
Geosciences and Engineering, Vol. 12, No. 1 (2024), pp. 5–19. 

https://doi.org/10.33030/geosciences.2024.01.001 

 

 

 

 

JOINT INVERSION OF LABORATORY-MEASURED ACOUSTIC PHASE 

VELOCITY AND QUALITY FACTOR DATA 

 

BRIGITTA TURAI-VUROM1*, MIHÁLY DOBRÓKA2 

1*Institute of Exploration Geosciences, Department of Geophysics, University of Miskolc, 

brigitta.vurom@gmail.com 

2Institute of Exploration Geosciences, Department of Geophysics, University of Miskolc, 

dobrokam48@gmail.com 
1ORCID 0000-0001-7483-6458 
2ORCID 0000-0003-3956-2070 

 

Abstract: The paper presents a new rock-physical model to describe the pressure depend-

ences of the phase velocity and quality factor (Q). Acoustic laboratory data for P-wave ve-

locity and Q factor were measured on the sandstone sample at 40 different pressures. The 

spectral ratio method was used to measure the Q factor data utilizing an aluminum sample 

(with the size and geometry of the rock sample) as a reference. The measured velocity and Q 

factor data were processed in an inversion procedure. The results showed that both the ve-

locity-pressure and the Q factor pressure dependence can be well-described utilizing the 

newly developed rock-physical model in forward modeling. From the estimated inversion 

parameters, vp and Q can be calculated for the full pressure range. 
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1. INTRODUCTION 

There is a growing claim to predict rock physical parameters more accurately at var-

ious geological structures. Geophysics has a wide palette to determine these param-

eters, for example, acoustic velocity, porosity, permeability, and elastic moduli and 

it is well-known that pressure has a strong influence on them. The change of acoustic 

wave velocity propagating in rocks under pressure is highly nonlinear. To explain 

the phenomenon various models and empirical relations were developed. 

It is observed that pressure has more influence on velocities in the beginning 

phase of loading, later it lessens and the velocities tend to have a limit value. The 

basic concepts link the pressure dependence of velocity and Q factor to the change 

in pore volume or closure of microcracks due to the increasing load, as Birch (1960) 

or Brace and Walsh (1964) proposed in their studies. This paper focuses on a com-

bination of the two concepts because they simultaneously occur under real petro-

physical conditions. When increasing pressure acts on rock, the microcracks are clos-

ing and at the same time grains become closer to each other (compaction occurs in 

the grain structure). Both the closing of the microcracks and the decrease in pore 

volume cause an increase in the propagation velocity and Quality factors. In the 
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knowledge of the pressure dependence, we can estimate the pressure (pore pressures) 

under real condition (Dócs and Baracza,2022, Nagy et al.,2019a, Nagy et al., 2019b). 

In what follows the combined petrophysical model will be presented. The model will 

be validated in its application in the interpretation of laboratory-measured velocity- 

and Q-factor data. 

 

2. THE COMBINED ROCK-PHYSICAL MODEL 

There are two basic ideas to explain the pressure dependence of the propagation 

characteristics of seismic waves: Brace and Walsh (1964) declared that the main 

factor is the closure of the microcracks, while Birch (1960) suggested a mechanism 

in which an increasing pressure produces a reduction in the pore space followed by 

the increasing contact between the grains of the rock. Following Brace and Walsh 

(1964) a rock-physical model was introduced by Dobróka and Somogyi-Molnár 

(2012) while the model based on the concept of Birch (1960) was published by So-

mogyi Molnár et al. (2015). In real rock conditions both two mechanisms (mi-

crocracks closure and pore volume reduction) can occur, thus in the following we 

present a combined petrophysical model based on the results of Dobróka and Somo-

gyi-Molnár (2012) and Somogyi Molnár et al. (2015). 

