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Abstract: Soil and terrain properties are the most important environmental elements for char-

acterization of within-field variability supporting the management zone definition. This study 

aims to develop a digital soil mapping approach to map texture related soil property, namely 

soil plasticity (Ka) using georeferenced machinery data derived from log file created along 

soil-tillage activities. The results indicated that speed and distance values have the highest 

correlation with Ka, having values around 0.4–0.5. The development of the regression model 

resulted in an adjusted R2 value of 0.71, but the p-value was still around 0.2. These results 

indicate that the approach has a good potential, but statistics need to be improved with data 

preprocessing. 

 

Keywords: soil plasticity, precision agriculture, management zones 

 

1. INTRODUCTION 

Precision farming is the most state-of-the-art technology in agriculture that has been 

introduced in the last few decades. Its major advantage is that all agrotechnological 

elements – like soil tillage, planting-seeding, fertilization, plant protection – can be 

adjusted to the current environmental and plant conditions [1]. The most important 
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environmental factors that define the productivity are the soils and the terrain prop-

erties. Better soil productivity may support higher plant density and requires lower 

amount of fertilizer. Therefor the precise characterization of the soil-landscape con-

ditions and their variability determine the effectiveness of the agricultural activity. 

Precision agriculture requires very high spatial accuracy to navigate the field equip-

ment. Real-time kinematic positioning (RTK) is used to reach 1 cm scale accuracy 

to navigate between plant rows using this navigation system. The machinery always 

knows its position and adjusts the current treatment to the known conditions of the 

actual point.  Therefore, the effective production requires an intensive survey of the 

static and dynamic soil conditions, accurate digital elevation data and up to date in-

formation on the plant condition and its spatial patterns and variability [2–7]. 

High resolution terrain data can be easily derived from the RTK navigation logger 

data.  The RTK equipped machinery also collects accurate elevation data in a pread-

justed density and is able to log it. This high density elevation point data can be 

interpolated or converted to any raster datasets of 1 meter scale raster resolution. 

This DEM can later be used to model the surface and subsurface water flow and 

nutrient translocation within the field, and it is also a very efficient predictor for 

digital soil mapping approaches [8–14]. Plant condition characterization is using 

proximal and remote sensing datasets and produce vegetation indices and other in-

direct information to describe the biomass and the crop “wellness” around the field. 

Accurate and high resolution soil data is difficult to capture. There are several indi-

rect indicators of soil properties and their variability, like different kinds of geophys-

ical measurements [15, 16]. These are quick methods, but not easy to validate. The 

most important soil property that these measurements are sensitive to is the soil mois-

ture content. However, soil moisture depends both on the weather conditions and 

related soil properties that define the water holding capacity of the soils – namely 

texture, structure, porosity, CEC, humus content, etc. For that reason, direct relation-

ship between the current soil moisture conditions and certain soil properties are dif-

ficult to define. Soil sampling and data validations are crucial to derive real soil 

property maps. On the other hand, EM38, soil conductivity and electrical resistance 

data is a very good predictor for soil mapping. Accurate soil mapping requires the 

opening, description and sampling of soil pits on the representative geomorphologi-

cal, geological units of the fields and a good model that explains the landscape de-

velopment of the quaternary periods. DEM and remotely sensed historical data ex-

plain a lot on the surface soil patterns. Understanding the real soil variability requires 

information on the vertical variability of soil moisture and nutrient contents in the 

rooting zone, namely the sequences of the underground genetic horizons and geo-

logical layers and the corresponding chemical, physical and biological properties. 

Field mapping is time consuming and expensive, requires expert knowledge that is 

difficult to schematized. Digital soil mapping activity that explains the short range 

variability within the field can minimize this activity and make soil mapping more 

effective and reintegrated into the agrotechnological planning.  
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Soil texture and particle size distribution analysis are one of the most basic and im-

portant soil properties, that is used for almost all soil related agrotechnological treat-

ments, like soil cultivation, fertilization and irrigation [17–19]. Despite its im-

portance, lab analysis is time consuming and one of the most expensive standardized 

measurements used by soil experts for agricultural and soil conservation consul-

tancy. There are several easy to do measurements aimed to simplify the texture char-

acterization, for example soil plasticity, which is strongly related to the texture. In 

Hungary, there is a widely used plasticity parameter, the Arany plasticity number 

