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Abstract: Fourier Transformations are crucial in signal processing, offering a unique ap-

proach for complex data analysis. This paper explores their advantages and limitations, ex-

plaining key concepts like Fourier Transformation, Fourier series, Discrete Fourier Trans-

form, and Continuous Fourier Transform, focusing on practical applications. The strengths, 

such as signal decomposition into frequency components, are exemplified through a case 

study on the total magnetic field of two-dimensional right rectangular prisms. However, lim-

itations arise with non-stationary signals due to the assumption of stationarity. Alternative 

methods like the Wavelet Transformation and Short-Time Fourier Transformation are briefly 

discussed. Serving as a practical guide, this paper aids researchers in utilizing Fourier Trans-

formations while recognizing scenarios where alternative techniques may be more suitable. 

Keywords: Discrete Fourier Transform, Continuous Fourier Transform, Wavelet Transform, 

Short-Time Fourier Transform, Right Rectangular Prisms 

 

1. INTRODUCTION 

The roots of Fourier Transformations can be traced back to the pioneering work of 

Joseph Fourier, a renowned French mathematician and physicist of the 18th century. 

Fourier's groundbreaking contributions to the field of mathematics included the de-

velopment of these transformative techniques. He introduced Fourier series as a 

powerful tool for analyzing periodic functions and decomposing complex signals 

into a series of simpler trigonometric components. Over the centuries, Fourier's work 

laid the foundation for significant advances in various scientific and engineering 

disciplines (Trigg 2005) (Baron Fourier 2003) (Oppenheim 1999a). 

As time progressed, Fourier Transformations evolved from their classical origins 

into an indispensable mathematical framework for addressing a wide range of con-

temporary challenges. Today, they are an integral part of fields such as signal pro-

cessing, image analysis, data interpretation, and more. Their adaptability and utility 

continue to expand, as they provide valuable insights into the frequency-domain rep-

resentation of data, enabling us to understand the hidden patterns and structures in 

complex information (Gray and Goodman 2012; Briggs and Henson 1995). 

In our data-driven world, the growing complexity and volume of information 

present both opportunities and challenges. The significance of this study lies in its 

exploration of the modern applications of Fourier Transformations, highlighting 

their pivotal role in contemporary data analysis and interpretation. Understanding 
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how to harness these mathematical techniques in the face of increasingly intricate 

and large datasets is crucial for researchers, scientists, and engineers across numer-

ous domains. 

This study aims to shed light on the nuanced and evolving landscape of Fourier 

Transformations, revealing their applications, benefits, and limitations in a data-cen-

tric context. By doing so, it offers valuable insights into addressing the challenges 

associated with the processing and interpretation of complex data, equipping practi-

tioners with the tools and knowledge needed to make informed decisions and drive 

innovation in their respective fields. The paper covers Fourier Transformations com-

prehensively.  

 

2. FUNDAMENTAL CONCEPTS OF FOURIER TRANSFORMATIONS 

2.1. Fourier Transforms 

In this section we will introduce the Fourier Transform as a universal problem-

solving technique. We investigate the Fourier Transform, its inversion formula, and 

its basic properties. The transform analysis technique is used to reduce the com-

plexity of the problem so to simplify the problem-solving analysis. Fourier Trans-

form is one of such analysis technique. 

 

2.1.1. Basics of Fourier Transform analysis  

The Fourier Transform analyzes signals in the time domain, representing them in the 

frequency domain. It breaks down complex signals into a sum of simpler, periodic 

signals with various frequencies, phases, and amplitudes 

 

𝑆(𝑓) = ∫ 𝑠(𝑡)𝑒−𝑗2𝜋𝑓𝑡∞

−∞
 𝑑𝑡                                       (1) 

 

where s(t) is the waveform to be decomposed into a sum of sinusoids, 𝑡 is the time, 

𝑓 is the frequency, S(f) is the Fourier Transform of s(t), and 𝑗 = √−1 .  

The Fourier Transform provides a powerful mathematical tool for analyzing sig-

nals and understanding their frequency content. Its pictorial representation can help 

to visualize and understand the transformation process and the resulting frequency 

spectrum (Bhattacharyya and Navolio 1976; Kitney-Hayes et al. 2014). 

The Fourier Transformation is an important image-processing tool that divides an 

Image into sine and cosine components. The transformation's output represents the 

Fourier or frequency domain image, while the input image is the spatial domain 

counterpart (Figure 1). Each point in the Fourier domain image represents a different 

frequency contained in the spatial domain image.  