 

2.1. The microcracks model 

The basic assumption of the proposed model is that the dN change in the number of 

microcracks is directly proportional to the applied stress increase dσ and the N total 

number of microcracks (per unit volume) expressed by the differential equation 

 

𝑑𝑁 = −𝜆𝑁𝑑𝜎     (1) 

 

where λ is a proportionality constant. In Equation (1) the negative sign represents 

that at increasing stress – with closing microcracks – the number of the open mi-

crocracks decreases. Solving Equation (1) we find 

 

𝑁 = 𝑁0 𝑒𝑥𝑝( − 𝜆𝜎)    (2) 

 

where N0 is the number of the open microcracks at a stress-free state (σ = 0). The 

second item of building the model is the assumption of a linear relationship between 

the propagation velocity change dν – due to pressure increment dσ – and dN 

 

𝑑𝑣 = −𝛼𝑑𝑁     (3) 

 

where α is amaterial quality dependent constant. The negative sign represents that 

the velocity is increasing with decreasing number of cracks. Combining Equation (3) 

with Equation (1) and (2), we obtain 

 

𝑑𝑣 = 𝛼𝜆𝑁0 𝑒𝑥𝑝( − 𝜆𝜎)𝑑𝜎.   (4) 
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Solving the upper differential equation we have 

 

𝑣 = 𝐾 − 𝛼𝑁0 𝑒𝑥𝑝( − 𝜆𝜎)   (5) 

 

where K is an integration constant. At a stress-free state (σ = 0) the propagation 

velocity ν0 can be measured and computed from Equation (5) as ν0=K-αN0. Hence, 

we obtain the integration constant as K=ν0+αN0. After this Equation (5) can be re-

written as 

 

𝑣 = 𝑣0 + 𝛥𝑣(1 − 𝑒𝑥𝑝( − 𝜆𝜎))   (6) 

 

where the notation𝛼𝑁0 = 𝛥𝑣 has been used. Equation (6) provides a theoretical 

connection between the propagation velocity and rock pressure. The model equation 

shows that the propagation velocity – as a function of stress – starts from v0 and 

increases up to the vmax=v0+Δv value according to the function of 1-exp(-λσ). Thus, 

the value Δv = vmax –v0 specifies a velocity range in which the propagation velocity 

can vary from the stress-free state up to the state characterized by high rock pressure. 

Constant λ is called the stress sensitivity. 

 

2.2. The pore volume model 

In accepting the idea of Birch (1960), the rock physical model explaining the physi-

cal relationship between the applied stress and the acoustic P-wave velocities is sum-

marized here following Somogyi Molnár et al. (2015). Utilizing similar considera-

tions as above, the basic model law can be formulated by Equation (7) 

 

𝑑𝑉 = −𝛾𝑉𝑑𝜎     (7) 

 

where dV is the change of specific pore volume, dσ is the applied stress increase and 

𝛾 is the proportionality factor, a new rock physical parameter. The negative sign 

indicates that the pore volume is decreasing at increasing pressure. The solution to 

Equation (7) is 

 

𝑉 = 𝑉0 𝑒𝑥𝑝( − 𝛾𝜎)    (8) 

 

We assume also a linear relationship between the infinitesimal change of the appro-

priate propagation wave velocity dv and dV 

 

𝑑𝑣 = −𝛽𝑑𝑉     (9) 

 

where the 𝛽 proportionality factor is a new material characteristic. The negative sign 

represents that the velocity and pore volume are inversely proportional. Combining 

Equations (7) and (8) and solving the differential equations as well as applying the 

notation Δv0=𝛽V0 one can obtain 
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𝑣 = 𝑣0 + 𝛥𝑣0(1 − 𝑒𝑥𝑝( − 𝛾𝜎))   (10) 

 

where v0 is the propagation velocity at a stress-free state, while the quantity Δv0 

means the velocity change caused by the presence of pores at a stress-free state (Ji 

et al., 2007) and can be considered as the difference between the velocities measured 

at maximum and zero stresses, i.e., Δv0=vmax-v0. 

 

The physical meaning of parameter𝛾  was derived by Dobróka and Somogyi-Molnár 

(2012). It can be formulated as the logarithmic stress sensitivity of the velocity-

change 

 

𝑆(𝜎) = −
1

𝛥𝑣

𝑑𝛥𝑣

𝑑𝜎
= −

𝑑 𝑙𝑛(𝛥𝑣)

𝑑𝜎
= 𝛾  (11) 

 

2.3. The combined velocity model 

If the two mechanisms are present, the infinitezimal velocity change should contain 

both sources of the stress-induced variation as 

 

𝑑𝑣 = −𝛼𝑑𝑁 − 𝛽𝑑𝑉    (12) 

 

or differentiating Equations (2) and (8) 

 

𝑑𝑣 = 𝛼𝜆𝑁0𝑒𝑥𝑝(−𝜆𝜎)𝑑𝜎 + 𝛽𝛾𝑉0 𝑒𝑥𝑝( − 𝛾𝜎)𝑑𝜎  (13) 