(Ka), which is often directly translated to texture classes (Table 1). The method is 

very simple. 100 g air-dried soil sample prepared for lab analysis is used for the 

measurement. Ion-exchanged water is continuously added to the soil with continuous 

stirring till reaching the end of the plastic stage or beginning of liquefaction, using 

the so-called “yarn test”. This test is done by using the stirring stick. The plastic soil 

material is touched by the stick and pulled slowly upwards. In the plastic soil stage, 

the stirring stick pulls the soil material up to a point, when its breaks away and the 

thin soil material bends back following the gravitation like a dropped yarn.  The 

amount of water in ml used to reach this stage defines the value of Ka. Due to the 

simplicity of this examination, this measurement is the most commonly used and 

understood property both by farmers and soil specialist.  

Table 1. The translation/correlation table  

between texture classes and the Ka-values [19] 

Texture class Ka-value 

Coarse sand <25 

Sand 25–30 

Sandy loam 30–37 

Loam 37–42 

Clay-loam 42–50 

Clay 50–60 

Heavy clay >60 

 

The spatial distribution of the texture classes and the different particle size classes is 

very important in the definition of the management zones of precision farming, there-

for a continuous map of Ka values covering the entire field in high resolution can be 

a very important covariant of management zone definition. This work aims to de-

velop a digital soil mapping procedure to assess the Ka values using georeferenced 

machinery data like fuel consumption, speed and forward moved distance between 

regular time intervals derived from the soil tillage events. Physical soil properties, 

like texture, compaction, plasticity have a great impact on the pulling power for soil 

tillage. Heavy, clayey soils have much higher resistance against ploughing, disking, 

harrowing, so the fuel consumption is higher, while the speed and the forwarding 

distance is lower than that of the sandy soils. This work aims to make use of this 
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simple relationship and tries to build a quantitative model for surveying Ka and sup-

port soil mapping.  

2. MATERIALS AND METHODS 

2.1. Pilot area 

The pilot area is located in Eastern-Hungary, west of Tépe settlement (Figure 1). 

The area belongs to the Körös-Berettyó geographic meso-region and the Berettyó-

Kálló interfluve small region [20]. The size of the field is 62 hectares. It is located 

in a relatively low-lying, backwater region between higher elevated levees of histor-

ical water channels. Therefor the area in general is poorly drained, but some small 

abandoned drainage channels are crossing the area.  According to the WRB classifi-

cation [21], the most dominant soil type is Chernozem, but in the lower lying depres-

sions of the field Gleysols, Solonetz, and Phaeozem soils occur as well. 

The parent material is mainly alluvial, the texture is loam and clay-loam with 

smaller clayey spots. The average sand-silt-clay percentages are 40-30-30, but the 

silt may go up 55%, indicating the infusional loess, as one of the most important 

parent material along the alluvial clays. The Ka values range between 41 and 52.  

 
Figure 1 

 The location of the pilot area within Hungary 

2.2. Data 

Ka values from 11 sampling points were used to calibrate the model. The sampled 

points are shown on Figure 2. Four datasets from the target field were applied for 

the study. The dates and the tillage type are shown in Table 2. Three variables were 



60   E. Dobos – E. Szabó – S. Csenki – T. B. Menghis – F. Molnár – A. Dobai – M. Rajhi 
 

 

 

extracted from the log files, the speed, the fuel consumption and the forwarding dis-

tance per time unit. The example dataset of the log file is shown on Figure 2.  

Table 2 

Dates and tillage types of the datasets used for the study 

Date Tillage type Naming code 

November 30, 2018. Ploughing 18 plus variable name 

June 12, 2019. Strip till 1906 plus variable name 

November 5, 2019. Ploughing 1911 plus variable name 

April 16, 2023 Primary soil tillage 23 plus variable name 

 

 
Figure 2  

The log data of the field from 2023 April, showing the speed values  

on the logged positions. The blue points show the sampled sites 

 

2.3.  Data processing and Ka estimation procedure 

Three variables from the four dates were extracted from the datasets and these twelve 

explanatory variables were complemented with the corresponding Ka value. In the 

first step, correlation between the Ak value and each of the selected 12 variables 

were calculated using the “korrel” function of the Microsoft Excel 2016 software 

package [22].  
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Table 3 

The extracted database 

Ak 23fuel 23speed 1911speed 1911fuel 1906speed 1906fuel 18speed 18fuel 1911dist 1906dist 23dist 18dist 