The Fourier Transform is utilized in various applications, including image anal-

ysis, image filtering, image reconstruction, and image compression (Bracewell and 

Bracewell 1986; Oppenheim 1999b). One way to understand the Fourier Transform 

is through its pictorial representation. When a signal is transformed using the Fourier 

Transform, the resulting representation is called the frequency spectrum. The 
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frequency spectrum can be represented graphically as a plot of amplitude versus fre-

quency. The amplitude represents the strength of each frequency component, and the 

frequency represents the frequency of the signal. Another way to visualize the Fou-

rier Transform is through its representation as a series of sine and cosine waves. 

 

Figure 1 

Fourier Transformation of the signal from time domain to frequency domain. 

 
2.1.2. Digital computer Fourier analysis  

Digital computer Fourier analysis involves applying Fourier analysis algorithms on 

digital computers. Computational methods are used to calculate the discrete Fourier 

Transform for analyzing digital signals or data (Cooley and Tukey 1965). Numerical 

integration of Equation 1 implies the relationship 

 

𝑆(𝑓𝑘) =  ∑ 𝑠(𝑡𝑖)𝑁−1
𝑖=0 𝑒−𝑗2𝜋𝑓𝑘 𝑡𝑖  (𝑡𝑖+1 −  𝑡𝑖)               k=0, 1, …, N-1           (2) 

 

where 𝑆(𝑓𝑘) denotes the Fourier Transform coefficient at frequency𝑓𝑘, s(𝑡𝑖) repre-

sents the continuous-time signal sampled at N equally spaced time points 𝑡𝑖 , k = 0, 

1, ..., N-1 represents the frequency index. 

Research and development in this area aimed to reduce the computational com-

plexity and improve the performance for large-scale problems. While the computa-

tion of the DFT can be time-consuming for large N, the use of the fast Fourier Trans-

forms algorithms (FFT), invented by Cooley and Tukey (1965), additionally to the 

advancements in hardware technologies can significantly mitigate this issue. 

 

2.1.3. The inverse Fourier Transform 

Mathematically, the Inverse Fourier transform can be defined as follows 
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𝑠(𝑡) = ∫ 𝑆(𝑓)𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓
+∞

−∞
                                         (3) 

 

The Inverse Fourier Transform (IFT) represent the reverses process of the Fourier 

Transform. It converts a frequency-domain representation of a signal back into the 

time-domain representation. 𝑠(𝑡) and 𝑆(𝑓) are called a Fourier transform pair, The 

IFT is the counterpart of the forward Fourier Transform and is often used in signal 

processing, image reconstruction, and various other applications. The existence of 

the Fourier integral is based on certain mathematical conditions. One important con-

dition is the absolute integrability of the function 𝑠(𝑡) over its defined interval (Equa-

tion 4). The function must be absolutely integrable for the Fourier integral to exist  

 

∫ |𝑠(𝑡)| 𝑑𝑡 < ∞
+∞

−∞
                                           (4) 

 

2.2. Properties of the Fourier Transform  

The Fourier Transform is a powerful tool in signal processing and analysis, boasting 

key properties that enhance its effectiveness: 

Linearity: The Fourier Transform is a linear operation. If a and b are constants, and 

𝑓(𝑡) and g(t) are functions and they have the Fourier Transform 𝐹(𝑓) and 𝐺(𝑓) , 

respectively, then 𝑎𝑓(𝑡) + 𝑏 𝑔(𝑡)a has a Fourier Transform 𝑎𝐹(𝑓) + 𝑏 𝐺(𝑓). 

(𝑎𝑓(𝑡) + 𝑏 𝑔(𝑡)) and (𝑎𝐹(𝑓) + 𝑏 𝐺(𝑓)) are termed a Fourier Transform pair. 

Symmetry: If 𝑠(𝑡) and 𝑆(𝑓) are a Fourier Transform, then 𝑆(𝑡) and 𝑠(−𝑓) are a 

Fourier Transform pair. 

Time scaling: Time scaling in the Fourier Transform describes the impact of com-

pressing or stretching a function in the time domain on its frequency domain repre-

sentation (Oppenheim et al. 1997; Folland 2009). The property states that if a func-

tion 𝑓(𝑡) is scaled by a factor α in the time domain, its Fourier Transform 𝐹(𝜔) will 

be scaled by 1 𝛼⁄ .  For a time-scaled version 𝑔(𝑡) = 𝑓(𝛼𝑡) ,where α is a positive 

real number, the Fourier Transform 𝐺(𝜔) is given by this scaling relationship 

 

𝐺(𝜔) = (1 |𝛼|)𝐹(𝜔 𝛼)⁄⁄                                            (5) 

 

Frequency scaling: Frequency scaling in the Fourier Transform involves shifting the 

frequency components of a function in the time domain and observing the corre-

sponding shift in the frequency domain. If a function 𝑓(𝑡) is multiplied by 𝑒jω₀t, 

where 𝜔0 is a real constant, its Fourier Transform 𝐹(𝜔) will be shifted by 𝜔0 units. 

