cluster prototype value, fuzzification parameter, the size of the 
filtering window, and the minimal error threshold. 
Step 2: Compute the new image and then compute the histogram of that image. 
Step 3: Initialize randomly the membership partition matrix. 
Step 4: Update the clustering centers. 
Step 5: Update the membership partition matrix. 
 
2.4. Supervised learning classifier 

In supervised learning classifiers only labeled data (training patterns with known 
category labels) are involved. A supervised classifier is trained using a set of pre-
defined features or classes (known as training data), where similar pixel values are 
sorted out from unknown data set (testing data) using supervised learning techniques. 
The performance of this classifier on the testing subset(s) indicates the stability of 
the clustering algorithm.  
 
2.4.1. yes classifier 

Treating image properties as random variables, and deriving a probabilistic model 
based on Bayesian decision theory [26] provides the foundation for Bayesian image 
segmentation. The motivation for the application of a stochastic framework is based 
on the assumption that the variation and interactions between image attributes can 

 
  belongs to a class  can 

be calculated by using the following equation:  
 

 , (9) 
 

In Equation (9),  is a posterior probability,  is the probability of  
occurring given evidence  has already occurred, P ( ) is the Probability of  
occurring, P(x) is the probability of  occurring. Based on the Bayesian decision we 
can decide the optimum class  for the event  by choosing the class with the highest 
probability among all possible classes. This choice can minimize the classification 
error [27]. For doing so, we need to estimate  providing that any particular 
value of vector  conditional on  is statistically independent of each dimension [27]: 
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 , (10) 
 

where  is a -dimensional vector.  
The  
 

 , (11) 
 
2.5. Model evaluation metrics and accuracy assessment 

In classification problems there are several evaluation metrics to assist the 
classification accuracy. These metrics can be described as follows: 

K-fold cross validation: The idea for cross-validation was first proposed by 
Larson (1931) [29]. Cross-validation is a statistical method of evaluating and 
comparing learning algorithms. It divides the data set into two subsets: one is used 
to learn or train a model and the other is used to validate the model. The problem 
with such a model is that it may demonstrate adequate prediction capability on the 
training data, but it might fail to predict future unseen data [1]. There are several 
approaches to estimate the accuracy of classifiers using different combinations of k-
fold cross-validation techniques. Kohavi (1995) [30] and Dietterich (1998) [31] 
recommended 10-fold cross-validations as one of the best cross-validation 
techniques, as it mitigates biases despite variances in the size of training and testing 
datasets. At the onset of 10 k-fold cross-validations, the dataset is initially stratified 
and partitioned into 10 equal (or nearly equal) subsets or folds. Subsequently, 10 
iterations of training and validation are performed such that, within each iteration, a 
different fold of the data is held out for validation, while the rest of the folds are used 
for learning. A schematic illustration of the workflow of 10 k-fold cross-validations 

Figure 3.  
 

 
Figure 3 

and 10 k-fold cross validation. On the left side are the parameters resulting from 

final evaluation is done using 10 k-fold cross validation  
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Precision is the proportion of positive cases that were correctly identified. The 
precision is the ratio tp / tp + tf, where tp is the number of true positives (positive 
cases that were correctly identified) and fp is the number of false positives (negative 
cases identified as positive). Recall is the proportion of actual positive cases which 
are correctly identified. F1 is the harmonic mean of precision and recall values for a 
classification problem. Area under ROC curve: the ROC (Receiver operating 
characteristic) curve is the plot between sensitivity and (1-specificity). (1-specificity) 
is also known as false positive rate and sensitivity is also known as the true positive 
rate. To bring this curve down to a single number, we find the area under this curve 
(AUC). Classification accuracy (CA) measures the number of correct predictions 
made divided by the total number of predictions made. 
 
3. RESULTS 

3.1. Image segmentation and segmentation accuracy 

The classification process intends to categorize every pixel in a digital image. Each 
class of pixels is based on a specific feature. The categorized data could then be used 
to retrieve useful information. In this study, these classes were applied to compute 
porosity and assist in the calculation of pore size distribution.  

One of the main challenges for the comparison of segmentation algorithms for X-
ray CT images of porous materials is the lack of ground truth, i.e. the lack of 
knowledge of the optimal binarization result. Generally, two basic methods are 
applied to the objective evaluation of image segmentation: an analytical technique 
or an experimental technique [32].  

The analytical technique evaluates an image segmentation algorithm by 
analyzing the principle of the algorithm. The experimental technique, which is 
widely used, interprets and compares experimental results of image segmentation 
algorithms to make an evaluation, and it can be subdivided into two distinct methods: 
superiority evaluation method and deviation evaluation method [33].  

The superiority evaluation method evaluates an image segmentation algorithm by 
utilizing human visual traits [34]. In the deviation evaluation method, firstly a 
standard segmentation image is provided for comparison criteria. Then the disparity 
between actual segmentation and ideal one can be calculated to evaluate the image 
segmentation algorithm [35].  

In the experimental technique, the different image segmentation algorithm is 
tested and compared in terms of four criteria: visual comparison, calculated pore 
size, pore volume, and pore count. Finally, the results are compared to a ground truth 
segmented image, where the latter is obtained by manual labeling of the pixels of the 
tested image based on the visual evaluation. It is worth mentioning that a ground 
truth image is not necessarily an optimal segmentation since the evaluation of the 
ground truth image is done visually. An additional datum assists in making the final 
decision.  

