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Abstract: Edge detection is regularly used as a fundamental operation for correctly identify-
ing and measuring some required features. In a grey-level image, an area where the grey-
level value moves from a high value to a low value or vice versa is considered an edge. Edges 
are indicative of a boundary between an object and a background or between two objects. 
Consequently, edge detection in earth sciences is an important tool for locating geological 
features and determining their shapes and sizes. Edge detection usually forms a part of the 
geophysical interpretation or inversion procedure. Seismic tomography is a straightforward 
field of applying edge detection because the tomogram can be directly considered as an im-
age. In the tomographic reconstruction of seismic travel time data, care must be taken to keep 
the propagation of data errors to the model space under control. The noise  especially the 
outliers in the data sets  can cause appreciable distortions in the tomographic imaging. To 
reduce the noise sensitivity well-developed tomography algorithms can be used. On the other 
hand, the quality of the tomogram can further be improved by using image processing tools. 
This is especially important in edge detection, as it is extremely sensitive to noise. In the 
paper, we present two ways to find robust edge detection. At first, remaining in the frame-
work of traditional image processing a robust Cauchy Steiner filter is used to improve the 
quality of edge detection in tomographic images. In the second part of the paper Deep Learn-
ing algorithm developed for edge detection is shown and investigating its noise sensitivity 
the robustness of the method is demonstrated. 
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1. INTRODUCTION 

The seismic tomography methods are used to reconstruct the velocity distribution for 
the investigated part of the Earth such that the travel time data should agree with meas-
urements. In most of the methods, this is done by solving a least-squares (LSQ) prob-
lem. In tomography, the least-squares problems are frequently solved by the so-called 
row action methods (Nolet, 1987; Herman, 2009) as the Algebraic Reconstruction 
Technique (ART) or Simultaneous Iterative Reconstruction Technique (SIRT). On the 
other hand, it is well-known that the least-squares solution is very sensitive to the non-
Gaussian nature of the noise distribution, especially sparsely distributed large errors, 
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i.e. outliers in the dataset. So robust estimation methods should be used. One of the most 
frequently used robust optimization procedures is the Least Absolute Deviation (LAD) 
method using the L1 norm to characterize the misfit between the observed and predicted 
data. An efficient algorithm was developed for its tomographic use by Scales et al. 
(1988). Another possibility to address the question of statistical robustness is the use of 
the Cauchy criterion (Amundsen, 1991). In this case, the misfit function is the weighted 
norm of the deviation between the observed and predicted data vectors (the weights are 
the so-called Cauchy weights with a priori known scale parameters). In the framework 
of the Most Frequent Value method (MFV), Steiner (1988) developed a more flexible 
procedure for determining the weights, in which the scale parameters are automatically 
derived from the data set. Combining the two approaches the weights (called Cauchy
Steiner weights) are applied in an iteratively reweighted least-squares procedure, result-
ing in an efficient outlier reduction. In the paper the tomograms given by traditional SIRT 
and its improved version, the W-SIRT [in which Cauchy Steiner weights are applied to 

, 2014)] is applied. The re-
sulting tomograms are utilized for robust edge detection. Doing this the results given by 
the traditional image processing tools (improved by using Cauchy Steiner weights) are 
compared to those produced by a Deep Learning (DL) procedure. 

In the first part of the paper, a robust image processing tool  called Steiner filter 
 is introduced, in which MFV-weights are applied for further reduction of the in-

fluence of outliers. To analyze the noise reduction capability of the new filter me-
dium-sized tomographic images (containing 100 100 pixels) are used. The same 
datasets are applied to show the efficiency of noise rejection capacity in edge detec-
tion of the DL procedure. In this second part, we applied the U-Net Convolutional 
Network architecture, which is a widely used deep learning tool developed for image 
segmentation. After some necessary modifications, the procedure is applicable to 
edge detection with improved noise reduction capacity.  

 
2. EDGE DETECTION USING IMAGE PROCESSING TOOLS 

In a 2D case, the tomogram is an array of seismic velocity or slowness data along a 
(usually) regular grid. In an element of the grid, the  value of the physical quan-
tity (velocity or absorption coefficient) is constant. Here , 
where  
with the constant (of the physical quantity) in it, a straightforward analogy can be de-
clared between the tomogram and an image. Thus, the methods of image processing 
are obviously can be applied to improve the quality of tomographic pictures. To filter 
the tomogram one can define a 2D window containing (2k+1)x(2k+1) pixels 
( ) around the  pixel symmetrically. The middle of the window is placed 
to the  pixel of the tomogram which finds the filtered value given as  
 