For a frequency-scaled version 𝑔(𝑡) =  𝑒𝑗𝜔0𝑡  𝑓(𝑡)  , the Fourier Transform 𝐺(𝜔) is 

given by  
 

𝐺(𝜔) = 𝐹(𝜔 − 𝜔0)                                     (6) 
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This property allows manipulation of a signal's frequency characteristics by intro-

ducing a constant frequency offset. 

Alternate inversion formula: The alternate inversion formula is an alternative ex-

pression for the inverse Fourier Transform. It provides a different way to compute 

the time-domain function from its frequency-domain representation. The alternate 

inversion formula for the Fourier Transform pair 𝐹(𝜔) and 𝑓(𝑡) is given by 

 

𝑓(𝑡) = [∫ 𝐹∗(𝑓) 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓
+∞

−∞
]

∗
                                          (7) 

 

where 𝐹∗(𝑓) is the conjugate of 𝐹(𝑓); if 𝐹(𝑓) = 𝑅(𝑓) + 𝑗 𝐼(𝑓) then  

𝐹∗(𝑓) = 𝑅(𝑓) − 𝑗𝐼(𝑓). 

Even functions: An even function 𝑓(𝑥) has the property 𝑓(𝑥) = 𝑓(−𝑥) for all values 

of 𝑥. The Fourier Transform of an even function is real and even.  

Odd function: An odd function 𝑓(𝑥) has the property 𝑓(𝑥) = −𝑓(−𝑥) for all values 

of 𝑥. The Fourier Transform of an odd function is purely imaginary and odd. 

Complex time function: The Fourier Transform can be applied to complex time func-

tions to obtain their frequency-domain representation. Understanding complex time 

functions and their Fourier Transforms is crucial for analyzing and manipulating sig-

nals in both the time and frequency domains. It allows for the extraction of frequency 

information, modulation analysis, filtering, and various other signal-processing op-

erations. 

 

2.3. The Fourier Series: Formulation and Diverse Applications 

The Fourier series is a fundamental mathematical tool expanding periodic function, 

into an infinite sum of trigonometric functions like sines and cosines (Bracewell 

1986; Gray and Goodman 2012). It elegantly approximates complex waveforms 

through simpler harmonic components. It extends to generalized Fourier series or 

transforms, representing functions as linear combinations of orthogonal basis func-

tions, providing a versatile approach to expressing a wide range of periodic and non-

periodic functions. These basis functions are typically chosen to be orthogonal where 

their inner products  

 

(𝑓, 𝑔) = ∫ 𝑓(𝑥) 𝑔(𝑥)
Ω

𝑑𝑥      (8) 

 

satisfy certain properties (Elias and Stein 2003). In the Fourier series, traditional ba-

sis functions are sine and cosine waves. However, in generalized Fourier series, var-

ious basis functions, such as Bessel functions, Legendre polynomials, and Hermite 

functions, can be used  (Trigg 2005; Silverman 1972; Abramowitz and Stegun 1968). 

A system of Fourier cosine functions represents a collection of cosine functions used 

in a Fourier series expansion. These functions are derived by taking the real compo-

nent of equivalent complex exponential functions. The general form of a Fourier 

cosine series for a function 𝑓(𝑥) on [a, a+2π] is as follows 
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𝑓(𝑥) =  𝑎0 + 2 ∑  𝑎𝑛 cos 𝑛𝑥 ∞
𝑛=1                    (a <  x <  a + 2π),           (9)   

    

where a0 and an called constant expansion coefficients  

 

a0 =
1

2π
 ∫ 1 f(x) dx

a+2π

a
     (10) 

 

an =
1

2π
 ∫  f(x) cos nx  dx

a+2π

a
                   ,n = 1, 2, 3, …   (11) 

 

The Fourier sine system refers to a set of sine functions that can be used as a basis 

for representing functions in a Fourier series expansion (Bateman, H. and Erdélyi, 

A. 1954; James et al. 1996). These functions are defined by taking the imaginary part 

of the corresponding complex exponential functions. The Fourier sine series is de-

fined by the following general form of the Fourier sine series 

 

