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PREFACE

This special issue of the Journal of Computational and
Applied Mechanics is dedicated by friends, colleagues and
former students to Imre Kozák, Professor at the Univer-
sity of Miskolc, on the occasion of his 70th birthday. The
range of topics covered by the various contributions reflects
the scientific interests of Imre Kozák. The papers are also
related, as they cover various problems of engineering me-
chanics, beginning with issues of continuum mechanics and
dealing with some questions of computational mechanics
and optimization problems.

Imre Kozák was born in Gór, a small village in Western
Hungary, in 1930. After graduating from a grammar school
in Szombathely in 1949 he was admitted to the Faculty of

Imre Kozák

Mechanical Engineering of the Technical University of Heavy Industry in Miskolc –
today’s University of Miskolc. In 1953 he obtained an M.Sc. degree in Mechanical
Engineering.

He began his graduate studies at the Department of Mechanics of the same univer-
sity with the then Department Head István Sályi as his scientific supervisor, in 1953.
This work later culminated in a Ph.D. thesis entitled Small elastic plastic deforma-
tions of a thin walled cylindrical shell subjected to internal pressure. This thesis was
the first in which the Prandtl-Reuss equations were applied to bent cylindrical shells.
The main difficulty of the problem raised lay in the fact that the solution required
large amounts of computations before the advent of computers [1]. He was awarded
his Ph.D. degree in 1961 and was appointed Associate Professor at the Department
of Mechanics.

In 1967 he took part in the organization of the first Colloquium on Plasticity held
in Miskolc in honor of Professor Reuss, who was a well known specialist in this field.
This was the first scientific meeting of mechanical nature in Hungary after World War
II.

From 1967 to 1970 he was the Prorector responsible for scientific matters.
In 1968 Kozák was appointed Full Professor. Three years later, in 1971 he took over

leadership at the Department of Mechanics and held the post of Head of Department
till 1993.

Since 1971 the Hungarian Conference on Engineering Mechanics has been organized
at the University of Miskolc every four years. He has taken part in the preparations
and organization of the conferences on each occasion.

From 1966 to 1969 he greatly contributed in cooperation with Professor Béda (Tech-
nical University of Budapest) and Professor Sályi to a new initiative by launching
academic programs for mechanical engineers specialized in theoretical and applied
mechanics. The students who chose the new program of theoretical and applied me-
chanics graduated from the university with an M.Sc. degree. He took part in designing
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the new curriculum and red lectures, for the first time in the academic programs for
mechanical engineers in Hungary, on such subjects as Theory of Shells, Mechanics of
Continua, Differential Geometry with Indicial Notations etc. It is worthy of mention
that six of his former students are Full Professors today.

In the years 1972 to 1978 he was appointed General Prorector of the University of
Miskolc. After office hours he devoted time to updating the materials of the funda-
mental courses of engineering mechanics (Statics, Strength of Materials, Dynamics,
Theory of Vibration).

In 1978 he received the Gold Medal of the Order of Labor.
As regards his research, his aim was to work out a linear shell theory in terms of

stresses. Because of the unresolved problems in connection with the compatibility
of strain fields – what are the independent, necessary and sufficient conditions the
strains should meet in order to be compatible if the displacements are not variables
of the governing equations, what is the solution to the Southwell paradox1, – he had
to do some supplementary research.

As regards his results, it is worthy of mention that he modified and supplemented
the dual formulation of linear elasticity and the system of dual variational principles
by solving the aforementioned Southwell paradox, i.e., by pointing out that only three
of the six Saint-Venant compatibility conditions are independent provided that the
so-called compatibility boundary conditions are satisfied and showing that the inde-
pendent compatibility conditions and independent stress functions should be chosen
according to the same rule [2,3]. Based on these results he was able to establish a
general theory of shells in dual system regarding the stresses as fundamental vari-
ables [4]. This work led to the thesis Theory of thin shells in terms of stresses. After
its defence the Committee of Scientific Qualifications at the Hungarian Academy of
Sciences awarded him the degree Doctor of Science in 1981.

From 1980 to 1983 he was again the Prorector responsible for scientific matters.
Between 1983 and 1985 Kozák wrote the textbooks Continuum Mechanics [5, 1986

(in Hungarian)] and Mechanics of Elastic Bodies [6, 1987 (in Hungarian)] with coau-
thors. The book Continuum Mechanics contains his most important results concern-
ing the investigations he carried out in dual system. The book Mechanics of Elastic
Bodies contains, among others, the linear theory of shells in indicial notations making
use of the curvilinear coordinate system built onto the middle surface of the shell and
in primal and dual formulations (in terms of stresses) as well.

In the late 80s Kozák began to deal with the relative motion of continua. By rel-
ative motion we mean the motion of a solid body (continuum) with respect to an

1It was Southwell (1936, 1938), who first derived the compatibility conditions from the principle
of minimum complementary energy as a variational principle. At the same time he pointed out
that – utilizing Maxwell’s (1870) and Morera’s (1892) solutions – only three of the six Saint-Venant
compatibility conditions follow from the principle of minimum complementary energy. Since any
stress condition can be given in terms of three stress functions chosen appropriately, he arrived at a
contradiction because for the displacements to be single-valued all the six Saint-Venant compatibility
conditions should be satisfied. This contradiction was named Southwell’s paradox after him. After
Southwell’s papers the following problems remained unresolved. Is it sufficient for the strains to
satisfy three Saint-Venant compatibility equations? If yes, which three? If yes, are there further
conditions to satisfy?
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arbitrary curvilinear coordinate system, which is also in motion and therefore is ca-
pable of deformation (one can regard it as if it were a fictitious body). This motion is
distinguished from the motion of the solid body (continuum) relative to an arbitrary
but fixed curvilinear coordinate system (absolute motion). Within the framework of
these investigations he set up the necessary formalism. In headwords: relative and
absolute velocity fields, relative and absolute deformations, deformation gradients,
strain tensors, volume and surface elements, material time derivatives (for the de-
formation gradients, volume and surface elements), some questions of the physically
objective material time derivatives of the strain tensors, principle of virtual power
and work in each configuration with special regard to the case of follower loads. One
of his major results was the derivation of some new and known materially objective
(invariant under any coordinate transformation) time derivatives with a systematic
method.

In 1988 he won the Apáczai Csere János Prize. In 1990 and 1993 he was awarded
the medals Pro Unversitate and Pro Urbe of Miskolc.

The graduate education that leads to the degree of Doctor of Philosophy had earlier
been controlled formally by the Hungarian Academy of Sciences (Russian system) but
was taken over by the Hungarian Universities in 1990. He took part in establishing
new curricula for the graduate students at the Faculty of Mechanical Engineering of
the University of Miskolc.

A revised and supplemented English edition of the book Continuum Mechanics
[7] was published in 1995. This edition contains, among others, Kozák’s method of
deriving materially objective time derivatives.

The textbook Continuum Mechanics (in Hungarian) written for graduate students
was also published in 1995.

He was elected corresponding member of the Hungarian Academy of Sciences in
1995. He gave his inaugural lecture with the title Continuum Mechanics and Geometry
at the Seat of the Miskolc Committee of the Hungarian Academy of Sciences in 1996.

In 1996 the City Council of Miskolc awarded Kozák honorary citizenship.
In the 90s he proceeded with his research in continuum mechanics. The results

are applicable to investigating geometrically non-linear static stability problems and
postcritical equilibrium paths. Some of the results are listed below very briefly:
1. The incremental form of the principle of virtual displacements for follower loads

and the derivation of the formulae for the Newton–Raphson iteration proce-
dure that solves the corresponding non-linear problem. When applying a finite
element discretization it is reasonable to introduce, in addition to the usual lin-
ear and geometric stiffness matrices, the load-correction stiffness matrix which
is symmetric if the follower loads have a potential and is asymmetric if the
follower loads have no potential.

2. The Newton-Raphson iteration can be initiated not only from an equilibrium
configuration under the given load but from an arbitrary non-equilibrium con-
figuration provided that the latter is appropriately chosen, independently of the
loads. In this way both fundamental equilibrium paths and bifurcation paths
as well as complementary paths and limit points can be investigated. The criti-
cal load can be determined by the path following method and the determinant
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search algorithm. The equilibrium surfaces due to the geometrical imperfections
and the load parameter(s), their stable and unstable regions and the critical
loads can be determined numerically [8].

