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Abstract: The study proposes a comparative uncertainty analysis of the main methods for 

permeability prediction or estimation, including the Cluster analysis (K-means), the Kozeny-

Carman (KyC) equation for flow unit identification, and the K-nearest neighbor Density Es-

timate (KNN) algorithm, Kozeny-Carman equation, and One Flow Unit (OFU) for permea-

bility prediction or estimation. The proposed analysis is applied to 13 wells in the Sacha field 

located in the Amazon region of Ecuador, targeting the Hollin and Napo formations, which 

mainly consist of sandstone, limestone, and shale. The selected wells have a sufficient num-

ber of laboratory measurements of permeability and electrical logs of porosity, permeability, 

natural gamma ray, medium, and deep resistivity. Initially, the K-means clustering and KyC 

methods are applied to identify the flow units, followed by a regression process to calculate 

the permeability using the KNN, KyC, and OFU methods. During the clustering process, the 

KyC method yielded better results, with the experimental data exhibiting uncertainties of less 

than ±35 mD, except in the outlier flow unit with an average porosity of 16.86% ±3.87% 

(Flow Unit D) whose average permeability is 407.52 mD and uncertainty of ±504.10 mD. 

For software simulation purposes, it is recommended to utilize the KyC method, as it employs 

basic concepts and equations in accordance with hydraulic principles.  

 

Keywords: uncertainty, permeability prediction, Sacha, flow units, K-nearest neighbor den-

sity estimate algorithm, cluster analysis. 

 

 

1. INTRODUCTION 

The process of modeling an underground reservoir requires the permeability prop-

erty determination, but this property can be measured by pressure test or directly by 

core samples (Remeczki et al. 2020, Fanchi 2018). This determination of the perme-

ability is only developed in small portions of the reservoir. Therefore, the prediction 

process of the permeability is essential. The results obtained from permeability val-

ues vary widely between the laboratory data and the predictions of the different 

methods, however these predictions are used for modeling. Why are these values 

used in modeling despite their relatively wide difference? What is the method that 
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provides the best results? It is very important to know the uncertainties involved in 

each of the values of the methods used to predict permeability, since in this way the 

most appropriate method can be used. 

The uncertainty in any measurement process has three components (Berg et al. 

2021): the variation between the sample and the same rock type with heterogeneity, 

experimental uncertainty during the measurement, and the interpretation process re-

lated to the model application. Few research evaluates and gives directly the values 

of permeability (Johnston and Beeson 1944) or others evaluate the uncertainty of the 

relative permeability (Berg et al. 2021, Mathias et al. 2013) but not the sample data 

permeability. 

Normally, laboratory measurements are not carried out in all wells and at all 

depths, so it is decided to use well logs to obtain permeability values and identify 

flow units through different processes. In some cases, the Kozeny-Carman equation 

is used to discretize the porosity values and based on a certain number of laboratory 

measurements of permeability, identify the flow units, and obtain the permeability 

by regression for the other zones and wells. For instance, (Belhouchet and 

Benzagouta 2019) use the Kozeny-Carman equation with the DRT (Discrete Rock 

Typing method) for predict the permeability in Algerian B-H oil field reservoir. This 

reservoir is composed of sandstone, limestone and dolomites and the results are 

based in the Correlation Coefficient R to determine if the estimation is right or 

wrong. However, they never expo the data of the permeability regression. Abbasza-

deh et al. (1996), Amaefule et al. (1993) and Perez et al. (2005) use the same equa-

tions with different variations but with the main similar idea. 

On the other side, Aminian et al. (2003) proposes the use of neural networks to 

base on training data predict the permeability and identify the flow units. It is similar 

to using the K-nearest-neighbor Density Estimate (KNN) which needs training data. 

In the case of study of the Norcan East Field (Bhattacharya et al. 2008) the method-

ology offers a complete process which includes validation based on the water satu-

ration and capillary pressure which appear in the transition’s zones. This methodol-

ogy is more complete but never calculates the uncertainty of the permeability values. 

