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Abstract: Fourier Transformations are crucial in signal processing, offering a unique ap-
proach for complex data analysis. This paper explores their advantages and limitations, ex-
plaining key concepts like Fourier Transformation, Fourier series, Discrete Fourier Trans-
form, and Continuous Fourier Transform, focusing on practical applications. The strengths, 
such as signal decomposition into frequency components, are exemplified through a case 
study on the total magnetic field of two-dimensional right rectangular prisms. However, lim-
itations arise with non-stationary signals due to the assumption of stationarity. Alternative 
methods like the Wavelet Transformation and Short-Time Fourier Transformation are briefly 
discussed. Serving as a practical guide, this paper aids researchers in utilizing Fourier Trans-
formations while recognizing scenarios where alternative techniques may be more suitable. 

Keywords: Discrete Fourier Transform, Continuous Fourier Transform, Wavelet Transform, 
Short-Time Fourier Transform, Right Rectangular Prisms 
 
 
1. INTRODUCTION 

The roots of Fourier Transformations can be traced back to the pioneering work of 
Joseph Fourier, a renowned French mathematician and physicist of the 18th century. 
Fourier s groundbreaking contributions to the field of mathematics included the de-
velopment of these transformative techniques. He introduced Fourier series as a 
powerful tool for analyzing periodic functions and decomposing complex signals 
into a series of simpler trigonometric components. Over the centuries, Fourier s 
work laid the foundation for significant advances in various scientific and engineer-
ing disciplines (Trigg, 2005) (Baron Fourier, 2003) (Oppenheim, 1999a). 

As time progressed, Fourier Transformations evolved from their classical origins 
into an indispensable mathematical framework for addressing a wide range of con-
temporary challenges. Today, they are an integral part of fields such as signal pro-
cessing, image analysis, data interpretation, and more. Their adaptability and utility 
continue to expand, as they provide valuable insights into the frequency-domain rep-
resentation of data, enabling us to understand the hidden patterns and structures in 
complex information (Gray and Goodman, 2012; Briggs and Henson, 1995). 

In our data-driven world, the growing complexity and volume of information 
present both opportunities and challenges. The significance of this study lies in its 
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exploration of the modern applications of Fourier Transformations, highlighting 
their pivotal role in contemporary data analysis and interpretation. Understanding 
how to harness these mathematical techniques in the face of increasingly intricate 
and large datasets is crucial for researchers, scientists, and engineers across numer-
ous domains. 

This study aims to shed light on the nuanced and evolving landscape of Fourier 
Transformations, revealing their applications, benefits, and limitations in a data-cen-
tric context. By doing so, it offers valuable insights into addressing the challenges 
associated with the processing and interpretation of complex data, equipping practi-
tioners with the tools and knowledge needed to make informed decisions and drive 
innovation in their respective fields. The paper covers Fourier Transformations com-
prehensively.  

 
2. FUNDAMENTAL CONCEPTS OF FOURIER TRANSFORMATIONS 

2.1. Fourier Transforms 

In this section we will introduce the Fourier Transform as a universal problem-
solving technique. We investigate the Fourier Transform, its inversion formula, and 
its basic properties. The transform analysis technique is used to reduce the com-
plexity of the problem so to simplify the problem-solving analysis. Fourier Trans-
form is one of such analysis technique. 

 
2.1.1. Basics of Fourier Transform analysis  

The Fourier Transform analyzes signals in the time domain, representing them in the 
frequency domain. It breaks down complex signals into a sum of simpler, periodic 
signals with various frequencies, phases, and amplitudes 

 
   (1) 

 
where s(t) is the waveform to be decomposed into a sum of sinusoids,  is the time, 

 is the frequency, S(f) is the Fourier Transform of s(t), and  .  
The Fourier Transform provides a powerful mathematical tool for analyzing sig-

nals and understanding their frequency content. Its pictorial representation can help 
to visualize and understand the transformation process and the resulting frequency 
spectrum (Bhattacharyya and Navolio, 1976; Kitney-Hayes et al., 2014). 