3. It has been shown that linear eigenvalue problems for follower loads cannot be
investigated properly if the load correction matrix is left out of consideration.

In 1999 Kozák won, together with his colleague István Páczelt, the Széchenyi Prize
which is the highest Scientific Award in Hungary.

Kozák participated actively in the work of a number of scientific associations and
societies. Since 1966 he has been a member of the today’s Committee of Theoretical
and Applied Mechanics of the Hungarian Academy of Sciences – earlier Committee of
Theoretical Mechanics (1966-73) and the Committee of Engineering Mechanics (1973-
1993). Since 1973 he has also been a member of the Hungarian National Committee
of the International Union of Theoretical and Applied Mechanics. From 1984 to 1996
he was a member of the Committee of Scientific Qualifications at the Hungarian
Academy of Sciences.

Kozák has been taking part in the work of the Miskolc Committee of the Hungarian
Academy of Sciences since it came into existence in 1979. Since its foundation he has
been a member of the Expert Committee of Mechanical Engineering. Between 1984-
96 he was the Chair of the Club Council. In 1990 he was elected a member of the
Committee. From 1993 to 1996 he was the vice chairman of the Committee. In 1996
he was elected Chairman of the Committee.

Kozák has been visited a number of foreign cities (Vienna, Graz, Leoben, Prague,
Brno, Bratislava, Kosice, Cracow, Berlin, Magdeburg, Dresden, St. Petersburg, Mos-
cow, Kharkov, Frunze, Detroit, Algir, Oran, Constantine).

He is an excellent lecturer. He has the gift to present very complicated things –
relationships, lines of thoughts – in an elegant and simple manner and to make his
audience understand what at first seems difficult. Those who have had the privilege
to attend his courses will remember these lectures fondly. The fact that the problems
of continuum mechanics (and physics in general) can be formulated and solved in
two theoretically equivalent systems – namely in a primal and a dual one – played
an important role in his lectures on Elasticity and Continuum Mechanics and in the
related lecture notes as well.

He has written altogether 17 university textbooks for his students on Statics,
Strength of Materials, Dynamics, Elasticity, Plasticity, Theory of Shells etc. These
books came out in Hungarian.

Kozák has been the scientific supervisor of 8 Ph.D. theses and a number of M.Sc.
theses.

We are honored that in the name of his friends, colleagues and his former students
we can greet him on the occasion of his 70th birthday on the first pages of this issue
of the Journal.

György Szeidl
Edgár Bertóti
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Abstract. A generalization of the principle of complementary virtual work in the current
configuration is proposed by introducing the orthogonal rotation tensor as an independent
variable. Applicability of the modified principle to (numerical) analysis of non-linear elastic-
ity problems assumes the existence of an invertible constitutive relation between the Cauchy
stress tensor and the left stretch tensor. It is shown that when transforming it into the ref-
erence configuration, the generalized principle of complementary virtual work is equivalent
to Fraeijs de Veubeke’s two-field dual-mixed principle, provided an appropriate constitutive
equation between the Biot stress tensor and the right stretch tensor is taken into account.
The independent equation system of non-linear elasticity in terms of stresses and rotations
is derived, both in the current and reference configurations, using six independent first-order
stress functions.

Keywords: Principle of complementary virtual work, non-linear elasticity, rotation tensor

1. Introduction

Applicability of the classical principle of complementary virtual work in non-linear
elasticity is limited because (i) in the current configuration the Cauchy stress ten-
sor and the displacement gradient tensor appearing in the principle are not work-
conjugate stress and strain measures, thus they cannot be related to each other by
constitutive equations; (ii) in the reference configuration the principle contains the
first Piola-Kirchhoff stress tensor and the displacement gradient tensor which are
work conjugate stress and strain measures, the constitutive relations between them,
however, cannot be inverted uniquely. Due to the above mentioned restrictions, the
principle of complementary virtual work has primarily theoretical importance in the
non-linear theory of elasticity and is usually written in the reference configuration,
see for example Novozhilov [1], Zubov [2], Lur’e [3], Washizu [4].

The complementary virtual work theorem is closely related to the principle of sta-
tionary complementary energy, as the latter can be derived from the former when
invertible constitutive equations can be taken into account. The problem of construc-
tion complementary variational principles in non-linear elasticity in terms of stresses
alone has been investigated by several authors. The key issue is to find appropri-
ate work-conjugate stress and strain measures for which the constitutive equation is
uniquely invertible, i.e. the strain tensor can be expressed as a function of the corre-
sponding conjugate stress tensor. If such a work-conjugate stress and strain measure
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exists, a complementary strain energy density can be derived from a given strain
energy density through a Legendre transformation.

Levinson [5] pointed out that no complementary energy density as a function of
the second Piola-Kirchhoff stress tensor alone can be derived. Construction of com-
plementary energy density as a function of the first Piola-Kirchhoff stress tensor as
well as the invertibility of the constitutive equations between the first Piola-Kirchhoff
stress tensor and the deformation/displacement gradient tensor has been investigated,
among others, by Novozhilov [1], Truesdell–Noll [6], Zubov [2], Fraeijs de Veubeke [7],
Christoffersen [8], Koiter [9], Dill [10], Ogden [11]. The final conclusion was that
it is impossible, in general, to derive a unique complementary strain energy den-
sity in terms of the first Piola-Kirchhoff stresses alone, since the inversion of the
stress-strain relation between the first Piola-Kirchhoff stress tensor and the deforma-
tion/displacement gradient tensor is not unique [11]. It should be noted, however,
that for some special cases, when the sign problem appearing in the inversion of the
stress-strain relation is determinable by practical considerations, the principle of sta-
tionary complementary energy is applicable to solving non-linear elasticity problems
[2][9][13].

The right and perhaps the best way to define a complementary variational principle
in non-linear elasticity is using the Biot stress tensor and the right stretch tensor as
work-conjugate (Lagrangian) stress and strain measures. In this case the stress-strain
relations are uniquely invertible and the complementary strain energy density can
always be expressed in terms of the Biot stress tensor alone. Recognizing these facts, a
complementary energy-based dual-mixed principle in terms of the first Piola-Kirchhoff
stress tensor, depending on the Biot stress tensor and the orthogonal rotation tensor,
was derived by Fraeijs de Veubeke [7] in the reference configuration. The possible
relationship between this two-field principle and a generalized complementary virtual
work theorem, which should be independent of the actual constitutive equations, was
not investigated in [7], however. Either, no attempt was made to transform the derived
complementary energy principle into the current configuration (which is, otherwise,
a rather complicated task), or to derive an applicable principle of complementary
virtual work in the current configuration, independently of the developments and
results presented in [7].

Considering the above mentioned facts and limitations regarding the applicability
of the principle of complementary virtual work theorem in non-linear elasticity, this
paper deals with a possible generalization of the classical principle by taking both the
stress tensor and the orthogonal rotation tensor as independent variables. Section 2
focuses on the generalization of the classical principle in the current configuration.
The orthogonal rotation tensor is introduced into the principle by considering the
Cauchy stress tensor to be not a priori symmetric. The rotational equilibrium for the
Cauchy stresses becomes a variational result. The modified principle is applicable to
numerical analysis of non-linear elasticity problems when invertible constitutive rela-
tion between the Cauchy stress tensor and the left stretch tensor exists. Independent
equation system of nonlinear elasticity in terms of the Cauchy stresses and orthogonal
rotations are derived from the generalized principle in the current configuration, using
six independent first-order stress functions.
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In Section 3, the generalized principle is transformed into the reference configura-
tion. It is pointed out that, provided an appropriate constitutive equation between
the symmetrized Biot stress tensor and the right stretch tensor is taken into account,
the generalized principle is equivalent to Fraeijs de Veubeke’s two-field dual-mixed
principle. Independent equation system of non-linear elasticity in terms of the first
Piola-Kirchhoff stresses and orthogonal rotations is derived, using six independent
first-order stress functions. Differences between the present and a former (incom-
plete) derivation given in [7] are emphasized.