For segmentation one XCT tomogram with the dimension of 320  380 was used. 
This tomogram was the best representation of the pore phase. The segmented images 
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were created by using k-means, fast and robust fuzzy c-means, minimum cross-
entropy, type- assifier. In the letter case, all 
the available features were grouped into two groups. Each group had homogeneous 
features (in our case pores and matrix) and formed a feature vector. The whole 
dataset was used in the training the classifier. To test the classifier and to avoid data 
overfitting, a 10 k-fold cross-validation was implemented. In that process, the data 
was stratified and divided into 10 folds. One fold was held out for testing and 
validation, and the other nine were for the training. This process was repeated for 
each fold iteratively. 

phase. This result was tested using each of the segmentation algorithms mentioned 
above. The classification accuracy resulting from each training was relatively high. 
This was reasonable since the unidentified threshold value was confined within a 
limited gray intensity range which was mainly represented by the transition zone 
lying in between the two phases. 

Nevertheless, the set of misclassified pixels detected by the supervised machine 
learning algorithm for each training set varied. In fuzzy c-Means and type 2 fuzzy 
entropy, the number of the misclassified pixels was the highest. The reason for that 
could be attributed to the fact that in fuzzy classification, a single gray value could 

Bayes classifier is listed in Table 1. The resulting binarized images for each 
segmentation method are shown in Figure 4.

Table 1

with different feature vectors
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Figure 4 

2-D segmented images and binarized using unsupervised and supervised 
segmentation where pores appear in black and matrix in white 

 

3.2. Evaluation and comparison  

The performances of the unsupervised and supervised classification methods are 
evaluated in terms of how well they classified the pore phase pixels in the XCT images. 
The volume fraction and pore counts are shown in Figure 5. The K-means and FRFCM 
clustering tend to over-segment the pore volume by 7% to 12% compared to other 
segmentation algorithms, where pore volume varies between 25% and 30%.  

This variability in pore volume can be attributed to the presence of microcrystalline 
cement formed during diagenetic processes at the microstructural scale and deposited 
within the void space and on the pore edges, which cannot be resolved by the XCT. 
This situation leads to images having variable pixel intensities including the pore 
edges. These pixels of varying intensities would not have been segmented into the 
same classes by different machine learning algorithms. The aforementioned 
microcrystalline cement has been observed by microscopic examination of the thin 
sections taken from the same samples (Figure 6). In Figure 6, we also compare 
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tomograms to thin sections and depicted similar attributes in both images in terms of 
complex pore shapes and pore distribution.  
We used the calculated entropy to determine what fraction of the image needs to be 
carefully segmented. Image entropy is shown in Figure 7. The threshold window was 
determined by Gaussian curve fitting over the range between 82 and 138 (Figure 7).  
 

 
Figure 5 

Porosity values and pore count obtained by using unsupervised  
and supervised classifiers 

 
 

 
Figure 6 

Visual inspection between thin sections (upper raw) and tomograms (lower raw). 
In the upper raw are microscopic images of thin sections taken from the sample. 
Grains appear in light whitish are microcrystalline cement, which also darkened  
in other places based on crystal orientations. The lower raw are XCT tomograms 

for the same sample. The arrows indicates to pore constituent in both images.  
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Figure 7 

Studied image entropy measure where entropy appears in black and the red curve 
is Gaussian fit, T1 and T2 are the boundaries of the fuzzy interval determined  

by Gaussian at 82 and 138, respectively. The image to the right is an illustration 
for the fuzzy interval where the original image labeled where the pixels within 82 

and 132 range appear in light gray, pores are in black and matrix in white. 
 
The porosities were calculated using different segmentation algorithms (Figure 5). 
In our case, the porosity was defined as the ratio between the pore phase voxels and 
the entire sample volume and expressed in percentage. The measured pore volume 
using unsupervised clustering techniques K-means and fuzzy c-means agree with 
each other, yet the pore counts were different. In type 2 fuzzy entropy small pores 
are more frequent compared to big pores, resulting in higher pore counts and lower 
pore volume compared to clustering and minimum cross entropy. In ground truth 

ume and pore counts show 
approximately similar values. 

The geometrical pore size distribution was calculated from the 8-bit segmented 
images using Avizo software. The pore sizes were determined by the morphological 
approach. This method fits spheres into the pores. The resulting pore size 
distributions coming from the different segmentation methods are shown in Figure 
8. The calculations of P10, P50, and P90 values percentiles allowed the interpretation 
of geometrical pore size distribution in the terms of the micro- and macro-pore 
contributions to the total pore volume (Table 2). Figure 8 and Table 2 show that 
segmentation by K-means clustering and MINCE the detected pores counts of the 
K-means clustering the MINCE methods are higher than those of the other methods. 
In the case of the T2FE, the small pores are more frequent than the big ones. 
However, in the case of FRFCM algorithm, the big pores are more dominant. The 
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Figure 8 

Histogram and normal curve for pore size distribution  
for each segmentation method  

 
Table 2 

Pore size diameter obtained for six segmentation algorithms 

Classifier 
algorithm 

D10 mm D50 mm D90 mm 

K-means 0.00226 0.00638 0.01514 

FRFCM 0.00391 0.00748 0.01596 

MINCE 0.00226 0.00597 0.01373 

T2FE 0.003909 0.007137 0.01497 

 0.00226 0.00505 0.01131 

Ground truth 0.00391 0.00677 0.01329 

 
 
4. CONCLUSION 
We have discussed some of the basic image segmentation algorithms. Also, we 
evaluated the quality of the image segmentation and the accuracy of the 
classifications. Our analyses showed that the K-means and MINCE algorithms 
performed well and gave good accuracy scores. The FRFCM and T2FE tended to 
over-segment the pore space. In the supervised machine learning method, the results 
were more realistic in comparison to other segmentation results and to the original 
image and ground truth image.  
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