   (1) 
 

where  is the filter function (kernel or mask) . 
In noise reduction, the smoothing filters 
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 and   (2) 

 

are frequently used with the masks (in the 3 3 case), where  and  give the 
arithmetic-, and the binomial mean, respectively. In image processing, the median 
filter is extensively used in which the filtered value is the median of the data in the 
window defined by the mask 
 

  (3) 
 

P A more general filter can give a weighted average of the 
noisy pixel values 
 

    (4) 

 

In our present investigation, the Steiner filter is introduced with the weights 
 

   (5) 

 

in Equation 4, where the  and  are the scale-, and location parameters calculated 
in an iterative procedure with 
 

,    (6) 

 

in the j-th iteration ( ). The starting value for the location parameter is 

the mean of the data (in the mask), while  is given as  
(Steiner, 1988). 
 
2.1. Application of the Steiner filter in noise reduction of seismic tomography 

images 

For the numerical experiments, a rectangular test area of 100 100 cells was defined 
(Figure 1). The model contains three anomalies of the velocity 5 km/s (red color) 
located in a homogeneous background of 4 km/s velocities (blue color). Sources and 
receivers were positioned along the x- and y-axis in an arrangement fulfilling the 
requirement of full tomographic ray coverage, thus the theoretical travel time data 
were computed along 60000 ray traces. To model quasi-measured data containing 
outliers, the theoretical travel times were contaminated with 1% Gaussian distributed 
noise and an extra 10% noise was added to a randomly selected 10% portion of the 
data. The tomographic reconstruction was made using the traditional Simultaneous 
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Iterative Reconstruction Technique (SIRT method) and its improved version, the W-
SIRT robustified by usin Instead of displaying the 
exact model, its SIRT reconstructed tomogram using the noise-free dataset is 
presented in Figure 1. 
 

 
Figure 1 

The model reconstructed by means of noise-free travel time data 
 
The Simultaneous Iterative Reconstruction Technique is one of the most frequently 
used methods in seismic tomography. In the typical step of the algorithm, the arith-
metic mean of the so-called ART correction belonging to the seismic rays crossing 
the j-th cell is calculated as 
 

    (7) 

 

 is the slowness of the j-th cell in the q-th iteration,  denotes the number of 

rays crossing the j-th cell,  means the difference between the i-th measured and 
calculated traveltime and  is the ray section of the i-th ray in the j-th cell. If instead 
of this simple arithmetic mean, a weighted average of the ART corrections is used  
 

,   (8) 

 

a new version of the SIRT algorithm can be defined. Using the Cauchy Steiner 
weights given in Equation 4, a robust W-SIRT method can be 
Szegedi, 2014;  

To characterize the accuracy of the reconstruction the relative model distance  
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    (9) 

 

was used. Here and  denotes the slowness in the j-th cell of the reconstructed 

picture and the model, respectively, M is the total number of cells. The tomograms 
given by the SIRT or W-SIRT methods contain the slowness data in each pixel, so it 
can be considered as a black-and-white image in which the grey level is the slowness 
(or velocity). Using this procedure the SIRT and W-SIRT tomograms were 
converted to jpg images of the size of 100 100 pixels. Figures 2a and 2b show the 
tomograms (color-coded in displaying).  

Utilizing Equation 8, the distance between the noise-free image (Figure 1) and 
the SIRT reconstructed noisy one (Figure 2a) is D = 0.0265. The image depicted in 
Figure 2b given by the W-SIRT method (using Steiner weights) is characterized by 
D = 0.0197 model distance. The improvement due to the use of the robust 
tomography method is 25.6%. It can be seen, that in the tomographic reconstruction 
of the data set containing outliers, the robust W-SIRT method has better noise 
reduction capability. 

 

 
a)     b) 

Figure 2 
The reconstruction of the noisy travel time data (including outliers) using a) 

SIRT and b) W-SIRT tomography methods 
 

Figures 3a and 3b show the effect of the Steiner filter on the reconstructed SIRT and 
W-SIRT images, respectively. The model distance between the noise-free and the 
Steiner-filtered SIRT reconstruction (Figure 3a) is D = 0.0232. Relative to Figure 
2a an improvement of 12.5% is found due to the use of the Steiner filter. The same 
calculation gives D=0.0156 model distance in the case of the Steiner-filtered W-
SIRT picture (Figure 3b) with 20.8% improvement due to the application of the 
Steiner filter. It can be seen that by using image processing tools, the quality of noisy 
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tomograms can further be improved. Our investigations show that the outlier 
reduction effect of the new Steiner filter is similar to that of the median filter. 
 

 
a)     b) 

Figure 3 
The effect of the Steiner filter on a) SIRT and b) W-SIRT images 

 
2.2. Application of the Steiner filter in edge detection of seismic tomography 

images 

In seismic tomography, the geological structure is investigated using seismic travel 
time data. To support the interpretation of the tomographic result special transfor-
mations can be applied to the tomogram. It is a frequent problem to emphasize the 
borders of a certain geological structure (layer boundaries, fault, etc.). There are 
commonly used tools for edge detection in image processing: the Prewitt and Sobel 
operators.  

