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Abstract. The paper presents three different iterative algorithms for the numerical solution
of contact problems. Each algorithm is based on the use of the finite element method. It
is assumed that the contact conditions are fulfilled by means of special contact elements.
Numerical results for the various contact elements and solution algorithms are then compared
by solving 2D elasticity problems.
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1. Introduction

A machine structure consists of several parts, which are connected with each other
by surface contact. It is very important to determine the displacements, strains
and stresses in the contact area, because they can exert a powerful influence on the
reliability, failsafety and lifetime of the construction.

Figure 1.

An elastic contact problem can be formulated as follows. The system under con-
sideration — see Figure 1 for details — consists of two bodies denoted by A and B.
These bodies are in contact on the surface A.. The body forces b and surface
tractions f on A7 and APare given for each body. The kinematic boundary con-
ditions (support conditions) are also known on the corresponding surfaces A7 and
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AB. (V = VAUVE, VANTVE =0; A4 = AAU AL U AR AB = AB U AB U AB;
A; = A# U AB). Though it is assumed that the equations of linear elasticity are valid
for each body (the material is homogenous and isotropic) due to the surface contact
the relation between loading and displacements is a non-linear one. Consequently the
problem is also non-linear.

For non-linear problems the incremental version of the principle of virtual work
is the basis of solution. For the structure made up of the two bodies A and B, the
principle is of the form

/AT 5 (AE)dV = /Ab §(Au)dV + / av . (1.1a)

) ) (4,)

In addition it holds for body A (and B) that

AT - -0 (AE)dV + / Ap-d (Au)dV =
(VA4 (Ac)

/ Ab-6 (Au)dV + / Af-6 (Au)dA (1.1b)

(V4) (A%)

where T is the stress tensor, E is the strain tensor, p is the contact pressure, u is the
displacement field, the double scalar product is denoted by - . Greek § stands for the
variation of a quantity while A identifies the increment of a quantity.

There are two typical groups of solution methods used to solve elastic contact
problems of the above type. Methods in the first group reduce the contact problem
to a mathematical programming problem [3] [4]. Procedures in the second group are
iterative methods based on the use of special contact elements [5] - [9]. This paper
is going to apply and compare three different iterative methods and three types of
contact elements for solving frictionless elastic contact problems. The main goal of
the author was to implement two known iterative methods [5] - [9] and three types of
contact elements into a FEM code and to compare those with a new iterative solution
algorithm.

With the iterative solutions the contact conditions for each increment and iteration
step are satisfied using special contact elements. These special contact elements — see
Figure 2 — are fictitious elements with proper stiffness or material properties which
ensure the fulfillment of contact conditions. Thus they are not real finite elements,
but can be considered as an appropriate numerical help for the solution process.

In order to fulfil the contact condition in each load increment, two known iterative
solution algorithms were implemented: iteration with varying stiffness, iteration with
constant stiffness and a new method was developed: iteration with kinematic load.
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Figure 2.

Every contact elements and solution algorithms was installed in the FEM-3D finite
element program system [13] developed under Pdczelt’s leadership. The effective
application of the above iterative algorithms with contact elements assumes that the
FEM code makes substructuring possible. During the solution of contact problems it
is very useful to select the nodes on the potential contact area (Figure 2) as external
nodes while the other nodes can be considered as internal nodes. In this case one
should carry out the iteration steps taking only the variables of external nodes into
consideration.

2. Features of 2D contact elements

Three types of contact elements, namely line contact elements, layer contact elements
and node (or spring) contact elements were applied during the computations. These
special elements have already been applied in the literature [5] - [9]. Figures 3-5
illustrate the elements for 2D case.

The line contact elements (Figure 3) consist of two lines which represent real ele-
ment sides on bodies A and B and are attached to each other via a distributed spring
system. The corresponding spring stiffnesses are denoted by k; and k, in the local
co-ordinate system t,n (Figure 3/b.).

During the contact iteration the stiffnesses k; and k, must be modified until the
tangential (frictional) and normal contact conditions are fulfilled. For the characteris
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Figures 3 and 4

tic block of stiffness matrix of line contact element we obtain
| ke O

where the nodes attached to each other by the spring are denoted by 7 and j.