Notation. Let the initial or reference configuration of an elastic body (at time
t = 0) be denoted by 0Ω and its deformed or current configuration at time t (t > 0)
by tΩ. Points in the reference and current configurations will be denoted by X
and x, respectively. It is assumed that 0Ω as well as tΩ are simply-connected and
bounded by the sufficiently smooth boundaries 0Γ = 0Γσ ∪ 0Γu ( 0Γσ ∩ 0Γu = 0) and
tΓ = tΓσ ∪ tΓu ( tΓσ ∩ tΓu = 0) and that these boundary parts with outward unit
normals 0n and tn are separated, according to Figure 1, by the boundary curves 0`
and t`, respectively. The mass densities at the reference and current configurations
are denoted by 0ρ and tρ. The elastic body is subjected to body forces of density tρb
in tΩ (b is the body force density per unit mass), a surface load of density tp̃ on tΓσ,
whereas on the boundary part tΓu, a displacement field denoted by ũ is prescribed.

Ω0

Γt
l

Γ
Γ

l

0

Γ0

t

u

σ

Γu

σ

t

t

0

0
0

ΩtΓt

Figure 1. Elastic body: reference and current configuration

Throughout this paper, invariant notation of tensors and tensor operations will be
used. Scalar, vectorial, tensorial and inner product of two tensors will be denoted,
respectively, by · , × , ⊗ and : . Differential operations divergence, curl and gradient
on tensor variables will be denoted by div, curl and grad with respect to the metric
of the current configuration and by Div, Curl, and Grad with respect to the metric
of the reference configuration. For the divergence, curl and gradient of the arbitrary,
differentiable second-order tensor S, definitions of Gurtin [14][15] are employed, i.e.

div S = ∇ · ST, (1.1)
curl S = ∇× ST, (1.2)

grad S = ∇⊗ ST, (1.3)
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where a T in the superscript stands for the transpose. It is also convenient to introduce
the surface divergence operator divΓ acting on the surface Γ as

divΓ S := (n×∇) · ST, (1.4)

where n is the outward (unit) normal to Γ. This operator involves only tangential
derivatives of S on Γ.

2. The principle of complementary virtual work and its generalization in

the current configuration

2.1. The classical principle. The classical complementary virtual work theorem
states that if equality∫

tΩ

(1− F−1) : δτ d tΩ =

∫
tΓu

ũ · δτ · tn d tΓ (2.1)

holds in the current configuration for all statically admissible Cauchy stresses τ , i.e. if
its variation δτ satisfies the translational equilibrium equations

div δτ = 0 x ∈ tΩ (2.2)

and the stress boundary conditions

δτ · tn = 0 x ∈ tΓσ, (2.3)

and the symmetry condition for the Cauchy stress tensor

τ − τT = 0 x ∈ tΩ (2.4)

is also assumed to be a priori satisfied, then the tensor D := 1 − F−1 is the dis-
placement gradient tensor and F−1 is the inverse deformation gradient tensor (the
unit tensor is denoted by 1). It can also be pointed out that when (2.1) holds, the
Riemann-Christoffel curvature tensor of the current metric vanishes, which is a com-
patibility condition for the metric tensor of the deformed configuration, see Kozák
[16].

Applicability of (2.1) is restricted, however, by the fact that the Cauchy stress
tensor and the displacement gradient tensor (or the inverse deformation gradient)
are not work-conjugate stress and strain measures and, unless the deformation is
rotation-free, they cannot be related to each other by constitutive equations. In other
words, neither D nor F−1 can be expressed as a function of τ , which means that
the principle of complementary virtual work in its classical form is not suitable for
numerical analysis of non-linear elasticity problems. In addition, as the principle gives
no information about the rotation of the material points and the principal directions
of the strain ellipsoid, the deformed state of the body is indeterminable, in general,
using (2.1).
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Note that in the linearized theory of elasticity, the infinitesimal rotations can be
uniquely determined from the strain tensor and, after taking into account the inverse
stress-strain relations, (2.1) is equivalent to Castigliano’s variational principle.

2.2. The generalized principle of complementary virtual work in the cur-
rent configuration. The basic idea in the generalization of the principle of com-
plementary virtual work is to introduce the finite rotations as independent variables
into (2.1). This can be accomplished if the Cauchy stress tensor is not considered to
be a priori symmetric. Enforcing the rotational equilibrium equations for the Cauchy
stresses into the principle is, however, not as straightforward as in the linear case,
where the (infinitesimal) rotation tensor is skew-symmetric; it needs the utilization of
the fact that for any orthogonal tensor R, the tensor δR·RT is skew-symmetric. Then
the generalized principle of complementary virtual work can be stated as follows. Let
equality∫

tΩ

[
(1−RT ·V−1) : δτ + τ : (δR ·RT)

]
d tΩ =

∫
tΓu

ũ · δτ · tn d tΓ (2.5)

hold for all statically admissible (not a priori symmetric) Cauchy stresses δτ satisfying
(2.2) and (2.3), and for all δR obtained from an orthogonal rotation tensor R, where
V is an arbitrary but symmetric tensor. Then the tensor

D := 1−RT ·V−1 (2.6)

is the displacement gradient tensor, RT ·V−1 is the inverse deformation gradient, and
the Cauchy stress tensor τ is symmetric.

To prove the above statements it should be taken into account that orthogonality
of R implies

δ(R ·RT) = 0, δR ·RT = −R · δRT = −(δR ·RT)T, (2.7)

which means that, as indicated above, the tensor

δΘ := δR ·RT (2.8)

appearing in the volume integral of (2.5) is skew-symmetric. Using the above nota-
tions, (2.5) can be rewritten in the following brief form:∫

tΩ

( D : δτ + τ : δΘ) d tΩ =

∫
tΓu

ũ · δτ · tn d tΓ. (2.9)

In the course of integral transformations it should be taken into account that

• translational equilibrium (2.2) for the (non-symmetric) Cauchy stresses δτ can
be satisfied a priori by introducing a tensor of first-order stress functions χ as

δτ = (curl δχ)T x ∈ tΩ, (2.10)

where only six out of the nine components of δχ are independent and the other
three components can be set to zero;
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• the homogeneous stress boundary condition (2.3) for δτ in terms of first-order
stress functions takes the form

div
Γ
δχ = 0 x ∈ tΓσ, (2.11)

where δχ on tΓσ can be obtained as the gradient of an arbitrary vector v defined
on tΓσ as

δχ = grad v x ∈ tΓσ, (2.12)

provided equation
(δχ− grad v) · tl = 0 x ∈ t` (2.13)

holds on the common curve t` of boundary surfaces tΓσ and tΓu with tl being
the tangent unit vector to t` [17];

• the arbitrary but skew-symmetric tensor δΘ defined by (2.8) can be written in
terms of its vector δθ as

δΘ = 1× δθ, (2.14)

where the three components of δθ are also arbitrary.

Applying the Gauss- and Stokes-theorem and taking into account (2.10)-(2.14),
(2.9) can be transformed into∫

tΩ

[
−(curl D)T : δχ+ τ : (1× δθ)

]
d tΩ−

∫
tΓσ

(divΓ D) · v d tΓ

+

∫
tΓu

[ (D− grad ũ)× tn ] : δχ d tΓ−
∮
t`

v · (D− grad ũ) · tl d ts = 0. (2.15)

Equation (2.15) holds for all δχ, δθ and v, which means that their coefficients should
be equal to zero. This condition implies the following independent Euler-Lagrange
equations and natural boundary conditions of the generalized principle of complemen-
tary virtual work [18]:

the first-order compatibility equations (six independent equations)

(curl D)T = 0 x ∈ tΩ, (2.16)

the symmetry of the Cauchy stress tensor (three equations)

τ − τT = 0 x ∈ tΩ, (2.17)

the first-order compatibility boundary conditions (three equations)

divΓ D = 0 x ∈ tΓσ, (2.18)

the strain boundary conditions (six independent equations)

(D− grad ũ)× tn = 0 x ∈ tΓu, (2.19)
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and the continuity condition

(D− grad ũ) · tl = 0 x ∈ t` (2.20)

on the common curve t` of tΓu and tΓσ, where tl is the unit tangent to the curve t`
(Figure 1). It can be pointed out that condition (2.19) on tΓu implies compatibility
boundary condition div

Γ
D = 0 on tΓu as well. Since compatibility equations (2.16)

are satisfied in tΩ and the compatibility boundary conditions are satisfied on the
whole boundary surface tΓ, tensor D = 1 −RT ·V−1 is the displacement gradient
tensor, RT ·V−1 is the inverse deformation gradient tensor and, following from the
polar decomposition theorem, R and V are the rotation tensor and the left stretch
tensor, respectively.