 

After integration, we can find 

 

𝑣 = −𝛼𝑁0𝑒𝑥𝑝(−𝜆𝜎) − 𝛽𝑉0 𝑒𝑥𝑝( − 𝛾𝜎) + 𝐶  (14) 

 

where C is an integration constant determined using the initial condition that at 

stress-free state (σ = 0) the propagation velocity is ν0  

 

𝑣0 = −𝛼𝑁0 − 𝛽𝑉0 + 𝐶    (15) 

 

resulting in 

 

𝐶 = 𝑣0 + 𝛼𝑁0 + 𝛽𝑉0    (16) 

 

and also 

 

𝑣 = 𝑣0 + 𝛼𝑁0(1 − 𝑒𝑥𝑝(−𝜆𝜎)) + 𝛽𝑉0(1 − 𝑒𝑥𝑝( − 𝛾𝜎))  (17) 

 

This is the derived formula for the combined rock physical model. 
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The experiences show, that in most cases closing pores requires much higher 

pressure compared to the closing of microcracks, or in other words, the characteristic 

pressure 1/𝛾 of the mechanism of closing the pores is much higher compared to 1/𝜆 

(the characteristic pressure belonging to the mechanism of closing microcracks). 

This means that in Equation (17) 

 

𝛾𝜎 ≤≤ 𝜆𝜎     (18) 

 

In such cases, Equation (17) can be simplified, because at moderate pressures the 

second exponential function can be replaced by its truncated Taylor series as 

 

𝑒𝑥𝑝( − 𝛾𝜎) ≅ 1 − 𝛾𝜎    (19) 

 

Inserting this into Equation (17) we find  

 

𝑣 = 𝑣0 + 𝛼𝑁0(1 − 𝑒𝑥𝑝(−𝜆𝜎)) + 𝛽𝑉0𝛾𝜎  (20) 

 

or introducing the notations 𝛼𝑁0 = 𝛥𝑣 and 𝐷 = 𝛽𝑉0𝛾 we find a simplified model 

equation 

 

𝑣 = 𝑣0 + 𝛥𝑣(1 − 𝑒𝑥𝑝(−𝜆𝜎)) + 𝐷𝜎   (21) 

 

This relationship is extensively used in rock physics as an empirical equation, e.g., 

in Ji et al. (2007), Wepfer and Christensen (1991), Wang et al. (2005), Stierman et 

al. (1979), Yu et al. (1993), etc. The above considerations can serve as theoretical 

background behind a previously introduced empirical formula. 

 

2.4. The combined Q-factor model 

We assume that the pressure dependence of the Q factor is influenced by the same 

intrinsic mechanisms (closing of microcracks and change in the pore volume) as it 

was assumed in the case of phase velocity. Consequently, the infinitezimal change 

in the Q factor should contain both sources of the stress-induced variation as 

 

𝑑𝑄 = −𝜂𝑑𝑁 − 𝜅𝑑𝑉    (22) 

 

where the proportionality factors 𝜂 and 𝜅 are new material characteristics. After dif-

ferentiating Equations (2) and (8) we find 

 

𝑑𝑄 = 𝜂𝜆𝑁0𝑒𝑥𝑝(−𝜆𝜎)𝑑𝜎 + 𝜅𝛾𝑉0 𝑒𝑥𝑝( − 𝛾𝜎)𝑑𝜎  (23) 

 

Repeating the above derivations, the final result is 

 

𝑄 = 𝑄0 + 𝜂𝑁0(1 − 𝑒𝑥𝑝(−𝜆𝜎)) + 𝜅𝑉0(1 − 𝑒𝑥𝑝( − 𝛾𝜎))  (24) 
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where 𝑄0 is the Q factor at zero pressure. This is the combined Q factor formula. If 

the inequality (18) fulfills, Equation (24) simplifies as 

 

𝑄 = 𝑄0 + 𝛥𝑄(1 − 𝑒𝑥𝑝(−𝜆𝜎)) + 𝐸𝜎   (25) 

 

where the notations 𝛥𝑄 = 𝜂𝑁0 and 𝐸 = 𝜅𝑉0𝛾 were used. In the case of 𝜂𝑁0 ≤≤
𝜅𝑉0, Equation (25) gives the model assuming one mechanism 

 

𝑄 = 𝑄0 + 𝛥𝑄(1 − 𝑒𝑥𝑝(−𝜆𝜎))    (26) 

 

3. MEASUREMENTS AND INVERSION 

To confirm the reliability of the combined model velocity, Q factor datasets were 

measured. The pulse transmission technique was used for wave velocity measure-

ments and the method developed by Toksöz et al. (1979) was implemented to deter-

mine Q factor (see Appendix). We performed measurements on a fine-grained sand-

stone sample which was subjected to uniaxial stresses by the automatic acoustic test 

system of the Department of Geophysics, University of Miskolc (Figure 1). 