The Fourier Transformation is an important image-processing tool that divides an 
Image into sine and cosine components. The transformation's output represents the 
Fourier or frequency domain image, while the input image is the spatial domain 
counterpart (Figure 1). Each point in the Fourier domain image represents a different 
frequency contained in the spatial domain image.  

The Fourier Transform is utilized in various applications, including image anal-
ysis, image filtering, image reconstruction, and image compression (Bracewell and 
Bracewell, 1986; Oppenheim, 1999b). One way to understand the Fourier Transform 
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is through its pictorial representation. When a signal is transformed using the Fourier 
Transform, the resulting representation is called the frequency spectrum. The fre-
quency spectrum can be represented graphically as a plot of amplitude versus fre-
quency. The amplitude represents the strength of each frequency component, and the 
frequency represents the frequency of the signal. Another way to visualize the Fou-
rier Transform is through its representation as a series of sine and cosine waves. 

 

Figure 1 
Fourier Transformation of the signal from time domain to frequency domain 

 
2.1.2. Digital computer Fourier analysis  

Digital computer Fourier analysis involves applying Fourier analysis algorithms on 
digital computers. Computational methods are used to calculate the discrete Fourier 
Transform for analyzing digital signals or data (Cooley and Tukey, 1965). Numerical 
integration of Equation 1 implies the relationship 

 
        -1  (2) 
 
where denotes the Fourier Transform coefficient at frequency , repre-
sents the continuous-time signal sampled at N equally spaced time points , k = 0, 
1, ..., N-1 represents the frequency index. 

Research and development in this area aimed to reduce the computational com-
plexity and improve the performance for large-scale problems. While the computa-
tion of the DFT can be time-consuming for large N, the use of the fast Fourier Trans-
forms algorithms (FFT), invented by Cooley and Tukey (1965), additionally to the 
advancements in hardware technologies can significantly mitigate this issue. 
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2.1.3. The inverse Fourier Transform 

Mathematically, the Inverse Fourier transform can be defined as follows 
 

   (3) 
 

The Inverse Fourier Transform (IFT) represent the reverses process of the Fourier 
Transform. It converts a frequency-domain representation of a signal back into the 
time-domain representation.  and  are called a Fourier transform pair, The 
IFT is the counterpart of the forward Fourier Transform and is often used in signal 
processing, image reconstruction, and various other applications. The existence of 
the Fourier integral is based on certain mathematical conditions. One important 
condition is the absolute integrability of the function  over its defined interval 
(Equation 4). The function must be absolutely integrable for the Fourier integral 
to exist  

 

   (4) 
 
2.2. Properties of the Fourier Transform  

The Fourier Transform is a powerful tool in signal processing and analysis, boasting 
key properties that enhance its effectiveness: 
Linearity: The Fourier Transform is a linear operation. If a and b are constants, and 

 and g(t) are functions and they have the Fourier Transform  and  , 
respectively, then a has a Fourier Transform . 

 and  are termed a Fourier Transform pair. 
Symmetry: If  and  are a Fourier Transform, then  and  are a 
Fourier Transform pair. 
Time scaling: Time scaling in the Fourier Transform describes the impact of com-
pressing or stretching a function in the time domain on its frequency domain repre-
sentation (Oppenheim et al., 1997; Folland, 2009). The property states that if a func-
tion   will 
be scaled by .  For a time-scaled version  ,
real number, the Fourier Transform is given by this scaling relationship 
 
   (5) 

 
Frequency scaling: Frequency scaling in the Fourier Transform involves shifting the 
frequency components of a function in the time domain and observing the corre-
sponding shift in the frequency domain. If a function  is multiplied by , 
where is a real constant, its Fourier Transform will be shifted by  units. 
For a frequency-scaled version  , the Fourier Transform  is 
given by