𝑓(𝑥) = 2 ∑  𝑏𝑛 sin 𝑛𝑥 ∞
𝑛=1                 (a <  x <  a + 2π),                (12) 

 

𝑤ℎ𝑒𝑟𝑒 𝑏𝑛 constant expansion coefficients are calculated as 

         𝑏𝑛 =  
1

2𝜋
 ∫ 𝑓(𝑥) sin 𝑛𝑥  𝑑𝑥

𝑎+2𝜋

𝑎
                   ,𝑛 = 1, 2, 3, …             (13) 

 

The Fourier sine system is advantageous for odd functions or those defined on an 

antisymmetric interval due to its focus on odd terms, aligning with the properties of 

sine functions. The trigonometric system, which combines Fourier sine and cosine 

functions, is commonly used for Fourier series expansions, accommodating both an-

tisymmetric and symmetric functions(Bracewell 1986; Kamen and Heck 2006). The 

general form of the Fourier series using this trigonometric system is 

 

𝑓(𝑥) = 𝑎0 + 2 ∑  (𝑎𝑛 cos 𝑛𝑥 +  𝑏𝑛 sin 𝑛𝑥) ∞
𝑛=1            (14)     

            

where 

𝑎0 =
1

2𝜋
 ∫  𝑓(𝑥) 𝑑𝑥

𝑎+2𝜋

𝑎
                  (15) 

 

𝑎𝑛 =
1

2𝜋
 ∫  𝑓(𝑥) cos 𝑛𝑥  𝑑𝑥

𝑎+2𝜋

𝑎
                ,𝑛 = 1, 2, 3, …           (16) 

        

𝑏𝑛 =  
1

2𝜋
 ∫ 𝑓(𝑥) sin 𝑛𝑥  𝑑𝑥

𝑎+2𝜋

𝑎
                 ,𝑛 = 1, 2, 3, …              (17) 

 

2.4. The Discrete Fourier Transform: Theory and Applications 

The Discrete Fourier Transform (DFT) is crucial for analyzing discrete time domain 

signals, unveiling their frequency components by converting a sequence of complex 

numbers representing signal samples. Widely used in signal processing, the DFT 

helps determine frequency composition, ignores phase information, and facilitates 
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convolution operations (Oppenheim 1999a; Briggs and Henson 1995). Mathemati-

cally, the DFT is formally defined as 

 

𝐷𝐹𝑇(𝑋[𝑘]) =  ∑ (𝑥[𝑛]𝑒−𝑗2𝜋𝑛𝑘 𝑁⁄𝑁−1
𝑛=0 )                                     (18) 

 

where  

𝑋[𝑘] represents the k-th frequency component of the signal in the frequency do-

main, 

𝑥[𝑛] denotes the n-th sample of the discrete signal in the time domain, 

𝑗 is the imaginary unit, 

𝑁 is the total number of samples. 

The DFT is a vital tool in digital signal processing, decomposing discrete signals 

to reveal their spectral content. Widely used in applications like telecommunications, 

audio processing, and image analysis, the DFT is integral to tasks such as image 

compression and enhancement (Bracewell 1986; Bose and Meyer 2003; Smith 

2008). Additionally, it enables fast computation through algorithms like the Fast 

Fourier Transform (FFT), facilitating real-time signal analysis in applications like 

audio processing and wireless communications (Bagchi and Mitra 2012; Bracewell 

2004). 

 

2.5. Continuous Fourier Transform: Theory and Applications 

The Continuous Fourier Transform (CFT) is a mathematical technique used to ana-

lyze continuous, time-domain signals in terms of their frequency components 

 

𝐶𝐹𝑇(𝑋(𝑓)) = ∫ 𝑥(𝑡)
∞

−∞
𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡                         (19) 

 

where 

𝑋(𝑓) represents the frequency component of the signal in the frequency domain, 

𝑥(𝑡) denotes the continuous signal in the time domain, 

𝑗 is the imaginary unit, 

𝑓 is the continuous frequency variable. 

The CFT is essential for analyzing continuous time-domain signals, extending 

the capabilities of the Discrete Fourier Transform (DFT) to non-discretely sampled 

signals. Widely used in physics and quantum mechanics, the CFT provides insights 

into the spectral characteristics of quantum particles and various physical phenom-

ena by revealing the frequency components of continuous signals (Lowrie 2011). 