42 0.019 14.057 7.049 0.014 5.256 0.002 7.012 0.011 2.076 1.459 3.941 2.016 

42 0.019 13.436 8.159 0.013 10.366 0.009 8.146 0.013 2.264 2.883 3.747 2.263 

46 0.011 14.985 7.454 0.011 5.941 0.020 7.045 0.019 2.069 1.971 4.040 2.033 

48 0.019 15.304 6.308 0.014 9.035 0.006 7.857 0.012 1.751 2.506 4.254 2.181 

48 0.019 14.712 8.876 0.014 10.710 0.007 8.332 0.014 2.462 2.978 4.094 2.316 

48 0.019 14.345 8.837 0.014 10.230 0.008 8.654 0.014 2.454 2.837 3.998 2.402 

52 0.019 13.406 8.939 0.014 10.375 0.009 8.581 0.013 2.480 2.885 3.725 2.384 

52 0.019 14.931 7.585 0.014 10.342 0.008 8.212 0.013 2.107 2.868 4.150 2.280 

48 0.019 13.692 8.505 0.014 9.885 0.006 8.762 0.014 2.362 2.748 3.799 2.432 

41 0.019 14.413 8.677 0.014 10.003 0.007 8.043 0.014 2.410 2.781 3.995 2.233 

48 0.019 14.028 8.365 0.013 10.198 0.008 8.110 0.013 2.323 2.835 3.898 2.254 

 

The variables showing the highest correlation with Ka values were selected and used 

as inputs for multiple linear regression. Two models were developed. The first model 

used only the four predictors individually, not taking into consideration the potential 

predictor interactions using the model below: 

  (1) 

In the second run, the model was extended to use the squared variables as potential 

part of the model according to the model below. 

  (2) 

When running the models the following assumptions were made: 

• Values of the response variable Ka vary according to a normal distribution 

with standard deviation σ for any values of the explanatory variables 18dist, 

18speed, 1906dist and 1906speed. The quantity σ is an unknown parameter. 

• Repeated values of response variable Ka are independent of one another. 

• The relationship between the mean response of Ka and the explanatory var-

iables are linear. 

 

 

3. RESULTS AND DISCUSSION 

3.1. The data analysis 

The results of the correlation study is shown in Table 4.  
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Table 4 

The result of the correlation calculation between Ka value and  

the predictor variables. The variables eith the highest correlation  

values are highlighted as gray lines 

Variable name Correlation value 

23fuel 0.060 

23speed 0.142 

1911speed 0.126 

1911fuel 0.231 

1906speed 0.397 

1906fuel 0.099 

18speed 0.489 

18fuel 0.007 

1911dist 0.065 

1906dist 0.422 

23dist 0.144 

18dist 0.503 

 

The correlation values are ranging between 0.007 to 0.5. Interestingly, none of the 

fuel consumption variables for the four dates show any promising details, their cor-

relation values are tending toward 0, or being very low. The speed and distance val-

ues have relatively higher correlation with the Ka values. Two dates had the highest 

correlation values – around 0.4–0.5 –, these are 2018 with ploughing and 2019 July 

with strip till In both cases the distance and the speed variables explained more of 

the Ka values. Therefore, these four were selected as inputs for the regression study.  

The kind of soil cultivation method has probably great impact on these values. 

Ploughing with higher pulling power need was expected to come among the best 

predictors, which was proved only in the 2018 case. The current soil moisture con-

dition may also have a great impact on the pulling power need, dry soils have higher 

resistance against the tillage. Unfortunately, soil moisture data for cultivation events 

were not available, therefor this theory was not proved.  

3.2. The multiple regression analysis results 

A multiple regression analysis was performed using the Ka value as predicted, re-

sponse variable, and the distance values from 2018 (18dist) and July 2019 (1906dist) 

and speed values from the same two days (18speed and 1906speed variables) were 

put as explanatory variables into the regression model 1. The regression equation 

was calculated as below: 
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  (3) 

The summary statistics are shown in Table 5.  

