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Abstract: Smart irrigation requires soil moisture (SM) data in order to determine the water 
needs of each point within the agricultural field. The aim of the study is to develop 
methodologies for testing different approaches and to present the provisional results.  
A complex methodology was applied to process and analyze the sensor data. First spatial 
variability was assessed using regression and geostatistical interpolation. A vertical 
distribution estimation was performed by extending the SM values of each sensor for all their 
depth levels. The latest results of this method show that the statistical correlations between 
the different depths can be used to characterize the soil types and their corresponding vertical 
SM distribution.  
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1. INTRODUCTION 

In Hungary, drought periods are getting longer due to the deteriorating soil 
conditions caused by the agricultural sector since the first industrial revolution and 
as a result of the decreasing amount of rainfall [1]. More and more farmers are 
considering building their own irrigation systems in order to supply the water 
necessary for keeping their crops alive. Although Hungary has a great supply of 

ore frequent and difficult to answer. Precision 
agriculture might have an answer. It uses spatially specific data to make decisions 
like where, when, why and how we should water the crops [2]. 
 
 

 
 

Figure 1 
Soil moisture extension process 

 



38                              , , Endre Dobos 
 

 
Our institute is involved in a new project for creating an automated irrigation system 
based on spatial data. To fulfill this, we need soil moisture data which can tell us the 
volume of the available water within the soil and also answer how much water the 
plants can take up with all their important nutrients. Many researchers have already 
used different methods regarding soil moisture mapping: Jackson used microwave 
radiometry [3], Paloscia used Sentinel-1 images [4], Wagner used an ERS 
scatterometer in western Africa [5] and also Kibirige and Dobos by integrating 
environmental data [6]. 
The soils of Hungary are very diverse [7]. Due to this, there can be a significant 
variability in soil moisture levels and the water storage capacity. This paper will 
discuss two types of methodologies to evaluate geostatistical interpolation. 
 
2. GENERAL DESCRIPTION OF THE METHODOLOGY 

2.1. Description of the physical geographical aspects of the study area 

 
Figure 2 

Locations of the Sentek EnviroSCAN sensors placed in Hungary;  
inset: the pilot area of the study 

 
 has been selected as a pilot area, which 

is one of 
-Bihar County, 26 km south of Debrecen (Figure 2). It is 

 micro- K
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region. The elevation difference within the field is only a few meters [8] so at first 
glance, there should not be any significant differences as for geomorphological 
factors. However, due to the heavy agricultural use and the relative size of the pilot 
area, surface morphology is a significant factor, and finding the right parameters that 
will have the most correlation with the observed data is crucial in order to predict 
new SM values of the area.  

Surface forms are mainly of a riverine origin, while the primary surface forming 
force is fluvial erosion, which brings all riverbed forms, reinforced by 
anthropomorphic impacts of agricultural use and surrounding channel networks. The 
geology of the micro-region is based on a 2.5 km deep, metamorphic bedrock 
formation. Three-quarters of the area is a Holocene floodplain with marsh mud and 
clay [8] where an increasing refinement of sand material can be observed in the East-
West direction. 

As for climate, the area has moderately hot and dry summers. During the 
vegetation season the average temperature is 17 , while the annual average 
temperature is around 10 . Annual average rainfall is 550 mm, with 320 mm of 
this in the vegetation season. The main wind directions are eastern and southern 
winds (just like throughout the whole Eastern Hungarian region) [8]. The flat surface 
allows wind to go unobstructed, thus the area is vulnerable to wind erosion. When 
checking the national averages for the amount of rainfall, the area does not belong 
to the driest nor to the wettest. Due to this, and as mentioned previously, canal and 

smaller channels are surrounding the area.  
Groundwater levels move between 2 4 meters. Stratified water is rare so there 

are a number of artesian wells in the area that can go down to 200 meters. The surface 
is formed mainly by river water, which results in various soil conditions at a micro-
relief level. There are three typical main soil types to be mentioned here: chernozems 
on loess, gleysols and salt effected soils on lower lying, more clayey surfaces with 
groundwater impact [8]. 
 
2.2. Sentek data collection 

The institute has been collecting SM data over three years now, nationwide. For this, 
we are using Sentek EnviroSCAN sensors [9]. These units are stand-alone, real time, 
soil moisture monitoring devices. Originally, they were used for general research 
purposes, but over the time they became critical units of irrigation systems for 
monitoring SM [10]. The equipment is not a single module but can be customized 
with many setups, at different depth levels. All of our units are calibrated to collect 
SM data at 10, 20, 30, 40, 60 and at 100 cm depths. The sensors use the dielectric 
constant values of the soil, water, and air to calculate soil moisture (Figure 3) [11]. 
Each sensor is placed in a different soil type that has its own electric capacity values 
and physical attributes; therefore, it is mandatory to calibrate each of the sensors 
properly before starting the data collection.  
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Figure 3 

Overview of the Sentek EnviroSCAN sensor unit 
(Source: sentekusa.com) 

 
There are a total of 21 Sentek EnviroSCAN sensors scattered throughout the country, 
placed on agricultural areas of 8 settlements, each with different SM values, 
geomorphological features, soil types and cultivation methods currently used on the 

as the study area of our analysis 
(Figure 5). It is worth mentioning that each sensor position has its own  corresponding 
soil, containing a number of new variables such as physical variability, chemical 
composition, etc. that can be useful for finding correlations between the sensor and 
soil data. 
 