The independent equation system of non-linear elasticity in terms of the Cauchy
stress tensor τ and the orthogonal rotation tensor R consists of the translational
equilibrium equations div τ + tρb = 0, rotational equilibrium equations (2.17) and
compatibility equations (2.16) as field equations, as well as stress boundary conditions
τ · tn = tp̃, compatibility boundary conditions (2.18), and the boundary conditions
for the strain tensor, (2.19) and (2.20). This equation system or, equivalently, the
generalized principle of complementary virtual work with functional (2.5) can be used
for solving non-linear elasticity problems only in that case, however, when invertible
constitutive equation between the Cauchy stress tensor τ and the left stretch tensor
V exists. Such a constitutive relation for isotropic materials can be given in the form

τ (V) = a0 1 + a1 V + a−1 V−1, (2.21)

where a0, a1 és a−1 are functions of the scalar invariants of V [19][15].

Remark 1. When compatibility equations (2.16), (2.18)-(2.19) hold, D is the
gradient of an arbitrary vector field denoted by u, i.e. D = grad u. Assuming that
D is given or obtained using the generalized complementary virtual work theorem,
vector field u(P ) at point P of the elastic body can be computed from D as

u(P ) = u(O) +

∫ P

O

D · dx = u(O) +

∫ P

O

grad u · dx, (2.22)

provided the value u(O) at an arbitrary point O of the body is known (the integral
is path-independent). If u(O) is the displacement of point O ∈ tΓu, then u(x) is the
displacement field of the elastic body.

Remark 2. The inner product τ : (δR · RT) in (2.5) can be considered as a
Lagrange-multiplier term enforcing the symmetry condition for the Cauchy stress
tensor into the principle. If τ is a priori symmetric, this term disappears from (2.5)
and the classical principle of complementary virtual work (2.1) is obtained.

Remark 3. In the dual formulation of the linearized theory of micropolar elasticity,
where the use of both second- and first-order stress functions are needed, the correct
number of first-order stress functions have been used by Kozák-Szeidl [20].
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3. The generalized principle of complementary virtual work in the

reference configuration

3.1. Transformations between the current and reference configurations.
The generalized principle of complementary virtual work in the reference configuration
can be derived from its form (2.5) valid in the current configuration. As a first step,
relation between the variations of the Cauchy stress tensor δτ and the first Piola-
Kirchhoff stress tensor δT should be taken into account [6]:

δτ = J−1 δT · FT, (3.1)

where, assuming that (2.5) holds, F is the deformation gradient tensor and J is
the Jacobian of the deformation gradient. Making use of (3.1) as well as the Piola
transformation [21], requirements of statically admissibility for δτ , (2.2)-(2.3), are
equivalent to equilibrium equations

Div δT = 0 X ∈ 0Ω (3.2)

and stress boundary conditions

δT · 0n = 0 X ∈ 0Γσ (3.3)

for the first Piola-Kirchhoff stress tensor T. The next step is to transform the in-
tegrands of functional (2.5) into the reference configuration by taking into account
the relations between the surface and volume elements of the current and reference
configurations [6]:

d tΩ = J d 0Ω, (3.4)

and
tn d tΓ = J F−T · 0n d 0Γ. (3.5)

Then, using (3.1) and (3.4)-(3.5), integrands of (2.5) can be transformed as follows:

1 : δτ d tΩ = δT : F d 0Ω, (3.6)

(RT ·V−1) : δτ d tΩ = F−1 : (δT · F) d 0Ω = δT : 1 d 0Ω, (3.7)
τ : (δR ·RT) d tΩ = (T · FT) : (δR ·RT) d 0Ω, (3.8)

ũ(x) · δτ · tn d tΓ = ũ(X) · δT · 0n d 0Γ. (3.9)

Inserting (3.6)–(3.9) in (2.5), the first form of the generalized principle of complemen-
tary virtual work in the reference configuration reads:∫

0Ω

[
δT : (F− 1) + (T · FT) : (δR ·RT)

]
d 0Ω =

∫
0Γu

ũ · δT · 0n d 0Γ. (3.10)

If equality (3.10) holds for all statically admissible first Piola-Kirchhoff stresses δT
and all rotations δR (obtained from an arbitrary but orthogonal R), then the tensor
H := F − 1 is the displacement gradient tensor in the reference configuration, F is
the deformation gradient and the product tensor T ·FT is symmetric. Following from
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the relation between the Cauchy stresses and the first Piola-Kirchhoff stresses [22],
the latter condition is equivalent to the symmetry of the Cauchy stress tensor τ .

Proof of the above statements can be accomplished in similar steps to those pre-
sented in Section 2.2. However, the principle of complementary virtual work in its
form (3.10) is still not applicable to the (numerical) solution of general non-linear elas-
ticity problems, as the constitutive relation between the first Piola-Kirchhoff stress
tensor and the displacement gradient (or deformation gradient) tensor is not uniquely
invertible [9][11].

To obtain the most useful form of the principle of complementary virtual work in
the reference configuration, polar decompositions of tensors F and T should be taken
into account:

F = R ·U, T = R · σ, (3.11)

where σ is the Biot stress tensor [23][11]. Making use of (3.11), integrands on the
left-hand-side of (3.10) can be transformed as follows:

δT : F = δT : (R ·U) = δσ : U + (δRT ·R) : (σ ·U), (3.12)

(T · FT) : (δR ·RT) = (RT · δR) : (σ ·U). (3.13)

On inserting (3.12)-(3.13) in (3.10) and considering that in the reference configuration
orthogonality of R implies

δ(RT ·R) = 0, δRT ·R = −RT · δR = −(δRT ·R)T, (3.14)

by which
(RT · δR) : (σ ·U) + (δRT ·R) : (σ ·U) = 0, (3.15)

the final form of the generalized principle of complementary virtual work in the ref-
erence configuration is obtained:∫

0Ω

( δσ : U− δT : 1 ) d 0Ω =

∫
0Γu

ũ · δT · 0n d 0Γ. (3.16)

If equality (3.16) holds (independently of the above derivation) for all statically ad-
missible first Piola-Kirchhoff stresses δT and all rotations δR together with relation
δσ = δ(RT ·T), where U is a symmetric tensor, then H := R ·U−1 is the displace-
ment gradient tensor, F := R · U is the deformation gradient, and the co-rotated
Kirchhoff stress tensor K := σ ·U is symmetric, which implies the symmetry of the
Kirchhoff- and Cauchy stress tensor as well. The proof of the above statements is
given in Section 3.2 Note that due to the symmetry of U, (3.16) depends on the
symmetric part of the Biot stress tensor, σs = (σ + σT)/2 = (RT · T + TT ·R)/2,
which is sometimes referred to as Jaumann stress tensor [8][9].