Data from 13 wells were used in this research, which are in total 428 samples meas-

ured its porosity and permeability. Three methods are proposed to identify the flow 

units, one based in the size of porous that we call Kozeny-Carman (KyC) method, 

other is the cluster analysis algorithm called K-means which identified centroids and 

classified the data according to the nearest points (Szabó et al. (2019), Ali, Sheng-

Chang (2020)). In addition to, on this research the called One Flow Unit (OFU) 

method which as its name implies all the data belongs to one flow unit, it is because 

in the process of modeling it is always used and certainly sometimes It gets the best 

history match with the real fluid production (Krause et al. 2009).   

Permeability was estimated using the  Kozeny-Carman equations with DRT (Dis-

crete Rock Typing) (Belhouchet and Benzagouta 2019, Amaefule et al. 1993) but 

also uses the K-nearest-neighbor Density Estimate (KNN) method (Gómez et al.  

2022) which is based on a test data for learning and estimate the permeability. The 

third method uses exponential matching in One Flow Unit (OFU). 
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In addition, the uncertainty for the real sample data is determined with Equations 

(14), (15) and (16). And for the estimation of the permeability the equation used will 

be determined with exponential matching (Papadopoulos and Yeung 2001).  How-

ever, the calculation of the error develops using the Equation (17). The results show 

that the error and the uncertainty do not have any similarity and the uncertainty is 

always present. 

 

2. METHODOLOGY 

Permeability and porosity data are measured on 428 samples obtained from 13 wells 

in the Sacha field located in northeastern Ecuador (Baby et al. 2014). This data was 

matched with the well logs of natural gamma ray, superficial, intermediate, and deep 

resistivity, neutron porosity, gamma-gamma density and spontaneous potential. The 

methodology is divided into three stages: 

- Flow unit identification, 

- Permeability estimation, 

- Uncertainty and error of permeability determination.  

 

2.1. Flow Unit Identification 

Using the Kozeny-Carman methodology four flow units were identified: A, B, C and 

D. The equations used are (Amaefule et al. 1993): 

 

 
𝜃𝑧 =

𝜃

1 − 𝜃
 

(1) 

 
𝑅𝑄𝐼 = 0.0314

𝐾

𝜃
 

(2) 

 
𝐹𝑍𝐼 =

𝑅𝑄𝐼

𝜃𝑍
 

(3) 

 𝐷𝑅𝑇 = 2𝐿𝑜𝑔𝑒𝐹𝑍𝐼 + 𝐶 (4) 

where ϴz is normalized porosity in volume fraction, RQI is Rock quality index, K is 

permeability in mD, ϴ is porosity in volume fraction, FZI is Flow zone indicator, 

DRT is Discrete rock typing. According to the theory in a graphic Log RQI vs Log 

ϴz must draw parallels lines to differentiate the flow units (see Figure 1). PR
E-P
RO
OF



80    F. Gómez – M. Vadászi 

 
Figure 1  

Log RQI vs log ϴz of 428 samples of the Sacha Field. Blue, green, black and yel-

low represent the corresponding flow units A, B, C, D identified 

 

Discrete rock typing (DRT) gives integer numbers, in this case ranging from 6 to 

27, and they are organized into larger groups called flow units. In this case, using 

MATLAB, the grouping of the values was easier because the parallel lines in Figure 

1 must have the same slope and the numbers are in order. In Table 1 are the numbers 

that are related to the flow units A, B, C, D. 

The other method used to identify the flow units was using the Cluster Analysis 

methodology. K-means cluster analysis is a simple unsupervised statistical method 

that orders the objects of a multivariate dataset into groups (flow units) using the 

information of similarities given by metric distance (see Figure 2). The method is 

sensitive to the scale difference between variables, so normalization of the data set 

is required. Then, each object is designated into a non-overlapping group of great 

homogeneity and large differences from other groups. For further explanation see 

Szabó et al. (2019) and Ali and Sheng-Chang (2020). Mathematically, the method is 

expressed by the following equation: 

 

 
𝐽 =∑∑‖𝑥𝑖

(𝑗)
− 𝑐𝑗‖

2
𝑛

𝑖=𝑖

𝑘

𝑗=1

 
 

(5) 
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where J is objective function, xi is the i-th analyzed object, i= 1,…, n, cj is the j-th 

cluster centroid, j= 1,.., k, K is optimal number of clusters. The objective function 

converges at the minimum sums of square deviation of objects xi, from the cluster 

centroid cj. 