2.3. Development of the GIS database 

Several environmental parameters were gathered to explain the soil moisture 
variability. This starts with the construction of the digital elevation model (DEM), 
which is created from a set of points, captured by RTK corrected GPS equipped 
machinery, containing many spatial variables like elevation, fuel consumption, etc. 
For this present case, elevation values were used to create an interpolated raster 
image with 5 m spatial resolution (Figure 4). All of the geomorphological parameters 

 slope, aspect, flow accumulation and relative relief  are derived from this DEM 
using ArcGIS. Other dynamic raster datasets are also collected for the area, such as 
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Sentinel-1B backscattering images, preprocessed with VV polarization that has also 
been converted from linear to dB values using ESA SNAP [12]. 
 
 

Figure 4 
Digital elevation model (meters above sea level, left) and  

slope (degrees, right) geomorphologic parameters of the study area 
 
Normalized difference vegetation indexes (NDVI) are also used from the Sentinel-
2B bands. The satellite images were collected from the Copernicus Open Access 
Hub, made available by the European Space Agency.  

The Hungarian vegetation season  between March and September  has been 
chosen as the timeline of the study, and the satellite images were selected to be as 
close as possible to the examined period of SM values. Based on all this, May 3rd, 
June 17th, July 4th and August 30th were picked as the sample dates. 

 
2.4. Methodology to describe the spatial soil moisture distribution 

The aim of the collected observed SM, static and dynamic spatial data was to 
estimate SM values for the entire field. The research methodology of Daniel Kibirige 
and Endre Dobos dealt with processing and analyzing low-cost, soil moisture sensor 
data in order to reach the same goal [13]. In their study, they used linear regression, 
the Ordinary Least Square method and cokriging, based on the observed SM data. 
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The model itself needs at least one or more independent variables, along with a 
dependent  observed  one. 

The residual values were created by using the Ordinary Least Square (OLS) tool 
 

model and observed data. 
Ordinary kriging is a geostatistical interpolation method based on spatially 

dependent variance, which gives unbiased estimates of variable values at target 
location in space, using the known sampling values at surrounding locations [14]. One 
of the biggest advantages of cokriging compared to ordinary kriging is that it can use 
more than one variable. Like in the OLS model, slope was the independent variable 
and the observed SM data was the dependent variable for the cokriging model. 
 
2.5. Methodology to describe the vertical soil moisture distribution 

After reviewing how well the spatial distribution worked, the conclusion was that 
the available observed sensor data  in terms of the number of spatial samples  were 
not enough to do any kind of advanced spatial analysis, which has been confirmed 
by both the linear regression and cokriging results. Due to the high cost of the 
equipment, they had to be placed in low density, mainly to represent the different 
soil units within the area. This makes spatial extension difficult, because the points 
do not represent the same continuity. To overcome this limitation, we decided to 
characterize the vertical distribution of soil moisture within the upper meter, in order 
to make the different locations correlatable and interpolatable. At this point, spatial 
expansion was not possible, therefore a new methodology was needed, and the main 
goal had to be renewed as well. Examining the sensor data again proved that data 
usability lies in the vertical analysis, where each SM sensor needs to be analyzed 
with all of its depth levels.  
 

 
Figure 5 

Flowchart of the vertical distribution process 
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A new goal has been set: creating a 3D, 1 m deep SM model (Figure 5). Two steps 
need to be made in order to reach this: First, every sensor needs to be analyzed 
individually to find out the correlation between the different depths, and identify the 
soil type related relationships (1 in Figure 4). The analytical aspect needs to be 
changed into a vertical direction by doing descriptive statistics first.  A Spline function 
was applied to to estimate the SM values for the entire profile [15] (2 in Figure).  
 
3. THE RESULTS 

3.1. Statistical correlation study to select the appropriate variable 

The real problem of adapting the methodology of Kibirige and Dobos [13]for this 
case was the small sample size  5 points, which is a huge disadvantage throughout 
the whole study and allows one independent variable for the model. A Pearson 
correlation analysis was done [16] to find out which static or dynamic variable would 
correlate best with the observed SM data. The results show that the slope variable 
had the best correlation (Table 1). 

