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Abstract: Edge detection is regularly used as a fundamental operation for correctly identify-

ing and measuring some required features. In a grey-level image, an area where the grey-

level value moves from a high value to a low value or vice versa is considered an edge. Edges 

are indicative of a boundary between an object and a background or between two objects. 

Consequently, edge detection in earth sciences is an important tool for locating geological 

features and determining their shapes and sizes. Edge detection usually forms a part of the 

geophysical interpretation or inversion procedure. Seismic tomography is a straightforward 

field of applying edge detection because the tomogram can be directly considered as an im-

age. In the tomographic reconstruction of seismic travel time data, care must be taken to keep 

the propagation of data errors to the model space under control. The noise - especially the 

outliers in the data sets - can cause appreciable distortions in the tomographic imaging. To 

reduce the noise sensitivity well-developed tomography algorithms can be used. On the other 

hand, the quality of the tomogram can further be improved by using image processing tools. 

This is especially important in edge detection, as it is extremely sensitive to noise. In the 

paper, we present two ways to find robust edge detection. At first, remaining in the frame-

work of traditional image processing a robust Cauchy–Steiner filter is used to improve the 

quality of edge detection in tomographic images. In the second part of the paper Deep Learn-

ing algorithm developed for edge detection is shown and investigating its noise sensitivity 

the robustness of the method is demonstrated. 
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1. INTRODUCTION 

The seismic tomography methods are used to reconstruct the velocity distribution 

for the investigated part of the Earth such that the travel time data should agree with 

measurements. In most of the methods, this is done by solving a least-squares (LSQ) 

problem. In tomography, the least-squares problems are frequently solved by the so-

called row action methods (Nolet, 1987; Herman, 2009) as the Algebraic Recon-

struction Technique (ART) or Simultaneous Iterative Reconstruction Technique 

(SIRT). On the other hand, it is well-known that the least-squares solution is very 

sensitive to the non-Gaussian nature of the noise distribution, especially sparsely 

distributed large errors, i.e. outliers in the dataset. So robust estimation methods 
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should be used. One of the most frequently used robust optimization procedures is 

the Least Absolute Deviation (LAD) method using the L1 norm to characterize the 

misfit between the observed and predicted data. An efficient algorithm was devel-

oped for its tomographic use by Scales et al. (1988). Another possibility to address 

the question of statistical robustness is the use of the Cauchy criterion (Amundsen, 

1991). In this case, the misfit function is the weighted norm of the deviation between 

the observed and predicted data vectors (the weights are the so-called Cauchy 

weights with a priori known scale parameters). In the framework of the Most Fre-

quent Value method (MFV), Steiner (1988) developed a more flexible procedure for 

determining the weights, in which the scale parameters are automatically derived 

from the data set. Combining the two approaches the weights (called Cauchy–Steiner 

weights) are applied in an iteratively reweighted least-squares procedure, resulting 

in an efficient outlier reduction. In the paper the tomograms given by traditional 

SIRT and its improved version, the W-SIRT (in which Cauchy–Steiner weights are 

applied to produce robust tomographic reconstruction (Dobróka et al., 2014) is ap-

plied. The resulting tomograms are utilized for robust edge detection. Doing this the 

results given by the traditional image processing tools (improved by using Cauchy–
Steiner weights) are compared to those produced by a Deep Learning (DL) proce-

dure. 

In the first part of the paper, a robust image processing tool – called Steiner filter 

– is introduced, in which MFV-weights are applied for further reduction of the in-

fluence of outliers. To analyze the noise reduction capability of the new filter me-

dium-sized tomographic images (containing 100x100 pixels) are used. The same da-

tasets are applied to show the efficiency of noise rejection capacity in edge detection 

of the DL procedure. In this second part, we applied the U-Net Convolutional Net-

work architecture, which is a widely used deep learning tool developed for image 

segmentation. After some necessary modifications, the procedure is applicable to 

edge detection with improved noise reduction capacity.  