The difference along the x and y-axis is calculated utilizing the convolution 
masks of the Prewitt operator as 

 

 and 

 
 
 
It can be seen that the difference is calculated 3 times, and their arithmetic mean is 
used as a local difference. In the case of the Sobel operator, the difference is also 
calculated 3 times, but the binomial mean is used to characterize the local difference: 
 

 and  

  
  

Dy=[ 1  1  1; 
     0  0  0; 
    -1 -1 -1]/3 

Dx=[-1 0 1; 
    -1 0 1; 
    -1 0 1]/3 

Dy=[ 1  2  1; 
     0  0  0; 
    -1 -2 -1]/4 

Dx=[-1 0 1; 
    -2 0 2; 
    -1 0 1]/4 
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Using these convolution masks the change along the x-axis (approximates the x-
derivative) can be calculated as 
 

 

   (10) 
 

and similarly 
 

 

   (11) 
 

with k=(S-1)/2, where S is the mask size. These quantities can be considered as the 
two components of the 2D gradient vector. Its direction gives the direction of the 
maximal change of the slowness function, while its absolute value (the edge gradient 

) defines the rate of the total change in the same direction.  
In Figure 4 the effect of the (edge gradient) Sobel operator is demonstrated on a 

As it can be seen, on the 
homogeneous ranges the gradient is zero, thus in the edge gradient image, the black 
color is dominant. The edges appear as strong lines. In color images, the Sobel filters 
should be calculated on all the three matrices (red, blue and green) constituents of 
the image. 
 

 
Figure 4 

The effect of the edge gradient (Sobel filter) 
 
Using the edge filters on tomograms the boundaries of geological models can be 
detected. We demonstrate the effect of Sobel edge detection on filtered and non-
filtered SIRT and W-SIRT tomograms. As a first step, the Sobel operator is applied 
to the noise-free tomogram of Figure 1. The result is shown in Figure 5 (the small 
disturbances are caused by reconstruction errors). 
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Figure 5 

The effect of the Sobel edge detector on the noise-free tomogram 
 
This picture serves as a reference for later tests, the model distances will be calcu-
lated from this image. To calculate the model distance, Equation 9 is not applicable, 
because the reference image contains zero values (in the homogeneous segments). 
The new distance formula is  

,    (12) 

 

where and  denotes the difference values in the j-th cell of the actual- and the 

reference images, respectively, M is the total number of cells. 
Figure 6a shows the effect of the Sobel filter on the SIRT reconstructed noisy 

tomogram (Figure 2a) while Figure 6b demonstrates the effect of Sobel edge detec-
tion on the Steiner filtered SIRT tomogram (Figure 3a). The model distances relative 
to the image in Figure 5 are D = 0.703 and D = 0.661 in the case of Figure 6a and 
Figure 6b, respectively. 

 

 
a)     b) 

Figure 6. The effect of the Sobel edge detector on the  
a.) non-filtered and b.) Steiner-filtered SIRT tomogram 
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A similar test was performed on the W-SIRT images. Figure 7a shows the effect of 
the Sobel filter on the W-SIRT tomogram (D = 0.515), while Figure 7b demonstrates 
the effect of Sobel edge detection on the Steiner-filtered W-SIRT tomogram 
(D = 0.495). 

It can be seen that the combined use of edge detection and noise reduction by 
smoothing filters as well as the robust Steiner filter sufficiently improve the quality 
of the seismic tomographic images.  
 

 
a)     b) 

Figure 7 
The Sobel filter on a) non-filtered and b) Steiner-filtered W-SIRT tomogram 

 
3. APPLICATION OF DEEP LEARNING IN EDGE DETECTION 

Machine learning has many possible applications and opens new perspectives in 
many fields, including earth science. In supervised learning, the model adjusts its 
parameters until its output gets close to the desired output (ground truth). 