 

3. BENEFITS OF FOURIER TRANSFORMATIONS AND LIMITATIONS  

3.1. Advantages of Fourier Transformations 

A fundamental strength of Fourier Transformations lies in their ability to decompose 

complex signals into their constituent frequency components. This feature is partic-

ularly advantageous when dealing with signals of diverse origins, allowing us to 
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discern the underlying frequencies that make up these signals. This spectral decom-

position serves as the foundation for many applications in signal processing and anal-

ysis. The Fourier series is a powerful tool for representing periodic signals by ex-

pressing them as combinations of sine and cosine functions. It simplifies the analysis 

of periodic phenomena, providing insights into harmonic content and temporal be-

havior, especially in fields like music, physics, and engineering (Bracewell 1986). 

In the realm of discrete signals, the DFT plays a pivotal role. Computing the DFT 

allows access to the frequency domain representation of discrete signals, aiding in 

understanding underlying frequencies and amplitudes in sampled data. This versatil-

ity makes the DFT crucial in applications from audio processing to telecommunica-

tions (Smith 2008). 

Real-world applications highlight the benefits of Fourier Transformations in sig-

nal processing, image analysis, and audio processing. These examples underscore 

the advantages of employing Fourier Transformations for effective signal analysis 

and interpretation. 

 

3.2. Constraints of the Fourier Transformation 

While Fourier Transformations offer a multitude of advantages, it is essential to 

acknowledge their limitations. One significant constraint pertains to the assumption 

of stationarity. The stationarity assumption implies that the signal's statistical prop-

erties remain constant over time (Smith 1997) . However, many real-world signals 

exhibit variations in statistical properties, posing a challenge to the application of 

Fourier Transformations. In this context, it becomes imperative to delve into the spe-

cifics of stationarity constraints and their implications. 

Another limitation concerns the sensitivity of Fourier Transformations to abrupt 

signal changes. When signals undergo sudden shifts or contain discontinuities, Fou-

rier Transformations may encounter difficulties in accurately representing the sig-

nal's behavior. Addressing the challenges associated with abrupt changes in signals 

is essential to comprehensively understand the limitations of Fourier Transfor-

mations (Bracewell 1986). The reduced accuracy of Fourier Transformations when 

applied to real-world data constitutes another critical limitation. Practical data often 

deviates from the idealized mathematical models assumed in Fourier analysis. As a 

result, the precision and the reliability of Fourier Transformations may diminish 

when dealing with complex, noisy, or imperfect data (Oppenheim 1999c). Exploring 

the intricacies of this limitation is fundamental to grasping the practical constraints 

of Fourier Transformations in real-world scenarios. 

In addition to theoretical constraints, practical aspects can also impose limitations 

on the utility of Fourier Transformations (Bracewell 1986). Understanding the inter-

play between theoretical and practical constraints is vital in gaining insights into the 

boundaries of Fourier Transformations when applied in various domains. By com-

prehensively examining these limitations, we can make informed decisions about 

when to employ Fourier Transformations and when alternative methods may be more 

suitable. 
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4. ADDRESSING LIMITATIONS AND EXPLORING ALTERNATIVES 

To address the limitations of Fourier Transformations, the exploration of alternative 

methods has become essential. These methods provide innovative ways to analyze 

signals and overcome the constraints associated with Fourier analysis. Alternative 

techniques often offer unique advantages in specific applications, making them val-

uable tools for researchers and practitioners working in signal analysis. 

 

4.1. Wavelet Transform: Explanation and Applications 

The Wavelet Transform is a mathematical technique used to analyze functions and 

signals by decomposing them into different scales and frequencies. Unlike the Fou-

rier Transform, which represents a signal in the frequency domain, the Wavelet 

Transform simultaneously provides information in both the time and frequency do-

main(Mallat 1999; Daubechies 1992). This dual-domain analysis is one of the key 

advantages of wavelet analysis. 

Mathematically, the continuous Wavelet Transform (CWT) of a signal x(t) is 

computed using the following formula 

 

𝐶𝑊𝑇(𝑎, 𝑏) = ∫ 𝑥(𝑡)𝜓 [
(𝑡−𝑏)

𝑎
] 𝑑𝑡                            (20) 

 

where 

CWT (a, b) is the continuous Wavelet Transform at scale a and position b, 

x(t) is the input signal in the time domain, 

ψ is the complex conjugate of the mother wavelet function, which is a scaled and 

translated version of the mother wavelet. 

The continuous Wavelet Transform examines signal x(t) at different scales (a) 

and positions (b), providing a time-frequency representation that's ideal for analyz-

ing non-stationary signals. The choice of the mother wavelet function 𝜓(𝑡) deter-

mines the Wavelet Transform's properties, with wavelets like Morlet, Mexican hat, 

and Haar serving specific applications. 