Remark 4. The generalized principle of complementary virtual work is indepen-
dent of the actual constitutive equations. Since U and σs are objective stress and
strain measures, single-valued, invertible constitutive relation exists between them.
Assuming hyperelastic materials, it can be given in the form

U(σs ) =
∂Wc(σs )

∂σs
, (3.17)
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whereWc(σs ) is the complementary strain energy density. Using (3.17), inner product
δσ : U on the left-hand-side of (3.16) can be written as

δσ : U = δσs : U = δσs :
∂Wc(σs )

∂σs
= δWc(σs ). (3.18)

On inserting (3.18) in (3.16), we obtain the zero-valued first variation of Fraeijs de
Veubeke’s dual-mixed variational principle in terms of the first Piola-Kirchhoff stress
tensor and the orthogonal rotation tensor [7]:

δF(δT, δR) =

∫
0Ω

[δWc(σs )− δT : 1] d 0Ω−
∫

0Γu

ũ · δT · 0n : d 0Γ = 0. (3.19)

This result indicates that the generalized principle of complementary virtual work
in the reference configuration is equivalent to the two-field dual-mixed principle of
Fraeijs de Veubeke, provided constitutive equations of type (3.17) are being taken
into account. �

3.2. Independent equation system of non-linear elasticity in the reference
configuration. The independent equation system of non-linear elasticity in terms
of the first Piola-Kirchhoff stress tensor T and the orthogonal rotation tensor R
can be derived from (3.16) by taking into account subsidiary conditions of statically
admissibility, (3.2) and (3.3), for δT, the orthogonality condition for R, as well as
the symmetry condition for U. In the course of integral transformations it should be
taken into account that [18]
• following from (3.11), variation of the Biot stress tensor can be expressed by

variations of T and R as

δσ = δRT ·T + δTT ·R, (3.20)

• equilibrated δT satisfying (3.2) can be obtained from an arbitrary tensor of
first-order stress functions Ψ as

δT = (Curl δΨ)T, (3.21)

where only six out of the nine components of δΨ are independent and the other
three components can be set to zero;

• orthogonality of R and (3.14) implies that tensor

δφ := RT · δR, (3.22)

is skew-symmetric, from which first variation of the rotation tensor can be ex-
pressed as

δR = R · δφ; (3.23)

• the homogeneous stress boundary condition (3.3) for δT in terms of first-order
stress functions takes the form

Div
Γ
δΨ = 0 X ∈ 0Γσ, (3.24)
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where δΨ on 0Γσ can be obtained as the gradient of an arbitrary vector w
defined on 0Γσ as

δΨ = Grad w X ∈ 0Γσ, (3.25)

provided equation

(δΨ−Grad w) · 0l = 0 X ∈ 0` (3.26)

holds on the common curve 0` of boundary surfaces 0Γσ and 0Γu with 0l being
the tangent unit vector to 0`;

• the arbitrary but skew-symmetric tensor δφ defined by (3.22) can be written in
terms of its vector δϕ as

δφ = 1× δϕ, (3.27)

where the three components of δϕ are also arbitrary.

Introducing the notation
H := R ·U− 1 (3.28)

and applying the Gauss- and Stokes-theorem and taking into account (3.20)–(3.27),
(3.16) can be transformed into∫

0Ω

[
−(Curl H)T : δΨ− (σ ·U) : (1× δϕ)

]
d 0Ω−

∫
0Γσ

(Div
Γ

H) ·w d 0Γ

+

∫
0Γu

[ (H−Gradũ)× 0n ] : δΨ d 0Γ−
∮

0`

w · (H−Grad ũ) · 0l d 0s = 0.

(3.29)

Equality (3.29) holds for all δΨ, δϕ and w, which means that their coefficients should
be equal to zero. The independent Euler-Lagrange equations and natural boundary
conditions of the generalized principle of complementary virtual work in the reference
configuration are [18]:

the first-order compatibility equations for H (six independent equations):

(Curl H)T = 0 X ∈ 0Ω, (3.30)

the symmetry condition for the co-rotated Kirchhoff stress tensor K = σ ·U (three
equations):

σ ·U = U · σT X ∈ 0Ω, (3.31)

the first-order compatibility boundary conditions (three equations):

Div
Γ

H = 0 X ∈ 0Γσ, (3.32)

the strain boundary conditions (six independent equations):

(H−Grad ũ)× 0n = 0 X ∈ 0Γu, (3.33)
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and the continuity condition

(H−Grad ũ) · 0l = 0 X ∈ 0` (3.34)

on the common curve 0` of surface parts 0Γu és 0Γσ, where 0l is the unit tangent to
the curve 0` (Figure 1). Condition (3.33) implies compatibility boundary condition
Div

Γ
H = 0 on 0Γu, i.e. compatibility boundary conditions are satisfied on the whole

surface 0Γ. This fact, together with compatibility equations (3.30) means that tensor
field H, defined by (3.28), is the displacement gradient in the reference configuration
and R·U = H+1 is the deformation gradient. With the above derivation, statements
in Section 3.1 regarding the complementary virtual work theorem in the reference
configuration have been proven.

The independent equation system of non-linear elasticity in terms of the first Piola-
Kirchhoff stress tensor T and the orthogonal rotation tensor R consists of the trans-
lational equilibrium equations Div T + 0ρb = 0, compatibility equations (3.30) and,
taking into account relation σ = RT ·T, symmetry condition (3.31) as field equations,
as well as stress boundary conditions T · 0n = 0p̃, compatibility boundary conditions
(3.32), and boundary conditions for the displacement gradient tensor, (3.33) and
(3.34). This equation system or, equivalently, the generalized principle of comple-
mentary virtual work with functional (3.16) should, of course, be used together with
constitutive equations of type (3.17) when solving non-linear elasticity problems.

In connection with the above derived equation system it should be noted that a
derivation has already been given by Fraeijs de Veubeke [7]. However, his derivation
is incomplete in the following sense: (i) The nine compatibility equation of [7] is not
independent, because all the nine components of the first-order stress function tensor
were used (instead of six) in the derivation. (ii) Stress boundary condition (3.24)
have been taken into account by the use of a Lagrange-multiplier which was a priori
assumed (incorrectly) to be the displacement field on the boundary part 0Γσ. Due
to this assumption, compatibility boundary conditions (3.32) and strain boundary
conditions (3.33) did not appear in the equation system of [7] (instead of (3.32),
an identity was obtained), and, furthermore, no fitting condition for the Lagrange
multiplier and the prescribed displacement field ũ on the curve 0` was obtained (a
condition which would be equivalent to (3.34)).

Remark 5. In geometrically non-linear elasticity problems, instead of U the use of
the Jaumann strain tensor ε = U−1 is more practical (due to the linear constitutive
relations between the Biot stresses and Jaumann strains in that case). Then, taking
into account that from (3.20) we have

δσ : 1 = δR : T + δT : R, (3.35)

the generalized principle of complementary virtual work can be transformed into the
following form:∫

0Ω

[ δσ : ε+ δT : (R− 1) + δR : T ] d 0Ω =

∫
0Γu

ũ · δT · 0n : d 0Γ. (3.36)

Incremental form of this principle and its consistent linearization can be found in [18].
�
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4. Concluding remarks

Despite the fact that stress-based methods and numerical models are usually more
involved, both theoretically and numerically, than displacement-based methods and
models, stress-based formulations receive an emerging interest in computational me-
chanics. The practical importance of such models and methods in the numerical
analysis and solution of linear and non-linear elasticity problems can probably be
traced back to the numerical difficulties and convergence problems encountered in the
application of the classical displacement-based finite element methods to parameter
dependent or constraint problems of elasticity (and plasticity).

Theoretical developments presented in this paper has been motivated by the limited
applicability of the stress-based principle of complementary virtual work in non-linear
elasticity. A modification of the classical principle is proposed by introducing the
orthogonal rotation tensor into the principle. In the current configuration this is
done by incorporating the rotational equilibrium for the Cauchy stress tensor into the
principle. Applicability of the generalized principle requires, however, the existence
of an invertible constitutive relation between the Cauchy stress tensor and the left
stretch tensor. From the numerical point of view, it is more useful to transform the
principle into the reference configuration, where, provided that constitutive equations
between the Biot stress and right stretch tensors are being taken into consideration,
the principle is equivalent to the two-field, complementary energy-based variational
principle of Fraeijs de Veubeke.
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Abstract. The investigation of the third order wave necessitates the knowledge of the
dynamic compatibility equation. This equation rises from the first equation of motion in
case of the acceleration wave. Now it requires the time derivative of the first equation of
motion. The material time derivative is not simple in the current configuration. Using
the generalized Clapeyron’s theorem we obtain an equation of motion of stress-rate. The
dynamic compatibility equation can be calculated from it. Many authors have dealt with this
question when the body is in equilibrium [8, 9, 10]. The third order wave can be investigated
by using the compatibility equations (dynamic, kinematic and constitutive). The generalized
acoustic tensor is another important result of these investigations.