Exploring fourier transformations: benefits, limitations, and applications in analyzing...    61 
 

 

 

  (6) 
 

This property allows manipulation of a signal s frequency characteristics by intro-
ducing a constant frequency offset. 
Alternate inversion formula: The alternate inversion formula is an alternative ex-
pression for the inverse Fourier Transform. It provides a different way to compute 
the time-domain function from its frequency-domain representation. The alternate 
inversion formula for the Fourier Transform pair  and  is given by 

 

   (7) 

 
where  is the conjugate of  if  then  

. 
Even functions: An even function  has the property  for all values 
of . The Fourier Transform of an even function is real and even.  
Odd function: An odd function  has the property  for all values 
of . The Fourier Transform of an odd function is purely imaginary and odd. 
Complex time function: The Fourier Transform can be applied to complex time func-
tions to obtain their frequency-domain representation. Understanding complex time 
functions and their Fourier Transforms is crucial for analyzing and manipulating sig-
nals in both the time and frequency domains. It allows for the extraction of frequency 
information, modulation analysis, filtering, and various other signal-processing op-
erations. 
 
2.3. The Fourier Series: Formulation and Diverse Applications 

The Fourier series is a fundamental mathematical tool expanding periodic function, 
into an infinite sum of trigonometric functions like sines and cosines (Bracewell, 
1986; Gray and Goodman, 2012). It elegantly approximates complex waveforms 
through simpler harmonic components. It extends to generalized Fourier series or 
transforms, representing functions as linear combinations of orthogonal basis func-
tions, providing a versatile approach to expressing a wide range of periodic and non-
periodic functions. These basis functions are typically chosen to be orthogonal where 
their inner products  
 
   (8) 

 
satisfy certain properties (Elias and Stein, 2003). In the Fourier series, traditional 
basis functions are sine and cosine waves. However, in generalized Fourier series, 
various basis functions, such as Bessel functions, Legendre polynomials, and Her-
mite functions, can be used (Trigg, 2005; Silverman, 1972; Abramowitz and Stegun, 
1968). A system of Fourier cosine functions represents a collection of cosine func-
tions used in a Fourier series expansion. These functions are derived by taking the 
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real component of equivalent complex exponential functions. The general form of a 
Fourier cosine series for a function  on is as follows 
 
   (9) 

 
where  and  called constant expansion coefficients  
 

   (10) 

 

  ,   (11) 

 
The Fourier sine system refers to a set of sine functions that can be used as a basis 

for representing functions in a Fourier series expansion 
A., 1954; James et al., 1996). These functions are defined by taking the imaginary 
part of the corresponding complex exponential functions. The Fourier sine series is 
defined by the following general form of the Fourier sine series 
 
   (12) 

 
 constant expansion coefficients are calculated as 

        ,   (13) 

 
The Fourier sine system is advantageous for odd functions or those defined on an 

antisymmetric interval due to its focus on odd terms, aligning with the properties of 
sine functions. The trigonometric system, which combines Fourier sine and cosine 
functions, is commonly used for Fourier series expansions, accommodating both an-
tisymmetric and symmetric functions(Bracewell, 1986; Kamen and Heck, 2006). 
The general form of the Fourier series using this trigonometric system is 

 
  (14) 

 
where 

   (15) 

 

 ,         (16) 

 

        ,  (17) 
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2.4. The Discrete Fourier Transform: Theory and Applications 

The Discrete Fourier Transform (DFT) is crucial for analyzing discrete time domain 
signals, unveiling their frequency components by converting a sequence of complex 
numbers representing signal samples. Widely used in signal processing, the DFT 
helps determine frequency composition, ignores phase information, and facilitates 
convolution operations (Oppenheim, 1999a; Briggs and Henson, 1995). Mathemati-
cally, the DFT is formally defined as 
 
   (18) 

 
where  

represents the k-th frequency component of the signal in the frequency domain, 
denotes the n-th sample of the discrete signal in the time domain, 

 is the imaginary unit, 
 is the total number of samples. 