This versatile mathematical tool has diverse applications. In image processing, it 

aids in compression, denoising, and feature extraction, while data compression tech-

niques efficiently reduce file sizes (Strang and Nguyen 1996). In pattern recognition, 

particularly in computer vision and machine learning, it helps identify crucial fea-

tures (Cohen 2003). Wavelet analysis benefits biomedical signal processing, envi-

ronmental monitoring, speech and audio processing, and financial data analysis. Re-

nowned for its adaptability and precise time-frequency information, the Wavelet 

Transform expands the signal analysis toolkit, offering an alternative to Fourier 

Transformations, especially for non-stationary signals (Mallat 1999). 
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4.2. Short-Time Fourier Transform (STFT): Explanation and Applications 

The Short-Time Fourier Transform (STFT) is one such alternative method that mer-

its attention. It is designed to address a critical limitation of the standard Fourier 

Transform - the assumption of signal stationarity. The STFT overcomes this con-

straint by analyzing short, overlapping segments of a signal rather than the entire 

signal at once (Durak and Arikan 2003) . This approach allows for the examination 

of time-varying frequency components within a signal, making it particularly useful 

for non-stationary signals like speech, music, or any signal that changes over time 

 

STFT(t, f) =  ∫ 𝑥(𝜏)𝑤(𝜏𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏                                 (21) 

 

where 

STFT(t, f) represents the Short-Time Fourier Transform at time t and frequency f, 

𝑥(𝜏) is the input signal in the time domain, 

𝑤(𝑡) is the window function, usually a short, localized function with non-zero values 

only within a limited time frame, 

𝜏 is the time variable used for shifting the window function, 

𝑡 is a variable represents time, 

𝑒−𝑗2𝜋𝑓𝜏 represents the complex exponential term for frequency f. 

In the STFT, a window function slides over the signal, capturing a small portion 

at a time. By applying the Fourier Transform to each windowed segment, we obtain 

a time-frequency representation of the signal. This representation reveals how the 

frequency content evolves over time, providing crucial insights into transient events 

and non-stationary behavior. As a result, the STFT is widely used in applications 

like audio processing, speech recognition, and the analysis of time-varying phenom-

ena.  These are a few examples within the broader family of Fourier Transformations 

(These are shown in Table 1). The choice of which transform to use depends on the 

specific characteristics of the signal and the goals of the analysis. 
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Table 1 

The system of Fourier Transformation and its characteristics, advantages, and dis-

advantages of some key transformations within the Fourier family 

System of 

Fourier 

Transfor-

mations 

Characteristics Advantages Disadvantages 

 

 

Fourier 

Transform  

Mathematical Representa-

tion 

Continuous 

Domain 

- Frequency 

Analysis. 

 

- Widespread 

Applicability. 

 

- Computational 

Complexity 

 

- Limited for 

Discrete Signals 

Converts a function of 

time (or space) into a 

function of frequency. 

F(ω) = ∫ f(t) . e−jωt
∞

−∞

 dt 

Defined for 

continuous 

signals 

Discrete Fou-

rier Trans-

form (DFT)  

Discretization Finite-Length 

Signals 

 

- Digital Im-

plementation 

 

- Exact Repre-

sentation 

- Computational 

Complexity 

 

Computes the Fourier 

Transform for discrete 

signals 

Suitable for 

processing fi-

nite-length 

signals 

 

Fast Fourier 

Transform 

(FFT)  

Efficiency Improvement: An algorithmic 

approach to compute the DFT with reduced 

computational complexity. 

- Efficiency 

 

- Widespread 

Use 

-  Requires 

Power-of-Two 

Lengths: Some 

FFT algorithms 

are most effi-

cient when the 

signal length is 

a power of two. 

 

Short-Time 

Fourier 

Transform 

(STFT) (Al-

len and 

Rabiner 

1977; Cohen 

1995) 

Time-Fre-

quency Analy-

sis 

 

Windowing - Time-Fre-

quency Local-

ization 

- Adaptability: 

Suitable for 

non-stationary 

signals. 

- Time-Fre-

quency Resolu-

tion Tradeoff:  

The choice of 

window size af-

fects time and 

frequency reso-

lution; a smaller 

window pro-

vides better time 

resolution but 

poorer fre-

quency resolu-

tion, and vice 

versa. 