 

 

Figure 1 

Experimental setup. Left: load frame and pressure cell. Middle: ultrasonic device, 

sandstone sample between transmitter and receiver built in the pressure stamps. 

Right: P and S wave arrivals 

 

The digitally controlled test system includes a pressure cell, an ultrasonic 2-chan-

nel testing device and a load frame. P-wave velocity and Q factor – as a function of 

pressure – were measured at 40 discrete pressures equidistantly distributed in the 

[0.26, 82.15] (MPa) range. According to the Toksöz method (1979), the full wave-

form was also measured on the reference aluminum sample at all 40 discrete pres-

sures. We determined the P-wave derived Q factor (Q) of the sandstone sample by 
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calculating spectral ratios from the spectra obtained after Discrete Fourier Transfor-

mation (DFT) of the measured waveforms. (The details are presented in the Appen-

dix.) The measured data are shown in Figure 2. The velocity dataset shows a linear 

trend at higher pressures (following Equation (21) while the Q factor approaches to 

a constant value written in Equation (26)) or to a slightly increasing one (Equation 

(26)). 

 

 
         (a) 

 
          (b) 

Figure 2  

The measurement data: a.) P-wave velocity, b.) P-wave Q factor 

 

To prove the validity and applicability of the models introduced above, we use 

the measured datasets in an inversion procedure. The parameters appearing in the 

model equations will be determined by processing measurement data in both inde-

pendent and joint inversion procedure (using the Damped Least Squares Method). In 

forward modeling it is obvious to choose the simplified combined model in the case 

of the velocity data. Because of the moderate increase of the Q factor at high pres-

sures both the simplified combined and the one-mechanism model can be applied. 

For joint inversion purposes, it is useful to modify slightly the forward problem for-

mulae and write Equation (21) in the form 

 

𝑣 = 𝐴 − 𝐵𝑒𝑥𝑝(−𝜆𝜎)) + 𝐷𝜎   (27) 

 

where 𝐴 = 𝑣0 + 𝛥𝑣, 𝐵 = 𝛥𝑣. Similarly, Equation (25) is written in the form 

 

𝑄 = 𝐴 − 𝐵𝑒𝑥𝑝(−𝜆𝜎)) + 𝐸𝜎   (28) 

 

where 𝐴 = 𝑄0 + 𝛥𝑄, 𝐵 = 𝛥𝑄. In the case of the one-mechanism model, Equation 

(26) is written as  

 

𝑄 = 𝐴 − 𝐵𝑒𝑥𝑝(−𝜆𝜎))    (29) 
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For measuring the accuracy of inversion estimation, the relative estimation error is 

used (Menke,1984, Gyulai et al., 2013). To characterize the fit between the measured 

and calculated data the relative data distance 

 

𝑑 = √1

𝑁
∑ (

𝑑
𝑘
(meas)

−𝑑
𝑘
(calc)

𝑑𝑘
(calc) )

2

𝑁
𝑘=1   ⋅  100 [%]  (30) 

 

is utilized. The result of the independent LSQ inversion of the P-wave velocity data 

is shown in Figure 3. 

 

 

Figure 3.  

Inversion of P-wave velocity data using the simplified combined model (Equation 

(27)) in forward modeling 

 

The estimated model parameters and the relative data distance are given in the first 

column of Table 1. In the inversion of Q factor data, we investigated two cases in 

selecting forward modeling. The results of the LSQ inversion with Equation (28) as 

a forward modeling formula are shown in Figure 4. The estimated model parameters 

are in the second column of Table 1. We can see that the value of the data distance 

is much larger for the Q factor than for the velocity, the reason is that the measured 

Q factor data are much less accurate than the velocity data, i.e., the Q dataset is much 

noisier than the ν dataset. 
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Table 1.  