The DFT is a vital tool in digital signal processing, decomposing discrete sig-
nals to reveal their spectral content. Widely used in applications like telecommu-
nications, audio processing, and image analysis, the DFT is integral to tasks such 
as image compression and enhancement (Bracewell, 1986; Bose and Meyer, 2003; 
Smith, 2008). Additionally, it enables fast computation through algorithms like the 
Fast Fourier Transform (FFT), facilitating real-time signal analysis in applications 
like audio processing and wireless communications (Bagchi and Mitra, 2012; 
Bracewell, 2004). 

 
2.5. Continuous Fourier Transform: Theory and Applications 

The Continuous Fourier Transform (CFT) is a mathematical technique used to ana-
lyze continuous, time-domain signals in terms of their frequency components 
 
   (19) 

 
where 

represents the frequency component of the signal in the frequency domain, 
denotes the continuous signal in the time domain, 

 is the imaginary unit, 
is the continuous frequency variable. 
The CFT is essential for analyzing continuous time-domain signals, extending 

the capabilities of the Discrete Fourier Transform (DFT) to non-discretely sampled 
signals. Widely used in physics and quantum mechanics, the CFT provides insights 
into the spectral characteristics of quantum particles and various physical phenom-
ena by revealing the frequency components of continuous signals (Lowrie, 2011). 
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3. BENEFITS OF FOURIER TRANSFORMATIONS AND LIMITATIONS  

3.1. Advantages of Fourier Transformations 

A fundamental strength of Fourier Transformations lies in their ability to decom-
pose complex signals into their constituent frequency components. This feature 
is particularly advantageous when dealing with signals of diverse origins, allow-
ing us to discern the underlying frequencies that make up these signals. This 
spectral decomposition serves as the foundation for many applications in signal 
processing and analysis. The Fourier series is a powerful tool for representing 
periodic signals by expressing them as combinations of sine and cosine functions. 
It simplifies the analysis of periodic phenomena, providing insights into har-
monic content and temporal behavior, especially in fields like music, physics, and 
engineering (Bracewell, 1986). 

In the realm of discrete signals, the DFT plays a pivotal role. Computing the 
DFT allows access to the frequency domain representation of discrete signals, aid-
ing in understanding underlying frequencies and amplitudes in sampled data. This 
versatility makes the DFT crucial in applications from audio processing to tele-
communications (Smith, 2008). 

Real-world applications highlight the benefits of Fourier Transformations in 
signal processing, image analysis, and audio processing. These examples under-
score the advantages of employing Fourier Transformations for effective signal 
analysis and interpretation. 
 
3.2. Constraints of the Fourier Transformation 

While Fourier Transformations offer a multitude of advantages, it is essential to 
acknowledge their limitations. One significant constraint pertains to the assump-
tion of stationarity. The stationarity assumption implies that the signal s statistical 
properties remain constant over time (Smith, 1997) . However, many real-world 
signals exhibit variations in statistical properties, posing a challenge to the appli-
cation of Fourier Transformations. In this context, it becomes imperative to delve 
into the specifics of stationarity constraints and their implications. 

Another limitation concerns the sensitivity of Fourier Transformations to abrupt 
signal changes. When signals undergo sudden shifts or contain discontinuities, 
Fourier Transformations may encounter difficulties in accurately representing the 
signal s behavior. Addressing the challenges associated with abrupt changes in sig-
nals is essential to comprehensively understand the limitations of Fourier Trans-
formations (Bracewell, 1986). The reduced accuracy of Fourier Transformations 
when applied to real-world data constitutes another critical limitation. Practical 
data often deviates from the idealized mathematical models assumed in Fourier 
analysis. As a result, the precision and the reliability of Fourier Transformations 
may diminish when dealing with complex, noisy, or imperfect data (Oppenheim, 
1999c). Exploring the intricacies of this limitation is fundamental to grasping the 
practical constraints of Fourier Transformations in real-world scenarios. 
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In addition to theoretical constraints, practical aspects can also impose limita-
tions on the utility of Fourier Transformations (Bracewell, 1986). Understanding 
the interplay between theoretical and practical constraints is vital in gaining in-
sights into the boundaries of Fourier Transformations when applied in various do-
mains. By comprehensively examining these limitations, we can make informed 
decisions about when to employ Fourier Transformations and when alternative 
methods may be more suitable. 