 

Represents 

how the fre-

quency content 

of a signal 

changes over 

time 

Involves dividing the sig-

nal into short segments 

and applying Fourier 

Transform to each seg-

ment. 
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5. EXPLORING THE PRACTICAL APPLICATIONS: TOTAL MAGNETIC FIELD 

ANALYSIS OF A TWO-DIMENSIONAL RIGHT RECTANGULAR PRISM AND ITS 

FOURIER TRANSFORM REPRESENTATION  

The magnetic field of a 2D right rectangular prism, magnetized along the z-direction 

(Figure 2), is determined using the 2D Fourier Transform. It is represented as the 

sum of magnetic fields from two infinite lines of dipoles (Kis 2009). The inverse 

transform, employing the convolution theorem, yields a comprehensive magnetic 

field. The resulting expression depends on the prism's dimensions and the observa-

tion point's specific location (Griffiths and Inglefield 2005; Jackson and Fox 1999). 

 

Figure 2 

The location of a 2D right rectangular prism in the xz-coordinate system; the dis-

tances; 𝑟1 , 𝑟2, 𝑟3, and 𝑟4; and angles 𝜃1, 𝜃2, 𝜃3, and 𝜃4. 

 

 The magnetic field produced by a 2D right rectangular prism (Figure 2) can be com-

puted using the following analytical formula that involves the prism's dimensions 

and the coordinates of the observation point 

 

T(x, z) = −
𝜇0 J 

2𝜋
 (𝐼5 + 𝐼6 + 𝐼7 + 𝐼8 )                              (22) 

 

where 

 

𝐼5 = 𝐾𝑘 (tan−1 𝑧−𝑧2

𝑥−𝑥2
− tan−1 𝑧−𝑧2

𝑥−𝑥1
− tan−1 𝑧−𝑧1

𝑥−𝑥2
+ tan−1 𝑧−𝑧1

𝑥−𝑥1
 )        (23) 

 

Let us initiate the angles 𝜃1 , 𝜃2, 𝜃3, 𝑎𝑛𝑑 𝜃4 
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𝜃1 = tan−1 𝑧1−𝑧

𝑥1−𝑥
  ,  𝜃2 = tan−1 𝑧1−𝑧

𝑥2−𝑥
 , 𝜃3 = tan−1 𝑧2−𝑧

𝑥2−𝑥
 , and 𝜃4 = tan−1 𝑧2−𝑧

𝑥1−𝑥
 

 

𝐼5 = 𝐾𝑘 [𝜃1 − 𝜃2 + 𝜃3 − 𝜃4].              and                    𝐼6 = 𝑁𝑘𝑙𝑛
𝑟1𝑟3

𝑟2𝑟4
 

 

With 

 

𝑟1
2 =  (𝑥 − 𝑥1)2 + (𝑧 − 𝑧1)2  ,  𝑟2

2 =  (𝑥 − 𝑥2)2 + (𝑧 − 𝑧1)2, 

 

𝑟3
2 =  (𝑥 − 𝑥2)2 + (𝑧 − 𝑧2)2  , 𝑟4

2 =  (𝑥 − 𝑥1)2 + (𝑧 − 𝑧2)2  , 

 

𝐼7 = 𝐾𝑛𝑙𝑛
𝑟1𝑟3

𝑟2𝑟4
 , and     𝐼8 = 𝑁𝑛(−𝜃1 + 𝜃2 − 𝜃3 + 𝜃4) 

 

where K = cos a cos(A − b) , N = sin a   ,  k = cos I cos(A − D), n = sin I, l =
cos I cos D. 

In the direction K, the angle A is the azimuth of the profile measured from 

the geographic North, a and b are the inclination and declination of the moment, 

respectively. The total magnetic field of a 2D right rectangular prism can be com-

puted, given specific parameters such as the absolute value of the vector of magnet-

ization (J), dimensions (rd), height (h), inclination of the earth's magnetic field (incl), 

declination of the earth's magnetic field (decl), and the position at which the mag-

netic field is to be calculated (x).  

 

Figure 3 

The position of 3D right rectangular prism in the xyz-coordinate system; the coor-

dinates are 𝑥1 , 𝑥2, 𝑦1, 𝑦2 and 𝑧1 and  𝑧2. 
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The function takes the following inputs as it is shown in the 2D and 3D representa-

tion, (Figure 2 and 3): 

`J` is the magnetization of the prism in A/m, 

`rd`is the dimensions of the prism represented as a vector [x1, x2, z1, z2], where x1 

and x2 are the x-coordinates of the opposite corners in the x-direction, and z1 and z2 

are the z-coordinates of the opposite corners in the z-direction, 

`h`is the height of the prism in the y-direction, 

`incl`is the inclination of the earth's magnetic field, provided as a vector [a, I], where 

'a' is the angle of inclination in degrees from the horizontal plane, and 'I' is the angle 

of inclination in degrees from the northward vertical, 

`decl` is the declination of the earth's magnetic field, expressed as a vector [b, D], 

where 'b' is the angle of declination in degrees from the geographic north to the mag-

netic north, and 'D' is the angle of declination in degrees from the magnetic north to 

the northward vertical, 

`x` is the position at which the magnetic field is to be calculated, specified in the x-

direction. 