Table 5 

Statistics summary of the regression model 1 

Predictor Coefficient Estimate 
Standard 

Error 
t-statistic p-value 

Constant β0 4.8088 38.8002 0.1239 0.9054 

18dist β1 0.2292 1.6038 0.1429 0.891 

18speed β2 –0.0128 0.4444 –0.0288 0.9779 

1906dist β3 0.1037 0.1866 0.5561 0.5983 

1906speed β4 –0.0284 0.0643 –0.4414 0.6744 

Summary  

of Overall fit 

R-Squared 

0.375     

Adj. R-

Squared 
0.154     

Residual std 

error 

4.043 on 6 

degrees of 

freedom 

    

Overall F-stat 

0.666  

on 4 and 6  

degrees  

of freedom 

    

Overall  

p-value 
0.638     

      

The results of the first model show very limited potential for the Ka prediction. The 

p-values are extremely high, showing that the null hypothesis, namely that there is 

no real correlation between the predicted and predictor variables has very high prob-

ability. The same result is highlighted by the very low R2 values as well. It is also 

interesting, that the speed and the distance, which should be highly correlated have 

a positive and negative signs in the same time. However, running model 2 has very 

different and very promising results (Table 6.)  

The regression equation was calculated as below:  

Ak=-9806,85 + 19,74 * (18dist) + 19,04 * (18speed)  

 + 15,18 * (1906dist) – 4,8 * (1906speed)  

– 0,019 * (18dist)2 – 0,0131 * (18speed)2  

 – 0,04*(1906dist)2 + 0,0033 * (1906speed)2  (4) 
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Table 6 

Statistics summary of the regression model 2 

Predictor Coeff. Estimate 
Standard 

Error 
t-statistic p-value 

Constant β0 –9806.8524 7545.8483 –1.2996 0.3234 

18dist β1 19.7438 116.0675 0.1701 0.8806 

18speed β2 19.0398 19.1116 0.9962 0.4241 

1906dist β3 15.1805 10.3176 1.4713 0.279 

1906speed β4 –4.8016 2.6326 –1.8239 0.2097 

18dist∗18dist β1,1 –0.019 0.2584 –0.0735 0.9481 

18speed∗18speed β2,2 –0.0131 0.0117 –1.1225 0.3783 

1906dist∗1906dist β3,3 –0.0403 0.0296 –1.3634 0.3059 

1906speed∗1906speed β4,4 0.0033 0.0022 1.5108 0.2699 

Summary of Overall fit 

R-Squared 
0.942     

Adj. R-Squared 0.714     

Residual std. error 

2.011 on 2 

degrees of 

freedom 

    

Overall F-statistics 

4.373 on 8 

and 2 degrees 

of freedom 

    

Overall p-value 0.209     

      

In model 2, where the squared formulas are included into the model as well, the 

model performance increased a lot. The R2 value is almost 1, and even the adjusted 

R2 value is exceeding the value of 0.7, which is already a promising result. Of course, 

the observation number of 11 for the entire area is quite limited, which may include 

some significant bias on the existing input data, which is clearly indicated by the 

relatively high p-value of 0.2. It means that statistically interpreting the results, it is 

not proved significantly that accurate Ka values can be estimated with the use of 

machinery log data. However, taking into consideration the limited number of ob-

servations and the potential of input data cleaning and processing in increasing the 

model performance – which was not the aim of this study, this methodology has a 

potential in estimating and mapping soil physical parameters. 

4. SUMMARY AND CONCLUSION 

This study aimed to develop and test a provisional methodology to assess soil phys-

ical properties using digital soil mapping tools and machinery data collected and 

logged through different RTK navigation based on soil tillage activities. Georefer-

enced data (like speed, fuel consumption and forwarding distance per time unit) from 

four different tillage activities (ploughing, strip tillage and primary soil tillage) were 
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collected and used to predict their applicability for mapping.  Correlations between 

a commonly used soil plasticity index (Ak) and these three variables from four dif-

ferent dates were calculated. Fuel consumption was found to be irrelevant, but the 

speed and the forwarding distance values had correlation between 0.4 and 0.5.  

A multiple linear regression was used to assess the Ak values using these four pre-

dictor variables. Ploughing and strip tilt showed the highest correlation, but data on 

soil moisture was not recorded to backup this statement. The regression study indi-

cated – but statistically not proved – that this approach has a great potential to assess 

physical soil properties. This study only aimed to test the data, but further data pro-

cessing studies and higher number of calibration data is still needed to prove the 

validity of the concept. 
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