Model parameters estimated by independent LSQ inversion 

Velocity inversion 
Quality factor inversion I. 

using the combined model 

Quality factor inversion II. 

using the one mechanism 

model 

A=4.642 +/- 0.071% A=36.582 +/- 0.609% A=37.473 +/- 0.231% 

B=0.165 +/- 2.447% B=17.382 +/- 2.038% B=17.941 +/- 2.030% 

lambda=0.129 +/- 5.72% lambda=0.181 +/- 4.74% lambda=0.158 +/- 3.99% 

D=0.0016 +/- 3.452% E=0.0168 +/- 24.33%  

d=0.094% d=1.604% d=1.797% 

 

In the other case, when Equation (28) serves as a forward modeling formula the re-

sults shown in Figure 5 can be found. The estimated model parameters are in the 

third column of Table 1. As can be seen, the fit between the measured data is better 

in Figure 4. 

 

 

Figure 4. 

Inversion of P-wave Q factor data using the simplified combined model (Equation 

(28)) in forward modeling 

 

The above results of independent inversion gave three different values for the 

lambda parameter. On the other hand, all three rock physical models in the above 

inversion tests were based on Equation (1), which implies the same value for the 

lambda parameter. Because of this reason, we integrate the velocity- and Q factor 

datasets in a joint inversion procedure in which the connection of the two physically 

different kinds of measurement data set is based on the common lambda parameter. 
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Figure 5.  

Inversion of P-wave Q factor data using the one mechanism model (Equation (29)) 

in forward modeling 

 

In the joint inversion procedure, Equation (27) and (28) were selected as forward 

modeling formulae. The results are shown in Figures 6 and 7, the estimated param-

eters are given in Table 2. 

 

Figure 6. 

P-wave velocity as a function of pressure estimated by joint inversion using the 

simplified combined models (Equations (27) and (28)) in forward modeling 
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Figure 7.  

P-wave Q factor as a function of pressure found in joint inversion, using the sim-

plified combined models (Equations (27) and (28)) in forward modeling 

 

Table 2.  

Model parameters estimated by LSQ joint inversion 
velocity parameters Q factor parameters Common parameter 

Av= 4.629 Aq= 36.582 lambda= 0.180 

Bv= 0.163 Bq= 17.382  

Dv= 0.0019 Eq= 0.0168 data distance: d=1.137% 

 

With the above model parameters, the pressure-dependent acoustic P-wave ve-

locity and Q factor can be calculated for the whole pressure range by Equations (27) 

and (28). The distance between the measured and calculated data is smaller, then that 

found in independent Q factor inversion and grater then that given by independent 

velocity inversion. The inversion results prove that the petrophysical model describ-

ing the pressure dependence of acoustic P-wave velocity and Q factor applies well 

in practice. 

 

4. CONCLUSIONS 

A fine-grained compact sandstone sample was used to measure the acoustic labora-

tory data of P-waves at 40 different discrete pressures in the [0.26, 82.15] (MPa) 

range, from which velocity-pressure and quality factor-pressure relationships were 

described. The spectral ratio method was used to determine the quality factor. To 

describe the velocity-pressure and quality factor-pressure relationships of the sand-

stone sample, a rock physics model is given that assumes the simultaneous presence 

of two mechanisms (closing of microcracks and change in the pore volume). The 

measured data were processed by inversion procedures and then integrated into a 
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joint inversion procedure in order to combine the two physically different types of 

measurement data sets using the lambda unknown as common parameter, assuming 

that the pressure dependence of the quality factor is affected by the same intrinsic 

mechanisms as the pressure dependence of the P-wave velocity. Using the model 

parameters estimated by joint inversion, the pressure-dependent acoustic P-wave ve-

locity and the quality factor can be calculated for the full pressure range, based on 

the forward equations. The inversion results demonstrate that the petrophysical 

model explaining the pressure dependence of the acoustic P-wave velocity and the 

quality factor is well applicable. Based on the results of the inversion calculation, it 

can be stated that joint inversion significantly reduces the data distance for Q factor 

inversions. 
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APPENDIX 

For the laboratory determination of the quality factor (Q), Toksöz et al. (1979) de-

veloped the method of spectral ratios, which was used to evaluate our acoustic P-

wave measurements. During the method of spectral ratios, we also perform a refer-

ence measurement on an aluminum sample with the same geometry as the rock sam-

ple, since the Q factor of aluminum is very high, and we can use this property well 

in our calculations. The amplitude spectra of the acoustic waves that can be measured 

on the samples can be written with the following relations 

 