The function computes the magnetic field (in nT) at a specified x-position using 

the formula for a 2D rectangular prism, involving inclination and declination angle 

conversions, direction cosine calculations, and dipole moment vector components. 

It sums contributions from each prism side to determine the total field. The accom-

panying plotting script visualizes magnetic field variations for different angle con-

figurations (D=β=0; I=α=0°, 30°, 60°, 90°) in Figures 2.A.a, 2.B.d, 2.C.g, and 2.D.j. 

Next, we introduce a Fourier Transform for the total field of a 2D right rectangu-

lar prism. The computation considers a source with a horizontal extension of 2a 

(symmetrical to the origin), upper and lower depths (d1 and d2), and uniform mag-

netization. The spatial frequency 'f' (in cycles per spatial unit) is used. The given 

equation yields result for z=0 and f < 0 

𝑇(𝑓) =  𝜇0 𝐽 𝑎 𝑠𝑖𝑛𝑐(2𝑓𝑎) ((𝐾𝑘 − 𝑁𝑛)(𝑒−2𝜋|𝑓|𝑑2 − 𝑒−2𝜋|𝑓|𝑑1  )

+ 𝑗 (𝐾𝑛 + 𝑁𝑘)(𝑒−2𝜋|𝑓|𝑑2 − 𝑒−2𝜋|𝑓|𝑑1  )) 

For z=0 and f > 0 

𝑇(𝑓) =  𝜇0 𝐽 𝑎 sinc(2fa) ((𝐾𝑘 − 𝑁𝑛)(𝑒−2𝜋|𝑓|𝑑2 − 𝑒−2𝜋|𝑓|𝑑1  )

+ 𝑗 (𝐾𝑛 + 𝑁𝑘)(−𝑒−2𝜋|𝑓|𝑑2 + 𝑒−2𝜋|𝑓|𝑑1  )) 

With a thickness t(t=d2-d1) the Fourier Transform of the total magnetic field of the 

2D right rectangular prism is  

𝑇(𝑓) =  𝜇0 𝐽 𝑎 sinc(2fa) 𝑒−2𝜋|𝑓|𝑑1(𝑒−2𝜋|𝑓|𝑡 − 1)((𝐾𝑘 − 𝑁𝑛)
− 𝑗𝑠𝑖𝑔𝑛(𝑓)(𝐾𝑛 + 𝑁𝑘) 

Figures 2 illustrates the real and imaginary parts of the spectrum of the total magnetic 

field of the 2D right rectangular prism. These functions are plotted with respect to 
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the spatial frequency 'f', and the sampling interval is determined by the upper depth 

'd1' (set at 1 km) and the horizontal extension '2a' (equal to 6 km), where 't' is 1 km. 

Figures (4.A.b and 4.A.c), (4.B.e and 4.B.f), (4.C.h and 4.C.i), and (4.D.k and 4.D.l) 

are generated for D=β=0; I=α=0°, 30°, 60°, 90°, respectively. 

 

Figure 4 

The total magnetic field of a 2D right rectangular prism with its Fourier Trans-

forms representation. 

 

(B)        Sampling space: 0.25 km              Inclination: 30°               Declination: 0° 

 

(d) (e) (f) 

(A)         Sampling space: 0.25 km              Inclination: 0°                 Declination: 0° 

(a) (b) (c) 

(C)      Sampling space: 0.25 km             Inclination: 60°                 Declination: 0° 

 

(g) (h) (i) 

(D)          Sampling space: 0.25 km              Inclination: 90°              Declination: 0° 
 

(j) (k) 
(l) 
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6. CONCLUSIONS 

In conclusion, this paper has provided a comprehensive exploration of the historical 

significance, theoretical foundations, virtues, and limitations of Fourier Transfor-

mations. For professionals in diverse fields, understanding these aspects is essential 

for informed decision-making in signal analysis. We introduced alternative methods 

like the Wavelet Transform and Short-Time Fourier Transform, offering a compar-

ative analysis for method selection. As technology advances, ongoing research into 

innovative methods and interdisciplinary approaches is crucial to address challenges 

in non-ideal scenarios and real-world data. Embracing a forward-looking perspective 

will contribute to the continuous advancement of signal analysis. 
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