The “City Block” distance metric is incorporated for this study. Here, each cluster 

centroid is the component-wise median of the points in the cluster 

 

 
𝐷1 = ∑ |𝑥𝑘

(𝑖)
− 𝑥𝑘

(𝑗)
|

𝑁

𝑘=1

 
 

(6) 

 

where D is sum of lengths between points, xk
(i) is distance of xk from the centroid in 

component i, xk
(j) is distance of xk from the centroid in component j. In this case, the 

four flow units identified were named 1, 2, 3 and 4. The data classification can be 

seen on Figure 2: 

 

 
Figure 2 

 Permeability and porosity of 428 samples classified by K-means clustering algo-

rithm. Light blue, yellow, green, and purple are the flow units 1, 2, 3, and 4 respec-

tively. Black points are the centroids 
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Finally, the One Flow Unit (OFU) method to complete permeability data is presented 

in Figure 3. 

 
Figure 3 

Logarithm of permeability vs. porosity (%) of the 428 samples. Red line represents 

the exponential regression to predict the permeability 

 

2.2. Permeability estimation 

The permeability was estimated first using an exponential regression for each flow 

unit A, B, C and D. The empirical equations are given below 

 

 𝐾𝐴 = 4.804 ∗ 10−6𝜃3.994 (7) 

   

 𝐾𝐵 = 0.00179𝜃2.862 (8) 

   

 𝐾𝐶 = 0.01604𝜃2.849 (9) 

   

 𝐾𝐷 = 1.521𝜃1.959 (10) 

 

The second method used for estimating the permeability was the K-nearest neigh-

bor density estimate (KNN) which is a non-parametric method of estimating a prob-

ability density function. The algorithm estimates a function that predicts the rock 
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type(z) according to the log-well registered values. Every interpreted rock category 

x is a p-dimensional random variable X. This means the interpretation of the rock 

permeability will depend on the pre-established rock type z. The d(x,z) represents 

the Euclidean distance between x and z. X is an example of z, consequently x is the 

permeability measured and matched with the logs before the prediction (Hu et al. 

2008, Mitra et al. 2002). The hypersphere of radius r about z is designated by Equa-

tion 11 

 

 𝐴𝑟,𝑧 = {𝑋 ∖ 𝑑(𝑥, 𝑧) ≤ 𝑟} (11) 

 

where Ar,z is volume of the hypersphere, r is radius of the hypersphere, x isa categor-

ical class, and X is a variable with p dimensions. Then Equation 12 defines the den-

sity function: 

 
𝑓𝑁(𝑧) =

𝑘(𝑁)

𝑁
∗

1

𝐴𝑟𝑘(𝑁),𝑧
 

(12) 

 

where fN(z) is a function f to estimate z with N, k(N) is a sequence of positive integers 

from x1 to xN, x is a rock type interpreted in a set of data. By the other hand, the OFU 

method determine the exponential equation. See Figure 3: 

 

 𝐾𝑇 = 0.9733𝜃2.825 (13) 

   

2.3. Uncertainty and error of permeability determination 

Here, the real sample data was measured in poropermeameter equipment whose pre-

cision is 0.1% for the porosity and 0.01 mD for the permeability. The process of 

divide the permeability in flow units suppose that in the modeling process the same 

equation will be used for all the data that belongs to this flow unit. It is similar to the 

up-scaling where a group of data of wells is assigned to a cell of a grid. For this 

reason, the Equation 14 is used for determining the uncertainty in the experimental 

data. The Equation 15 is used to determine the uncertainty when a regression process 

is developed. The Equation 16 is the porosity uncertainty necessary for the calcula-

tion of the permeability uncertainty (JCGM member organizations 2008) 