𝑨𝒂𝒍𝒖(𝒇) = 𝑮𝒂𝒍𝒖(𝒙)𝒆−𝜶𝒂𝒍𝒖(𝒇)𝒙𝒆𝒋(𝟐𝝅𝒇𝒕−𝒌𝒂𝒍𝒖𝒙)  (31) 

 

 

𝑨𝒓𝒐𝒄𝒌(𝒇) = 𝑮𝒓𝒐𝒄𝒌(𝒙)𝒆−𝜶𝒓𝒐𝒄𝒌(𝒇)𝒙𝒆𝒋(𝟐𝝅𝒇𝒕−𝒌𝒓𝒐𝒄𝒌𝒙)  (32) 

 

where Aalu(f)  –  amplitude spectrum of the aluminum sample, 

  Arock(f)  –  amplitude spectrum of the sandstone sample, 

  Galu(x)  –  geometric factor of the aluminum sample, 

 Grock(x)  –  geometric factor of the sandstone sample, 

 x  –  length of the sample, 

αalu(f) –  frequency-dependent attenuation factor of the aluminum 

sample, 

αrock(f) –  frequency-dependent attenuation factor of the sandstone 

sample, 

 kalu  –  wavenumber of the aluminum sample, 

 krock   –  wavenumber of the sandstone sample.  
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McDonal et al. (1958), Jackson and Anderson (1970) previously showed that in the 

frequency range 0.1-1 MHz the attenuation factor α is a linear function of frequency 

which can be written as follows 

 

𝜶(𝒇) = 𝜸𝒇      (33) 

 

where γ is a proportionality factor. If the geometry of the aluminum sample and the 

rock sample are the same, the spectral ratio will be as follows 

 
𝑨𝒂𝒍𝒖(𝒇)

𝑨𝒓𝒐𝒄𝒌(𝒇)
= 𝒆−(𝜸𝒂𝒍𝒖−𝜸𝒓𝒐𝒄𝒌)𝒇𝒙    (34) 

 

Compared to rocks, aluminum is an almost attenuation-free medium (γalu≈0), there-

fore 

 
𝑨𝒂𝒍𝒖(𝒇)

𝑨𝒓𝒐𝒄𝒌(𝒇)
= 𝒆𝜸𝒓𝒐𝒄𝒌𝒇𝒙      (35) 

 

Thus, by taking the natural logarithm of Equation (35), we can obtain the propor-

tionality factor γrock of the rock 

 

𝜸𝒓𝒐𝒄𝒌 =
𝒍𝒏(

𝑨𝒂𝒍𝒖(𝒇)

𝑨𝒓𝒐𝒄𝒌(𝒇)
)

𝒙 𝒇
     (36) 

 

Knowing the γrock quantity, the Q factor can be determined (Toksöz et al., 1979) 

 

𝑸 =
𝝅

𝒗 𝜸𝒓𝒐𝒄𝒌
     (37) 

 

where v  is the velocity of the acoustic wave. Neglecting the phase shift and the 

measurement errors, the logarithm of the spectral ratio calculated as a function of 

frequency is scattered around the following equalization line 

 

𝒍𝒏 (
𝑨𝒂𝒍𝒖(𝒇)

𝑨𝒓𝒐𝒄𝒌(𝒇)
)

𝒔𝒕𝒓
= 𝜷𝒇 + 𝜹    (38) 

 

where β  -  inclination angle of the equalization line, 

  δ  -  vertical axis section of the equalization line. 

Based on relations (36) and (37), the value of the Q factor is given as 

 

𝑸 =
𝝅𝒙𝒇

𝒗 𝒍𝒏(
𝑨𝒂𝒍𝒖(𝒇)

𝑨𝒓𝒐𝒄𝒌(𝒇)
)

𝒔𝒕𝒓

     (39) 

 



18   B. Turai-Vurom  – M. Dobróka 
 

 

REFERENCES 

Birch, F. (1960). The velocity of compression waves in rocks to 10 kilobars. Part 1. 

Journal of Geophysics Research, 65, pp. 1083–1102. 

Brace, W. F. and Walsh, J. B. (1964). A fracture criterion for brittle anisotropic rock. 