Keywords: generalized Clapeyron theorem, equation of motion of stress-rate, acoustic tensor
of third order wave

1. Introduction

In its original form, Clapeyron’s theorem concerns the transition between two states
of equilibrium. If the displacement field ui takes us from one equilibrium state into
the other then the work of the internal forces tijui;j is equal to the work done by the
body forces qi and the trections tijnj

∣∣
A
acting on the boundary surface A, that is,∫

V

tijui;j dV =

∫
V

qiuidV +

∫
A

uit
ijnjdA, (1.1)

where tij is the stress tensor, ui;j is the covariant derivative of the displacement vector
ui with respect to the j-th coordinate, nj is the outward unit normal and V is the
part of the geometric space which contains the body B and which is bounded by a
closed surface A. Here and in the sequel indicial notations are employed. Accordingly,
a Latin index has the range 1,2 and 3; summation over repeated indices is implied
and the covariant derivative is denoted by an index preceded by a semicolon. The
strain tensor is denoted by eij .

For moving continua the theory should be modified as follows: the velocity field
vi should be used instead of ui and, with regard to D’Alembert’s principle, qi is
to be replaced by the generalized body force bi ≡ qi − ρv̇i. Let the mass density
and the acceleration be denoted by ρ and v̇i, respectively. Obviously, to keep the
original meaning of Clapeyron’s theorem, the volume and surface integrals should be
integrated with respect to time t. This generalization of Clapeyron’s theorem remains
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valid even for finite displacements, if the proper changes are carried out [1]. The
generalized Clapeyron’s theorem can be formulated as

∫ t1

t0

∫
V

(
ṫij − tiqvj;q + tijvp;p

)
ui;jdV dt =

∫ t1

t0

∫
V

(
ḃi + bivp;p

)
uidV dt+

+

∫ t1

t0

∫
V

(
ṫij − tiqvj;q + tijvp;p

)
uinjdAjdt , (1.2)

where overdot denotes the material time derivative and dAj ≡ njdA. If tij;j + bi = 0
then the equation of motion is satisfied [1].

2. Equation of motion for the stress-rate

Equation (1.2) is valid for all kinematically (geometrically) admissible displacement
fields, thus it holds also for the virtual field u∗i [11]. By keeping in mind that remark,
the last surface integral of the left-hand side of (1.2) can be transformed into volume
integral∫ t1

t0

∫
V

[(
ṫij − tiqvj;q + tijvp;p

)
;j
ui +

(
ṫij − tiqvj;q + tijvp;p

)
ui;j

]
dV dt . (2.1)

By substituting (2.1) into (1.2) and performing some rearrangements we have∫ t1

t0

∫
V

[(
ṫij − tiqvj;q + tijvp;p

)
;j

+ ḃi + bivp;p

]
u∗i dV dt = 0

where the virtual displacement u∗i is written for ui. This equation is satisfied for any
u∗i if (

ṫij − tiqvj;q + tijvp;p
)
;j

+ ḃi + bivp;p = 0 . (2.2)

Substituting bi ≡ qi − ρv̇i and introducing the Lie derivative of the stress tensor
Lv
(
tij
)

= ṫij − tipvj;p − tpjvi;p as a stress-rate and making use of the continuity
equation, the equation of motion (2.2) for the Lie derivative of the stresses assumes
the form [

Lv
(
tij
)]

;j
+
(
tpjvi;p + tijvp;p

)
;j

+ q̇i + qivp;p = ρv̈i . (2.3)

This equation is referred to as the equation of motion for the stress-rate [8,9,10,12].

3. The third order wave

When the basic quantities vk, tkl, ekl and their first derivatives are all continuous,
but the second derivatives have a jump when crossing the surface ϕ

(
xk, t

)
= 0, we
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speak about third order waves [2]. Let us denote the jump of some quantity vk;p by〈
vk;p
〉
. When the velocity gradient is vk;p and we consider a wave of order three then〈

vk;p
〉

= 0 but
〈
vk;qp

〉
6= 0. Thus in (2.3)

〈
Lv
(
tkp
)〉

= 0 but
〈
Lv
(
tkp;p

)〉
6= 0.

Consequently, the dynamic condition a third order wave should meet is of the form

Lv
(
tk`;`
)

+ tpq
〈
vk;qp

〉
+ tk`

〈
vp;p`

〉
= ρ

〈
v̈k
〉
. (3.1)

Let the kinematic equation [4, 5] be

(Lveij)
·

= ëij +
(
ekjv

k
;i + eikv

k
;j

)
(3.2)

where ekj is the Euler strain tensor. If the Lie derivative of the velocity field is Łv,
the expression Lv ≡Łv + ∂/∂t in (3.2) is a generalization [3]. As is well known,
Lv (eij) = vij , thus the kinematic compatibility condition for the third order wave is

〈v̈ij〉 = 〈ëij〉+ ekj
〈
v̇k;i
〉

+ eik
〈
v̇k;j
〉
. (3.3)

It can easily be shown that v̇k;i 6=
(
vk;i
)·, but 〈v̇k;i〉 =

〈(
vk;i
)·〉 and this property is the

same for the second derivatives of all other functions.

Let the constitutive equation be [14]

fα
(
Lv
(
tij
)
, Qij , Lv (eij) , qij , t

ij , eij
)

= 0, (α = 1, 2, ..., 6) (3.4)

where Qij = Bijmpqt
pq

;m and qij = b pq`
ij epq;`, if Bijmpq and b pq`

ij are appropriate
tensors transforming tensors tpq;m and epq;` into second order ones.

The constitutive compatibility conditions can be obtained from the material deriva-
tive of (3.4)

∂fα
∂Lv (tij)

〈
Lv
(
tij
)·〉

+
∂fα
∂Qij

Bijmpq
〈
ṫpq;m

〉
+

∂fα
∂Lv (eij)

〈
Lv (eij)

·〉
+

∂fα
∂qij

b pq`
ij 〈ėpq;`〉 = 0, (α = 1, 2, ..., 6)

or introducing the notations Srsij , Rrsij , T rsij and Ursij for the coefficients

Srsij ≡
∂fα

∂Lv (tij)
, Rrsij ≡

∂fα
∂Qij

, T rsij ≡ ∂fα
∂Lv (eij)

, Ursij ≡ ∂fα
∂qij

the constitutitve compatibility condition is

Srsij

〈
Lv
(
tij
)·〉

+RrsijB
ijm
pq

〈
ṫpq;m

〉
+T rsij

〈
Lv (eij)

·〉
+Ursijb pq`

ij 〈ėpq;`〉 = 0 . (3.5)

In the following we use Cartesian coordinates. Let the jumps in the second derivatives
of the stress and strain tensors and that of the velocity field, each on the surface
ϕ
(
xk, t

)
= 0, are denoted by γij , αij and λk. Further denote nk the unit normal vector
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of the wavefront and C and c denote the wave propagation velocity with respect to
the material and to the reference frame:

nk ≡

∂ϕ

∂xk√
gpq

∂ϕ

∂xp
∂ϕ

∂xq

, C = c− vknk,

With these notations one can conclude that equations (3.1), (3.3) and (3.5) imply [2
, 4]:

γk`n` = −ρCλk (3.6)

αij =
1

2C
[ni (2ekj − gkj) + nj (2eik − gik)]λk (3.7)

Srsij
(
Cγij + tiqnqλ

j + tqjnqλ
i − tijn`λ`

)
−RrsijBijmpqnmγpq+

+ T rsij
[
Cαij − λk (eiknj + ekjni)

]
− Ursijb pq`

ij n`αpq = 0 (3.8)

Making use of equations (3.6) and (3.7) we get from (3.8) that{
2ρSrsk`C

3 − 2ρR̄rsk`C
2+[

T rsij (gkjni + giknj)− 2Srsij

(
tiqgjk + tqjgik − tijg

q
k

)
nq

]
n`C+ (3.9)

Ūrsij [ni (2akj − gkj) + nj (2aik − gik)]n`
}
γk` = 0,

where gjk denotes Kronecker’s symbol. Since γk` is different from zero, the determi-
nant of its coefficient matrix must vanish [13], that is,

det {} = 0.