 

2. EDGE DETECTION USING IMAGE PROCESSING TOOLS 

In a 2D case, the tomogram is an array of seismic velocity or slowness data along a 

(usually) regular grid. In an element of the grid, the ÿ(ÿ, Ā) value of the physical 

quantity (velocity or absorption coefficient) is constant. Here (ÿ = 1, . . . þ, Ā =1, . . . , ý), where þ,ý are the tomogram’s sizes in grid cell units. Considering the 
cell as a pixel with the constant (of the physical quantity) in it, a straightforward 

analogy can be declared between the tomogram and an image. Thus, the methods of 

image processing are obviously can be applied to improve the quality of tomographic 

pictures. To filter the tomogram one can define a 2D window containing 

(2k+1)x(2k+1) pixels (k=1,2,…) around the (ÿ, Ā) pixel symmetrically. The middle 

of the window is placed to the (ÿ, Ā) pixel of the tomogram which finds the filtered 

value given as  

 Ā(ÿ, Ā) = ∑ ∑ �(ÿ, Ā)ÿ(ÿ 2 ÿ, Ā 2 Ā)āĀ=2āāÿ=2ā    (1) 
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where �(ÿ, Ā) is the filter function (kernel or mask) (ÿ = 1, . . . þ 2 ā, Ā = 1, . . . , ý 2ā). In noise reduction, the smoothing filters 

 �1 = 19 [1 1 11 1 11 1 1] and �2 = 116 [1 2 12 4 21 2 1]  (2) 

 

are frequently used with the masks (in the 3x3 case), where �1 and �2 give the arith-

metic-, and the binomial mean, respectively. In image processing, the median filter 

is extensively used in which the filtered value is the median of the data in the window 

defined by the mask 

 Ā(ÿ, Ā) = ÿþýÿ�Ā{ÿ(ÿ, Ā, ÿ, Ā)}, (ÿ, Ā = 2ÿ, . . . , ÿ)  (3) 

 

P being the window’s size. A more general filter can give a weighted average of the 

noisy pixel values 

 �ā = 1∑ āÿ,Ā3ÿ,Ā=1 [ā11 ā12 ā13ā21 ā22 ā23ā31 ā32 ā33]    (4) 

 

In our present investigation, the Steiner filter is introduced with the weights 

 
2

22
, ( 3( 1) )

( )
k

k

 = k v uw
 + d M




= − +
−

   (5) 

 

in Equation 4, where the � and ý are the scale-, and location parameters calculated 

in an iterative procedure with 

 

ýĀ+1 = 3 ∑ �ā(�Ā2+(�ā2ýĀ)2þā=1
∑ ( 1�Ā2+Āā2)2þā=1 ,�Ā+12 = 3 ∑ Āā2(�Ā2+Āā2)2þā=1

∑ ( 1�Ā2+Āā2)2þā=1    (6) 

 

in the j-th iteration (ÿā = ýā 2ýĀ). The starting value for the location parameter is 

the mean of the data (in the mask), while � is given as �0 ≤ √3(ÿÿ�Ă 2 ÿÿÿĀ/2) 
(Steiner, 1988). 

 

2.1. Application of the Steiner filter in noise reduction of seismic tomography 

images 

For the numerical experiments, a rectangular test area of 100x100 cells was defined 

(Figure 1). The model contains three anomalies of the velocity 5 km/s (red color) 
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located in a homogeneous background of 4 km/s velocities (blue color). Sources and 

receivers were positioned along the x- and y-axis in an arrangement fulfilling the 

requirement of full tomographic ray coverage, thus the theoretical travel time data 

were computed along 60000 ray traces. To model quasi-measured data containing 

outliers, the theoretical travel times were contaminated with 1% Gaussian distributed 

noise and an extra 10% noise was added to a randomly selected 10% portion of the 

data. The tomographic reconstruction was made using the traditional Simultaneous 

Iterative Reconstruction Technique (SIRT method) and its improved version, the W-

SIRT robustified by using MFV weights (Dobróka, 2007). Instead of displaying the 

exact model, its SIRT reconstructed tomogram using the noise-free dataset is 

presented in Figure 1. 

