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ŽILINA, Slovakia, kompisv@fstroj.utc.sk
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Abstract. The aim of this paper is to demonstrate through a simple problem that the use
of a constant Young’s modulus in numerical analyses of geometrically nonlinear elasticity
problems should be considered as a potential source of inaccuracy, depending on what work-
conjugate stress and strain measures the formulation uses. Importance of the Biot stresses
and Jaumann strains as conjugate engineering stress and strain measures in nonlinear elas-
ticity is emphasized.

Keywords: Stress and strain measures, constant Young’s modulus, geometrically nonlinear
elasticity

1. Introduction

In geometrically nonlinear elasticity problems the material is often considered to be
linearly elastic and the nonlinearity usually enters into the formulation through the
strain-displacement relations, due to the appearance of larger displacement derivatives
(which are mostly related to the large local rotations). In the majority of numeri-
cal analyses, the preferred work-conjugate stress and strain measures are the second
Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor.

When the stretches of the material curves of an elastic body are much smaller than
unity, the constant Young’s modulus measured for a given material can directly be
applied between different work-conjugate stress and strain measures such as the popu-
lar Green-Lagrange strains and the second Piola-Kirchhoff stresses. For some modern
materials, applied for instance in manufacturing advanced composite structures, the
limit of the linearly elastic behavior in terms of stretches can, however, be much higher
than that for classical materials (e.g. for metals). This means that in many geomet-
rically nonlinear elasticity problems, the stretches in some parts of the body can be
much larger than in other parts of the body and using the same constant Young’s mod-
ulus for relating the second Piola-Kirchhoff stresses to the Green-Lagrange strains in
each point of the body, independently of the local stretch value, can lead to incorrect
numerical results [1].

In this paper we consider the uniaxial tension of a homogeneous isotropic prismatic
beam in the elastic range. Although the material of the beam is assumed to be linearly
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elastic, it is not assumed that the stretch of the beam is much smaller than unity. The
deformation and the stress state of the beam will be described by stress and strain
measures of finite elasticity, which is an important issue for the purpose of the present
investigations. In contrast to [1], the relationship between the Cauchy stresses and
the Euler-Almansi strains is, however, not assumed to be linear. Instead, as in reality,
the dependence of the nominal stress on the stretch of the beam is considered to be
linear and the tangent of this linear function is the (constant) Young’s modulus of
the material of the beam.

After writing down the different work-conjugate stress and strain tensors for the
beam under uniaxial tension, the relationships between the normal stresses and strains
in the axial direction are derived and the error resulting from the use of a constant
Young’ modulus at different stretch and strain levels is investigated.

2. Strain measures

Consider the elastic deformation of a homogeneous isotropic prismatic beam of length
L under uniaxial tension. Let A0 and A be the cross-sectional areas of the beam
in the reference (undeformed) and current (deformed) configurations, respectively.
Let the two configurations of the beam be investigated in the same Cartesian frame.
Coordinates of material points in the reference and current configurations are denoted
by X,Y, Z and x, y, z, respectively, where Z and z are the axes of the beam in the
two configurations. The axial force is denoted by F and the change in length L of
the beam is denoted by 4L.

Plotting the nominal stress σ = F/A0 against the stretch ε = 4L/L of the beam,
the stress-strain curve is obtained. We restrict our investigations here to the elastic
range of the deformation when the nominal stress σ is a linear function of the stretch
ε. The elasticity or Young’s modulus EY of the material of the beam is defined as
the tangent of this linear function σ = σ(ε) = EY ε.

The deformation gradient and the inverse deformation gradient of the beam under
uniaxial tension are given by

F =

 1− νε 0 0
0 1− νε 0
0 0 1 + ε

 , (2.1)

F−1 =

 (1− νε)−1 0 0
0 (1− νε)−1 0
0 0 (1 + ε)−1

 , (2.2)

where ν is the Poisson’s ratio. Since the deformation of the beam is rotation-free, the
polar decomposition of the deformation gradient reads

F = R ·U = I ·U = U (2.3)

where U is the right stretch tensor, I is the unit tensor and R = I is the (orthogonal)
rotation tensor and a dot denotes scalar product between two tensors.
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The displacement gradient in the reference configuration is given by

H = F− I; H =

 −νε 0 0
0 −νε 0
0 0 ε

 . (2.4)

The Jaumann or engineering strain tensor ε is defined in the reference configuration
as

ε = U− I; ε =

 −νε 0 0
0 −νε 0
0 0 ε

 . (2.5)

Due to the rotation-free deformation of the beam, the Jaumann strain tensor is equiv-
alent to the displacement gradient in the reference configuration, i.e. H ≡ ε.

The Green-Lagrange strain tensor E0 is defined in the reference configuration as

E0 =
1

2
(FT · F− I) . (2.6)

In view of (2.1), E0 takes the form

E0 =

 −νε+ 1
2ν

2ε2 0 0
0 −νε+ 1

2ν
2ε2 0

0 0 ε+ 1
2ε

2

 . (2.7)

The Almansi-Euler strain tensor E is defined in the current configuration as

E =
1

2
(I− F−T · F−1) . (2.8)

Taking into account that the Almansi-Euler and Green-Lagrange strain tensors are
related to each other through

E = F−T ·E0 · F−1 (2.9)

and recalling that the reference and current configurations of the beam are investi-
gated now in the same Cartesian frame, the Almansi-Euler strain components can be
expressed in terms of the Green-Lagrange strain components as

Eij =


1

(Fij)2
E0

ij if i = j

0 if i 6= j

(2.10)

i.e. the non-zero components of E are given by

E11 =
1

(1− νε)2
E0

11, E22 =
1

(1− νε)2
E0

22,

E33 =
1

(1 + ε)2
E0

33 .
(2.11)

As is well known, for stretches close to zero the Green-Lagrange and Almansi-Euler
strain tensors become identical with the engineering or Jaumann strain tensor. Note
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that independently of how large ε is, the structure of the Jaumann strain tensor is
the same as that of the infinitesimal strain tensor.

3. Stress measures

Four important stress measures are considered here for the beam under uniaxial ten-
sion: the Cauchy (or true) stress tensor, S, defined in the current configuration, the
first Piola-Kirchhoff stress tensor, T, which is a two-point tensor, the second Piola-
Kirchhoff stress tensor, S0, defined in the reference configuration, and the less known,
though very important, Biot stress tensor, σ, defined in the reference configuration
[2].

The relationships between these stress measures are well known and can be found
in many books on continuum mechanics (see e.g.[3]): assuming that the Cauchy stress
tensor S is known, the first Piola-Kirchhoff stress tensor is obtained as

T = J S · F−T (3.1)

where J is the Jacobian of the deformation gradient, and the second Piola-Kirchhoff
stress tensor as

S0 = F−1 ·T = J F−1 · S · F−T . (3.2)

The Biot stress tensor σ is obtained through the polar decomposition of the first
Piola-Kirchhoff stress tensor

T = R · σ σ = RT ·T (3.3)

where R is the proper orthogonal rotation tensor obtained from the polar decompo-
sition of the deformation gradient. The Biot stress tensor is generally nonsymmetric.
For isotropic materials σ becomes coaxial with U and is, therefore, symmetric.

For the isotropic beam under uniaxial tension, each stress tensor introduced above
has only one non-zero component which is the normal stress in the axial (z or Z)
direction. In addition, since the deformation is rotation-free, the first Piola-Kirchhoff
stress tensor is identical with the Biot stress tensor, i.e.

T = R · σ = I · σ = σ . (3.4)

The only non-zero component of the first Piola-Kirchhoff as well as the Biot stress
tensor is the nominal stress σ, which is the quotient of the axial force and the cross
sectional area of the undeformed beam:

T33 = σ33 = σ =
F

A0
(3.5)

The non-zero components of the two other stress tensors can be obtained by applying
the transformation formulas (3.1) and (3.2). Taking into account that the Jacobian
of the deformation (2.1) is

J = det F = (1 + ε)(1− νε)2 , (3.6)
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the Cauchy normal stress in the z direction of the beam is

S33 =
1

(1− νε)2
T33 =

1

(1− νε)2
σ (3.7)

and the second Piola-Kirchhoff normal stress in the Z direction of the beam is

S0
33 =

1

1 + ε
T33 =

1

1 + ε
σ . (3.8)

The first Piola-Kirchhoff-, the Biot- , the Cauchy- and the second Piola-Kirchhoff
stress tensors for the beam are given by

T ≡ σ =

 0 0 0
0 0 0
0 0 σ

; S =

 0 0 0
0 0 0
0 0 σ (1− νε)−2

; S0 =

 0 0 0
0 0 0
0 0 σ (1 + ε)−1


(3.9)

The relationship between the Cauchy normal stress S33 and the second Piola-
Kirchhoff normal stress S0

33 can be obtained from (3.7)-(3.8):

S33 =
1 + ε

(1− νε)2
S0
33 . (3.10)

4. Relations between conjugate stress and strain measures

The strain energy density of a hyperelastic body can be expressed by the inner product
of different, appropriate stress and strain tensors. We are interested here in the
relations between the following work-conjugate stress and strain measures:

– second Piola-Kirchhoff stress tensor ⇔ Green-Lagrange strain tensor
– first Piola-Kirchhoff stress tensor ⇔ displacement gradient tensor
– Cauchy stress tensor ⇔ Almansi-Euler strain tensor
– Biot stress tensor ⇔ Jaumann strain tensor.
As mentioned in the Introduction, the relation between the nominal stress and the

stretch of the beam under uniaxial tension is considered to be linear and this relation
is expressed by Hooke’s law:

σ = EY ε (4.1)

where EY is the Young’s or elasticity modulus of the material of the beam and ε
is not necessarily infinitesimal. In view of the previous sections, the Hooke’s law
between the different work-conjugate stress and strain components of the beam can
easily be derived. Taking into account that – according to (3.5) – the nominal stress
σ is equal to the first Piola-Kirchhoff normal stress T33 as well as the Biot normal
stress σ33 in the axial direction, and also that the stretch of the beam ε is equal to
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the displacement gradient component H33 as well as the Jaumann normal strain ε33
in the axial direction, we obtain the following stress-strain relationships between the
appropriate conjugate stress and strain components:

I. Piola-Kirchhoff stress – displacement gradient:

T33 = EY H33 (4.2)

Biot stress – Jaumann strain:
σ33 = EY ε33 (4.3)

Cauchy stress – Almansi-Euler strain:

S33 =
2(1 + ε)2

(2 + ε)(1− νε)2
EY E33 = Ecur

Y E33 (4.4)

II. Piola-Kirchhoff stress – Green-Lagrange strain:

S0
33 =

2

(1 + ε)(2 + ε)
EY E

0
33 = Eref

Y E0
33 (4.5)

where

Ecur
Y (ε) =

2(1 + ε)2

(2 + ε)(1− νε)2
EY (4.6)

and

Eref
Y (ε) =

2

(1 + ε)(2 + ε)
EY (4.7)

are the actual moduli of elasticity in the current and reference configurations, respec-
tively. It can be seen from (4.2) and (4.3) that, independently of how large the stretch
of the beam is, the I. Piola-Kirchhoff normal stress T33 and the displacement gradient
component H33 as well as the Biot normal stress σ33 and the Jaumann strain ε33 are
related to each other by the same (known and constant) Young’s modulus EY . This
is not the case, however, for either the Cauchy normal stress S33 and Almansi-Euler
strain E33 or the II. Piola-Kirchhoff stress S0

33 and Green-Lagrange strain E0
33. They

are related to each other through the ’modified’ Young’s moduli Ecur
Y and Eref

Y , re-
spectively, and, as it is seen from (4.6) and (4.7), neither Ecur

Y nor Eref
Y is constant

with respect to the stretch ε. The functions Ecur
Y (ε) and Eref

Y (ε) for stretch values
0 ≤ ε ≤ 0.5 are shown in Figure 1, assuming that the measured Young’s modulus EY

is constant and unity.

Relative errors in the Cauchy stress (at ν = 0.0) as well as in the II. Piola-Kirchhoff
stress for relatively small stretch values are given in Table 1 with the assumption that
the measured constant Young’s modulus EY is used instead of the actual moduli
Ecur

Y and Eref
Y . As expected, for very small stretches the error is not significant; ap-

proximately 1% error is obtained in both stresses when the stretch ε attains the value
of 0.0065.
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Figure 1. Modulus of elasticity for different conjugate stress and strain measures

ε rel. error in S33 (%) rel. error in S0
33 (%)

0.0001 0.015 0.015
0.0005 0.075 0.075
0.001 0.15 0.15
0.005 0.75 0.75
0.01 1.50 1.50
0.05 7.56 7.56
0.1 15.24 13.42

Table 1. Relative error in the Cauchy stress (at ν = 0.0) and in the II. Piola-Kirchhoff
stress
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Figure 2. II. Piola-Kirchhoff stress against the Green-Lagrange strain with EY fixed

Figure 3. Cauchy stress against the Almansi-Euler strain with EY fixed
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Taking into account that the stretch ε can be expressed by the Green-Lagrange strain
E0

33 as [3]

ε =
√
2E0

33 + 1− 1 (4.8)

and inserting (4.8) in (4.5), the II. Piola-Kirchhoff stress S0
33 can be obtained directly

in terms of the Green-Lagrange strain E0
33. The S0

33(E
0
33) function is plotted in Figure

2 for Green-Lagrange strain values 0 ≤ E0
33 ≤ 0.3. The Cauchy stress S33 can also be

expressed directly in terms of the Almansi-Euler strain E33 by utilizing the fact that
stretch ε can be expressed by the Almansi-Euler strain E33 as [3]

ε =
1√

1− 2E33

− 1 . (4.9)

Inserting (4.9) in (4.4), the function S33(E33) is obtained which is shown in Figure
3 for Almansi-Euler strain values 0 ≤ E33 ≤ 0.3. Dashed lines in both Figures 2
and 3 indicate the linear (incorrect) stress-strain curves when the constant Young’s
modulus EY is used for obtaining the II. Piola-Kirchhoff stresses from the Green-
Lagrange strains and the Cauchy stresses from the Euler-Almansi strains.

5. Conclusions

In advanced materials it is not unusual that the limit of the linearly elastic behavior
in terms of stretches is much higher than for classical materials like metals. Indepen-
dently of the stress and strain measures applied by the underlying formulation, an
accurate numerical analysis of geometrically nonlinear problems involving materials
of that kind requires the use of correct elasticity modulus in the stress-strain relations
at different stretch and strain levels.

Considering a homogeneous isotropic prismatic beam under uniaxial tension, the
Young’s modulus of the linearly elastic material is the tangent of the nominal stress
versus stretch function. Independently of how large the stretches are, the constant
Young’s modulus measured that way can always be applied between the Biot stresses
and Jaumann strains, being work-conjugate engineering stress and strain measures.
(The I. Piola-Kirchhoff stress and displacement gradient components can also be re-
lated to each other through that constant Young’s modulus, provided the deformation
is rotation-free.) The constant Young’s modulus cannot, however, be used for relat-
ing other stress and strain measures, such as the widely used second Piola-Kirchhoff
stresses and Green-Lagrange strains or the Cauchy stresses and Euler-Almansi strains,
without the restriction that the stretches in the material should be very small. This
paper investigated the error resulting from the use of a constant Young’s modulus
for relating the above mentioned different conjugate stress and strain measures at
different stretch levels.

Acknowledgement. This work was supported in part by the Hungarian Scientific Research
Fund under Grant No. OTKA T026292.
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Abstract. The solution of problems of the theory of elasticity in terms of stresses requires
the solution of equations of equilibrium. In two and three-dimensional application, the com-
ponents of stress are frequently expressed in terms of partial derivatives of stress function,
the correct expressions being chosen so that the conditions of static equilibrium become a
consequence of partial derivatives independent of the order of differentiation. In this manner
the solution of an equilibrium equation can be obtained without any diffi culty. In this paper
a systematic process is devised to derive the stress functions for the problems of torsion-free
axisymmetric state of stresses. The applied method is based on the theory of total differen-
tials. The stress boundary conditions are also formulated in terms of stress functions. The
relations between the strain compatibility conditions and the stress functions are discussed.
Different forms of solutions of equilibrium equations in terms of stress functions are also
analyzed.

Keywords : Stress functions, axisymmetric, strain compatibility, virtual work

1. Introduction

For torsion-free axisymmetric state of stress the equilibrium equations can be written
as

∂

∂r
(rσr) +

∂

∂z
(rτ rz)− σϕ + rqr = 0 (r, z) ∈ T , (1.1)

∂

∂r
(rτ rz) +

∂

∂z
(rσz) + rqz = 0 (r, z) ∈ T . (1.2)

Here, we have used cylindrical coordinates (r, ϕ, z) with z as the axis of symmetry.
In equations (1.1) and (1.2) σr, σϕ, σz are the normal stresses, τ rz is the shearing
stress and the body forces are denoted by qr and qz . All these quantities depend
on the polar coordinates r and z only. We remark that for torsion-free axisymmetric
state of stress the shearing stresses τ rϕ and τzϕ vanish in all points of the body. In
the sequel we shall assume that T is a simply connected plane region in the meridian
section of the body of rotation and T has not any point in common with the axis z.
The boundary of the meridian section T is the closed curve ∂T . The unit tangent
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and the outward unit normal to ∂T are denoted by t and n, respectively. Let

R = R(s) , Z = Z(s) 0 ≤ s ≤ L (1.3)

be the parametric equation of the curve ∂T , where s is the arc length measured on ∂T ,
and L is the total length of curve ∂T . The unit vectors in the radial and longitudinal
directions are denoted by er and ez. It can be shown with ease that

t =
dR

ds
er +

dZ

ds
ez , n =

dZ

ds
er −

dR

ds
ez (1.4)

and

tr = −nz =
dR

ds
, tz = nr =

dZ

ds
. (1.5)

Let ∂Tp (∂Tp ∈ ∂T ) be the arc of ∂T on which tractions are imposed. The corre-
sponding boundary conditions take the form

σrnr + τ rznz = pr , τ rznr + σznz = pz (r, z) ∈ ∂Tp (1.6)

where
p = pr(r, z)er + pz(r, z)ez (1.7)

is prescribed on ∂Tp .