 
4. ADDRESSING LIMITATIONS AND EXPLORING ALTERNATIVES 

To address the limitations of Fourier Transformations, the exploration of alternative 
methods has become essential. These methods provide innovative ways to analyze 
signals and overcome the constraints associated with Fourier analysis. Alternative 
techniques often offer unique advantages in specific applications, making them val-
uable tools for researchers and practitioners working in signal analysis. 
 
4.1. Wavelet Transform: Explanation and Applications 

The Wavelet Transform is a mathematical technique used to analyze functions and 
signals by decomposing them into different scales and frequencies. Unlike the Fou-
rier Transform, which represents a signal in the frequency domain, the Wavelet 
Transform simultaneously provides information in both the time and frequency do-
main (Mallat, 1999; Daubechies, 1992). This dual-domain analysis is one of the key 
advantages of wavelet analysis. 

Mathematically, the continuous Wavelet Transform (CWT) of a signal x(t) is 
computed using the following formula 

 

   (20) 

 
where 
CWT (a, b) is the continuous Wavelet Transform at scale a and position b, 
x(t) is the input signal in the time domain, 

translated version of the mother wavelet. 
The continuous Wavelet Transform examines signal x(t) at different scales (a) 

and positions (b), providing a time-frequency representation that s ideal for analyz-
ing non-stationary signals. The choice of the mother wavelet function  deter-
mines the Wavelet Transform s properties, with wavelets like Morlet, Mexican hat, 
and Haar serving specific applications. 

This versatile mathematical tool has diverse applications. In image processing, 
it aids in compression, denoising, and feature extraction, while data compression 
techniques efficiently reduce file sizes (Strang and Nguyen, 1996). In pattern 
recognition, particularly in computer vision and machine learning, it helps identify 
crucial features (Cohen, 2003). Wavelet analysis benefits biomedical signal 
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processing, environmental monitoring, speech and audio processing, and finan-
cial data analysis. Renowned for its adaptability and precise time-frequency in-
formation, the Wavelet Transform expands the signal analysis toolkit, offering 
an alternative to Fourier Transformations, especially for non-stationary signals 
(Mallat, 1999). 

 
4.2. Short-Time Fourier Transform (STFT): Explanation and Applications 

The Short-Time Fourier Transform (STFT) is one such alternative method that 
merits attention. It is designed to address a critical limitation of the standard Fou-
rier Transform  the assumption of signal stationarity. The STFT overcomes this 
constraint by analyzing short, overlapping segments of a signal rather than the en-
tire signal at once (Durak and Arikan, 2003). This approach allows for the exami-
nation of time-varying frequency components within a signal, making it particu-
larly useful for non-stationary signals like speech, music, or any signal that changes 
over time 
 
  (21) 
 
where 

represents the Short-Time Fourier Transform at time t and frequency f, 

is the input signal in the time domain, 

 is the window function, usually a short, localized function with non-zero values 
only within a limited time frame, 

 is the time variable used for shifting the window function, 

 is a variable represents time, 

represents the complex exponential term for frequency f. 