Table 1 
Pearson correlation matrix with the observed SM values 

 aspect slope rela_ref DEM flow_acc SigmaVVdB NDVI 

10 cm 0.310 0.586 0.605 0.379 0.049 0.214 0.451 

20 cm 0.174 0.599 0.58 0.469 0.469 0.121 0.364 

30 cm 0.252 0.398 0.377 0.286 0.503 0.164 0.366 

40 cm 0.247 0.656 0.651 0.352 0.117 0.178 0.397 

60 cm 0.259 0.917 0.924 0.772 0.073 0.078 0.292 

100 cm 0.236 0.96 0.947 0.644 0.188 0.052 0.217 

MEAN 0.104 0.686 0.681 0.484 0.233 0.117 0.348 

 
 
3.2. Spatial soil moisture distribution 

The error statistics for the OLS model are listed in Figure 6. Each sensor showed the 
largest difference at depths of 10 40 cm and 60+ cm, while it became zero between 
40 60 cm. This applies to the upper (10 40 cm) and lower (60+ cm) water supply 
layers, which are completely separated by an impermeable clay layer, originating 
from agricultural cultivation as a result of mixing the upper soil depths. This 
assumption was validated with soil excavation, where the characteristic soil layers 
were referring to the residual values. 
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Figure 6
Ordinary Least Square model results: Observed SM values (a), residual for OLS 

predicted SM values (b), root square (c), and root mean square error (d)

Cokriging showed weak interpolations due to the small number of sample points. 
Each examined dataset with all depths showed mixed results, but in general, the 10 

(Figure 7). Nevertheless, there are still some correlations to be seen from these 
images. They show increasing SM values to the North-Northwestern direction, 
which indicates a mild inclining feature for the whole landscape. This has been 
validated by checking the topology maps showing the inclination, based on the 
contour line values (Figure 7).

3.3. Vertical soil moisture distribution

have been completed 
to show a general overview of the data (Table 2). Correlation matrices were created 
to characterize the vertical moisture movements between the different depths (Table 
3) and boxplots to identify the outlier values (Figure 8).

a) b)

c) d)
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Figure 7 
Predicted SM values with cokriging at 10 cm depth: 2019 May 3 (a), 2019 June 17 

(b), July 4 (c), August 30 (d)
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Table 2 

Descriptive statistics of one of the SM sensors (ID 6, summer season)  

 N Range Minimum Maximum Mean 
Std. 

Deviation 
Variance 

10 cm 2208 32.064 11.873 43.937 20.586 6.370 40.582 

20 cm 2207 28.586 5.753 34.339 12.764 8.001 64.022 

30 cm 2208 39.309 4.997 44.306 15.777 12.537 157.167 

40 cm 2206 26.845 17.340 44.185 31.112 10.346 107.032 

60 cm 2208 13.015 27.082 40.097 33.453 4.577 20.950 

100 
cm 

2208 6.101 38.382 44.483 41.956 2.169 4.706 

 
Table 3 

Correlation matrix of one of the SM sensors (ID 6, summer season) 
  10 cm 20 cm 30 cm 40 cm 60 cm 100 cm 

10 cm 1 0.413 0.215 0.464 0.314 0.031 

20 cm 0.413 1 0.948 0.765 0.764 0.476 

30 cm 0.215 0.948 1 0.811 0.823 0.525 

40 cm 0.464 0.765 0.811 1 0.940 0.606 

60 cm 0.314 0.764 0.823 0.940 1 0.786 

100 cm 0.031 0.476 0.525 0.606 0.786 1 

 
 
The correlation table indicates that the uppermost 10 cm do not correlate well with 
the deeper horizons. this is the layer most exposed to the surface weather, and it 
shows large fluctuations which do not necessarily appear in the deeper horizons. The 
same is true for the 1 m depth, whch is quite different from all overlying layers. It 
also shows the expected correlation trend, namely the decreasing correlation toward 
the surface. The strongest correlations were found between the 20 30 cm and the 
40 60 cm depths. It is also logical, because the 20 30 cm depths belong to the middle 
and deep part of the plough layer, insulated from the atmosphere by the upper 10 cm. 
40 cm is the plough pan, which is compacted and has a low infiltration rate, causing 
a stagnic water body to form above it. This layer also separates the plough layer and 
the deeper horizons, namely the 40 60 cm depths, which represents a slightly 
separated water body. These results are common in all soil profiles. Figure 8 explains 
these features from another aspect. The upper 30 cm always has a much higher range, 
with often hectic data distribution, meaning that this plough layer is more exposed 
to the surface and top the vegetative use of SM. The depths of 40, 60 and 100 cm are 
more stable with far fewer hectic features and outliers. 
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Figure 8 

Boxplot of one of the SM sensors (ID 6, summer season) 
 
 

4. SUMMARY AND CONCLUSION 

Five soil sensors with six different depths of SM data were available for processing 
when examining  The regression analysis had higher than 
acceptable error values, shown by the root square and root mean square error, which 
made this methodology irrelevant (Figure 6). The geostatistical interpolation also gave 
weak results due to the limited amount of points inside the field (only five), resulting 
in maps with lower spatial resolution (Figure 7).These are only preliminary results; a 
complete characterization of the methodology requires more sampling points and 
environmental covariances to better describe the spatial variability of the soil moisture. 
However, the data have great potential as separate, individual units, where the 
distribution and vertical extension could be done between the depths. We believe the 
latest methodology will bring more results in the future and will also answer the 
question of finding specific correlation levels between every soil type regarding 
variables and the observed SM depth values. This should allow associated soil types 
to be placed into water management type groups for the upcoming irrigation system. 
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