 

 
𝑢(𝑘) = √𝑃𝐾

2 + 𝑆𝐾
22
 

(14) 
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(16) 

 

PR
E-P
RO
OF



84    F. Gómez – M. Vadászi 

where u is the uncertainty of the permeability and porosity, P is a precision of the 

poropermeameter equipment for permeability and porosity, S is the Standard Devi-

ation for porosity and permeability. The calculation of the error was also developed 

using the equation: 

 
%𝐸 =

𝑅𝑉 − 𝐸𝑉

𝑅𝑉
∗ 100 

(17) 

 

where %E is the data estimation Error with respect to the sample measured, RV is 

the real value with refer to the sample measured, and EV is the estimated value with 

the different proposed methods. 

 

3. RESULTS 

The results of the flow units and the permeability estimation according the KyC 

methodology is presented on the Figure 4, Table 1 and Table 2. The θmean is the mean 

porosity in the flow unit, k_corr is the measured permeability, K_NN is the permea-

bility estimated using the KNN method, E_KNN is the error between the measured 

and the estimated permeability, K_KyC is the permeability in the flow unit and 

E_KyC is the error. In the calculation of the errors the equation used was Equation 

17. 

 

 
Figure 4 

Logarithm of permeability vs. porosity (%) of the 428 samples divided in four flow 

units. Red lines represent the exponential regression to predict the permeability 
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Table 1 

Flow units A, B, C, and D determined using the KyC method with the DRT (dis-

crete rock typing) with porosity (ϴmean), permeability (k_corr) measured in labora-

tory, and permeability calculated with KNN(K_NN) and KyC (K_KyC) 
DRT FLOW 

UNIT 

NUMBER 

ELEMENTS 

ϴmean 

% 

k_corr 

mD 

K_NN 

mD 

E_KNN K_KyC 

mD 

E_KyC 

6 A 3.00 9.83 0.03 0.03 0.00% 0.07 131.88% 

7 2.00 8.10 0.05 0.05 0.00% 0.05 4.28% 

8 5.00 10.72 0.15 0.15 0.00% 0.28 81.82% 

9 B 8.00 6.70 0.10 0.10 0.00% 1.36 1220.58% 

10 5.00 6.56 0.13 0.13 0.00% 0.58 356.38% 

11 5.00 9.50 0.46 0.46 0.00% 2.18 377.81% 

12 13.00 7.27 0.60 0.60 0.00% 1.79 198.15% 

13 19.00 10.35 2.04 2.04 0.00% 4.44 117.34% 

14 21.00 9.50 2.88 2.88 0.00% 4.15 43.97% 

15 15.00 10.81 4.28 4.28 0.00% 3.67 14.29% 

16 C 21.00 10.41 8.42 8.42 0.03% 38.74 360.08% 

17 11.00 14.59 23.46 19.83 15.46% 69.42 195.93% 

18 16.00 13.09 30.12 30.12 0.00% 58.20 93.23% 

19 33.00 14.78 62.62 62.62 0.00% 79.05 26.25% 

20 D 41.00 16.95 142.72 141.69 0.72% 616.22 331.77% 

21 79.00 17.69 230.72 227.98 1.19% 647.59 180.68% 

22 66.00 16.91 327.78 327.78 0.00% 585.22 78.54% 

23 29.00 16.39 551.21 545.49 1.04% 588.57 6.78% 

24 26.00 15.07 770.47 770.47 0.00% 514.63 33.21% 

25 6.00 14.85 1412.19 1412.19 0.00% 525.87 62.76% 

26 2.00 17.75 2665.86 2665.86 0.00% 636.04 76.14% 

27 2.00 15.75 3377.07 3377.07 0.00% 523.76 84.49% 

 

In Table 2 uRθ is the porosity uncertainty in % determined using Equation 16, uRK 

is the uncertainty in the permeability determined using Equation 14 with the Sk of 

each flow unit of KyC, uKNN is the uncertainty in the KNN permeability determined 

with Equation 14 and the uRθ  for each KyC flow unit, UCK is the uncertainty in the 

KyC permeability determined with Equation 15 and uRθ  for each KyC flow unit.  