It is the purpose of the present paper to find the general solution in terms of
stress functions to equations (1.1) and (1.2) and to analyze how the tractions and
stress functions are related to each other. Langhaar and Stippes [3] presented a
complete representation of stresses for axisymmetric stress states. The same problem
was analyzed by Filonenko-Borodich [2]. The complete representation given in this
paper is different from the solution derived by the two authors mentioned.

In Section 2 the stress function solution of equilibrium equations (1.1), (1.2) is
derived and is shown to be complete. The degree of arbitrariness of the stress functions
for a given state of stresses is then discussed. In Section 3 the traction boundary
conditions are formulated in terms of stress functions. In Section 4 the stress function
solution is derived from the principle of virtual work. Section 5 is devoted to the
problem how the different solutions to the equilibrium equations in the terms of stress
functions are related to each other. Section 6 contains some conclusions.

2. Stress Functions

In this paper we will not formulate explicitly the smoothness and continuity properties
which are required. They may be deduced from known theorems of calculus (see, for
example Courant [1], Rudin [4]).

We shall assume that the body forces can be represented as

rqr = −
∂Qr
∂r

, rqz = −
∂Qz
∂z

(2.1)
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where Qr = Qr(r, z) and Qz = Qz(r, z) are potential functions for the body forces qr
and qz, respectively. Without loss of generality we can consider the stress component
σϕ as the partial derivative of a function B = B(r, z) with respect to r, that is

σϕ =
∂B

∂r
(r, z) ∈ T ∪ ∂T . (2.2)

Upon substitution of (2.1) and (2.2) into the equilibrium equations (1.1), (1.2) we
obtain

∂

∂r
(rσr −B −Qr) +

∂

∂z
(rτ rz) = 0 (r, z) ∈ T , (2.3a)

∂

∂r
(rτ rz) +

∂

∂z
(rσz −Qz) = 0 (r, z) ∈ T . (2.3b)

The stress function solution of equations (1.1), (1.2) is supplied by the following
theorem.

Theorem 2.1. Let the stresses be represented by

rσr =
∂2A

∂z2
+B +Qr , (2.4a)

σϕ =
∂B

∂r
, (2.4b)

rσz =
∂2A

∂r2
+Qz , (2.4c)

rτ rz = −
∂2A

∂r∂z
, (2.4d)

where A = A(r, z) and B = B(r, z) are arbitrary functions. This stress representation
identically satisfies the equilibrium equations (1.1), (1.2).

The proof of this theorem can be obtained by direct substitution. The next theo-
rem, which is motivated by stress representation (2.4a,b,c,d), states that if the body
forces are obtainable from (2.1) then every solution of the equilibrium equations (1.1),
(1.2) can be given by equations (2.4a,b,c,d).

Theorem 2.2. Let the stresses satisfy (1.1), (1.2). Then there exist functions
A = A(r, z) and B = B(r, z) such that the stresses can be represented by equations
(2.4a,b,c,d), and the stress functions A = A(r, z) and B = B(r, z) are single-valued.

Proof. According to the theory of total differentials (Courant [1], Rudin [4]), (2.3a)
implies the existence of a single-valued function in T = T ∪ ∂T such that

rτ rz =
∂a

∂r
, rσr −B −Qr = −

∂a

∂z
. (2.5)

Similarly, by quation (2.3b) there exists a function b = b(r, z) in T such that

rσz −Qz =
∂b

∂r
, rτ rz = −

∂b

∂z
. (2.6)
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From the equality of the two different expressions for τ rz —these follow from (2.5)1
and (2.6)2 —we obtain

∂a

∂r
+
∂b

∂z
= 0 . (2.7)

A repeated application of the theory of total differentials gives that there exists a
single-valued function A = A(r, z) such that

a = −∂A
∂z

, b =
∂A

∂r
. (2.8)

A combination of equations (2.5), (2.6) and (2.8) leads to stress representation (2.4a,
b,c,d) which gives all the stress components. This last step completes the proof of
Theorem 2.2. The degree of arbitrariness of the stress functions for a given state of
stress is formulated in the following theorem.

Theorem 2.3. Let a given set of stresses which meet the equations (1.1), (1.2) be
represented by (2.4a,b,c,d) in terms of the stress functions A = A(r, z), B = B(r, z)
and in terms of different stress functions A′ = A′(r, z), B′ = B′(r, z). Then

A(r, z) = A′(r, z) + α(z) + β0 + β1r , (2.9)

B(r, z) = B′(r, z)− d2α

dz2
, (2.10)

where β0, β1 are arbitrary constants and α = α(z) is an arbitrary function of z.

Proof. Using stress representation (2.4a,b,c,d) one finds that

∂2A

∂z2
+B +Qr =

∂2A′

∂z2
+B′ +Qr , (2.11a)

∂B

∂r
=
∂B′

∂r
, (2.11b)

∂2A

∂r2
=
∂2A′

∂r2
, (2.11c)

∂2A

∂r∂z
=

∂A′

∂r∂z
. (2.11d)

Equation (2.11d) yields
A−A′ = α(z) + β(r) (2.12)

where α = α(z) and β = β(r) are arbitrary functions, α depends only on z, and β
depends only on r. Equation (2.11c) gives

β = β0 + β1r , (2.13)

where β0, β1 are the arbitrary constants. We obtain from equation (2.11b)

B = B′ + γ(z) . (2.14)
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Inserting equations (2.12) and (2.14) into equation (2.11a) we arrive at

γ(z) = −d
2α

dz2
. (2.15)

which completes the proof of Theorem 2.3.

It is important to emphasize that the theorems proven are independent of any
constitutive and compatibility equations which the stresses should also satisfy since
we have been dealing with equilibrium equations only.

3. Stress boundary condition

In order to formulate the stress boundary conditions we start from equations (1.6)
and (2.4a,b,c,d). By a simple substitution we obtain

rσrnr + rτ rznz =
∂2A

∂z2
nr +Bnr +Qrnr −

∂2A

∂r∂z
nz =

=
d

ds

(
∂A

∂z

)
+B

dZ

ds
+Qr

dZ

ds
(r, z) ∈ ∂Tp , (3.1a)

rτ rznr + rσznz = −
∂2A

∂r∂z
nr +

∂2A

∂r2
nz +Qznz =

= − d

ds

(
∂A

∂r

)
−Qz

dR

ds
(r, z) ∈ ∂Tp . (3.1b)

Here we have used equation (1.5). Combination of equations (1.6) and (3.1a,b) leads
to the result

d

ds

(
∂A

∂z

)
= rpr −B

dZ

ds
−Qr

dZ

ds
, (3.2a)

− d

ds

(
∂A

∂r

)
= rpz +Qz

dR

ds
. (3.2b)

After integrating these equations on ∂Tp we have(
∂A

∂z

)
P

−
(
∂A

∂z

)
P0

=

∫
P̂0P

rprds−
∫
P̂0P

(B +Qr)
dZ

ds
ds , (3.3a)

(
∂A

∂r

)
P0

−
(
∂A

∂r

)
P

=

∫
P̂0P

rpzds+

∫
P̂0P

Qz
dR

ds
ds . (3.3b)

In formulae (3.3a,b) the integrals are taken over an arc P0P of ∂Tp. The lower limit
P0 is fixed and the upper limit P is regarded as a parameter. According to Theorem
2.3 we can set the starting values for the partial derivatives of the stress function A
to (

∂A

∂r

)
P0

=

(
∂A

∂z

)
P0

= 0 . (3.4)
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4. Derivation of stress functions from the principle of virtual work

In this section we derive the solution of the homogeneous equilibrium equation in
terms of stress functions from the principle of virtual work. The line of thought is
based on that of Washizu [7]. The general solution of the homogeneous equilibrium
equations is given in terms of stress functions A and B. In the absence of body forces
one can write that

qr = qz = 0 , Qr = Qz = 0 . (4.1)

The strain compatibility equations for torsion-free axisymmetric deformation are as
follows [6]:

Ca =
∂2εr
∂z2

+
∂2εz
∂r2

− ∂2γrz
∂r∂z

= 0 (r, z) ∈ T , (4.2a)

Cb =
∂

∂r
(rεϕ)− εr = 0 (r, z) ∈ T . (4.2b)

Here εr, εϕ, εz are direct strains and γrz is the shear strain. The strain components
depend on the radial coordinate r, and the longitudinal coordinate z. Washizu [7]
proposes to introduce the strain compatibility conditions instead of the displacement
components u and w into the principle of virtual work by the use of Lagrange mul-
tipliers. Since the problem is axisymmetric for the volume and the surface elements,
one can write

dV = 2πrdT , dS = 2πrds .

The principle of virtual work has the form∫
T

r(σrδεr + σϕδεϕ + σzδεz + τ rzδγrz)dT −
∫
∂Tp

r(prδu+ pzδw)ds = 0 . (4.3)

Here the infinitesimal virtual displacements δu, δw and the infinitesimal virtual strains
δεr, δεϕ, δεz, δγrz should satisfy the strain-displacement relationships and the homo-
geneous geometrical boundary conditions imposed on the boundary segment ∂Tu .
Consequently

δu = δw = 0 on ∂Tu . (4.4)

We remark that
∂Tp ∪ ∂Tu = ∂T and ∂Tp ∩ ∂Tu = {∅} .

We apply equations (4.2a,b) as the field conditions of compatibility instead of the
strain-displacement relationship. We can now transform equation (4.3) into the form∫

T

r(σrδεr + σϕδεϕ + σzδεz + τ rzδγrz)dT −
∫
T

(λaδCa + λbδCb)dT

+ {boundary terms} = 0 (4.5)



Stress functions for axisymmetric state of stress 19

where λa and λb are the Lagrange multipliers which depend on the coordinates r and
z. After some calculations including repeated partial integrations, equation (4.5) is
manipulated into its final form:∫

T

[(
rσr −

∂2λa
∂z2

− λb
)
δεr + r

(
σϕ −

∂λb
∂r

)
δεϕ+

+

(
rσz −

∂2λa
∂r2

)
δεz +

(
rτ rz +

∂2λa
∂r∂z

)
δγrz

]
dT + {boundary terms} = 0 . (4.6)

Since the variations δεr, δεϕ, δεz and δγrz are arbitrary, we have

rσr =
∂2λa
∂z2

+ λb , σϕ =
∂λb
∂r

,

rσz =
∂2λa
∂r2

, rτ rz = −
∂2λa
∂r∂z

.

(4.7)

A comparison of equations (4.7) and (2.4a,b,c) — in the latter case Qr = Qz = 0 —
shows that

λa = A and λb = B , (4.8)

thus the Lagrange multipliers λa and λb are stress functions.

5. Comparison of various formulations

It follows from the general axisymmetric solution of the homogeneous equilibrium
equations (due to symmetry τ rϕ = τϕz = 0) given by Filonenko-Borodich that

rσr =
∂2f1
∂z2

, (5.1a)

σϕ =
∂2f2
∂z2

, (5.1b)

rσz = −
∂

∂r

(
f2 −

∂f1
∂r

)
, (5.1c)

rτ rz =
∂

∂z

(
f2 −

∂f1
∂r

)
. (5.1d)

Here, f1 = f1(r, z) and f2 = f2(r, z) are stress functions. Formulas (5.1a,b,c,d)
can be obtained from formula (1.10) of paper [2] by putting f3 = 0. The next
theorem relates the stress functions f1 = f1(r, z), f2 = f2(r, z) to the stress functions
A = A(r, z), B = B(r, z) assuming that the stress state is the same.
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Theorem 5.1. If the stress functions f1 = f1(r, z), f2 = f2(r, z) and A = A(r, z),
B = B(r, z) produce the same stress state then the following equations hold

f1 = A+ b , f2 =
∂b

∂r
,

∂2b

∂z2
= B . (5.2)

In the absence of body forces and assuming an axisymmetric stress state, H. L. Lang-
haar and M. Stippes also gave a solution in terms of stress functions for the equilibrium
equations [3]:

σr =
∂2F

∂z2
+
1

r

∂H

∂r
, (5.3a)

σϕ =
∂2F

∂z2
+
∂2H

∂r2
, (5.3b)

σz =
∂2F

∂r2
+
1

r

∂F

∂r
, (5.3c)

τ rz = −
∂2F

∂r∂z
. (5.3d)

Theorem 5.2 gives the connection between the stress functions F = F (r, z), H =
H(r, z) and A = A(r, z), B = B(r, z).

Theorem 5.2. If the stress state is the same, then the following equations hold
between the stress functions F = F (r, z), H = H(r, z) and A = A(r, z), B = B(r, z):

A(r, z) = r
∂f

∂r
− f , (5.4a)

B(r, z) =
∂2f

∂z2
+
∂H

∂r
, (5.4b)

where

F =
∂f

∂r
. (5.5)

The proof of Theorem 5.1 and 5.2 can be obtained from the comparison of the various
stress function solutions (4.7), (4.8), (5.1a,b,c,d) and (5.3a,b,c,d).

It is obvious that the substitution of the expressions giving f1 and f2 in terms of
A, b and B into the Filonenko-Borodich solution leads immediately to the solution of
the homogeneous equilibrium equation established in this paper.

A similar statement can be formulated for the Langhaar-Stippes solution. In the
absence of body forces the stress representation suggested in this paper leads to the
Langhaar-Stippes solution in terms of stress functions F = F (r, z) and H = H(r, z)
if we use the stress functions A = A(r, z) and B = B(r, z) given by (5.4a,b), (5.5).

6. Conclusions

In this paper the general solution of equilibrium equation is presented for torsion-free
axisymmetric state of stress. It has been shown that the solution given is complete
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and its degree of arbitrariness is also analyzed. The stress boundary conditions in
terms of stress functions are also given. In the absence of body forces the stress
representation we have found —solution to the homogenous equilibrium equations in
terms of stress functions — can also be derived from the principle of virtual work.
The presented stress function solution is then compared with other stress function
solutions. The solution of equilibrium equations for axisymmetric torsion-free state
of stress is very similar to the Airy solution of equilibrium equations for plane problems
[5]. The results presented in the paper are all independent of any constitutive and
compatibility equations which the stresses should satisfy in order to be the solution
of a given boundary-value problem. If the body is elastic, then the field equations the
stress functions should meet are the Beltrami-Mitchell equations under the prescribed
boundary conditions. The stress functions solution of equilibrium equations gives a
possibility to use the variational method elaborated by A. Castigliano. Another field
of applications is the formulation of stress-based finite element models.
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Abstract. The paper presents three different iterative algorithms for the numerical solution
of contact problems. Each algorithm is based on the use of the finite element method. It
is assumed that the contact conditions are fulfilled by means of special contact elements.
Numerical results for the various contact elements and solution algorithms are then compared
by solving 2D elasticity problems.

Keywords : Iterative algorithms, frictionless contact problems, finite element method

1. Introduction

A machine structure consists of several parts, which are connected with each other
by surface contact. It is very important to determine the displacements, strains
and stresses in the contact area, because they can exert a powerful influence on the
reliability, failsafety and lifetime of the construction.

dV

Au
B

B
Au
A

f

A

Ac b

dA

x

z

y

Figure 1.

An elastic contact problem can be formulated as follows. The system under con-
sideration — see Figure 1 for details — consists of two bodies denoted by A and B.
These bodies are in contact on the surface Ac. The body forces b and surface
tractions f on AAt and ABt are given for each body. The kinematic boundary con-
ditions (support conditions) are also known on the corresponding surfaces AAu and
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ABu . (V = V A ∪ V B; V A ∩ V B = 0; AA = AAc ∪ AAu ∪ AAt ; AB = ABc ∪ ABu ∪ ABt ;
At = AAt ∪ABt ). Though it is assumed that the equations of linear elasticity are valid
for each body (the material is homogenous and isotropic) due to the surface contact
the relation between loading and displacements is a non-linear one. Consequently the
problem is also non-linear.

For non-linear problems the incremental version of the principle of virtual work
is the basis of solution. For the structure made up of the two bodies A and B, the
principle is of the form

∫
(V )

∆T · · δ (∆E) dV =

∫
(V )

∆b · δ (∆u) dV +

∫
(At)

∆f · δ (∆u) dV . (1.1a)

In addition it holds for body A (and B) that

∫
(V A)

∆T · · δ (∆E) dV +

∫
(AC)

∆p·δ (∆u) dV =

∫
(V A)

∆b·δ (∆u) dV +

∫
(AA

t )

∆f ·δ (∆u) dA (1.1b)

where T is the stress tensor, E is the strain tensor, p is the contact pressure, u is the
displacement field, the double scalar product is denoted by ·· . Greek δ stands for the
variation of a quantity while ∆ identifies the increment of a quantity.

There are two typical groups of solution methods used to solve elastic contact
problems of the above type. Methods in the first group reduce the contact problem
to a mathematical programming problem [3] [4]. Procedures in the second group are
iterative methods based on the use of special contact elements [5] - [9]. This paper
is going to apply and compare three different iterative methods and three types of
contact elements for solving frictionless elastic contact problems. The main goal of
the author was to implement two known iterative methods [5] - [9] and three types of
contact elements into a FEM code and to compare those with a new iterative solution
algorithm.

With the iterative solutions the contact conditions for each increment and iteration
step are satisfied using special contact elements. These special contact elements —see
Figure 2 —are fictitious elements with proper stiffness or material properties which
ensure the fulfillment of contact conditions. Thus they are not real finite elements,
but can be considered as an appropriate numerical help for the solution process.

In order to fulfil the contact condition in each load increment, two known iterative
solution algorithms were implemented: iteration with varying stiffness, iteration with
constant stiffness and a new method was developed: iteration with kinematic load.
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Every contact elements and solution algorithms was installed in the FEM-3D finite
element program system [13] developed under Páczelt’s leadership. The effective
application of the above iterative algorithms with contact elements assumes that the
FEM code makes substructuring possible. During the solution of contact problems it
is very useful to select the nodes on the potential contact area (Figure 2) as external
nodes while the other nodes can be considered as internal nodes. In this case one
should carry out the iteration steps taking only the variables of external nodes into
consideration.