 

 
Figure 1 

The model reconstructed by means of noise-free travel time data 

 

The Simultaneous Iterative Reconstruction Technique is one of the most fre-

quently used methods in seismic tomography. In the typical step of the algorithm, 

the arithmetic mean of the so-called ART correction belonging to the seismic rays 

crossing the j-th cell is calculated as 

 ĀĀ(ÿ+1) = ĀĀ(ÿ) + 1�Ā∑ �ÿĀĀÿ(ÿ)∑ �ÿā2ā�Āÿ=1     (7) 

 ĀĀ(ÿ) is the slowness of the j-th cell in the q-th iteration, ĀĀ denotes the number of 

rays crossing the j-th cell, ÿÿ(ÿ) means the difference between the i-th measured and 

calculated traveltime and �ÿĀ is the ray section of the i-th ray in the j-th cell. If instead 

of this simple arithmetic mean, a weighted average of the ART corrections is used  
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a new version of the SIRT algorithm can be defined. Using the Cauchy-Steiner 

weights given in Equation 4, a robust W-SIRT method can be defined (Dobróka and 
Szegedi, 2014; Dobróka and Kale, 2016). 

To characterize the accuracy of the reconstruction the relative model distance  

 � = √1�∑ (āĀ2āĀ(0)āĀ(0) )2�Ā=1     (9) 

 

was used. Here ĀĀand ĀĀ(0) denotes the slowness in the j-th cell of the reconstructed 

picture and the model, respectively, M is the total number of cells. The tomograms 

given by the SIRT or W-SIRT methods contain the slowness data in each pixel, so it 

can be considered as a black-and-white image in which the grey level is the slowness 

(or velocity). Using this procedure the SIRT and W-SIRT tomograms were 

converted to jpg images of the size of 100x100 pixels. Figures 2a and 2b show the 

tomograms (color-coded in displaying).  

Utilizing Equation 8, the distance between the noise-free image (Figure 1) and 

the SIRT reconstructed noisy one (Figure 2a) is D=0.0265. The image depicted in 

Figure 2b given by the W-SIRT method (using Steiner weights) is characterized by 

D=0.0197 model distance. The improvement due to the use of the robust tomography 

method is 25.6%. It can be seen, that in the tomographic reconstruction of the data 

set containing outliers, the robust W-SIRT method has better noise reduction 

capability. 

 
a)     b) 

Figure 2 

The reconstruction of the noisy travel time data (including outliers) using a) 

SIRT and b) W-SIRT tomography methods 
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Figures 3a and 3b show the effect of the Steiner filter on the reconstructed SIRT 

and W-SIRT images, respectively. The model distance between the noise-free and 

the Steiner-filtered SIRT reconstruction (Figure 3a) is D=0.0232. Relative to Figure 

2a an improvement of 12.5% is found due to the use of the Steiner filter. The same 

calculation gives D=0.0156 model distance in the case of the Steiner-filtered W-

SIRT picture (Figure 3b) with 20.8% improvement due to the application of the 

Steiner filter. It can be seen that by using image processing tools, the quality of noisy 

tomograms can further be improved. Our investigations show that the outlier 

reduction effect of the new Steiner filter is similar to that of the median filter. 

 

 
a)     b) 

Figure 3 

The effect of the Steiner filter on a) SIRT and b) W-SIRT images 

 

2.2. Application of the Steiner filter in edge detection of seismic tomography 

images 

In seismic tomography, the geological structure is investigated using seismic travel 

time data. To support the interpretation of the tomographic result special transfor-

mations can be applied to the tomogram. It is a frequent problem to emphasize the 

borders of a certain geological structure (layer boundaries, fault etc.). There are com-

monly used tools for edge detection in image processing: the Prewitt and Sobel op-

erators.  

The difference along the x and y-axis is calculated utilizing the convolution 

masks of the Prewitt operator as 

 

 and 

 

 

 

Dy=[ 1  1  1; 

     0  0  0; 

    -1 -1 -1]/3 

Dx=[-1 0 1; 

    -1 0 1; 

    -1 0 1]/3 
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It can be seen that the difference is calculated 3 times, and their arithmetic mean is 

used as a local difference. In the case of the Sobel operator, the difference is also 

calculated 3 times, but the binomial mean is used to characterize the local difference: 

 

 and  

  

  

 

Using these convolution masks the change along the x-axis (approximates the x-

derivative) can be calculated as 

 �ý(ÿ, Ā) = ∑ ∑ �ý(ÿ, Ā)�(ÿ 2 ÿ, Ā 2 Ā)ā
Ā=2ā

ā
ÿ=2ā , (ÿ = Ā, . . . þ 2 ā, Ā = Ā, . . . ,ý 2 ā)   (10) 