When using line contact elements the fulfillment of contact conditions is ensured
in the tn co-ordinate system along the center line of the contact element.

The layer contact elements (Figure 4) are made of special fictitious material for
which the modulus of elasticity E and the shear modulus G do not depend on each
other. Fulfillment of the normal contact condition can be reached by modifying E
and by giving a proper value to the shear modulus G one can satisfy the frictional
contact conditions. The form of the layer contact element stiffness matrix is similar
to that expressed in equation (1.1b). The contact conditions are again fulfilled along
the 7 = 0 co-ordinate line.

The node contact elements (Figure 5) consist of a couple of nodes, which are
connected in tangential and normal direction by springs with stiffnesses k; and &, .
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Figure 5.

The contact iteration procedure is the same as for the case of the above two con-
tact elements, consequently the stiffness matrix has the same form with only one
characteristic block.

3. Iterative solution algorithms

The basic FEM equation of the investigated system of bodies A and B for the i-th
load increment Af* may be written as

(Kap + K.) qu‘ = Af? (3.1)

where K4 is the super-structure stiffness matrix of the bodies A and B and K.
is the stiffness matrix of the contact elements. If K. takes the ”proper” value, (
i.e., each contact condition is fulfilled), these (the above) equations will allow for the
computation of the real displacement increment of the external nodes. It follows that
our task is now to determine this ”proper” value for K. . For this purpose, three
iterative solution methods have been developed:

a) Iteration with varying stiffness [5] - [8]

In the 1-st step we solve the linear algebraic equation system (3.1) with an initial
value K, :

Aqy = (Kap+ K, ) ' Af. (3.2)
Then the fulfillment of contact conditions is checked for the solution Aq} and in case
they are not fulfilled, the stiffness matrix of contact elements must be modified by

K1 — as regards its choice see [12] —:

(Kap + K., + K1) Aq, = Af? (3.3)
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After solving equation system (3.3) we obtain a new approach for the nodal displace-
ment increment:

Aqt = (Kap + K., +K.,) " Af. (3.4)
In the (j+1)-th iteration step the displacement increment can be computed as follows:
Aqi = (Kap + K, + Koy +... +K,,) Af (3.5)

From this equation it is obvious that the iteration algorithm with varying stiffness
needs a new matrix inversion procedure in each iteration step since the stiffness of
the contact elements is changed step by step. The qualitative character of the above
procedure is shown in Figure 6.

b) Iteration with constant stiffness [9)]

The 1-st step is the same as for the case of the iteration with varying stiffness —
see equation (3.2). Rearranging equation (3.3) we obtain a new equation with an
unchanged left side system matrix (stiffness matrix):

(Kap + K., )Aq = Af' — K. Adq) . (3.6)

Introducing a new notation for the right side of the above linear equation system

Af] = Af' — K, Aq) , (3.7)
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a recursive formula with constant stiffness matrix and varying load increment is ob-
tained:

(Kaz +K.,) Ad) = Af] (3.8)

For the (j + 1)-th iteration step the displacement increment can be computed from
the following equation:

Aqi = (Kap + K.,) ' Af! (3.9)
where the current value of load increment is
Aff = A — K, Aqy — ... — K, Aq(; (3.10)

It is seen from equation (3.10) that the iteration procedure with constant stiffness
requires only one matrix inversion for each load increment and that, step by step,
only the right side is modified. In this manner, it is possible to save a great deal of
computing operations and time. Figure 7. represents the qualitative character of the
above algorithm.
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¢) Iteration with kinematic load

This algorithm is based on Pdczelt’s idea [14]. Using this idea an appropriate
kinematic loading is applied in the 1-st iteration step:

(Kap +Ke,) Aqjy = Aff + £, (3.11)
The kinematic loading can be computed as
£y, = Ke,80 (3.12)

where gq is the matrix of the initial gaps of normal direction on the potential contact
area. This kinematic loading is set to a value which makes the initial normal gaps
disappear.