2. Features of 2D contact elements

Three types of contact elements, namely line contact elements, layer contact elements
and node (or spring) contact elements were applied during the computations. These
special elements have already been applied in the literature [5] - [9]. Figures 3-5
illustrate the elements for 2D case.

The line contact elements (Figure 3) consist of two lines which represent real ele-
ment sides on bodies A and B and are attached to each other via a distributed spring
system. The corresponding spring stiffnesses are denoted by kt and kn in the local
co-ordinate system t, n (Figure 3/b.).

During the contact iteration the stiffnesses kt and kn must be modified until the
tangential (frictional) and normal contact conditions are fulfilled. For the characteris
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tic block of stiffness matrix of line contact element we obtain

Kcij =

[
kt 0
0 kn

]
ij

(2.2)

where the nodes attached to each other by the spring are denoted by i and j.

When using line contact elements the fulfillment of contact conditions is ensured
in the tn co-ordinate system along the center line of the contact element.

The layer contact elements (Figure 4) are made of special fictitious material for
which the modulus of elasticity E and the shear modulus G do not depend on each
other. Fulfillment of the normal contact condition can be reached by modifying E
and by giving a proper value to the shear modulus G one can satisfy the frictional
contact conditions. The form of the layer contact element stiffness matrix is similar
to that expressed in equation (1.1b). The contact conditions are again fulfilled along
the η = 0 co-ordinate line.

The node contact elements (Figure 5) consist of a couple of nodes, which are
connected in tangential and normal direction by springs with stiffnesses kt and kn .
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The contact iteration procedure is the same as for the case of the above two con-
tact elements, consequently the stiffness matrix has the same form with only one
characteristic block.

3. Iterative solution algorithms

The basic FEM equation of the investigated system of bodies A and B for the i-th
load increment ∆f i may be written as

(KAB + Kc) ∆qi = ∆f i (3.1)

where KAB is the super-structure stiffness matrix of the bodies A and B and Kc

is the stiffness matrix of the contact elements. If Kc takes the ”proper” value, (
i.e., each contact condition is fulfilled), these (the above) equations will allow for the
computation of the real displacement increment of the external nodes. It follows that
our task is now to determine this ”proper” value for Kc . For this purpose, three
iterative solution methods have been developed:

a) Iteration with varying stiffness [5] - [8]

In the 1-st step we solve the linear algebraic equation system (3.1) with an initial
value Kc0 :

∆qi0 = (KAB + Kco)
−1

∆f i . (3.2)

Then the fulfillment of contact conditions is checked for the solution ∆qi0 and in case
they are not fulfilled, the stiffness matrix of contact elements must be modified by
Kc1 —as regards its choice see [12] —:

(KAB + Kco + Kc1) ∆qi1 = ∆f i (3.3)
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After solving equation system (3.3) we obtain a new approach for the nodal displace-
ment increment:

∆qi1 = (KAB + Kco + Kc1)
−1

∆f i . (3.4)

In the (j+1)-th iteration step the displacement increment can be computed as follows:

∆qij =
(
KAB + Kco + Kc1 + . . .+ Kcj

)−1
∆f i . (3.5)

From this equation it is obvious that the iteration algorithm with varying stiffness
needs a new matrix inversion procedure in each iteration step since the stiffness of
the contact elements is changed step by step. The qualitative character of the above
procedure is shown in Figure 6.

b) Iteration with constant stiffness [9]

The 1-st step is the same as for the case of the iteration with varying stiffness —
see equation (3.2). Rearranging equation (3.3) we obtain a new equation with an
unchanged left side system matrix (stiffness matrix):

(KAB + Kco) ∆qi1 = ∆f i −Kc1∆qi0 . (3.6)

Introducing a new notation for the right side of the above linear equation system

∆f i1 = ∆f i −Kc1∆qi0 , (3.7)
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a recursive formula with constant stiffness matrix and varying load increment is ob-
tained:

(KAB + Kco) ∆qi1 = ∆f i1 (3.8)

For the (j + 1)-th iteration step the displacement increment can be computed from
the following equation:

∆qij = (KAB + Kco)
−1

∆f ij (3.9)

where the current value of load increment is

∆f ij = ∆f i −Kc1∆qi0 − . . .−Kcj∆qi(j+1) (3.10)

It is seen from equation (3.10) that the iteration procedure with constant stiffness
requires only one matrix inversion for each load increment and that, step by step,
only the right side is modified. In this manner, it is possible to save a great deal of
computing operations and time. Figure 7. represents the qualitative character of the
above algorithm.
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c) Iteration with kinematic load

This algorithm is based on Páczelt’s idea [14]. Using this idea an appropriate
kinematic loading is applied in the 1-st iteration step:

(KAB + Kco) ∆qi0 = ∆f i0 + fgo (3.11)

The kinematic loading can be computed as

fgo = Kcog0 (3.12)

where g0 is the matrix of the initial gaps of normal direction on the potential contact
area. This kinematic loading is set to a value which makes the initial normal gaps
disappear.

Solving the algebraic equation (3.11) one can check the fulfillment of the contact
condition and after performing the necessary modifications in the contact stiffness
matrix a new equation system is obtained:

(KAB + Kco + Kc1) ∆qi1 = ∆f i + (Kco + Kc1) g0 (3.13)

In the (j+ 1)-th iteration step the i-th displacement increment is computed from the
following equation system:(

KAB + Kco + . . .+ Kcj

)
∆qij = ∆f i + (Kco + . . .+ Kcj) g0 (3.14)

It is seen from equation (3.14) that both the stiffness matrix and the load vector are
modified step by step in this iteration procedure.

4. Numerical examples

The comparison of effi ciency and capability of the above algorithms and contact
elements are carried out through the use of two numerical tests.

a) Elastic cylinder - rigid plane

In this example we have solved the contact problem of an infinite elastic cylinder
and a rigid plane pressed to each other by a uniform load q (Figure 8). Thus the
problem is a plane strain one.

H. Hertz [15] found an exact solution (closed form solution) for this frictionless
contact problem, which allows us to compare our results with the exact solution.
Taking advantage of the symmetrical properties of the problem, as a finite element
model we can regard half a cylinder loaded by half of the given loading. The top
part of the cylinder does not influence the behavior of the contact area, therefore we
are allowed to neglect the top quarter of our half cylinder. Figure 9 shows the FEM
model of the investigated problem.

In Figure 10 we have compared Hertz’s exact solution with various approximate
solutions —see Figure 10 for the details concerning the methods of the approximate so-
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lutions. It can be seen that we have obtained a good agreement for every combination
of the applied contact elements and iterative algorithms.

At the same time, the number of iteration steps required to reach convergence
has differed to a great extent, and it has strongly depended on the initial value of
the normal stiffnesses of contact elements (Figure 11). In some cases there was no
convergence found at all. From Figure 11 it is seen that the iteration with varying
stiffness is much more stable than the iteration with constant stiffness. For the iter-
ation with varying stiffness and using line contact elements, convergence was found
in every case. The best results are obtained using the iteration with kinematic load.
They are not seen in Figure 11, because with this iterative algorithm the convergence
was reached in two steps for any initial normal stiffness.

b) Pin - connecting rod problem

In this problem, (Figure 12) a connecting rod acts on a supported pin with a radial
eccentricity c. Both the pin and the rod (housing) are assumed to have the same
thickness t. Thus it is, from a mechanical point of view, a plane stress problem.

The load is a concentrated force F exerted on the rod. Figure 13. shows the finite
element model which takes advantage of the symmetry of both parts of the joint.

In Figures 14 and 15, solutions obtained using the presented solution methods are
compared with each other and with Gaertner’s FEM and experimental results [16].
Both figures show a reasonable agreement in computation accuracy of the different
solutions.
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For the latter problem the number of iteration steps required to reach convergence
depends on the initial value of the normal stiffnesses of the contact elements. The
applied algorithms and contact elements have shown the same convergence properties
as for the first sample problem. When solving this problem we obtained the least iter-
ation steps using an iteration algorithm with kinematic load. This iterative algorithm
was convergent in two steps independently of the initial value of normal stiffnesses.

5. Concluding remarks

All of the applied iterative algorithms and contact elements have given a good
approximation for the investigated sample problems. Within the prescribed accu-
racy, there is no remarkable difference between the implemented iterative methods or
between the applied contact elements.

But there is a great difference in the number of iteration steps required to reach
convergence. As regards the methods taken from the literature the number of itera-
tion steps strongly depends on the initial value of the normal stiffnesses of the contact
elements. In some cases there was no convergence found at all. The iteration proce-
dure with varying stiffnesses has proved to be convergent in all cases provided that
line contact elements have been used..

The new algorithm suggested in this paper, i.e., the iteration with kinematic load
using node contact elements has also proved to be convergent in every case. In
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addition it always works independently of the initial value of the normal stiffness. It
is a further advantage that the number of iteration steps to be carried out and the
computational time are much less than those for the other solution algorithms.
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Abstract. This paper deals with the stability analysis of self-excited bending vibrations
of linear symmetrical rotor-bearing systems with internal damping using the finite element
method. The rotor system consists of uniform circular Rayleigh shafts with internal vis-
cous damping, symmetric rigid disks, and discrete isotropic damped bearings. The effect of
rotatory inertia and gyroscopic moment are also included in the mathematical model. By
combining the sensitivity analysis and the eigenvalue problem of the rotor dynamics equa-
tions presented in complex form, it is proved theoretically that the whirling motion of the
rotor system becomes unstable at all speeds beyond the threshold speed of instability. In
addition, the latter is always greater than the corresponding whirling speed. It is found
that the rotor stability is improved by increasing the damping provided by the bearings,
whereas increasing internal damping may reduce the stability threshold. It is also shown
that the whirling speed of the rotor is higher than the first forward critical speed. Numerical
examples are given to confirm the validity of the theoretical results.

Keywords: rotor dynamics, stability analysis, internal damping, threshold speed, finite ele-
ments

1. Introduction

It is well known that the stability of rotors is influenced by internal damping. The
early works of Kimball [1] and Newkirk [2] showed that internal damping destabilizes
the whirling motion of the rotor at speeds above the first critical speed. The stability
problems of rotors with both internal and external damping have been discussed by
several authors [3-7]. In most of the works by the investigators listed above, however,
the gyroscopic effects are neglected.

Of the many researchers studying the stability problems of rotors using finite ele-
ments, Zorzi and Nelson [8] carried out first the numerical stability analysis of such
rotor systems including the effects of rotatory inertia, gyroscopic moments, and both
internal viscous and hysteretic damping. By using the numerical examples of a uni-
form circular shaft with viscous material damping, supported at its ends by two
identical undamped isotropic bearings, they found that the first and second forward
precessional modes become unstable at the first and second critical speeds, respec-
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tively. The author [9] of this paper generalized the above results for symmetric rotor
systems with viscous internal damping, supported by isotropic undamped bearings.
By applying the sensitivity analysis and the eigenvalue problem of the rotor dynam-
ics equation in complex form, it has been proved that the stability threshold speed,
at which the rotor loses its stability, coincides with the first forward critical speed
regardless of the magnitude of the internal viscous damping coefficient.

The main purpose of this paper is to demonstrate that the finite element sim-
ulation and the sensitivity analysis are adequate methods to study the combined
effect of internal damping and isotropic bearing damping on the stability of complex
symmetrical rotor systems. By combining the sensitivity analysis and the matrix rep-
resentation of the rotor dynamics equations in complex form to assess stability, it is
proved theoretically that the whirling motion of the rotor system becomes unstable
at all speeds above the threshold speed of instability. In addition, the latter is always
greater than the corresponding whirling speed (frequency). It is found that the rotor
stability is improved by increasing the bearing damping, whereas increasing internal
viscous damping may reduce the stability threshold speed. Furthermore, it is shown
that the whirling speed of the rotor is higher than the first forward critical speed.
Numerical examples are given to show the validity of the theoretical results of the
present work. The threshold speeds and the whirling speeds of the rotor model are
calculated using a computer program written in real form, which utilizes a standard
QR-algorithm and an iterative technique developed by the author [10].

2. Equations of motion in complex form

2.1. Preliminaries and notations. In this section, the equations of motion for
a rigid disk, finite shaft element with internal viscous damping, isotropic damped
bearing, and the complete rotor system are written solely in complex form by making
use of a note by Nelson [11] and the paper by Zorzi and Nelson [8]. Note that
the equation of motion for the shaft element in complex form [11] does not contain
internal damping, whereas the effects of both viscous and hysteretic internal damping
are included into the finite element model in the work by Zorzi and Nelson [8].

Consider a symmetric rotor system as shown in Figure 1. The rotor system consists
of symmetrical rigid disks with negligible thicknesses, uniform circular Rayleigh shafts
with viscous internal damping, and n isotropic damped bearings with stiffnesses ki
and damping coefficients ci (i = 1, 2, ..., n) . The rotor is balanced, and rotates at
a constant speed Ω(Ω > 0) . The reference system Oxyz is fixed in space with
the horizontal x-axis coinciding with the undeformed rotor centerline. The external
damping, axial load and gravity are neglected.

Any node i of the rotor system has four degrees of freedom: two translations (vi, wi)
in the (y, z) directions, and two rotations(ϕyi, ϕzi) about the (y, z) axes, respectively.
The complex displacement vector of the ith node is defined by complex coordinates[11]
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Figure 1: Symmetric rotor in isotropic damped bearings

as
pi =

[
ri
ϕi

]
=

[
vi + iwi
ϕyi + iϕzi

]
, i =

√
−1 (2.1)

The component equations and the system equation in complex form may be written
as presented below.

2.2. Rigid disk. The equation of motion for a rigid disk in complex form is given
by (

Md
t + Md

r

)
p̈d − ΩGdṗd = Fd , (2.2)

where pd is the complex displacement vector corresponding to the four degrees of
freedom

(
vd, wd, ϕdy, ϕ

d
z

)
of the node at which the disk is attached. The translational

and rotational mass matrices
(
Md

t ,M
d
r

)
, and the gyroscopic matrix Gd are defined

as

Md
t =

[
md 0
0 0

]
, (2.3)

Md
r =

[
0 0
0 JD

]
, (2.4)

Gd =

[
0 0
0 iJP

]
, (2.5)

where md , JD and JP are the mass, the diametral and polar moments of inertia of
the disk, respectively.

2.3. Finite shaft element. The equation of motion for the finite rotating shaft
element with internal viscous damping takes the form [9]

(Me
t + Me

r) p̈e + (ηKe
b − ΩGe) ṗe + (Ke

b + ηΩKe
c) pe = Fe , (2.6)

where
pe =

[
pi
pj

]
(2.7)
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is the (4x1) complex nodal displacement vector of the shaft element with nodes i and
j, η is the internal viscous damping coefficient,

Ke
c = −iKe

b (2.8)

is the complex circulation matrix of the shaft element.

The translational and rotational mass matrices (Me
t ,M

e
r), the gyroscopic matrix

Ge, and the bending stiffness matrix Ke
b of the shaft element are defined as

Me
t =

µl

420


156 Hermitian
i22l 4l2

54 −i13l 156
−i13l −3l2 −i22l 4l2

 , (2.9)

Me
r =

µr2

120l


36 Hermitian
i3l 4l2

−36 −i3l 36
i3l −l2 −i3l 4l2

 , (2.10)

Ge = i2Me
r , (2.11)

Ke
b =

EI

l3


12 Hermitian
i6l 4l2

−12 i6l 12
i6l 2l2 −i6l 4l2

 , (2.12)

where µ is the mass per unit length, l is the length of shaft element, r is the element
radius, EI is the bending rigidity of the shaft element.

2.4. Linear isotropic damped bearings. The linear isotropic damped bearings
can be modeled by the equation:

Cbṗb+Kbpb= Fb , (2.13)

where pb is the complex displacement vector at the bearing location (node), Fb is the
complex bearing force vector. The damping and stiffness matrices

(
Cb,Kb

)
of the

isotropic bearings are defined as

Cb =

[
cb 0
0 0

]
, Kb =

[
kb 0
0 0

]
, (2.14)

where cb and kb are the direct damping and stiffness coefficients for the translational
displacements, respectively.

2.5. System equations. The equations of motion of the complete rotor-bearing
system can be obtained by assembling all component equations of the form equations
(2.2), (2.6) and (2.13). The resulting equation is of the form

Mp̈ + (ηKb + C− ΩG)ṗ + [KB + (1− iηΩ)Kb]p = 0 , (2.15)

where
pT =

[
pT1 pT2 ...p

T
N

]
(2.16)
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is the (2Nx1) complex nodal displacement vector of the rotor system (N equals the
number of nodes), the letter “T “ denotes the transpose.

2.6. Positive definite matrices. Since kinetic energy and strain energy cannot
be negative, the system matrices (M,Kb) are positive definite Hermitian matrices [9].
Thus the following relations hold:

p̄TMp > 0 , p̄TKbp > 0 , (p 6= 0) , (2.17)

where the bar denotes the complex conjugate operator.

Note that the system gyroscopic matrix G is not Hermitian. However, by using
the definitions of the component gyroscopic matrices presented by equations (2.5) and
(2.11) it can be expressed as

G = iMg , (2.18)

where
p̄TMgp > 0, (p 6= 0) . (2.19)

Evidently C and KB are positive definite diagonal matrices, the nonzero elements
of which are the damping coefficients and the stiffnesses of the isotropic bearings,
respectively

3. Stability analysis

3.1. Stability threshold speed determination. On seeking a solution to equation
(2.15) of the form

p = Peλt , (3.1)

we obtain the eigenvalue problem[
λ2M + λ (ηKb + C− ΩG) + KB + (1− iηΩ)Kb

]
P = 0 (3.2)

with 4N eigenvalues λj and the corresponding eigenvectors Pj (j = 1, 2, ..., 4N). The
eigenvalues λ are of the form

λ = α+ iω , (3.3)

where α is the damping coefficient or decay rate, ω is the damped natural frequency
or whirl speed.