 

and similarly 

 �þ(ÿ, Ā) = ∑ ∑ �þ(ÿ, Ā)�(ÿ 2 ÿ, Ā 2 Ā)ā
Ā=2ā

ā
ÿ=2ā , (ÿ = Ā, . . . þ 2 ā, Ā = Ā, . . . ,ý 2 ā)   (11) 

 

with k=(S-1)/2, where S is the mask size. These quantities can be considered as the 

two components of the 2D gradient vector. Its direction gives the direction of the 

maximal change of the slowness function, while its absolute value (the edge gradient √�ýā + �ýā) defines the rate of the total change in the same direction.  

In Figure 4 the effect of the (edge gradient) Sobel operator is demonstrated on a 

test image (<Lena=, frequently used in image processing). As it can be seen, on the 

homogeneous ranges the gradient is zero, thus in the edge gradient image, the black 

color is dominant. The edges appear as strong lines. In color images, the Sobel filters 

should be calculated on all the three matrices (red, blue and green) constituents of 

the image. 

 

Dy=[ 1  2  1; 

     0  0  0; 

    -1 -2 -1]/4 

Dx=[-1 0 1; 

    -2 0 2; 

    -1 0 1]/4 
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Figure 4 

The effect of the edge gradient (Sobel filter) 

 

Using the edge filters on tomograms the boundaries of geological models can be 

detected. We demonstrate the effect of Sobel edge detection on filtered and non-

filtered SIRT and W-SIRT tomograms. As a first step, the Sobel operator is applied 

to the noise-free tomogram of Figure 1. The result is shown in Figure 5 (the small 

disturbances are caused by reconstruction errors). 

 

 
Figure 5 

The effect of the Sobel edge detector on the noise-free tomogram 

 

This picture serves as a reference for later tests, the model distances will be cal-

culated from this image. To calculate the model distance, Equation 9 is not applica-

ble, because the reference image contains zero values (in the homogeneous seg-

ments). The new distance formula is  
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 � = √∑ (āĀ2āĀ(0))2ýĀ=1∑ (āĀ(0))2ýĀ=1 ,    (12) 

 

where �Āand �Ā(ÿ) denotes the difference values in the j-th cell of the actual- and the 

reference images, respectively, M is the total number of cells. 

Figure 6a shows the effect of the Sobel filter on the SIRT reconstructed noisy 

tomogram (Figure 2a) while Figure 6b demonstrates the effect of Sobel edge detec-

tion on the Steiner filtered SIRT tomogram (Figure 3a). The model distances relative 

to the image in Figure 5 are D=0.703 and D=0.661 in the case of Figure 6a and Figure 

6b, respectively. 

 

 
a)     b) 

Figure 6 

The effect of the Sobel edge detector on the a.) non-filtered and b.) Steiner-filtered 

SIRT tomogram 

 

A similar test was performed on the W-SIRT images. Figure 7a shows the effect 

of the Sobel filter on the W-SIRT tomogram (D=0.515), while Figure 7b demon-

strates the effect of Sobel edge detection on the Steiner-filtered W-SIRT tomogram 

(D=0.495). 

It can be seen that the combined use of edge detection and noise reduction by 

smoothing filters as well as the robust Steiner filter sufficiently improve the quality 

of the seismic tomographic images.  
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a)     b) 

Figure 7 

The Sobel filter on a) non-filtered and b) Steiner-filtered W-SIRT tomogram 

 

3. APPLICATION OF DEEP LEARNING IN EDGE DETECTION 

Machine learning has many possible applications and opens new perspectives in 

many fields, including earth science. In supervised learning, the model adjusts its 

parameters until its output gets close to the desired output (ground truth). 