To investigate the possibility of using machine learning models for the task of 
edge detection on noisy tomograms, we chose the U-Net architecture (Ronneberger 
et al., 2015), because it is the backbone of denoising diffusion models (commonly 
used for denoising tasks). U-Net is a fully convolutional network originally de-
signed for semantic segmentation tasks, where the model learns to output 3 classes 
(foreground, background, not classified i.e. outline). To use this architecture for 
edge detection, we modified the original model to output 2 classes (edge, not edge). 
We trained the model on the BIPEDv2 dataset containing 250 images of urban 
scenes (Soria et al., 2023). The model performed well on the test set, and general-
ized quite well to other types of images, including tomographic images. Below we 
show our results: 

In Figure 8a we show the noise-free tomographic picture (the same as in Figure 
1) in a form compatible with the DL procedure. Figure 8b shows the edge detection 
result given by the (modified) U-Net architecture. 
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a)     b) 

Figure 8 
a) The noise-free tomogram, b) Edge detection predicted  
by the modified U-Net model trained on noiseless images 

 
In Figure 9 the U-Net model is tested on noisy input data in the case when it is trained 
on noiseless images. Figure 9a shows (pixel-by-pixel) the non-filtered SIRT tomo-
gram (the same data set is shown in Figure 6a using Golden Surfer tool) while Figure 
9b presents edge detection given by the modified U-Net model trained on noiseless 
images (re-sampled to 128 128 pixels). As it was expected, the edges are well 
detected but the image is noisy. 
 

 
a)     b) 

Figure 9 
a) The noisy SIRT tomogram, b) Edge detection predicted  
by the modified U-Net model trained on noiseless images 

 
To be able to detect edges on noisy images, we added random Gaussian distributed 
noise to the BIPEDv2 dataset and trained the modified U-Net model on this new 
dataset, the desired output being the noiseless edge maps, as previously. Figure 10 
shows our result. 
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a)     b) 

Figure 10 
a) The noisy SIRT tomogram, b) Edge detection predicted  

by the modified U-Net model trained on noisy images 
 
The traditional (Sobel-filtered) and the new (DL-produced) edge detection of the 
noisy SIRT tomogram (shown in Figure 2a) can be compared. Figure 11a is the 
same as Figure 6a presenting the effect of the Sobel edge detector on the non-filtered 
SIRT tomogram. Figure 11b shows the edge detection result given by the Deep 
Learning procedure on the same SIRT tomogram. For the sake of comparability, the 
two files are presented in the same format. It can be seen that the DL procedure has 
sufficient noise rejection capacity, or in other words, it has robust features. 
 

 
a)     b) 

Figure 11 
a) The effect of the Sobel edge detector on the non-filtered SIRT tomogram 

b) the edge detection result given by the Deep Learning procedure 
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Of course, DL edge detection can be used in a broader range of earth sciences phe-
nomena. As an example, we demonstrate a seismic application for edge detection in 
Figure 12. 
 

 
a) 

 
b) 

Figure 12 
a) Reflection seismic section as input and b) its DL edge detection image 
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4. CONCLUSIONS 

In geophysical inversion, tomographic reconstruction, image processing and in the 
case of many interpretation procedures, it is of main importance to keep under con-
trol the propagation of data errors to the model space independently (as much as 
possible) of the statistical distribution of the noise. The methods fulfilling these re-
quirements are usually called as robust. In the paper, we present two ways to perform 
robust edge detection. At first, remaining in the framework of traditional image pro-
cessing a robust Cauchy Steiner filter is used to improve the quality of edge detec-
tion in tomographic images. In the second part of the paper Deep Learning algorithm 
developed for edge detection is shown and investigating its noise sensitivity the ro-
bustness of the method is demonstrated. 

As a new robust tool in image processing, the Steiner filter is introduced, in which 
the Most Frequent Value method developed by Steiner (1988) is applied to calculate 
the elements of the convolution mask. The effect of the filter was tested on medium-
sized tomographic pictures. It was shown that the quality of the tomogram can be 
further improved by using the new filter. It was found that the Steiner filter acts as a 
robust tool and can be successfully applied also in edge detection tests.  

Rather than establishing the parameter changes locally (pixel-by-pixel), Deep 
Learning tools can also be used as global alternatives to traditional image processing. 
In the second part of the paper, we applied the U-Net Convolutional Network archi-
tecture (UNCN), which is a widely used Deep Learning procedure developed for 
image segmentation. The method was tested on the same datasets used in the inves-
tigation of traditional image processing. The results show that the U-Net architecture 
can be applied to edge detection tasks and can be trained to solve edge detection and 
denoising tasks simultaneously. Based on this, it can have wide applications in ap-
plied earth sciences. 
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