For later use, the eigenvalue problem will be given in a modified form. To this end,
we premultiply equation (3.2) by the complex conjugate eigenvector P̄T . Then we
obtain the following scalar equation:

P̄T
[
λ2M + λ(ηKb + C− ΩG) + KB + (1− iηΩ)Kb

]
P = 0 , (3.4)
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which can be rewritten as

mλ2 + (ηkb + c− igΩ)λ+ kB + (1− iηΩ)kb = 0 , (3.5)

where the scalars m, kb, c, g and kB are in all positive real quantities defined by

P̄TMP = m > 0 , (3.6)

P̄TKbP = kb > 0 , (3.7)

P̄TCP = c > 0 , (3.8)

P̄TGP = ig(g > 0) (3.9)

P̄TKBP = kB > 0 . (3.10)

Note that the inequalities (3.6) - (3.10) hold on account of the positive definite ma-
trices of the rotor system (see Section 2.5.).

Instability occurs if one of the eigenvalues has a positive real part. Thus, the
problem of determining the limit of stability of the rotor system is reduced to finding
the shaft speed Ωs (stability threshold speed), at which the greatest real part of all
eigenvalues λj equals zero. The corresponding imaginary part ωs is the whirling speed.

For the possible limit ω , the substitution of the eigenvalue of the form

λ = iω (3.11)

into equation (3.5) yields

−mω2 + gΩω + kb + kB + i [(ηkb + c)ω − ηΩkb] = 0. (3.12)

After seperating equation (3.12) into real and imaginary parts, we obtain

−mω2 + gωΩ + kb + kB = 0, (3.13)
ω(ηkb + c) = ηΩkb (3.14)

It is clear from equation (3.14) and inequalities (3.7) and (3.8) that

Ω = ω

(
1 +

c

ηkb

)
> ω(ω > 0). (3.15)

Consequently, the threshold speed is greater than the corresponding whirling speed.
Furthermore, from inequality (3.15) it is seen that the particular undamped whirl
mode induced at the stability threshold speed is forward and asynchronous. It is
noteworthy that all backward precessional modes of the rotor are stable for any rota-
tional speed.

Now we shall prove that the rotor loses its stability at all speeds above the possible
stability limit. Here, we apply the eigenvalue sensitivity analysis. Let us suppose that
the shaft speed Ω is an independent parameter, and let us differentiate equation (3.5)
with respect to Ω :

λ′(2mλ+ ηkb + c− igΩ)− igλ− iηkb +m′λ2+

+ (ηk′b + c′ − ig′Ω)λ+ k′B + (1− iηΩ)k′b = 0 , (3.16)
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where primes denote differentiation with respect to Ω . The quantity λ′ = ∂λ/∂Ω is
referred to as an eigenvalue sensitivity coefficient [12], which can be written, with the
aid of equation (3.3), in the form:

∂λ

∂Ω
=
∂α

∂Ω
+ i

∂ω

∂Ω
. (3.17)

To calculate ∂λ/∂Ω from equation (3.16) at the possible limit Ω , we substitute again
equation (3.11) into equation (3.16):

∂λ
∂Ω [ηkb + c+ i(2mω − gΩ)] + gω − iηkb + (−m′ω2 + g′ωΩ + k′b + k′B)

+i[ω(ηk′b + c′)− ηΩk′b] = 0 .
(3.18)

Since the eigenvalue derivative ∂λ/∂Ω represents the unique solution of equation
(3.18) at the possible limit of stability and hence its value is not influenced by any
normalization criterion for the eigenvector P, therefore the underlined terms will
vanish:

−ḿω2 + ωΩg′ + k′b + k′B = 0 , (3.19)
ω(ηk′b + c′) = ηΩk′b . (3.20)

We then obtain the following expression for the damping sensitivity coefficient ∂α/∂Ω
:

∂α

∂Ω
=

2ηkb(mω − gΩ)

(ηkb + c)2 + (2mω − gΩ)2
. (3.21)

It is easy to show that the nominator of the above ratio is positive. By using equation
(3.13), the bracketed term in the nominator can be written as

mω − gΩ =
kb + kB

ω
. (3.22)

By making use of inequalities (3.6) - (3.10), it is clear that the right-hand side of
equation (3.22) is positive. Therefore, the damping sensitivity coefficient ∂α/∂Ω
is positive at each possible limit of stability. Thus, the lowest value of the above
stability limits for the particular forward whirl modes is considered to be the stability
threshold speed of the rotor-bearing system. Consequently, the whirling motion of the
rotor becomes unstable at all speeds above the stability threshold speed.

3.2. Effect of bearing damping on rotor stability. Now we shall prove that
an increase in the bearing damping coefficients results in an increase in the whirl
threshold speed, thus the rotor stability will be improved.

Let us consider the bearing damping coefficient ci(i = 1, 2, ..., n) of the i th isotropic
damped bearing as an independent parameter, and differentiate equations (3.13) and
(3.14) with respect to ci :

ω′(gΩ− 2mω) + ωgΩ′ + (−m′ω2 + ωΩg′ + k′b + k′B) = 0 , (3.23)

ω′(c+ ηkb)− ηkbΩ′ + ω(c̃+ ηk′b)− ηΩk′b = −ωc∗ , (3.24)



44 L. Forrai

where prime denotes differentiation with respect to ci ,

c̃ =
∂P̄T

∂ci
CP + P̄TC

∂P

∂ci
(3.25)

and
c∗ = P̄T ∂C

∂ci
P > 0 . (3.26)

By using the same reasoning that we have applied in connection with equation (3.18),
it is clear that the underlined terms in equations (3.23) and (3.24) will vanish at the
threshold speed Ω . The whirling speed sensitivity coefficient ω′ and the threshold
speed sensitivity coefficient Ω′ can now be obtained from the above two equations as

dω

dci
=

gc∗ω2

2(mω − gΩ)ηkb
, (3.27)

dΩ

dci
=
ω(2mω − gΩ)c∗

2(mω − gΩ)ηkb
. (3.28)

By using equation (3.22) and inequalities (3.7) and (3.9), it is easy to see that the
above sensitivity coefficients are positive. Thus, the addition of bearing damping
improves the rotor stability. It is also clear that the whirling speed is always greater
than the first forward bending critical speed of the rotor system. The latter statement
follows from the fact that the threshold speed of symmetrical rotors with viscous
internal damping, supported by undamped isotropic bearing, coincides with the first
forward critical speed [9]. It can further be concluded from equation (3.27) that when
the gyroscopic moments of the rotor are neglected ( g = 0 ), then the whirling speed
remains constant (the first critical speed of the rotor) regardless of the magnitude of
the bearing damping coefficients.

3.3. Influence of internal damping on threshold speed. We shall now
prove that increasing the internal viscous damping coefficient η causes reduction in
the stability threshold speed of the rotor. We assume that η is an independent system
parameter. By differentiating equations (3.13) and (3.14) with respect to η , we get

ω′(gΩ− 2mω) + ωgΩ′ + (−m′ω2 + ωΩg′ + k′b + k′B) = 0 , (3.29)

ω′(c+ ηkb)− ηkbΩ′ + ω(c′ + ηk′b)− ηΩk′b = (Ω− ω)kb , (3.30)

where prime denotes differentiation with respect to η . Since the underlined ex-
pressions vanish at the stability threshold, the whirling speed and threshold speed
sensitivity coefficients are determined by

dω

dη
= − ωg(Ω− ω)

2(mω − gΩ)η
, (3.31)

dΩ

dη
= − (2mω − gΩ)(Ω− ω)

2(mω − gΩ)η
. (3.32)

By using inequalities (3.9), (3.15), and equation (3.22), it is clear that both the
whirling speed sensitivity coefficient and the threshold speed sensitivity coefficient
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are negative at the stability threshold speed Ω = Ωs . Consequently, internal viscous
damping has a destabilizing effect on the rotor stability.

From equation (3.31) we also see that a change of ∆η leads to an opposite change in
the whirling speed ωs . Further, when the gyroscopic moments are neglected (g = 0),
the whirling speed remains constant regardless of the magnitude of the internal viscous
damping coefficient.

4. Numerical examples

4.1. To demonstrate the validity of the above theoretical results, two numerical
examples are provided. In both examples, the simply supported uniform shaft studied
by Zorzi [8] is considered. The rotor model consists of a 10.16 cm diameter and 127 cm
long steel shaft supported by two identical isotropic damped bearings at both ends.
The stiffnesses of the bearings are: k1 = 1.75× 1011N/m. The material properties of
the shaft are: Young’s modulus E = 2.06× 1011N/m2 , and density ρ = 7800 kg/m3.
The rotor is modeled as an assembly of four finite elements of equal length. In
the calculations, the damping coefficients c1 of the bearings and the internal viscous
damping coefficient η for the shaft are considered to be parameters.

4.2. As a first example, we shall examine the influence of the damping coefficient c1
on the rotor stability for the viscous internal damping coefficient η = 0.0002 s. Table 1
shows the numerical values of the whirling speed ωs and the stability threshold speed
Ωs of the rotor for different values of c1 . The first forward bending critical speed of
the rotor was found to be ΩF1 = 521.392 rad/s.

bearing damping threshold speed whirling speed
(Ns/m) (rad/s) (rad/s)

0 521.392 521.392

100 544.085 521.397

200 566.798 521.410

300 589.518 521.430

400 612.254 521.457

500 635.006 521.492

Table 1. Effect of bearing damping (c1) on rotor stability

As can be seen from Table 1, the introduction of bearing damping will increase
the stability threshold speed, thus the stability of the rotor system will be improved.
The numerical results also illustrate that the threshold speeds are greater than the
corresponding whirling speeds, which are only slightly greater than the first forward
critical speed of the rotor. Clearly the numerical results of Table 1 are in quite good
agreement with the theoretical results obtained in Section 3.2.
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4.3. As a second example, we consider the influence of the internal viscous damping
η on the rotor stability for the bearing damping coefficient c1 = 1750Ns/m. Table 2
presents the calculated values of the threshold speeds and whirling speeds for different
values of η .

viscous internal damping threshold speed whirling speed
(s) (rad/s) (rad/s)

0.0002 922.335 522.565

0.0003 789.012 522.556

0.0004 722.375 522.551

0.0005 682.396 522.548

Table 2. Effect of internal damping on rotor stability

The numerical results show clearly that the stability of the rotor is greatly reduced
by increasing internal damping. For example, for the viscous internal damping co-
efficient of η = 0.0002 s, the rotor becomes unstable at the threshold speed Ωs =
922.335 rad/s. By increasing the viscous internal damping coefficient to η = 0.0003 s,
the rotor stability threshold speed will be reduced to Ωs = 789.012 rad/s. It should
be noted that increasing internal damping produces only a small reduction in the
whirling speed ωs . Table 2 also confirms the validity of inequality (3.15). (Ωs > ωs).
Evidently the numerical results summarized in Table 2 are in good agreement with
the theoretical results derived in Section 3.3.

5. Summary and conclusions

In this paper a finite element stability analysis of self-excited bending vibrations
of symmetric rotors with viscous internal damping, supported by isotropic damped
bearings has been presented. By combining the sensitivity method and the eigenvalue
problem of the rotor dynamics equations in complex form, it is proved theoretically
that the whirling motion of the rotor becomes unstable at all speeds above the stability
threshold speed.

In addition, the latter is always greater than the corresponding whirling speed.
Further, the rotor stability is improved by increasing the damping provided by the
bearings, whereas internal viscous damping destabilizes the whirling motion of the
rotor.

It is also shown that the whirling speed of the rotor system is higher than the
first forward bending critical speed. Numerical examples are provided to confirm the
validity of the above theoretical results.
Acknowledgement. This research has been partially supported by the National Fund for
Scientific Research of Hungary (OTKA) under grants T 016836 and T 030096.
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Abstract. The aim of this paper is to show how to make real structural optimizations
on a strong theoretical background. Using stiffened plates one can get a lightweight and
stiff structure. Several calculations have been developed for stiffened plates. All of them
are approximations: the Massonnet and the Gienke techniques. Cost calculation is also
important, due to the expensive welding technologies. Two applications are shown: shipdeck
panel and compressed stiffened plate. It is shown that using optimization, one can reduce
the total cost of the structure. In countries where fabrication costs are high the number of
stiffeners is small and the thickness is large. In countries where fabrication costs are low the
number of stiffeners is large and the thickness is small [1, 1999].

Keywords : Structural optimization, stiffened plates, cost calculation

1. Introduction

A stiffened plate has low mass and high bending stiffness. The use of welding made it
possible to produce different constructions. To increase the torsional rigidity, cellular
plates have been introduced. Stiffened plates can be applied as roof structures of
supermarkets, petrol stations, etc. (Figure 1), orthotropic bridge decks (Figure 2),
airplane wing structures (Figure 3), ship wall and deck structures (Figure 4), roof
structure of tanks (Figure 5) [2, 1966], [3, 1968].

Figure 1. Figure 2.
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Figure 3. Figure 4.

The following parameters can be varied:
— Different base plate configurations: rectangular, triangular, circular, trapezoidal,
etc.,

— Stiffener sections: flat, L-, T-, trapezoidal, etc.,
— Geometry of stiffeners: one-, two directional, one-, two side,
— Technologies: spot-, line welding, riveting, gluing, etc.,
— Loading: static, dynamic, stochastic, uniformly distributed, hydrostatic, con-
centrated force.

2. Static calculation of stiffened plates

2.1. Grid calculation. If the number of stiffeners is small, the stiffened plate can
be divided into beam-like grid structures (Figure 6). This calculation is based on
force method. The torsional stiffness can be neglected. The deflections at the nodes
should be equal for the two orthogonal beams. The unknown internal forces can be
calculated from the deflection equations [4, 1969].

Figure 5. Figure 6.

2.2. Calculation as an anisotropic continuum. The assumptions are as
follows:
— elastic stress and deformations,
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— deflections are small compared to the thickness of the plate,
— normal stresses orthogonal to the plate can be neglected,
— shear deformations can be neglected,
— stresses from torsion can be calculated from Saint-Venant theory,
— number of stiffeners in both directions is large enough to assume that the effective
plate width is equal to the distance between stiffeners.

The stiffness matrix of a plate stiffened on one side in two directions can be for-
mulated from three matrixes: cover plate and stiffeners in x- and y-directions. The
reference plane is the mid cover plane. The equilibrium equations concerning the
deflections are as follows:

(D +Dbx)u′′ − zSxDbxw
′′′ +

1− ν
2

D ü+
1− ν

2
D v̇′ = 0 , (2.1)

(D +Dby) v̈ − zSyDby
...
w +

1− ν
2

Dv′′ +
1− ν

2
D u̇′ = 0 , (2.2)

zSxDbxu
′′′ + zSyDby

...
v −

(
B +Bbx + z2

SxDbx

)
w′′′′−

−
(
B +Bby + z2

SyDby

) ····
w − (2B +Bxy +Byx) ẅ′′ + p = 0 (2.3)

where D is the tensional stiffness of the isotropic plate, tf is the thickness of the cover
plate, u, v and w are deflections in x, y and z directions, ν is the Poisson ratio, zSxDbx,
zSyDby are related to the linear moment, ẇ and w′ are derivatives of w in x and y
directions, E is the Young modulus, p is the uniformly distributed load, perpendicular
to the cover plate.

Introducing the notations

D +Dbx = Dx, D +Dby = Dy (2.4)

the bending stiffnesses of the cover plate and the stiffener in x- and y directions are

Bx = B + e2
xD +Bbx +Dbx (zSx − ex)

2 (2.5a)

By = B + e2
yD +Bby +Dby (zSy − ey)

2 (2.5b)

where B, Bx, By are bending stiffnesses, Dbx, Dby are tensional stiffnesses of the
stiffeners in x- and y directions, ex, ey are eccentricities.

Substituting equations (2.4-2.5b) into (2.1-2.3) we obtain

Bxw
′′′′ + 2 (B +Bxy +Byx) ẅ′′ +By

····
w +

D

2
(1− ν) ey ü

′+

+
D

2
[(1 + ν) ex + (1− ν) ey ] v̇′′ = p (2.6)

For a symmetrically stiffened plate on both sides, ex = ey = 0 then (2.6) will have a
simpler form referred to as Huber equation

Bxw
′′′′ + 2 (B +Bxy +Byx) ẅ′′ +By

····
w = p . (2.7)

For an isotropic plate Bx = By = B and Bxy = Byx = 0 .
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2.3. Calculation of eccentrically stiffened plates. For an eccentrically stiff-
ened plate (2.1-2.3), eliminating u and v, gives the following form

a1
∂8w

∂x8
+a2

∂8w

∂x6∂x2
+a3

∂8w

∂x4∂y4
+a4

∂8w

∂x2∂y6
+a5

∂8w

∂y8
= f(

∂4p

∂x4
,

∂4p

∂x2∂y2
,
∂4p

∂y4
) (2.8)

where a1, a2, a3 are parameters and f is the loading function.

The 8th order partial differential equation shows the complexity of the general prob-
lem. For a symmetrical structure the equation can be solved by infinite mathematical
series. The other solution is to introduce approximations, like reduced stiffnesses,
which leads to a Huber equation. This kind of method was developed by [5, 1959]
and [6, 1955].

2.3.1. Massonnet technique. The elastic energy of the plate is given by

U =
E

2 (1− ν2)

∫∫∫
cover plate

(
ε2
x + ε2

y + 2νεxεy +
1− ν

2
γ2
xy

)
dxdydz+

+
E

2

∫∫∫
stiffeners

(
ε2
x + ε2

y

)
dxdydz +

1

2

∫∫
A

(Bxy +Byx) ẇ′dxdy (2.9)

where εx, εy and γxy are the strains. The displacements in the x, y and z directions
are denoted by u, v and w. Massonnet assumes that

u = cxw
′, v = cyẇ

where cx and cy are parameters.

Due to the shear stiffness of the cover plate, the eccentricities are less than ex and
ey.

While we want to determine u and v for a given w, in the equation of U we should
consider the parts, which depend on u and v. Solving equation (2.9) we get the
reduced Huber equations

B∗xw
′′′′ + 2H∗ẅ′′ +B∗y

····
w = p , (2.10a)

B∗x = Bx + (ex − cx)2Dx , (2.10b)

B∗y = By + (ey − cy)2Dy , (2.10c)

2H∗ = 2B +Bxy +Byx +
1− ν

2
D(cx + cy)2 + 2νDcxcy . (2.10d)

This is an iteration procedure: first take an approximation function to w, determina-
tion of cx, cy calculation the reduced stiffnesses, get a better approximation to w and
start a new iteration.