Journal of Geophysics Research, 69, pp. 3449–3456. DOI: 

10.1029/JZ069i016p03449 

Dobróka, M. and Somogyi-Molnár, J. (2012). The pressure dependence of acoustic 

velocity and quality factor: new petrophysical models. Acta Geodaetica et Geo-

physica Hungarica, 47, pp. 149–160., 

https://doi.org/10.1556/AGeod.47.2012.2.4 

Dócs, R. and Baracza, M. K., (2022). A new method of pressure drop modelling in 

sandstone rocks. Multidisciplinary Studies, 12: 3 pp. 264-273. 

Gyulai, Á., Baracza, M. K. and Tolnai, É. E. (2013): The application of joint inver-

sion in geophysical exploration. International Journal of Geoscience 4, pp :283-

299 

Jackson, D. D. and Anderson, D. L. (1970). Physical mechanisms of seismic wave 

attenuation. Rev. Geophys. Space Phys., 8, pp. 1-63. 

Ji, S., Wang, Q., Marcotte, D., Salisbury, M.H. and Xu, Z. (2007). P wave velocities, 

anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function 

of confining pressure. Journal of Geophysics Research, 112, B09204. 

DOI:10.1029/2006JB004867 

McDonal, F. J., Angona, F. A., Mills, R. L., Sengbush, R. L., Van Nostrand, R. G. 

and White, J. E. (1958). Attenuation of shear and compressional waves in Pierre 

shale. Geophysics, 23, pp. 421-439. 

Menke, W. (1984), Geophysical Data Analysis – Discrete Inverse Theory, London, 

Academic Press. 

Nagy, Zs., Baracza, M. K. and Szabó, N. P., (2019a).  Integrated Pore Pressure Pre-

diction with 3D Basin Modeling. Second EAGE Workshop on Pore Pressure Pre-

diction, pp. 1-5., 19-21 May 2019, Amsterdam, Netherlands 

Nagy, Zs., Baracza, M. K. and Szabó, N. P., (2019b). Pore Pressure Prediction In 

Pannonian Hydrocarbon Reservoir Systems Using An Integrated Interpretation 

Approach. Geosciences and Engineering. 7 : 12 pp. 105-115.  

Somogyi Molnár, J., Kiss, A. and Dobróka, M. (2015). Petrophysical models to de-

scribe the pressure dependence of acoustic wave propagation characteristics. Acta 

Geodaetica et Geophysica, DOI: 10.1007/s40328-014-0074-4. 

Stierman, D. J., Healy, J. H. and Kovach, R. L. (1979), Pressure-induced velocity 

gradient: An alternative to a Pg refractor in the Gabilan Range, central California, 

https://doi.org/10.1556/AGeod.47.2012.2.4
http://dx.doi.org/10.1029/2006JB004867


Joint inversion of laboratory-measured acoustic phase velocity and… 19 
 

 

Bulletin of the Seismological Society of America, 69, pp. 397 – 415., 

https://doi.org/10.1785/BSSA0690020397 

Toksöz, M. N., Johnston, D. H. and Timur, A. (1979). Attenuation of seismic waves 

in dry and saturated rocks. Geophysics, 44(4), pp. 681-690.  

Wang, Q., Ji, S.C., Salisbury, M.H., Pan, M.B., Xia, B. and Xu, Z.Q. (2005). Pres-

sure dependence and anisotropy of Pwave velocities in ultrahigh-pressure meta-

morphic rocks from the Dabie-Sulu orogenic belt (China): Implications for seis-

mic properties of subducted slabs and origin of mantle reflections. Tectonophys, 

398, pp. 67– 99. DOI:10.1016/j.tecto.2004.12.001 

Wepfer, W.W. and Christensen, N.I. (1991). A seismic velocity-confining pressure 

relation, with applications. International Journal of Rock Mechanics and Mining 

Sciences & Geomechanics, 28, pp. 451– 456. https://doi.org/10.1016/0148-

9062(91)90083-X 

Yu, G., Vozoff, K., and Durney, D. W. (1993). The influence of confining pressure 

and water saturation on dynamic elastic properties of some Permian coals. Geo-

physics, 1993, 58(1), pp. 30-38. 

https://doi.org/10.1785/BSSA0690020397
http://dx.doi.org/10.1016/j.tecto.2004.12.001