 
In the STFT, a window function slides over the signal, capturing a small portion at 
a time. By applying the Fourier Transform to each windowed segment, we obtain 
a time-frequency representation of the signal. This representation reveals how the 
frequency content evolves over time, providing crucial insights into transient 
events and non-stationary behavior. As a result, the STFT is widely used in appli-
cations like audio processing, speech recognition, and the analysis of time-varying 
phenomena. These are a few examples within the broader family of Fourier Trans-
formations (These are shown in Table 1). The choice of which transform to use 
depends on the specific characteristics of the signal and the goals of the analysis. 
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Table 1 
The system of Fourier Transformation and its characteristics, advantages, and dis-

advantages of some key transformations within the Fourier family 

System of 
Fourier 

Transfor-
mations 

Characteristics Advantages Disadvantages 

Fourier 
Transform  

Mathematical  
Representation 

Continuous 
Domain  Frequency 

Analysis. 
 

 Widespread 
Applicability. 

 Computational 
Complexity 

 
 Limited for 

Discrete Signals 

Converts a function of 
time (or space) into a 
function of frequency. 

 

Defined for 
continuous 

signals 

Discrete Fou-
rier Trans-
form (DFT)  

Discretization 
Finite-Length 

Signals 
 

 Digital Im-
plementation 
 

 Exact Rep-
resentation 

 Computational 
Complexity Computes the Fourier 

Transform for discrete 
signals 

Suitable for 
processing  

finite-length 
signals 

Fast Fourier 
Transform 

(FFT)  

Efficiency Improvement: An algorithmic 
approach to compute the DFT with reduced 

computational complexity. 

 Efficiency 
 

 Widespread 
Use 

 Requires 
Power-of-Two 
Lengths: Some 
FFT algorithms 
are most effi-
cient when the 
signal length is 
a power of two. 

Short-Time 
Fourier 

Transform 
(STFT)  

(Allen and 
Rabiner 

1977; Cohen 
1995) 

Time- 
Frequency  
Analysis 

Windowing 

 Time-Fre-
quency Local-
ization 

 Adapt- 
ability:  
Suitable for 
non-stationary  
signals. 

 Time-Fre-
quency Resolu-
tion Tradeoff:  
The choice of 
window size af-
fects time and 
frequency reso-
lution; a smaller 
window pro-
vides better time 
resolution but 
poorer fre-
quency resolu-
tion, and vice 
versa. 

Represents 
how the fre-

quency content 
of a signal 

changes over 
time 

Involves dividing the sig-
nal into short segments 
and applying Fourier 

Transform to each  
segment. 
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5. EXPLORING THE PRACTICAL APPLICATIONS: TOTAL MAGNETIC FIELD 

ANALYSIS OF A TWO-DIMENSIONAL RIGHT RECTANGULAR PRISM AND ITS 

FOURIER TRANSFORM REPRESENTATION  

The magnetic field of a 2D right rectangular prism, magnetized along the z-direction 
(Figure 2), is determined using the 2D Fourier Transform. It is represented as the 
sum of magnetic fields from two infinite lines of dipoles (Kis, 2009). The inverse 
transform, employing the convolution theorem, yields a comprehensive magnetic 
field. The resulting expression depends on the prism s dimensions and the observa-
tion point s specific location (Griffiths and Inglefield, 2005; Jackson and Fox, 1999). 

 
Figure 2 

The location of a 2D right rectangular prism in the xz-coordinate system; the dis-
tances;  , , , and and angles , , , and  

 
 The magnetic field produced by a 2D right rectangular prism (Figure 2) can be com-
puted using the following analytical formula that involves the prism's dimensions 
and the coordinates of the observation point 
 
  (22) 

 
where 
 

  (23) 

 
Let us initiate the angles  
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  ,   ,  , and  

 
.              and                     

 
With 
 

  ,  , 
 

  ,   , 
 

 , and      

 
where  ,  , , 

 
In the direction K, the angle A is the azimuth of the profile measured from the 

geographic North, a and b are the inclination and declination of the moment, respec-
tively. The total magnetic field of a 2D right rectangular prism can be computed, 
given specific parameters such as the absolute value of the vector of magnetization 
(J), dimensions (rd), height (h), inclination of the earth s magnetic field (incl), dec-
lination of the earth's magnetic field (decl), and the position at which the magnetic 
field is to be calculated (x).  
 