2.3.2. Gienke technique. In order to simplify calculation Gienke suggested consider-
ing Dx and Dy as infinitely great quantities. It means that we neglect the deformation
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of the fibre in gravity center to w:

1/Dx = 1/Dy = 0 , (2.11)

cx = ex , cy = ey (2.12)

where cx, cy are parameters.
The bending stiffnesses are now given by

B∗x∗ = Bx , B∗y = By (2.13)

while for the half torsional stiffness H one can write

2H∗ = 2B +Bxy +Byx +
1− ν

2
D(ex + ey)2 + 2νDexey . (2.14)

The Gienke calculation is less accurate, but simpler than that of Massonnet, because
there is no need for iterations.

2.3.3. Navier solution of square stiffened plates subject to bending. We are looking
for w = w(x, y) function as a solution of the equation

Bxw
′′′′ + 2H∗ẅ′′ +By

····
w = p(x, y) (2.15)

2H∗ = B +Bxy +Byx (2.16)

If the plate is a square one and is simply supported, equation (2.15) is associated with
the boundary conditions

w = 0, mx = 0 if x = 0 and x = bx

w = 0, my = 0 if yx = 0 and y = bx

As is well known, the solution assumes the form

w(x, y) =

∞∑
m=1

∞∑
n=1

cmn sin
mπx

bx
sin

nπy

by
(2.17)

where bx and by are the sizes of the plate in x and y directions. We remark that the
load can also be given in this form

p(x, y) =

∞∑
m=1

∞∑
n=1

amn sin
mπx

bx
sin

nπy

by
(2.18)

The coeffi cients amn and cmn are related to each other via the equation

cmn =
amn

π4(Bx
m4

b4x
+ 2H

m2n2

b2xb
2
y

+By
m4

b4y
)

(2.19)

We can get the solution that for uniformly distributed load p(x, y) = p

amn = 16p/π2mn . (2.20)
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3. Cost calculation of stiffened plates

3.1. Fabrication costs. The cost function can be expressed as

K = Km +Kf = kmρV + kf
∑
i

Ti (i = 1, 2, ..., 7) (3.1)

where Km and Kf are the material and fabrication costs, respectively, km and kf
are the corresponding cost factors, ρ is the material density, V is the volume of the
structure, Ti are the production times [7, 1997], [8, 1999].

3.2. Welding times. Time for preparation, assembly and tacking is given by

T1 = C1δ
√
κρV (3.2)

where δ is a diffi culty factor, κ is the number of structural elements to be assembled
[9, 1992]. For the welding time one can write

T2 =
∑
i

C2ia
n
wiLwi (3.3)

in which awi is the weld size, Lwi is the weld length and C2i are constants determined
by the welding technology. Time for additional fabrication activities such as changing
the electrode, deslagging and chipping can be calculated as

T3 =
∑
i

C3ia
n
wiLwi (3.4)

in which [10, 1985] proposed for the constants that C3 = (0.2−0.4)C2 and C3 = 0.3C2.
Neglecting

√
Θd one obtains

T2 + T3 = 1.3
∑
i

C2ia
2
wiLwi (3.5)

which is a modified formula for T2 + T3.

Table 1. Applied welding technologies

SMAW Shielded Metal Arc Welding
SMAW HR Shielded Metal Arc Welding High Recovery
GMAW-C Gas Metal Arc Welding with CO2
GMAW-M Gas Metal Arc Welding with Mixed Gas
FCAW Flux Cored Arc Welding

FCAW-MC Metal Cored Arc Welding
SSFCAW (ISW) Self Shielded Flux Cored Arc Welding

SAW Submerged Arc Welding
GTAW Gas Tungsten Arc Welding

Different welding technologies are shown in Table 1.
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Figure 7. Welding time T2 (min) for different welding technologies plotted against
the weld size aw (mm) for longitudinal V butt welds downhand position

In Figure 7 data are given for eight welding techniques and for a given weld type.

Using COSTCOMP [11, 1990] software we have calculated the welding time T2

(min) as a function of weld size aw (mm) for longitudinal fillet welds, for 1/2 V and
V butt welds, for K and X butt welds, for T butt welds, for U and double U butt
welds, in downhand position [12, 1990].

The welding time T2 (min/mm) as a function of weld size aw (mm) for longitudinal
V butt welds is increasing in positional welding, which means not downhand, but
vertical or overhead positions. Figure 7 shows that the welding time for longitudinal
V butt welds in decreasing order is the highest for SMAW, SMAW-HR, GMAW-C,
GMAW-M, FCAW, FCAW-MC, ISW and the lowest for SAW.

3.3. Time for flattening plates. In the catalogues of different companies one
can find the times for flattening plates (T4 [min]) as the function of the plate thickness
(t [mm] ) and the area of the plate (Ap [mm2]). The time function can be written in
the form:

T4 = Θde(ae + bet
3 +

1

aet4
)Ap , (3.6)

where ae = 9.2 ∗ 10−4 [min/mm2], be = 4.15 ∗ 10−7 [min/mm5], Θde is the diffi culty
parameter (Θde= 1,2 or 3). The diffi culty parameter depends on the form of the plate.

3.4. Surface preparation time. Surface preparation means the surface cleaning,
painting, ground coat, top coat, sand-spraying, etc. The surface cleaning time can be
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given in terms of the surface area (As [mm2]) as follows:

T5 = ΘdsaspAs (3.7)

where asp = 3 ∗ 10−6 [min/mm2], Θds is a diffi culty parameter.

3.5. Painting time. Painting means making the ground and the topcoat. The
painting time depends on the surface area (As [mm2]) as follows:

T6 = Θdp(agc + atc)As (3.8)

where agc = 3 ∗ 10−6 [min/mm2] , atc = 4.15 ∗ 10−6 [min/mm2], Θdp is a diffi culty
factor, Θdp=1,2 or 3 for horizontal, vertical or overhead painting.

3.6. Cutting and edge grinding times. Cutting and edge grinding can be
done by different technologies, like Acetylene, Stabilized gasmix and Propane with
normal and high speed. The cutting time can be calculated also by COSTCOMP.
The normal speed acetylene has the highest time and the high speed propane has the
smallest cutting time.

The cutting cost function can be formulated as a function of the thickness (t [mm])
and cutting length (Lc [mm]):

T7 =
∑

C7it
n
i Lci (3.9)

where ti is the thickness in [mm], Lci is the cutting length in [mm].

3.7. Total cost function. The total cost function is defined according to (3.1).
Taking km = 0.5÷1 $/kg, kf =0 ÷1 $/min, the kf/km ratio varies between 0 - 2
kg/min. If kf/km= 0, we get the mass minimum. kf/km = 2.0 means a very high
labor cost (Japan, USA), kf/km = 1.5 and 1.0 mean a West European labor cost,
kf/km = 0.5 means the labor cost in developing countries.

4. Welded stiffened plate

4.1. Main data for the optimization. The cost function is calculatedaccording
to (3.1), where A = b0tf + ϕhsts,Θd = 3, κ = ϕ+ 1, Lw = 2Lϕ and ϕ is the number
of stiffeners. The stiffeners are welded to the plate by double fillet welds.

The main data for the optimization are as follows:

The Young modulus of the steel is E = 2.1∗105 MPa, the density is ρ = 7.85∗10−6

kg/mm3, the Poisson ratio is ν = 0.3, the yield stress is fy = 235 MPa, the width of
the plate is b0 = 4200 mm and the plate length is L = 4000 mm.
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Figure 8. Stiffened plate

The compression force is

N = fyb0tf max = 235 ∗ 4200 ∗ 20 = 1.974 ∗ 107 (N) (4.1)

The independent design variables are as follows (Figure 8): The plate thickness tf ),
the height hs and thickness ts of the stiffeners and the number of stiffeners ϕ = b0/a.

4.2. Design constraints.
a) According to API [13, 1987] the overall buckling constraint for the compressed
plate with uniform distance stiffeners is (Figure 8)

N ≤ χfyA (4.2)

where the buckling factor χ is a function of the reduced slenderness factor λ̄ :

χ =

 1 if λ̄ ≤ 0.5
1.5− λ̄ if 0.5 < λ̄ ≤ 1
0.5/λ̄ if λ̄ > 1

(4.3)

The factor λ̄ is given by

λ̄ =
b0
tf

√
12(1− ν2)fy
Eπ2kmin

(4.4)

in which

kmin = min(kF , kR) (4.5)

kR = 4ϕ2 , kF =


(1 + α2)2 + ϕγ

α2(1 + ϕδP )
if α =

L

b0
≤ 4
√

1 + ϕγ

2(1 +
√

1 + ϕγ)

1 + ϕγ
if α =≥ 4

√
1 + ϕγ

(4.6)
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and

δP =
hsts
b0tf

, γ =
EIs
b0D

, Is =
h3
sts
3
, D =

Et3f
12(1− ν2)

. (4.7)

Equation (4.7)2 can be rewritten as

γ = 4(1− ν2)
h3
sts
b0t3f

= 3.64
h3
sts
b0t3f

, (4.8)

where Is is the moment of inertia of one stiffener about an axis parallel to the plate
surface at the base of the stiffener, D is the torsional stiffness of the main plate.

Optimization was made using Hillclimb technique [14, 1989].

Table 2. Optimum rounded sizes of welded stiffened plates in mm with fillet welds
using different welding technologies for kf/km = 2.0

Welding technology kf/km hs tf ϕ ts ρV (kg) K/km(kg)

Same for each technology 0.0 210 17 13 11 2737 2737
0.5 230 17 6 19 3242 6313

SMAW 1.0 235 17 6 19 3258 9409
1.5 235 17 6 19 3258 12484
2.0 235 17 6 19 3258 15559
0.5 230 17 6 19 3242 5749

SMAW HR 1.0 230 17 6 19 3242 8257
1.5 230 17 6 19 3242 10764
2.0 235 17 6 19 3258 13306
0.5 230 17 6 19 3242 5553

FCAW-MC 1.0 230 17 6 19 3242 7864
1.5 230 17 6 19 3242 10175
2.0 235 17 6 19 3258 12521
0.5 230 17 6 19 3242 5299

GMAW-C 1.0 230 17 6 19 3242 7357
GMAW-M 1.5 235 17 6 19 3258 9444

2.0 230 17 6 19 3242 11471
SAW 0.5 230 17 6 19 3242 5064
ISW 1.0 230 17 6 19 3242 6886
FCAW 1.5 230 17 6 19 3242 8707

2.0 235 17 6 19 3258 10564

b) The buckling constraint of the stiffener is

hs
ts
≤ 1

βs
= 14

√
235

fy
. (4.9)

The size ranges for the variables are as follows:

tf = 6÷ 20 mm, hs = 84÷ 280 mm, ts = 6÷ 25 mm and ϕ = 4÷ 15 mm.
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Figure 9. The total cost distribution of the welded stiffened plate with fillet welds
using different welding technologies for kf/km=2.0

The elements of cost function for the welded stiffened plate are as follows:
Size of welded joint aw = ts Cross section area A = b0tf + ϕhsts
Material cost ρV = ρLA Fabrication costs kf/km

∑
i

Ti
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Further data
Formula for Ti Data for Ti

T1 = C1δ
√
κρV ρ = 7.85 ∗ 10−6, C1 = 1, κ = ϕ+ 1, Θd = 2

T2 + T3 = 1.3
∑
C2ia

2
wiLwi C2i = 0.7889 ∗ 10−3 for SMAW

and Lwi = 2Lϕ, L in mm

T4 = Θde

(
ae + bet

3 + 1
aet4

)
Ap ae = 9.2 ∗ 10−4, be = 4.15 ∗ 10−7,

t = ts, or tf , Ap = ϕhsL or b0L

T5 = ΘdsaspAs = 5 ∗ 10−7 asp = 3 ∗ 10−6, As = ϕhsL+ b0L

T6 = Θdp(agc + atc)As agc = 3 ∗ 10−6, atc = 4.15 ∗ 10−6

and As = ϕhsL+ b0L
T7 =

∑
C7it

n
i Lci C7 = 1.1388 , t = ts or tf , n = 0.25,

Lci = (hs + L) or (b0 + L)

Table 2 shows the optimum discrete sizes of the stiffened plate made with different
welding technologies. Figure 9 shows the distribution of the total cost. The dia-
grams illustrate that this distribution depends on the welding technologies, the type
of welding, the ratio of material and fabrication specific costs and the structure type
as well.
The welding technologies in Figure 9 are given in decreasing order related to the

welding time and cost. The differences between them are great. The welding time
and cost are the greatest for SMAW, the quickest and cheapest are SAW, FCAW and
ISW. For stiffened plates using SMAW, 46% of the total cost is the welding cost, using
SAW, it is only 20%. The fabrication costs of stiffened plates have a larger ratio in
total cost, because stiffened plates contain more elements, which need more welding
time.
The mass of stiffened plate is ρLA = 3258 kg (Table 2), the fabrication cost is 100

(15559-3258) / 15559 = 79 % of the total cost. Cost savings can be achieved using a
cheaper welding technology, like SAW instead of SMAW or GMAW, if it is possible.
Table 3 shows the cost savings for the two different structures and for the five different
groups of welding. For stiffened plates the cost savings can be 32 % of the total cost.
All compared results are optimized.

Table 3. Cost savings for different welding technologies
Welding technology kf/km=2.0 Total cost Cost savings in %

SMAW 15559 0
SMAW-HR 13305 14
FCAW-MC 12521 20
GMAW-C 11471 27
SAW 10560 32

5. Ship deck optimization

5.1. Sructural elements. Cellular plates consist of two face sheets and a grid of
ribs welded between them. The main advantage of such a plate structure is that the
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cells have a large torsional stiffness, which allows designers to construct plates of small
height. The disadvantage of cellular plates lies in fabrication diffi culty, since, when
the height is smaller than 800÷1000 mm, it is impossible to weld the ribs to the face
sheets from inside.

Some applications of cellular plates are as follows: double bottoms of ships, rudders
of ships, floating roofs of cylindrical storage tanks, box gates for dry docks, wings
of aircraft structures, bridge decks, floating bridges, offshore platforms, elements of
machine tool structures (press tables, mounting desks, base plates), mining shields,
floors of buildings, lightweight roofs, etc.

Regarding the fabrication of cellular plates there are several possibilities to join the
ribs to the face sheets. The simplest but not the cheapest solution is to use faceplate
elements and weld them to ribs from outside by fillet welds. Special welds such as
arc-spot welds, slot or plug welds as well as electron-beam or laser welds can be used
without cutting larger face sheet parts. A combination of fillet and arc-spot welds is
shown in Figure 10.

Figure 10. Cellular plate with a combination of fillet and arc spot welds

Figure 11. A special cellular plate with longitudinal stiffeners proposed by Suruga
and Maeda [15, 1976]

Suruga and Maeda proposed a special cellular plate construction for bridge decks
(Figure 11), but this solution is too expensive.
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Figure 12. Cross-section of the ship deck panel

Figure 13. Bending moment diagram of the ship deck panel

An interesting application of cellular plates is the ship deck panels. The main
specialties of this application are as follows: 1) only longitudinal ribs of square hollow
section (SHS) are used joined to the face sheets by arc-spot welding, thus, in the
cost function the fabrication cost of arc-spot welds should be included; 2) to avoid
the vibration resonance, the first eigenfrequency of the plate should be larger than a
prescribed value.

The aim of the present study is to work out a minimum cost design of such cellular
plates considering, in addition to the stress constraint, the eigenfrequency constraint
as well, and the fabrication cost of arc-spot welds.

5.2. The cost function. The cross-section of the deck panel is shown in Figure
12. The cellular plate consists of two face sheets of thickness tf and longitudinal SHS
ribs of number n with dimensions of b and t.

In the longitudinal direction the plate ends are clamped and the panel is supported
in two points, thus, it can be calculated as a three-span beam (Figure 13) loaded
axially with a compression stress σ = N/Aeff , Aeff being the effective cross-section
for compression (Figure 15), and transversely by a uniformly distributed normal load
of a factored intensity p.
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The cost is calculated according to (3.1). The volume of the structure is

V = 3l(nASHS + 2Btf ) . (5.1)

Considering the corner roundings according to a formula given by DASt [16, 1986],
the cross-sectional area of a SHS is approximately

ASHS = 0.99 ∗ 4(b− t)t
(

1− 0.43
t

b− 3t

)
. (5.2)

The fabrication times are as follows. The time of preparation, assembly and tacking
can be expressed as

T1 = C1Θd(κρV )0.5 , (5.3)

where C1 = 1.0 min/kg0.5 is the diffi culty factor expressing the effect of the type of
structure (planar or spatial), κ is the number of assembled structural elements, in our
case κ = n+ 2.

The time of arc-spot welding is given by

T2 = nsTs (5.4)

where ns is the number of spots, Ts is the time of welding of one spot weld and of the
electrode transfer to the next spot.

The additional time for deslagging, chipping and changing the electrode can be
calculated as

T3 = 0.3T2 . (5.5)

Since data for Ts cannot be found in literature, we take Ts = 0.3 min noting that it
depends on the welding equipment and the degree of automation.

Figure 14. Effective diameter of an arc-spot weld

The number of spots can be calculated by means of the spot pitch a. The required
minimum spot pitch can be determined considering a spot weld as a pin [17, 1978],
[18, 1990].

Limiting forces for a pin, according to Eurocode 3 (EC3) [19, 1992] are as follows:
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— for bearing
Fb = 1.5tfdefy/γMp (5.6)

with de = 2tf (Figure 14) and γMp = 1.25; Fb = 2.4t2ffy
— for shear

FQ0.6t
πd2

e

4

fu
γMp

= 1.508t2f tfu . (5.7)

For steel Fe 360 the ultimate strength is fu = 360 and the yield stress is fy = 235
MPa, for steel Fe 510 they are fu = 510 and fy = 355 MPa.