 

Table 2 

Uncertainty and Error values in the KyC method for flow units (uRϴ Equation 16, 

uRK Equation 14, UKNN Equation 14, uCK Equation 15 and 16) in KNN and KyC 

methods for permeability estimation 
 

FLOW 

UNIT 

# 
SAMPLE

S 

 

 

ϴmean % 

 

 

uRϴ % 

 

 

KR mD 

 

 

uRK mD 

 

 

KNN _mD 

 

 

UKNN mD 

 

 

E_KNN 

 

 

K_kyC_m

D 

 

 

uCK mD 

 

 

E_KC 

A 10 9.93 ±4.26 0.10 ±0.11 0.10 ±0.15 0.00% 0.17 ±0.08 77.81% 

B 86 9.15 ±5.65 2.04 ±2.56 2.04 ±2.56 0.00% 3.19 ±1.78 56.77% 

C 81 13.29 ±5.66 36.83 ±34.74 36.34 ±34.94 1.34% 63.17 ±30.90 71.54% 

D 251 16.86 ±3.87 407.52 ±504.10 405.83 ±504.68 0.42% 601.49 ±173.21 47.60% 
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Table 3 presents the flow units according the K-means clustering method: uRθ is the 

porosity uncertainty in % determined using Equation 16, uRK is the uncertainty in the 

permeability determined using Equation 14 with the Sk of each flow unit of K-

means, uKNN is the uncertainty in the KNN permeability determined with Equation 

14 and the uRθ for each K-means flow unit, UKyC is the uncertainty in the KyC per-

meability determined with Equation 15 and uRθ for each K-means flow unit.  

 

Table 3 

Uncertainty and error values in the K-means clustering method for flow units (uRϴ 

Equation 16, URK Equation 14, UKNN Equation 14, UKyC Equation 15 and 16) in 

KNN and KyC methods for permeability estimation 
FLOW 

UNIT 

# 

SAMPLES 

ϴmean 

% 

uRϴ   

% 

KR 

mD 

URK 

mD 

KNN_

mD 

UKNN 

mD 

EKN

N 

KkyC 

Md 

UKyC 

mD 

EKyC 

 173 14.98 ±4.98 233.03 ±514.99 231.55 ±515.26 0.64

% 

368.43 ±38.

31 

58.10

% 

 79 13.00 ±6.57 199.37 ±270.59 198.83 ±270.69 0.27

% 

287.29 ±31.

07 

44.10

% 

 134 15.20 ±4.93 254.43 ±341.91 254.43 ±341.91 0.00

% 

396.75 ±59.

86 

55.94

% 

 42 12.80 ±7.16 364.01 ±535.80 360.05 ±535.90 0.01 399.22 ±435

.10 

9.67% 

 

In Table 4 we present the uncertainty and error with One Flow Unit method. 

 

Table 4 

Uncertainty and Error values in the OFU method for permeability estimation 
K_OFU mD uUFO mD E_KOFU 

438.70 ±349.59 78.73% 

 

4. DISCUSSION 

Unquestionably in this case, the KNN method gives the best result taking account 

the %Error (E_KNN) (Table 1 and 2) for both grouping methods, it attributes be-

cause KNN uses test data for estimate the permeability. If the permeability property 

is needed the KNN is the best option. However, it recommends using KyC method 

in modeling process. For modeling the up scaling Fanchi (2018) means grouping 

permeability for assign values or equations to a complete cell or cells. In his publi-

cation, Wang (2018) arrives at a similar conclusion regarding the identification of 

flow units for lithological purposes. In this work, Wang writes, “KNN (K-Nearest 

Neighbors) clustering in machine learning is a very efficient clustering method ap-

plied in lithology identification, reservoir type recognition, flow unit classification, 

and so on. However, it is not consistently effective due to its inherent limitations, 

such as its initial center selection and clustering center shift caused by outliers.” 