Figure 3 
The position of 3D right rectangular prism in the xyz-coordinate system;  

the coordinates are  , , , and  and   
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The function takes the following inputs as it is shown in the 2D and 3D representa-
tion, (Figure 2 and 3): 
`J` is the magnetization of the prism in A/m, 
`rd`is the dimensions of the prism represented as a vector [x1, x2, z1, z2], where x1 
and x2 are the x-coordinates of the opposite corners in the x-direction, and z1 and z2 
are the z-coordinates of the opposite corners in the z-direction, 
`h`is the height of the prism in the y-direction, 
`incl`is the inclination of the earth's magnetic field, provided as a vector [a, I], where 
'a' is the angle of inclination in degrees from the horizontal plane, and 'I' is the angle 
of inclination in degrees from the northward vertical, 
`decl` is the declination of the earth's magnetic field, expressed as a vector [b, D], 
where 'b' is the angle of declination in degrees from the geographic north to the mag-
netic north, and 'D' is the angle of declination in degrees from the magnetic north to 
the northward vertical, 
`x` is the position at which the magnetic field is to be calculated, specified in the x-
direction. 

The function computes the magnetic field (in nT) at a specified x-position 
using the formula for a 2D rectangular prism, involving inclination and declina-
tion angle conversions, direction cosine calculations, and dipole moment vector 
components. It sums contributions from each prism side to determine the total 
field. The accompanying plotting script visualizes magnetic field variations for 
different angle configurations (D =  = 0; I =  = Figures 
2.A.a, 2.B.d, 2.C.g, and 2.D.j. 

Next, we introduce a Fourier Transform for the total field of a 2D right rectangu-
lar prism. The computation considers a source with a horizontal extension of 2a 
(symmetrical to the origin), upper and lower depths (d1 and d2), and uniform mag-
netization. The spatial frequency 'f' (in cycles per spatial unit) is used. The given 
equation yields result for z = 0 and f < 0 

 

 

For z = 0 and f > 0 

 

With a thickness t(t = d2 d1) the Fourier Transform of the total magnetic field of the 
2D right rectangular prism is  
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Figures 2 illustrates the real and imaginary parts of the spectrum of the total mag-
netic field of the 2D right rectangular prism. These functions are plotted with respect 
to the spatial frequency 'f', and the sampling interval is determined by the upper depth 
'd1' (set at 1 km) and the horizontal extension '2a' (equal to 6 km), where 't' is 1 km. 
Figures (4.A.b and 4.A.c), (4.B.e and 4.B.f), (4.C.h and 4.C.i), and (4.D.k and 4.D.l) 
are generated for D = = 0; I = =

Figure 4
The total magnetic field of a 2D right rectangular prism with its Fourier 

Transforms representation

(B)        Sampling space: 0.25 km               

(d) (e) (f)

(A)         Sampling space: 0.25 km                               

(a) (b) (c)

(C)      Sampling space: 0.25 km                            

(g) (h) (i)

(j) (k)
(l)
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6. CONCLUSIONS 

In conclusion, this paper has provided a comprehensive exploration of the historical 
significance, theoretical foundations, virtues, and limitations of Fourier Transfor-
mations. For professionals in diverse fields, understanding these aspects is essential 
for informed decision-making in signal analysis. We introduced alternative methods 
like the Wavelet Transform and Short-Time Fourier Transform, offering a compar-
ative analysis for method selection. As technology advances, ongoing research into 
innovative methods and interdisciplinary approaches is crucial to address challenges 
in non-ideal scenarios and real-world data. Embracing a forward-looking perspective 
will contribute to the continuous advancement of signal analysis. 
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