The spot weld is loaded by the force FW from the shear acting in a bent beam

Fw =
QSξ
Iξ

a (5.8)

where Q is the shear force, Sξ and Iξ are the first moment and moment of inertia
of an effective cross-section as shown in Figure 16 and given by (5.21), respectively,
while a is the spot pitch. From the condition one obtains the required maximum spot
pitch

amax =
Fb,QIξ
QSξ

but amax ≤ 50tf . (5.9)

The number of spots in (5.4) can be expressed as

ns = 6nL/a . (5.10)

5.3. Constraint on eigenfrequency. A serviceability constraint can be defined
expressing that the first eigenfrequency of a simply supported bent beam of span
length L should be larger than a prescribed value

f1[Hz] =
π

2L2

(
103EIx
m

)1/2

≥ f0 , (5.11)

where E is the modulus of elasticity and Ix is the moment of inertia of the whole
cross-section:

Ix = nISHS +Btf (b+ tf )2/2 . (5.12)

According to DASt (1986) the moment of inertia of a SHS is approximately

ISHS =
2

3
(b− t)3t

(
1− 0.86

t

b− 3t

)
. (5.13)

In the formula for the mass m an additive mass madd should be involved, thus

m = ρ(nASHS + 2Btf ) +madd . (5.14)

It should be mentioned that f1 is larger than the value obtained from the formula
(5.11) because the beam is clamped and not simply supported. In spite of that, one
can use the above approximation since it is obvious from Table 1 that this constraint
is not active.
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Figure 15. Effective cross-section for compression

5.4. Constraint on stress due to compression and bending. According to
EC3, the stress constraint should be defined for a section of class 4 as follows:

N

χAefffy1
+
kxψM1

Wξfy1
≤ 1 (5.15)

where χ is the overall buckling factor and

χ =
1

Φ + (Φ2 − λ̄2
)1/2

, Φ = 0.5
[
1 + 0.34(λ̄− 0.2) + λ̄

2
]
, λ̄ =

KL

λ1r
β

1/2
A .

(5.16)
Here K depends on the supports —for a beam with clamped ends K = 0.5 —and

λ1 = π(E/fy)1/2β
1/2
A , r = (Ieff/Aeff )

1/2
, βA =

Aeff
nASHS + 2Btf

. (5.17)

To obtain the effective cross-section, the effective width of face sheets should be
calculated according to EC3

be = ρP
B

n− 1
, λ̄P =

B/ [(n− 1)tf ]

28.4εk
1/2
σ

, ε =

√
235

fy
(5.18)

with

kσ = 4, λ̄P =
B

56.8ε(n− 1)tf
(5.19)

where

ρP =


1 if λ̄P ≤ 0.673

1

λ̄P
− 0.22

λ̄
2 if λ̄P ≥ 0.673

. (5.20)

Considering the effective cross-section shown in Figure 15 we get

Aeff = nASHS + 2Betf , Be = b+ (n− 1)be, Ieff = nISHS +Betf (b+ tf )2/2 .
(5.21)
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Figure 16. Effective cross-section for bending

According to the moment diagram shown in Figure 13

M1 = BpL2/12 . (5.22)

This bending moment should by multiplied by a dynamic factor

kx = 1− µxN

χ(nASHS + 2Btf )fy
, but kx ≤ 1.5 (5.23)

µx = λ̄(2βM − 4), but µx ≤ 0.9 . (5.24)

For our case βM = 1.3 and µx = −1.4 λ̄ , thus

kx = 1 +
1.4λ̄βAN

χAefffy
. (5.25)

For bending another asymmetric effective cross-section should be taken into account
as shown in Figure 16. The distance of gravity centre G is

ηG =
nASHS(b+ tf )/2 +Betf (b+ tf )

nASHS + (B +Be)tf
. (5.26)

The moment of inertia is given by

Iξ = nISHS + nASHS

(
b+ tf

2
− ηG

)2

+BtfηG +Btf (b+ tf − ηG)2 . (5.27)

The first moment of the cross sectional area for the calculation of (5.18) and (5.26)
and the corresponding section modulus are

Sξ = be(b+ tf − ηG) and Wξ =
Iξ

b+ tf − ηG
, (5.28)

respectively.
5.5. The optimization procedure. In the minimum cost design the optimum

values of b, t, tf and n are sought, which minimize the cost function (3.1) and fulfil the
design constraints (5.11) and (5.15). In the first phase the above mentioned variables
are treated as continuous ones and the optima are determined using the Rosenbrock’s
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hillclimb mathematical programming method. In the second phase the discrete values
of variables are calculated using a complementary search method. In this search the
minimum values are taken as

bmin = 30, tmin = 2, tfmin = 2 mm and nmin = 4.

The discrete values of SHS are sought according to the pre-standard prEN 10219-2
[20, 1992].

The numerical data are as follows: f0 = 18 Hz, E = 2.1 ∗ 105 MPa, B = 2000,
L = 2250 mm, ρ = 7850 kg/m3 = 7.85*10−6 kg/mm3, madd = 2 ∗ 50 = 100 kg/m
= 0.1 kg/mm, p = 3.5 kN/m2 = 3.5 ∗ 10−3 N/mm2, ψ = 1.4, σ = N/Aeff = 150
MPa.

The computational results are summarized in Table 4.

Table 4. Optimization results: optimum dimensions in mm, number of ribs n,
fulfilling the design constraints (5.11) and (5.15), as well as K/km - values in kg for

cost in function of the ratio kf/km

K/km

fy [MPa] b t tf n (5.11) (5.15) kf
km

= 0
kf
km

= 1
kf
km

= 2

235 60 2 2 4 31.5>18Hz 0.99<1 520 898 1276
355 40 2 2 4 21.1>18Hz 0.89<1 486 859 1231

As can be seen from Table 1, the number of ribs and the thickness of face sheets
should be minimum to achieve minimum cost. For larger yield stress the dimension
of SHS can be decreased, thus the cost is also smaller. It can also be seen that the
eigenfrequency constraint (5.11) is passive and the stress constraint (5.15) is active.

The optimum dimensions do not depend on the fabrication cost or on the ratio
of kf/km . In fabrication cost only the distance of spots depends on the structural
dimensions (see 5.9), but, in all cases, the limit amax = 50tf is governing, constraint
(5.9) gives much larger values for a. Since tf = tfmin = 2 mm for all cases the
fabrication cost remains the same. The fabrication cost is quite high for fy = 235
MPa, in the case of kf/km = 1 it is 100(898-520)/898 = 42% and for kf/km = 2 it is
100(1276-520)/1276 = 59% of the whole cost.

6. Conclusions

We have shown that stiffened plates play an important role in structural design.
The analysis of these structures can be made for static loading and can be built into
the optimization software. Cost calculation of these structures is important due to the
high volume of welding. Two examples show how we can perform cost minimization
using different material and fabrication cost factors. The optima of stiffened plates
with compression load show that for material cost the number of stiffeners is high
(13 stiffeners), for high fabrication cost the number is low (6 stiffeners). For different
welding technologies, optima are different. For SMAW the cost of welding is close to
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half of the total cost, for SAW the welding cost is only 20% of the total cost. For the
second example where the stiffeners are square hollow sections, not only the stress
and stability constraints (taking into account the effective width due to bending and
compression), but the eigenfrequency constraints are also considered. In most cases
the optima are determined by the thickness lower limits and the stability constraint.
The fabrication cost can be more than half the total cost at the optimum.
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Abstract. Due to the deformation of a solid body its metric tensor changes. In this paper
the Riemann-Christoffel curvature tensor, considered as the compatibility field equation of
the nonlinear theory of deformation and written in terms of the metric tensor of the deformed
body, is derived from the principle of complementary virtual work.

Keywords: Riemann-Christoffel curvature tensor, principle of complementary virtual work

1. Introduction

The deformation tensors of a solid body are uniquely defined by its displacement
field. Otherwise, when the deformation tensors are known, a single-valued continuous
displacement field (without rigid body motions) can be derived only in the case when
the deformation tensors satisfy the compatibility conditions. Compatibility conditions
consist of compatibility field equations and compatibility boundary conditions. In this
paper the compatibility field equations are investigated only.

In the infinitesimal theory of deformation, the compatibility field equation is equiv-
alent to the vanishing of the Saint-Venant compatibility tensor. In the nonlinear de-
formation theory, the compatibility condition is usually expressed by the requirement
that the metric tensor of the deformed body be the metric tensor of a Euclidean
space (note that the metric tensor of the deformed body is the Green deformation
tensor in the reference configuration and the Cauchy deformation tensor in the cur-
rent configuration). This means that vanishing of the Riemann-Christoffel curvature
tensor written in terms of the metric tensor of the deformed body is equivalent to the
compatibility field equation.

Both the tensorial Saint-Venant equation and the zero-valued Riemann-Christoffel
curvature tensor have six scalar equations. These six equations are not independent
of each other. The problem of necessary and sufficient compatibility conditions arises
from this fact. A partial solution for this problem was given by Washizu [1]. In the
framework of the classical elasticity theory, the necessary and sufficient compatibility
conditions were given by Grycz [2], the compatibility field equations and compatibility
boundary conditions were derived from the principle of virtual work by the author,
see Kozák [3,4].
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The papers [5,6] by Bertóti established compatibility field equations and boundary
conditions of the first kind in the linear theory of elasticity. For micropolar case and
within the framework of the linear theory Kozák-Szeidl [7] determined the necessary
and sufficient conditions the strains should meet to be compatible.

This paper derives the Riemann-Christoffel curvature tensor as the compatibility
field equation of the nonlinear theory of deformation using the principle of comple-
mentary virtual work. The necessary and sufficient conditions of compatibility in the
nonlinear theory of deformation are not investigated here. In this respect we refer to
an earlier work of the author Kozák [8].

In the following we assume that the volume of the body is simple-connected and
bounded by a closed smooth single surface . Both the invariant (symbolic) and indicial
(tensorial) notation of tensor calculus will be used. When indicial notation is used,
the covariant derivative of a tensor as well as the partial derivative of a two-point
tensor will be denoted by a semicolon followed by an index in the subscript, whereas
the total covariant derivative of a two-point tensor will be denoted by a colon followed
by an index in the subscript.

2. Coordinate systems. Deformation gradients

2.1. Let the spatial point, the position vector, the spatial coordinates and the base
vectors be denoted as follows:

– in the reference coordinate system (in the reference configuration of the body):

P ◦, r◦, x◦k, gk◦ , gl◦ , gk◦ =
∂r◦

∂x◦k

– in the spatial coordinate system (in the current configuration of the body):

P, r, xp, gp, g
q, gp =

∂r

∂xp
.

In the course of deformation the arbitrary point P̂ of the body, moves from the
space point P ◦(x◦1, x◦2, x◦3) to the space point P (x1, x2, x3). The trajectory of the
point P̂ is determined by the motion:

xp = xp(x◦1, x◦2, x◦3; t), J = det

∣∣∣∣ ∂xp∂x◦k

∣∣∣∣ > 0 . (2.1)

The inverse motion is given by

x◦k = x◦k(x1, x2, x3; t) . (2.2)

Using material coordinate system, let the point, the coordinates and the base vectors
be denoted as follows

– in the reference configuration of the body:

P̂ , X◦K = XK , GK◦ , GL◦
, GK◦ =

∂r◦

∂X◦K =
∂x◦l

∂X◦K gl◦
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– in the current configuration of the body:

P̂ , XP = X◦P , GP , G
Q, GP =

∂r

∂XP
=

∂xq

∂XP
gq .

2.2. At arbitrary time t the direct and inverse mappings are given by

dr = F · dr◦, dr◦ = F−1 · dr (2.3)

respectively, where F is the deformation gradient:

F=F p
l◦gpg

l◦ =
∂xp

∂xl◦
gpg

l◦ = GQG
Q◦

(2.4)

and F−1 is the inverse deformation gradient:

F−1=
(
F−1

)k◦

q
gk◦gq =

∂xk
◦

∂xg
gk◦gq = GQ◦GQ . (2.5)

F and F−1 are two-point-tensors.

In the reference configuration they can be written as

Fk◦l◦ = gk◦l◦ + uk◦;l◦ = gk◦pF
p
l◦ = gk◦p

(
δpl◦ + up;l◦

)
(2.6)

and in the current configuration as(
F−1

)
pq

= gpq − up;q = gpk◦
(
F−1

)k◦

q
= gpk◦

(
δk

◦

q − uk
◦

;q

)
(2.7)

where gk◦p = gpk◦ is a shifter, u◦ = uk◦gk◦
= upg

p = u is the displacement vector.

3. The principle of complementary virtual work

3.1. We assume that on the surface part (At) loads, on the surface part (Au) dis-
placements are prescribed and (At) = (At)∪ (Au) is the whole surface of the body.
In addition we assume that the variation of the Cauchy stress tensor satisfies the
following conditions:

δSpq
;q = 0 and δSpq = δSqp, x ∈ (B) (3.1)

δSpqnqdA = 0 x ∈ (At) (3.2)

where nq is the normal unit vector to (At).

The principle of complementary virtual work states that when equation∫
(B)

[
gpq −

(
F−1

)
pq

]
δSpq dV =

∫
(Au)

ũpδS
pqnqdA (3.3)
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holds for any δSpq satisfying (3.1) and (3.2) in the current configuration (B) of the
body, where ũp is the prescribed displacement field, then the inverse deformation
gradient and the gradient of the displacement vector(

F−1
)k◦

q
= gk

◦p
(
F−1

)
pq

and uk
◦

;q = gk
◦pup;q (3.4)

are kinematically admissible.

3.2. Any tensor δSpq satisfying (3.1) can be derived from a second-order, symmet-
ric, otherwise arbitrary stress function tensor δHrs:

δSpq = εprmεqsnδHrs;mn (3.5)

Inserting (3.5) in (3.5) we obtain:∫
(B)

εprmεqsn
[
gpq −

(
F−1

)
pq

]
δHrs;mn dV =

∫
(Au)

ũpε
prmεqsnδHrs;mnnqdA (3.6)

Applying the Gauss-theorem twice on the volume integral, another form of the prin-
ciple of complementary virtual work is obtained:∫

(B)

εprmεqsn
(
F−1

)
pq:mn

δHrs dV =

∫
(A)

nnε
prmεqsn

[
gpq −

(
F−1

)
pq

]
δHrs;m dA+

+

∫
(A)

nmε
prmεqsn

(
F−1

)
pq:n

δHrs dA−
∫

(Au)

ũpnqε
prmεqsnδHrs;mnnqdA . (3.7)

Taking into account that δHrs is arbitrary in the volume of the current configuration of
the body, from (3.7) we get the compatibility field equation for the inverse deformation
gradient F−1:

εprmεqsn
(
F−1

)
pq:mn

= 0, x ∈ (B) . (3.8)

As mentioned in the introduction, this paper does not investigate the necessary and
sufficient compatibility conditions of the nonlinear theory of deformation, therefore
equation (3.7) is used for the derivation of the compatibility field equation (3.8) only.

4. The compatibility field equation and the curvature tensor

4.1. In the following our investigations will be carried out in a material coordinate
system, proposed by Lurie [9]. In this case the inverse deformation gradient can be
written as

F−1 =
(
F−1

)K◦

Q
GK◦GQ = GQ◦GQ (4.1)

i.e., [(
F−1

)K◦

Q

]
=

[
∂X◦K

∂XQ

]
=
[
δK

◦

Q

]
=

 1 0 0
0 1 0
0 0 1

 (4.2)
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and (
F−1

)
PQ

= GPK◦
(
F−1

)K◦

Q
, (4.3)

where GPK◦ is a shifter.

The form of the compatibility field equation (3.8) in the material coordinate system
is

εPRMεQSN
(
F−1

)
PQ:MN

= 0, x ∈ (B) . (4.4)

To carry out the covariant differentiations in (4.4), the rule for the total covariant
differentiation of two-point tensors will be used, taking into account that the total
covariant derivative of a shifter is zero. First we obtain:(

F−1
)
PQ:M

=
[
GPK◦

(
F−1

)K◦

Q

]
:M

= GPK◦
(
F−1

)K◦

Q:M
(4.5)

where (
F−1

)K◦

Q:M
=
(
F−1

)K◦

Q;A◦

(
F−1

)A◦

M
+
(
F−1

)K◦

Q;M
=

= ΓK◦

B◦A◦

(
F−1

)B◦

Q

(
F−1

)A◦

M
− ΓU

QM

(
F−1

)K◦

U
. (4.6)

In (4.6) ΓK◦

B◦A◦ and ΓU
QM are Christoffel symbols of the second kind.

Following from (4.5) and (4.6) we can write:(
F−1

)
PQ:MN

= GPK◦
(
F−1

)K◦

Q:MN
, (4.7)

where (
F−1

)K◦

Q:MN
=
[(
F−1

)K◦

Q:M

]
;C◦

(
F−1

)C◦

N
+
[(
F−1

)K◦

Q:M

]
;N

(4.8)[(
F−1

)K◦

Q:M

]
;C◦

=
∂ΓK◦

B◦A◦

∂X◦C

(
F−1

)B◦

Q

(
F−1

)A◦

M
+ ΓK◦

C◦D◦

(
F−1

)D◦

Q:M
(4.9)

and[(
F−1

)K◦

Q:M

]
;N

=
∂ΓU

QM

∂XN

(
F−1

)K◦

U
− ΓV

QN

(
F−1

)K◦

V :M
− ΓW

MN

(
F−1

)D◦

Q:W
(4.10)

Now we make the following transformations: first we insert (4.6) in (4.9) and (4.10),
then (4.9) and (4.10) in (4.8). After some algebra, we obtain the compatibility field
equation (4.4) in the current configuration in terms of material coordinates (with
changed dummy indices):

εIMP εJNQ
(
F−1

)
PQ:MN

=

= εIMP εJNQGPK◦

[(
∂ΓK◦

B◦A◦

∂X◦C + ΓK◦

C◦D◦ΓD◦

A◦B◦

)(
F−1

)A◦

M

(
F−1

)B◦

Q

(
F−1

)C◦

N

]
−

−εIMP εJNQGPK◦

[(
∂ΓU

QM

∂XN
+ ΓU

NW ΓW
MQ

)(
F−1

)K◦

U

]
(4.11)
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Making use of the components of the inverse deformation gradient given in (4.2),
(4.11) can be written in the following form:

εIMP εJNQ
(
F−1

)
PQ:MN

= εIA
◦P◦

εJC
◦B◦

GP◦K◦

(
∂ΓK◦

B◦A◦

∂X◦C + ΓK◦

C◦D◦ΓD◦

A◦B◦

)
−

−εIMP εJNQGPU◦

(
∂ΓU

QM

∂XN
+ ΓU

NW ΓW
MQ

)
. (4.12)

4.2. The Riemann-theory states that in order to tensor GPK of the material coor-
dinate system be the metric tensor of a Euclidean space in the current configuration,
it is necessary and sufficient that GPK be positive definite and satisfy the following
equation:

R A
NQM = −

∂ΓA
MQ

∂XN
+
∂ΓA

MN

∂XQ
− ΓA

NBΓB
MQ + ΓA

QBΓB
MN = 0 , (4.13)

where R A
NQM is the Riemann-Christoffel curvature tensor. If tensor GPQ is defined

as a metric tensor, just like in our case (see equation (4.21)), positive definiteness of
GPK is a priori satisfied and the only condition left to be investigated is the zero-
valuedness of the Riemann-Christoffel curvature tensor (4.13).