Solving the algebraic equation (3.11) one can check the fulfillment of the contact
condition and after performing the necessary modifications in the contact stiffness
matrix a new equation system is obtained:

(KAB + I<c(7 + Km) qui = Afi =+ (Kco =+ K01 ) 2o (3'13)

In the (5 + 1)-th iteration step the i-th displacement increment is computed from the
following equation system:

(Kap +Ke, +... +K¢)) Aq) = A + (K., + ... + K¢j) g0 (3.14)

It is seen from equation (3.14) that both the stiffness matrix and the load vector are
modified step by step in this iteration procedure.

4. Numerical examples

The comparison of efficiency and capability of the above algorithms and contact
elements are carried out through the use of two numerical tests.

a) Elastic cylinder - rigid plane

In this example we have solved the contact problem of an infinite elastic cylinder
and a rigid plane pressed to each other by a uniform load q (Figure 8). Thus the
problem is a plane strain one.

H. Hertz [15] found an exact solution (closed form solution) for this frictionless
contact problem, which allows us to compare our results with the exact solution.
Taking advantage of the symmetrical properties of the problem, as a finite element
model we can regard half a cylinder loaded by half of the given loading. The top
part of the cylinder does not influence the behavior of the contact area, therefore we
are allowed to neglect the top quarter of our half cylinder. Figure 9 shows the FEM
model of the investigated problem.

In Figure 10 we have compared Hertz’s exact solution with various approximate
solutions — see Figure 10 for the details concerning the methods of the approximate so-
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lutions. It can be seen that we have obtained a good agreement for every combination
of the applied contact elements and iterative algorithms.

At the same time, the number of iteration steps required to reach convergence
has differed to a great extent, and it has strongly depended on the initial value of
the normal stiffnesses of contact elements (Figure 11). In some cases there was no
convergence found at all. From Figure 11 it is seen that the iteration with varying
stiffness is much more stable than the iteration with constant stiffness. For the iter-
ation with varying stiffness and using line contact elements, convergence was found
in every case. The best results are obtained using the iteration with kinematic load.
They are not seen in Figure 11, because with this iterative algorithm the convergence
was reached in two steps for any initial normal stiffness.

b) Pin - connecting rod problem

In this problem, (Figure 12) a connecting rod acts on a supported pin with a radial
eccentricity c¢. Both the pin and the rod (housing) are assumed to have the same
thickness ¢. Thus it is, from a mechanical point of view, a plane stress problem.

The load is a concentrated force F exerted on the rod. Figure 13. shows the finite
element model which takes advantage of the symmetry of both parts of the joint.

In Figures 14 and 15, solutions obtained using the presented solution methods are
compared with each other and with Gaertner’s FEM and experimental results [16].
Both figures show a reasonable agreement in computation accuracy of the different
solutions.
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For the latter problem the number of iteration steps required to reach convergence
depends on the initial value of the normal stiffnesses of the contact elements. The
applied algorithms and contact elements have shown the same convergence properties
as for the first sample problem. When solving this problem we obtained the least iter-
ation steps using an iteration algorithm with kinematic load. This iterative algorithm
was convergent in two steps independently of the initial value of normal stiffnesses.

5. Concluding remarks

All of the applied iterative algorithms and contact elements have given a good
approximation for the investigated sample problems. Within the prescribed accu-
racy, there is no remarkable difference between the implemented iterative methods or
between the applied contact elements.

But there is a great difference in the number of iteration steps required to reach
convergence. As regards the methods taken from the literature the number of itera-
tion steps strongly depends on the initial value of the normal stiffnesses of the contact
elements. In some cases there was no convergence found at all. The iteration proce-
dure with varying stiffnesses has proved to be convergent in all cases provided that
line contact elements have been used..

The new algorithm suggested in this paper, i.e., the iteration with kinematic load
using node contact elements has also proved to be convergent in every case. In
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addition it always works independently of the initial value of the normal stiffness. It
is a further advantage that the number of iteration steps to be carried out and the
computational time are much less than those for the other solution algorithms.
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