To investigate the possibility of using machine learning models for the task of 

edge detection on noisy tomograms, we chose the U-Net architecture (Ronneberger 

et al., 2015), because it is the backbone of denoising diffusion models (commonly 

used for denoising tasks). U-Net is a fully convolutional network originally designed 

for semantic segmentation tasks, where the model learns to output 3 classes (fore-

ground, background, not classified i.e. outline). To use this architecture for edge de-

tection, we modified the original model to output 2 classes (edge, not edge). We 

trained the model on the BIPEDv2 dataset containing 250 images of urban scenes 

(Soria et al., 2023). The model performed well on the test set, and generalized quite 

well to other types of images, including tomographic images. Below we show our 

results: 

In Figure 8a we show the noise-free tomographic picture (the same as in Figure 

1) in a form compatible with the DL procedure. Figure 8b shows the edge detection 

result given by the (modified) U-Net architecture. 
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a)     b) 

Figure 8 

a) The noise-free tomogram, b) Edge detection predicted by the modified U-Net 

model trained on noiseless images 

 

In Figure 9 the U-Net model is tested on noisy input data in the case when it is 

trained on noiseless images. Figure 9a shows (pixel-by-pixel) the non-filtered SIRT 

tomogram (the same data set is shown in Figure 6a using Golden Surfer tool) while 

Figure 9b presents edge detection given by the modified U-Net model trained on 

noiseless images (re-sampled to 128x128 pixels). As it was expected, the edges are 

well detected but the image is noisy. 

 

 
a)     b) 

Figure 9 

a) The noisy SIRT tomogram, b) Edge detection predicted by the modified U-Net 

model trained on noiseless images 

 

PR
E-P
RO
OF



Edge detection of tomographic images using traditional and deep learning tools 139 

 

To be able to detect edges on noisy images, we added random Gaussian distributed 

noise to the BIPEDv2 dataset and trained the modified U-Net model on this new 

dataset, the desired output being the noiseless edge maps, as previously. Figure 10 

shows our result. 

 

 
a)     b) 

Figure 10 

a) The noisy SIRT tomogram, b) Edge detection predicted by the modified U-Net 

model trained on noisy images 

 

The traditional (Sobel-filtered) and the new (DL-produced) edge detection of the 

noisy SIRT tomogram (shown in Figure 2a) can be compared. Figure 11a is the same 

as Figure 6a presenting the effect of the Sobel edge detector on the non-filtered SIRT 

tomogram. Figure 11b shows the edge detection result given by the Deep Learning 

procedure on the same SIRT tomogram. For the sake of comparability, the two files 

are presented in the same format. It can be seen that the DL procedure has sufficient 

noise rejection capacity, or in other words, it has robust features. 
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a)     b) 

Figure 11 

a) The effect of the Sobel edge detector on the non-filtered SIRT tomogram b) the 

edge detection result given by the Deep Learning procedure 

 

Of course, DL edge detection can be used in a broader range of earth sciences phe-

nomena. As an example, we demonstrate a seismic application for edge detection in 

Figure 12. 

 

 
a) 
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b) 

Figure 12 

a) Reflection seismic section as input and b) its DL edge detection image 

 

4. CONCLUSIONS 

In geophysical inversion, tomographic reconstruction, image processing and in the 

case of many interpretation procedures, it is of main importance to keep under con-

trol the propagation of data errors to the model space independently (as much as 

possible) of the statistical distribution of the noise. The methods fulfilling these re-

quirements are usually called as robust. In the paper, we present two ways to perform 

robust edge detection. At first, remaining in the framework of traditional image pro-

cessing a robust Cauchy–Steiner filter is used to improve the quality of edge detec-

tion in tomographic images. In the second part of the paper Deep Learning algorithm 

developed for edge detection is shown and investigating its noise sensitivity the ro-

bustness of the method is demonstrated. 

As a new robust tool in image processing, the Steiner filter is introduced, in which 

the Most Frequent Value method developed by Steiner (1988) is applied to calculate 

the elements of the convolution mask. The effect of the filter was tested on medium-

sized tomographic pictures. It was shown that the quality of the tomogram can be 

further improved by using the new filter. It was found that the Steiner filter acts as a 

robust tool and can be successfully applied also in edge detection tests.  

Rather than establishing the parameter changes locally (pixel-by-pixel), Deep 

Learning tools can also be used as global alternatives to traditional image processing. 

In the second part of the paper, we applied the U-Net Convolutional Network archi-

tecture (UNCN), which is a widely used Deep Learning procedure developed for 
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image segmentation. The method was tested on the same datasets used in the inves-

tigation of traditional image processing. The results show that the U-Net architecture 

can be applied to edge detection tasks and can be trained to solve edge detection and 

denoising tasks simultaneously. Based on this, it can have wide applications in ap-

plied earth sciences. 
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