Instead of the Riemann-Christoffel curvature tensor, the so-called Ricci tensor can
also be used. Definition of the Ricci tensor is given by

AIJ =
1

4
εIMP εJNQRNQMP =

1

4
εIMP εJNQGPAR

A
NQM =

=
1

4
εIMP εJNQGPA

(
−
∂ΓA

MQ

∂XN
− ΓA

NBΓB
MQ

)
= 0 . (4.14)

Both the Riemann-Christoffel curvature tensor and the Ricci tensor have six indepen-
dent non-zero components:

A11 =
1

G
R2323, A22 =

1

G
R3131, A33 =

1

G
R1212,

A12 =
1

G
R2131, A23 =

1

G
R3112, A31 =

1

G
R1223,

(4.15)

G = det |GPA| . (4.16)

According to (4.15), zero-valuedness of the Riemann-Christoffel curvature tensor is
equivalent with the zero-valuedness of the Ricci tensor.

In the material coordinate system and reference configuration the Ricci tensor
reads:

A◦I◦J◦
=

1

4
εI

◦A◦P◦
εJ

◦C◦B◦
RC◦B◦A◦P◦ =

1

4
εI

◦A◦P◦
εJ

◦C◦B◦
GP◦K◦R K◦

C◦B◦A◦ =

=
1

4
εI

◦A◦P◦
εJ

◦C◦B◦
GP◦K◦

(
−∂ΓK◦

B◦A◦

∂X◦C − ΓK◦

C◦D◦ΓD◦

A◦B◦

)
= 0 . (4.17)
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If the space of the reference configuration is Euclidean, then R K◦

C◦B◦A◦ = 0 and
A◦I◦J◦

= 0 , and similarly, if the space of the current configuration is Euclidean then
R A

NQM = 0 and AIJ = 0.

4.3. Comparing the compatibility field equation (4.12) obtained from the princi-
ple of complementary virtual work and equation (4.14) for the Ricci tensor in the
current configuration as well as equation (4.17) for the Ricci tensor in the reference
configuration we obtain:

εIMP εJNQ
(
F−1

)
PQ:MN

= −2GI
I◦GJ

J◦A◦I◦J◦
+ 2AIJ = 0 . (4.18)

4.4. Then, assuming that in the case of the direct mapping the reference configu-
ration is Euclidean, i.e., A◦I◦J◦

= 0, it follows from (4.18) and (4.14) that

εIMP εJNQ
(
F−1

)
PQ:MN

= 2AIJ =
1

4
εIMP εJNQGPAR

A
NQM = 0 , (4.19)

εIMP εJNQGPA

(
∂ΓA

MQ

∂XN
+ ΓA

NBΓB
MQ

)
= 0 . (4.20)

In other words, the compatibility field equation (4.18) is equivalent to the zero-
valuedness of the Ricci, as well as - according to (4.15) - the Riemann-Christoffel
curvature tensor in the current configuration, provided they are expressed in terms of
the changed metric tensor GPA. Tensor GPA is nothing but the Cauchy deformation
tensor:

GPA = GP◦A◦ + 2EPA (4.21)

where EPA is the Euler-Almansi strain tensor. For equation (4.20) we have to take
into consideration that

ΓA
MQ = GASΓMQ,S =

1

2
GAS

[
∂

∂XM
GQS +

∂

∂XQ
GMS −

∂

∂XS
GMQ

]
=

= GAS

[
ΓM◦Q◦,S◦ +

(
∂

∂XM
EQS +

∂

∂XQ
EMS −

∂

∂XS
EMQ

)]
(4.22)

where ΓMQ,S and ΓM◦Q◦,S◦ are Christoffel symbols of the first kind.

4.5. When, in contrary to the above, the inverse mapping is considered and we
assume that the space of the current configuration is Euclidean, i.e., AIJ = 0 from
(4.18) and (4.17) we have

εIMP εJNQ
(
F−1

)
PQ:MN

= −2GI
I◦GJ

J◦A◦I◦J◦
=

= −1

2
GI

I◦GJ
J◦εI

◦A◦P◦
εJ

◦C◦B◦
GP◦K◦R K◦

C◦B◦A◦ = 0 (4.23)

and

εI
◦A◦P◦

εJ
◦C◦B◦

GP◦K◦

(
−∂ΓK◦

B◦A◦

∂X◦C − ΓK◦

C◦D◦ΓD◦

A◦B◦

)
= 0 . (4.24)
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Thus, in this case the compatibility field equation (4.18) is equivalent to the zero-
valuedness of the Ricci, as well as - according to (4.15) - the Riemann-Christoffel
curvature tensor in the reference configuration, provided they are expressed in terms
of the changed metric tensor GP◦K◦ . Tensor GP◦K◦ is nothing but the Green defor-
mation tensor:

GP◦K◦ = GPK − 2E◦
P◦K◦ (4.25)

where E◦
P◦K◦ is the Green-Lagrange strain tensor. For equation (4.24) we have to

take into consideration that

ΓK◦

B◦A◦ = GK◦L◦
ΓA◦B◦,L◦ =

1

2
GK◦L◦

(
∂

∂X◦AGB◦L◦ +
∂

∂X◦BGA◦L◦ − ∂

∂X◦LGA◦B◦

)
=

= GK◦L◦
[
ΓAB,L −

(
∂

∂X◦AE
◦
B◦L◦ +

∂

∂X◦BE
◦
A◦L◦ −

∂

∂X◦LE
◦
A◦B◦

)]
(4.26)

5. Conclusions

Applying a material coordinate system it has been pointed out that for solid bodies
the compatibility field equation obtained from the principle of complementary virtual
work is equivalent to the zero-valuedness of the Riemann-Christoffel curvature tensor:

– in the case of direct mapping the Riemann-Christoffel curvature tensor is ex-
pressed, according to (4.19)-(4.22), by the Cauchy deformation tensor defined as
the metric tensor of the current configuration,

– in the case of inverse mapping the Riemann-Christoffel curvature tensor is ex-
pressed, according to (4.23)-(4.26), by the Green deformation tensor defined as
the metric tensor of the reference configuration.

In the above statements, instead of the Riemann-Christoffel curvature tensors the
Ricci tensors can equally be used.

Note. This paper is dedicated to I. Páczelt on the occasion of his 60th birthday since it
applies one of the proposals of Prof. Lurie in his book ’Theory of elasticity’ and I. Páczelt
was a graduate student of Prof. Lurie in the years of 1966-1969.
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Abstract. Due to certain civil engineering activities, e.g. road construction, the safety
factor of already working high pressure oil and gas transmitting pipes in the vicinity should be
previously increased. For doing so the relatively new, but well proved, pipe guard technique is
applied many times, by which several layers of glass fiber reinforced epoxy material is applied
to the external cylindrical surface. For the knowledge of the mechanical behaviour and for
the possibility of the standardisation of this new anisotropic and heterogeneous structure an
analytical procedure and a computer program has been worked out in the frame of linear
elasticity. In parallel, a number of experiments were also carried out for example for the
determination of the pressure-volume change characteristics and for that of the bursting
pressure. Results of the analytical calculations and experiments were compared and a good
correlation was found.

Keywords : High pressure steel pipes, composite materials, reinforcement

1. Introduction

In the practice of oil and gas transmission some sections of the high pressure steel
pipes should be reinforced to avoid local damages due to the construction of civil
engineering establishments like roads, railway lines etc nearby. The so-called clock
spring technique is a highly recommended procedure for doing that by which several
fiber reinforced epoxy layers are applied to the outer cylinder-jacket of the pipe. An
analytical procedure has been worked out for predicting the expectable strength be-
haviour of this new complex, anisotropic and heterogeneous tube. On this base a
simple computer program for the possibility of standardisation has also been devel-
oped. In this respect the basic question is the necessary number of the layers if both
the initial and the attainable safety factors are known for a given tube geometry, steel
material, working pressure and composite parameters. In addition to the analytical
and computer analysis experimental investigations have been also carried out for the
determination of the pressure —volume-change characteristics both for the original
(pure steel) tube and for the reinforced tube structures. These experiments have been
performed up to the ultimate bursting pressure, approx. 170-200 bar.
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In the frame of the analytical procedure the model was considered as an infinitely
long, complex tube constructed from inside by the original steel pipe and reinforced
by an arbitrary number of epoxy-glass fiber layers from outside. The layers have
the same thickness and they were reinforced by fibers with cross-bonded orientation
per layer in such a way that the filling fibres were placed in circumferential and the
chain fibers were placed in axial directions. Special measurements have been carried
out to determine the chain and the filling direction elasticity moduli and the Poisson
ratios. For controlling certain transformation formulae the elasticity modulus of the
degree of 45 positioned composite layer was also investigated. The tube was assumed
to be linearly elastic. Sections 2 and 3 present the closed form solutions for the
radial displacements and the characteristic stress components and also the equivalent
stresses in the steel tube and epoxy layer(s). Section 4 is devoted to the experimental
determination of the safety factor and to the comparison of the experimental and
computed results. Conclusions are presented in the last section.

2. The mechanical model and the computation strategy

By application of the clock spring technique we get a heterogeneous tube which is
made up of the original steel pipe from inside and a multilayered glass fiber reinforced
by a structural constituent made of epoxy material from outside. Mechanically the
tube is considered to be infinitely long, linearly elastic, and the load is a constant
pressure exerted on the internal surface. Consequently, in a cylindrical co-ordinate
system the displacements in the axial direction z are free and the corresponding
stresses are equal to zero. On this basis, for the computation of the characteristic
displacement, strain and stress components along the thickness of the steel tube a
boundary value problem should be established and analyzed making use of the data

Ri

Re

Ree

Pi

Ue

composite

steel

Pee = 0
P*

Figure 1. Boundary problem of a complex tube

shown in Figure 1. The main point of this activity is the determination of the internal
pressure p∗ between the steel and the epoxy as we shall see later.
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epoxy

E2; n2 1 glass fibers

E1; n1 2

Figure 2. Composite layer reinforced in one direction

According to Figure 1 we have the following boundary conditions:

σR(R = Ri) = −pi ,
σR(R = Ree) = 0 .

(2.1)

At the common radii R = Re the radial displacement co-ordinate is denoted by ue.

The material constants for the steel are the usual ones, i.e., the Young modulus
(denoted by E), and the Poisson ratio (denoted by ν). According to the literature
of composite materials —see e.g.[1,2] —the material parameters for the substituting
anisotropic thin layer are (see Figure 2.) as follows:
— E1 is the elastic modulus in the direction of the fibers,
— E2 is the elastic modulus in the direction perpendicular to the fibers,
— ν12 and ν21 are the anisotropic Poisson ratios,
— G is the shearing modulus of elasticity.
The well-known reciprocal relation reads

E1ν21 = E2ν12 (2.2)

which means that only four material parameters are independent of each other. In
our case the fibers are placed parallel either to the circumferential direction or to the
axial direction, therefore the value of the shearing modulus has no importance.

If the material parameters are known, the geometrical data and the yield stress of
the steel the computation can be based on the following ideas:
— first the function that relates the radial displacement at an arbitrary point of the
external steel tube surface ue1 to p∗ , as yet unknown contact pressure, should
be determined in terms of the given internal pressure pi,

— secondly the function that relates the radial displacement at an arbitrary point
on the internal surface of the epoxy tube ue2 to p∗, which can be considered as
an internal pressure for this constituent, should be determined (the material of
the epoxy tube is assumed to be orthogonally anisotropic),

— taking the equality ue = ue1 = ue2 into account, we obtain a simple linear
equation which can easily be solved for the unknown p∗,

— in the following calculations we are concerned with the steel tube subjected to
the internal pressure pi and the contact pressure p∗ as external pressure, then
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the circumferential stress and the von Mises equivalent stress are calculated at
the internal diameter which is the critical region of the tube,

— the last step is the determination of the safety factor n.
It is obvious that the above calculations can be repeated for one, two etc. clock

spring layered structures in order to find the number of necessary layers for a given
and improved safety factor.

3. Basic formulae for the computation

3.1. The steel tube. Following the steps of the above strategies first we have to deal
with the well-known Euler type second order differential equation of a homogeneous
and isotropic cylinder. Its closed form solution has been published in a number of
textbooks. (See e.g. [3].) Recalling the usual notations we can write that:

— u is the radial displacement,
— εR, εϕ, εz are the strains in radial, tangential and axial directions, respectively,
— σR, σϕ, σz are the normal stresses in the same directions,
— γRϕ is the shear strain along the meridian,
— τRϕ is the shear stresses along the meridian.

With these notations the stress and the strain vectors and also Hook’s law can be
constructed

σT =
[
σR, σϕ, σz, τRϕ

]
εT =

[
εR, εϕ, εz, γRϕ

]
σ = Dε (3.1)

where the constitutive matrix is of the form

D =
E (1− v)

(1 + v) (1− 2v)



1
v

1− v
v

1− v 0
v

1− v 1
v

1− v 0
v

1− v
v

1− v 1 0

0 0 0
1− 2v

2 (1− v)


(3.2)

It follows from (3.1) and (3.2) that

σR =
E (1− v)

(1 + v) (1− 2v)

[
εR + εϕ

v

1− v

]
, (3.3a)

σϕ =
E (1− v)

(1 + v) (1− 2v)

[
εϕ + εR

v

1− v

]
. (3.3b)

Substituting the above stress components into the geometrical formulae

εR =
du

dR
and εϕ =

u

R
(3.4)

and the results into the equilibrium equation

dσR
dR

+
σR − σϕ

R
= 0 . (3.5)
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the well-known tube equation is obtained

d2u

dR2
+

1

R

du

dR
− u

R2
= 0 . (3.6)

Its general solution takes the form

u = K1R+
K2

R

du

dR
= K1 −

K2

R2
(3.7)

where K1 and K2 are constants of integration which depend on the boundary con-
ditions. Making use of the above relations but omitting the details we shall find
that

ue1 = p∗I + J (3.8)

in which the constants I and J can be given in terms of other constants A, . . . ,H:

I = ARe +
D

Re
J = −

(
BRe +

F

Re

)
(3.9a)

A =
1

C

R2e
(R2i −R2e)

B =
1

H

piR
2
e

(R2i −R2e)
(3.9b)

D =
1

C

R2e
(R2i −R2e)

F =
1

H

piR
2
eR

2
i

(R2i −R2e)
(3.9c)

C =
E (1− v)

(1 + v) (1− 2v)
H =

E

1 + v
(3.9d)

3.2. The epoxy tube. For the anisotropic epoxy tube produced by the clock
spring technique the constitutive matrix can be taken from the book [4] by Lekhnitsky:

D = Ĥ


n
(
1− ν22

)
ν1 + nν22 nν2 (1 + ν1) 0

ν1 + nν22 n
(
1− nν22

)
nν2 (1 + ν1) 0

nν2 (1 + ν1) nν2 (1 + ν1) 1− ν21 0
0 0 0 n(1− ν21)(1− 2nν22)

 (3.10)

where

Ĥ =
E2

(1 + v1) (1− v1 + 2nν22)

and

v1 = v12; v2 = v21; m =
G2
E2

, n =
E1
E2

.

Here the indexes 1 and 2 denote the principal material directions. These are parallel
with the circumferential and axial directions.

Following the chain of ideas leading to equation (3.6), we arrive at the Euler type
differential equation

d2u

dR2
+

1

R

du

dR
− 1− nv22

1− v22
u

R2
= 0 (3.11)



86 L. Sárközi and I. Török

which the radial displacement u within the anisotropic tube should meet. The general
solution to this equation takes the form

u = C1e
√
sR+ C1e

√
s 1

R
(3.12)

where

s =
1− nv22
1− v2

. (3.13)

As one can expect for n = 1 differential equation (3.11) is that of the isotropic tube.
From the technical point of view just the positive value of s is taken into consideration.

The constants of integration C1 and C2 in (3.12) can be calculated from the bound-
ary conditions

σR = −p∗ if R = Re ,
σR = 0 if R = Ree .

(3.14)

Making use the above formulae and the boundary conditions (3.14) but omitting again
the details we shall find that

ue2 = Tp∗ (3.15)

where the constant T is given in terms of the constants P,Q, S and C:

T =
s

(P − s)Qe
√
sRi +

1

s− P e
√
s 1

Ri

P =
1

R2e
Ce
√
s
(
2nv22 − n+ v1

)
; Q = Ce

√
s (n+ v1)

S =
1

R2ee
Ce
√
s
(
2nv22 − n+ v1

)
; C =

E2
(1 + v1) (1− v2 − 2nv2)

.

(3.16)

3.3. The contact pressure and the safety factor. Recalling the third point of
our computation strategy, i.e., using the equality (3.8) to (3.15) the contact pressure
p∗ can be determined as

p∗ =
J

T − I . (3.17)

With this value the strain and stress components εR, εϕ, σR and σϕ can easily be
determined at the external diameter De and the internal diameter Di which is the
critical surface of the steel tube.