This is the equation of propagation for the third order wave. Clearly this equation is
an algebraic equation of order 18 for the propagation velocity C. Observe that the
notations R̄rsk` ≡ RrspqB

pqm
k`nm and Ūrsij ≡ Urspqb ijm

pq nm are used in the matrix
{}. These notations can also be employed in equation (3.8). The matrix {} can be
considered as the characteristic matrix of a generalization of the acoustic tensor.

Equation (3.8) can also be written in a form consisting of λk when Srsij takes some
of the values 0, Sri gsj , gri gsj and R̄rsij one of 0, R̄ri gsj , R̄rsinj and we multiply the
equations by ns. (In the case of a solid body S and R̄ are probably impossible to be
zero at the same time).

In the 9 cases under consideration, the equation for λk is(
ErkC

3 + F rkC
2 +GrkC +Hr

k

)
λk = 0 . (3.10)

In the second case Erk = grk in (3.10).
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The wave propagation equation is

det
(
ErkC

3 + F rkC
2 +GrkC +Hr

k

)
λk = 0 . (3.11)

This is a 9-th order equation for the propagation velocity .

By using [6] the matrix of acoustic tensor in case of (3.10) can be obtained. Let us
denote the coefficients of C in the form of 3x3 matrices by E,F,G,H. By introducing
the inverse and unit matrices E−1, I the acoustic tensor is 0 I 0

0 0 I
−E−1 ·H −E−1 ·G −E−1 · F

 . (3.12)

Comparing the expression (3.1) of [4] and expression (3.9) of this paper we find that
these are the same in the case of acceleration wave [4] and in the present one.

The most general acoustic tensor can be obtained from (3.9) when the coefficients
have been denoted in the form of 6x6 matrices E,F,G,H. The shape of acoustic
tensor is identical to (3.12) [7]. Matrix (3.12) is a 9x9 matrix while this generalized
matrix is a 18x18 one.

4. Concluding remarks

Our starting point was the generalized Clapeyron’s equation, which, by using conti-
nuity equation, resulted in the first Cauchy equation of motion and the equation of
motion for stress-rate. In such a way we obtain a more general equation for stress-rate
which enables us to write the compatibility equations for the third order wave. These
two sets of equations are the main result of this paper. As an application these equa-
tions lead to an acoustic tensor, which is identical to the acoustic tensor obtained by
acceleration waves, because we used quasilinear integrable second order constitutive
equations. This computation justifies that we could similarly get an acoustic tensor
in case of a general second order constitutive equation.
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Abstract. In this paper, a p version finite element based numerical model is presented for the
3D steady-state analysis of the deformation and velocity field of aluminum strips during hot
flat rolling. The material behavior is described by the Levi-Mises type constitutive equation
considering no volume change. The assumed roll-strip interaction depends on the relative
velocity between the strip and the roll (hydrodynamic lubrication). MATLAB mathematical
software was applied for the implementation of the numerical algorithm.

Keywords: flat rolling, p version finite element, Levi-Mises constitutive equation

1. Introduction

The large-scale manufacturing of steel and aluminum rolled products has grown to
enormous proportions and ranks as one of the largest industrial segments in modern
industry. The major proportion of this market is flat rolled product and represents
significant investment which needs to be efficiently operated and regularly upgraded
to take advantage of the new technical inventions.

A wide spread form of upgrading in recent years has been the introduction of
advanced automation systems with model-based setup and control functions. The
design, application and maintenance of these systems have led to significant improve-
ments in mill performance and product quality. The development of model-based
systems requires a deep understanding of the physical phenomena involved.

Considering the market requirements for flat rolled aluminum products an increas-
ing demand can be observed for tight dimension tolerance, especially for thickness
distribution along the strip length and profile (thickness distribution along the strip
width). The strip profile is determined essentially during the hot rolling operation.

Important pieces of information can be predicted by the developed models, such as
separation force, separation force distribution in the roll gap, required torque, power,
forward and backward slips. These can be utilized for developing and optimizing pass
schedules and providing set up data to the mills renting powerful process tools to
satisfy the requirement of product developments.

The first 1D numerical model valid both for hot and cold rolling was developed
in the form of a non-linear first order differential equation, the so called Kármán
equation. Several expressions for the calculation of the separation force were derived
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from the approximation of the solution of this differential equation. Due to the basic
assumptions this model is incapable of an analysis through the thickness and along
the width of the strip. It was applied mainly for modeling cold rolling. Significant
efforts were made to improve the reliability of the model predictions, such as shear
compensation, roll deformation and yield stress adaptation.

2D models were developed for the study of the plane deformation in the middle
section plane of the strip perpendicular to the axis of the work rolls. This approach
does not allow us to investigate the lateral spread, the separation force distribution
and the velocity field variation along the work roll. Compared with the improved 1D
model the yield stress compensation for the shear stress component is not required
and the Mises type yielding criteria may be incorporated.

Another family of 2D models was derived in the middle plane of the rolled strip
(defined by the traveling direction and the width of the strip). All the properties, pa-
rameters and variables are considered in average sense through the thickness requiring
the yield stress compensation. These models are able to predict the lateral spread
and provide certain information about the along the work roll force distribution and
velocity field variation.

The problems and difficulties mentioned above initiated the development of a finite
element based 3D numerical model for the calculation of velocity and deformation
fields for aluminum strip during hot rolling.

2. Basic equations

The reference system (x, y, z) is defined by the traveling direction, the width and the
thickness of the strip. The velocity at a given point P of the strip is given by

v (x, y, z) = vx (x, y, z) ex + vy (x, y, z) ey + vz (x, y, z) ez, (2.1)

where ex, ey and ez are the unit vectors in the reference system.

With the velocity field v,

ε̇ =
1

2
(v ◦ ∇+∇ ◦ v) (2.2)

is the strain rate tensor. According to the Levy-Mises assumption [2] the equation
that relates the strain rate to the stresses for hot aluminum rolling is

ε̇d = λσd (2.3)

and
ε̇I = 0 (2.4)

where
.
εd and σd are the deviatoric parts of the strain rate and stress tensors,

.
εI is

the first scalar invariant of the strain rate tensor and λ is given by

λ =
√
3
ε̇e
σe

(2.5)
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in which
.
εe is the effective strain rate

ε̇e =
√
ε̇ · · ε̇/2 . (2.6)

Here double dots stand for the energy product of two tensors. Based on the hot
twisting test the effective stress can be given in the following form

σe =
1

α
ash

( ε̇ee Q
RT

A

) 1
N

 (2.7)

where α,A,N and Q are constants determined from the tests, R is the universal gas
constant and T is the absolute temperature.

Table of parameters for the yield stress model
Alloy code A α N Q

1050 3.8 · 1011 0.0462 3.84 156700
3003 8.0 · 1011 0.0311 4.48 167600
545 1.7 · 1010 0.0551 2.74 165400

Making use of the notations

σT = [σx, σy, σz, τxy, τxz, τyz] εT = [ε̇x, ε̇y, ε̇z, γ̇xy, γ̇xz, γ̇yz] (2.8)

C0 =
〈
2, 2, 2, 1, 1, 1

〉
mT =

[
1, 1, 1, 0, 0, 0,

]
(2.9)

equation (2.3) can be cast into the form

σ =
1

λ
(C0 −

2

3
m ◦mT )ε+mσh =

1

λ
Cε+mσh (2.10)

where C = C0 − 2m ◦ mT /3 and σh is the hydrostatic pressure. The principle of
virtual power with an additional penalty term representing the volume change is of
the form∫

V

δεT
1
.

λ
C εdV +

∫
V

δεTmσh dV + β

∫
V

δεT
1

λ
m ◦mT εdV = δW (2.11)

where β is a penalty parameter for the numerical calculations in the range of 104−106

and δW is the power of the external forces. In addition, the weak form of the
incompressibility condition can be formulated as∫

V

δσhm
T εdV = 0 . (2.12)

3. Finite element model

3.1. Finite element approximation. In a given finite element the approximation
of the velocity field is calculated using the matrix of shape functions N (ξ, η, ς) re-
garding the order of the shape functions (p) [3] (for the calculations presented in this
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paper p = 4 and p = 5 elements were applied) and the vector of coefficients q such as

v = N (ξ, η, ς)q (3.1)

similarly, the hydrostatic pressure can be approximated by linear shape functions as

σh = P (ξ, η, ς)p

where ξ, η and ς are the local coordinates of the element.