Wang states that while the KNN method is generally efficient, it encounters prob-

lems with clustering, which he attributes to issues with the initial selection center 

(Wang et al. 2018). In the publication by Silva (2019) titled Petrofacies 
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Classification using Machine Learning Algorithms, the precision for predicting pet-

rofacies using KNN is 92% for homogeneous layers, while for heterogeneous layers, 

it is reduced to 85%. In this research, they utilize an 80/20 split, meaning 20% of the 

data is used for testing, and 80% is for evaluation. The challenge in petrofacies iden-

tification lies in classifying heterogeneous layers. Permeability is a crucial aspect of 

petrofacies. This confirms the assertion because the data grouping directly addresses 

the heterogeneity of layers (Silva et al. 2020). 

In this investigation % Error is calculated by comparing the measured data with 

the estimated data, and it is an individual comparison between two values, while the 

uncertainty first depends on the precision of measuring equipment and after of the 

clustering process. The standard deviation is an important part of the determination 

of uncertainty. 

In the application of the KyC for identifying flow units, the suitable value of po-

rosity varies from 9.15 ±5.65 % to 16.86 ±3.87 %. While the experimental data of 

permeability has a suitable value from 0.1 ±0.11 mD to 407.52 ±504.10 mD. Like, 

the estimated permeability varies from 0.10 ±0.15 mD to 405.83 ±504.68 mD with 

the KNN method. Comparable, in the KyC method the permeability varies from 0.17 

±0.08 mD to 601.49 ±173.21 mD. Certainly, the permeability has a huge uncertainty, 

and it increases when is tried to estimate with different methods. 

By the other hand, in the application of the K-means method for identify flow 

units the suitable value of porosity varies from 12.80 ±7.16 % to 15.20 ±4.93%. 

While the experimental data of permeability has a suitable value from 199.37 

±270.59 mD to 364.01 ±535.80 mD. Like, the estimated permeability varies from 

198.83 ±270.69 mD to 360.05 ±535.90 mD with the KNN method. Comparable, in 

the KyC method the permeability varies from 287.29 ±31.07 mD to 399.22 ±435.10 

mD. Here, the uncertainty is less in the KyC method than the KNN method. How-

ever, the % Error is higher for every mean permeability. Consequently, the KNN is 

better in individual analysis but in grouped data the KNN has higher uncertainty. 

In the application of the OFU method for identifying flow units the suitable value of 

permeability is 438.70 ±349.59 mD with an error of 78.73%. If we compare this 

value with the other methods this value still inside the limits of the permeability 

measured or estimated for them. It means that the use of one flow unit in modeling 

is not a bad option considering that the uncertainty of permeability with the other 

methods has a huge variation. 

 

5. CONCLUSIONS 

According to our study, the best method to use in modeling process is KyC for flow 

units identification and permeability estimation. The uncertainty in Table 2 and 3, 

uKNN (uncertainty in KNN method) and uCK (uncertainty in method KyC) show 

smaller values in KyC method. The best method for determining the permeability is 

the KNN because the error is almost zero in all the flow unit classifications. 

The flow unit D has uncertainty higher than the estimated value except in the 

KyC method, it is because the D flow unit is the one with bigger porous size and 
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permeability measures. The KyC method always uses the size of the porous to group-

ing the data. 

The KyC method uses the size of the porous-like base for dividing the data while 

K-means uses only mathematics for dividing. However, using K-means is disquiet-

ing to clustering the data of natural gamma ray or resistivity logs to identify some 

match with the groups of permeability with porosity. If a good correlation is found, 

is possible to develop equations for predicting permeability with log data. Certainly, 

it is recommended to use K-means in K vs. natural gamma ray or K vs. Resistivity 

or K vs. density and compare with K-means of K vs. porosity. 
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