Then the equivalent stress can also be computed

σ̄ = σϕ − σR . (3.18)

Taking the equivalent stress on Di the safety factor can be obtained from the relation

n =
σallowable

σ̄
(3.19)
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4. Parametric study

Making use of the formulae (3.3a,b), (3.7), (3.9a, . . . , d), (3.16), (3.17) and (3.19) a
simple program has been developed in order to compute all the mechanical quantities
and the safety factors both for an ‘original’tube and for a clock spring reinforced tube
by superimposing one, two etc. layers. As a parametric study a 12“ gas transmitting
steel pipe was investigated provided that it is reinforced up to maximum six clock
spring layers. The operational pressure pi = 6 MPa. The other input and output
data are summarized below.

Data for the original steel pipe:
The inside diameter is Di = 326 mm and the outside diameter is De = 338 mm. The
Young modulus is E = 2.1 · 105 MPa, the Poisson ratio is ν = 0.33, and the yield
stress is σY = 300 MPa. The following data were calculated:

εRe εϕe σRe σϕe

-0.000338 0.000678 0. 160.0

εRi εϕi σRi σϕi σ̄ n

-0.000376 0.000716 -6.0 166.0 172.1 1.74

Table 1.

Data for the clock spring layers (1 and 2 identify the axial and tangential directions):
E1 = 1 · 105MPa, E2 = 2, 5 · 104MPa, v12 = 0, 44, v21 = 0, 11, G = 7, 5 · 103MPa.
The maximum number of layers were 6 and the thickness of one layer was 1.0 mm.

The computational results are presented in Table 2:

No of layers σRi σϕi σ̄ n
1 -6.0 157.0 157.0 1.91
2 -6.0 138.0 144.0 2.08
3 -6.0 128.0 134.0 2.25
4 -6.0 119.0 125.0 2.41
5 -6.0 111.0 117.0 2.57
6 -6.0 104.0 110.0 2.73

Table 2.

According to the expectations the more layers we have, the higher the safety factor
is. The functional connection is linear.

5. Experiments, measurements and validation of the computation strategy

The authors had a chance to make experiments in lab circumstances with the so called
cross-bonded plies of thickness 0.75 mm. The quality, diameter and density of the
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direction of
chain

direction of filling

E1, ν1

E2, ν2

Figure 3. Composite layer reinforced in two direction

E1, ν1

E2, ν2

ϕ

Figure 4. Composite layer reinforced in direction 45o

fibers were equal both in the chain direction and in the filling direction along a ply as is
shown in Figure 3. Previously, by using flat samples with 2, 3 and 4 reinforced layers,
tests were carried out for the determination of the unidirectional tension strength
applying the load in chain direction, then in filler direction and finally in a 45 degree
oblique direction —see Figure 4. It is easy to see that in these cases the samples should
behave like an isotropic material. The measurements are in good agreement with this
expectation since the data measured are nearly equal to each other —see Table 3. For
the practical determination of the volume — pressure characteristic and the elastic
limit and bursting pressure an experimental investigation was carried out by using
a compressor testing set at the Department of Mechanical Technology, University of
Miskolc. The facility is characterized by a maximum pressure limit of 40 MPa and a
maximum volume change of 2500 cm3 per one stroke of the piston. Both an original
tube and a six layer reinforced tube were measured. The length of the tube
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Figure 5. Pressure against volume for steel and a reinforced tube (curves 1 and 1T)

Strength in tension [MPa]
Direction of force Layers

2 3 4
chain 238 241 249
filling 254 245 251
oblique 237 241 247

Table 3.

sample was 2115 mm, the external diameter 325 mm, and the thickness of the steel
pipe was 5,5 mm. The normal operational pressure of this pipe is 6.5 MPa. The
material parameters of the steel were Esteel = 2.0 · 105 MPa, vsteel = 0.33, and
σallowable = 360MPa, while the parameters of the composite layers were E = E1 =
E2 = 5 · 104MPa, v = v1 = v2 = 0.44, G = 7.5 · 103MPa, the number of layers was
6 and the thickness of one layer was 0.75 mm.

As can be seen in Figure 5. the pressure increase was continued to the total burst
of the specimens. This value for the homogeneous pipe (curve 1) is 178 bar and for
the heterogeneous pipe reinforced by six composite layers (curve 1T) is 175 bar. They
are practically the same. The elastic limit for curve 1 is 134 bar. On the other hand
the elastic limit is 163 bar for curve 1T, which clearly shows that there is an increase
of 21.6%.

Numerical calculations for a maximum of six plies have been also performed with
the results shown in Tables 4 and 5.
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Tube made only of steel

εRe εϕe σRe σϕe
-0.000380 0.000760 0. 180

εRi εϕi σRi σϕi σ n
-0.000420 0.000801 -6.4 186 192.3 1.87

Table 4.

Number of layers σRi σϕi σ n
1 −6.4 180 186 1.93
2 −6.4 174 180 2.00
3 −6.4 168 175 2.06
4 −6.4 163 170 2.12
5 −6.4 159 165 2.18
6 −6.4 154 161 2.24

Table 5.

According to the computation the improvement in the safety factor for the case of six
layers is 19.7%, which is very close to the previous value.

6. Concluding remarks

Both the analytical and experimental investigations and results proved the applica-
bility of the clock spring technique by which the safety factor of high pressure trans-
porting steel pipes can be improved. In the algorithm an arbitrary number of layers
and arbitrary fiber orientation can be taken into consideration, however, up to the
moment only orthotropic and transversely isotropic problems have been solved. Mak-
ing use of the computational procedure we have developed the necessary number of
the composite layers for given geometrical and material data can also be determined.
As far as the value of the pressure p∗ is known from the analysis, a future task could
be the determination of the strains and stresses in the composite plies. On the other
hand, taking the non-linear behavior of the steel into consideration (for example by
assuming an elastic-ideally plastic constitutive law) the bursting pressure could an-
alytically be determined and the results could also be compared with experimental
data. This work is in progress.
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Abstract. A special cost function enables designers to separate the material and fabrication
costs to estimate a realistic minimum cost design of welded structures and to show the
achievable cost savings. As a review of our research results in this field, numerical examples
of I-beams, stiffened box beams, stiffened plates loaded by hydrostatic pressure, Vierendeel
trusses, silos and bridge decks illustrate that significant cost savings can be achieved by
minimum cost design.

Keywords : Cost function, welded structures

1. Introduction

The aim of optimum design is to find better structural solutions, which are safe and
economic. The safety is guaranteed by fulfilling the design constraints and the econ-
omy is achieved by minimization of a cost function. Thus, a structural optimization
needs a realistic cost function as well as design constraints, which express all the im-
portant engineering aspects. The constrained function minimization problem defined
above can be solved using effi cient computerized mathematical methods.

The aim of the present study is to show that, to bridge the gap between the
optimization theory and design practice, it is necessary to include in the optimum
design procedure a cost function, which contains not only the material, but also the
fabrication costs. The effectiveness of the minimum cost design is illustrated by cost
savings achieved for several structural examples.

2. Main phases of the structural optimization

A structural solution is characterized by materials used, dimensions, geometry, topol-
ogy, profiles, production technology, connections, erection and maintenance. The
cost function and the design constraints should contain these characteristics. Certain
combinations of these characteristics give possible structural versions and the most
suitable optimum solution is selected from these versions. The selection is made by
means of comparisons, but only optimized versions can be realistically compared to
each other.
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The formulation of a cost function as well as the design constraints needs a large
analytical research. Optimization means that the designer, on the basis of analytical
results, knows the behaviour of a structure in a wide range of loads and characteristics
mentioned above.

The optimum design procedure has three main phases as follows:
1. preparation: selection of candidate structural versions, definition of the cost
function and the design constraints;

2. constrained function minimization using computerized mathematical methods;
3. evaluation: comparisons, working out design rules and expert systems.

3. The cost function

In the past the aim of aircraft designers was to minimize the structural weight, but
now the optimization procedure is much more complex. Schmit [1] has emphasized
that, for the development of structural synthesis, cost functions should be used instead
of minimum weight design.

In the industrial practice the cost relating to the total weight of a structure is usu-
ally calculated. With these data only the minimum weight design can be solved. For
a realistic cost minimization the material and fabrication costs should be separated.
This necessity can be illustrated by the example of a welded stiffened plate. In this
case different numbers of stiffeners give minimum weight and minimum cost. Min-
imum weight design means many thin stiffeners (like a honeycomb sandwich), but,
because of the high welding cost, the optimum number of stiffeners for minimum cost
is much smaller. The greater the ratio fabrication cost/total cost, the greater the
difference between the minimum weight and cost designs.

In the cost function the material and fabrication costs are included

K = Km +Kf = kmρV + kf
∑

Ti (3.1)

where ρ is the material density, V is the volume of structure, km and kf are the mate-
rial and fabrication cost factors, respectively, Ti are the production times. Equation
(3.1) can be written in the form

K

km
= ρV +

kf
km

(T1 + T2 + T3) . (3.2)

Time for preparation, assembly and tacking can be expressed as

T1 = C1Θd (κρV )
1/2 (3.3)

where C1 = 1 min/kg
0.5, Θd is a diffi culty factor expressing the complexity of the

structure (planar or spatial, constructed from simple plate elements or profiles), κ is
number of structural elements to be assembled.

Time for welding can be expressed as

T2 =
∑

C2ia
n
wiLwi (3.4)
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where aW is the weld size, LW is the weld length. Formulae for C2ianwi are developed
using the COSTCOMP database for different welding technologies and weld types —
[2,3].

The additional time for electrode changing, deslagging and chipping can be calcu-
lated as

T3 = 0.3T2 (3.5)

The final form of the cost function is

K

km
= ρV +

kf
km

(
C1Θd (κρV )

1/2
+ 1.3T2

)
(3.6)

The following data of cost factors are used: km = 0.5 − 1.2 $/kg, kf = 0 − 60
$/manhour = 0-1 $/min. To give internationally usable results, values of kf/km = 0,
1 and 2 kg/min are considered, the value of 0 means minimum weight design.

E.g. for fillet welds the welding cost formulae are given in Table 1 —Farkas-Jármai
[4], Jármai-Farkas [5].

Welding technology aw (mm) 103C2a
n
w (min/mm)

SMAW 0-15 0.7889a2w
GMAW-C 0-15 0.3394a2w
GMAW-M 0-15 0.3258a2w
SAW 0-15 0.2349a2w

Table 1. Welding times for a weld length unit T2/Lw (min/mm) of longitudinal fillet
welds in normal position in the function of weld size and welding technology

The used abbreviations are as follows: SMAW—shielded metal arc welding, GMAW-
C -gas metal arc welding with CO2, GMAW-M- gas metal arc welding with mixgas,
SAW- submerged arc welding.

The above described cost function cannot give generally valid values, but it is
suitable for realistic comparisons of structural versions. In the cost function only
those parts should be considered, which contain the structural parameters to be op-
timized. For instance, times required for transportation of product elements between
fabrication places in a manufacture is not necessary to calculate, since the struc-
tural dimensions to be optimized do not vary in such measure, which could affect the
transportation times.

4. Design constraints

The development of structural optimization always needs new design aspects to be
included in the procedure. In some recent studies we have considered a new design
constraint on the limitation of the residual welding distortions. We have shown that
our calculation method for residual welding stresses and distortions is suitable for
estimation of these phenomena [6] and we have used our simple formulae in the struc-
tural optimization to guarantee the quality of welded structures containing eccentric
welds, which can cause large deformation due to their shrinkage.
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In the mathematical formulation of constraints on stress, fatigue, stability and
fabrication requirements we need the up-to-date rules of related design standards.
These rules express the safety and quality requirements in relatively simple forms,
which are suitable for effective computations. The rules are based on international
theoretical and experimental research results. The problem is that standards do not
give all important details for design, thus, we should use in many cases more standards
to include all the important constraints. For instance, Eurocode 3 [7, EC3 1992] is
not completed for all the structural types yet, so we need to use BS (British), DIN
(German) or API (American Petroleum Institute) rules as well.

To illustrate the measure of cost savings achievable by structural optimization some
examples are shown from our recent studies.

5. Examples of application

5.1. Rolled and welded I-beams. The characteristics of the rolled I-section
of UB I 914x419x388 — [7], [8, BS4 1993] —are as follows: the cross-section area is
A = 49400 mm2, the elastic section modulus is Wx = 15.63x106 mm3. The optimum
web height of the welded I-section having the same section modulus can be calculated
as [4,9]

h = (3W0/2β)
1/3 (5.1)

where W0 is the required section modulus. The limiting web slenderness for pure
bending according to EC3 is

1

β
= 124ε ε =

(
235

fθ

)1/2
(5.2)

For the yield stress fy = 355 MPa we obtain h = 1335 mm and the web thickness is
tω = βh = 13 mm. The limiting slenderness of the flange 1/δ = 28ε is and the flange
width

Figure 1: Comparision of a rolled and a welded I beam
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is b = h (β/2δ)
1/2

= 450 mm, the flange thickness is tf = δb = 20 mm. The cross-
section area of the welded I-beam is A = 35355 mm2, which is 40% smaller, than that
of a rolled beam.

The cost of the welded I-beam of span length 10 m can be calculated using equations
(3.2-3.6). Data: ρ = 7850 kg/m3, kf/km = 1 kg/min, Θd = 2, double fillet welds
of size aW = 6 mm, GMAW-M. With these data K/km = 3567 kg. For the rolled
I-beam we obtain 3878 kg, thus, the welded

Figure 2: Comparison of box beams without and with longitudinal stiffeners

beam is 9% cheaper than the rolled one. It can be seen from the Figure 1 that this
saving is achieved using thinner plates. It should be mentioned that this result is
valid for beams in which the effect of shear can be neglected.

5.2. Welded box beams without and with longitudinal stiffeners. The
limiting slenderness of a welded box beam loaded in bending can be increased by
using longitudinal stiffeners in the 1/5 of the web height (Fig.2), therefore the web
thickness can be decreased. The detailed minimum cost design procedures for box
beams without and with longitudinal stiffeners, in which the transversal diaphragms
and their welds are also considered [10], show that the cost of the box beam with
stiffeners is 20% smaller than that of the beam without stiffeners.

5.3. Welded stiffened plates loaded in bending by hydrostatic pressure.
For a simply supported base plate the equidistant arrangement of horizontal stiffeners
is not optimal, since in this case the base plate parts of equal thickness are loaded
by different maximal bending moments. The optimum positions of stiffeners can be
calculated using the condition that all the base plate parts should be stressed to yield
strength. In the numerical example treated in our study [11] the optimum number
of stiffeners is determined as well, which gives the minimum cost of the whole plate
structure. Trapezoidal stiffeners designed for bending are considered and the cost of
vertical butt welds joining the
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Figure.3: Values of K/km (kg) for a stiffened steel plate loaded by hydrostatic pres-
sure: (a) 6972 for 8 stiffeners in equidistant position, (b) 6111 for 8 stiffeners in
optimized position, (c) 7749 for 3 stiffeners in optimized position

base plate parts is also taken into account. The detailed calculations show that the
optimum number of stiffeners is 8, using optimized stiffener positions 18% cost savings
can be achieved compared with 8 stiffeners in equidistant position (kf/km = 1).
Using 8 stiffeners instead of 3 in optimum positions 31% cost savings can be achieved
(kf/km = 1), since the plate thicknesses can be decreased (Fig.3).

5.4. Optimum number of columns of a Vierendeel truss. In a numerical
example of a simply supported Vierendeel truss (Fig.4.) welded from square hol-
low section rods the detailed calculations [12] show that the minimum cost can be
achieved using 12 columns. The cost difference between structural versions of 10 and
12 columns is 30%.

Figure 4: A simply supported Vierendeel truss with parallel chords welded from
square hollow section rods

5.5. Welded steel silo. A detailed cost analysis is performed in the case of
a silo of capacity 500 m3 loaded by cement powder consisting of a roof, cylindrical
bin, ringbeam, hopper and columns [13]. The calculations show that the total cost
depends on the ratio bin height/bin radius. The optimal value of this ratio was 6.20,
the cost difference between the structural versions of ratio 1.76 and 6.20 was 8%.
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5.6. Welded highway bridge deck with trapezoidal longitudinal stiffen-
ers. Most of structural dimensions of a bridge deck should be determined according
to standard prescriptions, but the distance of transverse stiffeners can be optimized.
In the case of a numerical example treated in our study [14] the optimal distance was
2.5 m. The cost difference between the structural versions of distances 2.5 and 4.0 m
was 20%.

6. Conclusions

A relatively simple cost function is proposed for the calculation of material and fab-
rication costs of welded structures. This cost function enables designers to show the
difference between structural versions corresponding to minimum weight and mini-
mum cost. The treated numerical examples show that significant cost savings can be
achieved using optimization methods.
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22846 of the Hungarian Fund of Scientific Research.
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A Short History of the Publications of the University of Miskolc

The University of Miskolc (Hungary) is an important center of research in Central Eu-
rope. Its parent university was founded by the empress Maria Teresia in Selmecbánya
(today Banska Štiavnica, Slovakia) in 1735. After the first world war the legal pre-
decessor of the University of Miskolc moved to Sopron (Hungary) where, in 1929, it
started the series of university publications with the title Publications of the Mining
and Metallurgical Division of the Hungarian Academy of Mining and Forestry Engi-
neering (Volumes I.-VI.). From 1934 to 1947 the Institution had the name Faculty
of Mining, Metallurgical and Forestry Engineering of the József Nádor University of
Technology and Economical Sciences at Sopron. Accordingly the publications were
given the title Publications of the Mining and Metallurgical Engineering Division (Vol-
umes VII.-XVI.). For the last volume before 1950 – due to a further change in the
name of the Institution – Technical University, Faculties of Mining, Metallurgical and
Forestry Engineering, Publications of the Mining and Metallurgical Divisions was the
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János ÉGERT: Iterative algorithms for the solution of frictionless contact
problems 23–36
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Károly JÁRMAI: Optimum design of stiffened plates 49–69
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