It follows from (2.2) by making use of the representation (3.1) that εcan be ex-
pressed as

ε = B (ξ, η, ς)q (3.2)

where B (ξ, η, ς) is the matrix of the modified shape functions. Substituting this
expression into the variational equations (2.11) and (2.12) we have

δqT

∫
V

1

λ
BTC0BJ dV︸ ︷︷ ︸

K

q+δqTβ

∫
V

BT
(
m ◦mT

)
BJ dV︸ ︷︷ ︸q

K̃

+ δqT

∫
V

BTmPJ dV︸ ︷︷ ︸p
G

=δW (3.3)

and
δpT

∫
V

PTmTBJ dV

︸ ︷︷ ︸
GT

q = 0 (3.4)

where J is the Jacobian of the element considered.

3.2. Boundary conditions. The work roll circumferential velocity vr = vrt is
given in the local coordinate system formed by the tangent of the roll t, the width
direction ey and the normal vector of the roll surface n. All the nodal point values
of the roll-strip contact region are transformed into this local system. In the bite
the velocity of the roll surface and the strip surface points slightly differ from each
other. On the entry side the velocity of the roll point is higher (backward slip) and
in the exit zone the strip point has a higher velocity (forward slip). The strip-roll
interaction along the bite length depends on the relative velocity difference between
the strip and the roll (hydrodynamic lubrication model). The traction at a point of
the bite is given in the form

f∗ = κ (vr − v) = κvr − 〈κ, κ, 0〉v =κvr −C∗v (3.5)

where κ is the hydrodynamic coefficient. The power of the external forces is approx-
imated as

δW = δqT

∫
A

κNTvrJ
∗dA− δqT

∫
A

NTC∗NJ∗dAq = δqT
(
f −K∗q

)
(3.6)
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in which f is the load vector of the element, J∗ is the Jacobian of the surface element
and K∗ is an additional term which should be added to K in (3.3).

The normal velocity of the contact points is zero.

3.3. Iterative algorithm. From the variational equations (3.3), (3.6) and (3.4)
by assembling the corresponding matrices

(
K→ KΣ, K̃→ K̃Σ and G→ GΣ

)
and

introducing the global coefficient vector q, the vector of global pressure coefficients p
and the global generalized load vector f , we obtain the equations(

KΣ + K̃Σ
)
q+Gp = f (3.7)

and

GΣTq = 0 . (3.8)

which can be solved by applying an iterative approach [4] which fulfills a termination
criteria |qn+1 − qn| / |qn| < τ (for our numerical calculations τ = 10−3). The inte-
grals are evaluated by using a Gauss type numerical quadrature of order p+ 1 where
p is the order of the shape functions that approximate the velocity field.

In the (n+ 1)-th step the global velocity and pressure coefficient vectors (qn,pn)
are determined and

pn+1= pn+ρrn (3.9)

where ρ=λmin is a factor to improve convergence. The residual of (3.8) is calculated
by

rn= GΣTqn . (3.10)

Utilizing equations (3.2) and (2.5)-(2.7) we can determine λ at the integration points.
If we substitute these values into the expression of K then, according to the first term
of (2.11), the following equation is obtained for qn+1:(

KΣ
n+K̃Σ

)
qn+1= f −Gpn+1 . (3.11)

4. Results

Computational results are compared with hot rolling data of aluminum strips on a
four high single stand reversing hot mill. The applied finite element mesh can be seen
in Figure 1. With regard to the symmetry conditions – the planes xy and xz are that
of symmetry – only one quarter of the strip was considered in our computations. A
summary of the measured parameters and the computed values for a 1320 mm wide
1050 alloy strip rolled at 1 m/s speed using 800 mm diameter rolls is given in the
table below:
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Comparison between predicted and measured separation forces
Temp. Entry thick. Exit thick. Predicted force Measured force
[C0] [mm] [mm] [kN] [kN]
280 16 8 11359 10050
325 16 8 9766 9621
370 16 8 8048 8447
325 16 10 6160 6366

The typical gap pressure distribution indicated in Figure 2 is comparable with the
prediction of other types of models (for example: Kármán model) and measurements.

5. Conclusion

A new, effective 3D numerical model has been developed for the steady-state inves-
tigation of hot rolling of aluminum strips first time applying p version finite element
successfully for the approximation of the velocity field and for the computation of
the deformation rates. Hydrodynamic lubrication was assumed for the connection
between the strip and the roll. By the development of this model all shortcomings of
the 1D and 2D model discussed in the introduction have been eliminated.

The model allows us to predict the separation force, forward and backward slip
and the required power/torque for the deformation. Those pieces of information can
be utilized for developing, modifying and optimizing pass schedules.

Based on the comparisons of the calculated and measured separation force values
it can be concluded that the model predictions are close to the real values and the
differences are less than 12%. Based on the practical experiences the differences of
the measured and predicted values are within the measurement error range and the
predictions are suitable for practical applications.

The MATLAB software was applied for the implementation of the numerical cal-
culations. The built-in spare matrix feature was utilized successfully to reduce the
memory requirement of the computations. The graphical output provides a powerful
tool for visualizing the computational results.
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Abstract. This paper deals with the stability analysis of self-excited bending vibrations
of linear symmetrical rotor-bearing systems with internal damping using the finite element
method. The rotor system consists of uniform circular Rayleigh shafts with both internal vis-
cous and hysteretic damping, symmetric rigid disks, and discrete isotropic damped bearings.
The effect of rotatory inertia and gyroscopic moment are also included in the mathemati-
cal model. By combining the sensitivity analysis and the eigenvalue problem of the rotor
dynamics equations presented in complex form, it is proved theoretically that the whirling
motion of the rotor system becomes unstable at all speeds beyond the threshold speed of
instability. Furthermore, it is found that the rotor stability is improved by increasing the
damping provided by the bearings, whereas increasing internal hysteretic damping will result
in a reduction in the threshold speed of instability. It is also shown that the corresponding
whirling speed of the rotor is always higher than the first forward bending critical speed.
Numerical examples are given to confirm the validity of the theoretical results.

Keywords: rotating machinery, stability, hysteretic damping, sensitivity analysis, threshold
speed, finite elements

1. Introduction

Many authors have discussed the stability problems of rotors with internal damping
[1-10]. The author of this paper investigated the stability of symmetric rotor-bearing
systems using the finite element method in the work [13], in which only the viscous
internal damping was incorporated into the mathematical model of the rotor system.

This paper generalizes the main results of the work [13] for similar symmetric rotor
systems by using a more realistic model of internal damping, where both internal
viscous and hysteretic damping are included into the finite element model of the rotor.
By using the sensitivity analysis and the matrix representation of the rotor dynamics
equations in complex form to evaulate stability, it is also proved theoretically that the
whirling motion of the rotor-bearing system becomes unstable at all speeds above the
threshold speed of instability. It is also shown that the rotor stability is improved by
increasing the viscous damping provided by the isotropic bearings, whereas increasing
internal hysteretic damping always destabilizes the rotor system. Furthermore, it is
also found that corresponding whirling speed (frequency) is higher than the first
forward bending critical speed.

Numerical examples are given to show the validity of the theoretical results of the
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present work. The threshold speed and the whirling speed of the rotor model are
calculated using a computer program written in real form, which utilizes a standard
QR-algorithm and an iterative technique developed by the author [10].

2. Equations of motion in complex form

2.1. Preliminaries and notations. For completeness and to make the paper self-
explanatory, in what follows we repeat the main steps necessary for both the modelling
and the stability investigation of the rotor system. In this section, the equations of
motion for a rigid disk, finite shaft element with both internal viscous and hysteretic
damping, isotropic damped bearing, and the complete rotor system are written in
complex form by making use of a recent note by Nelson [11] and the paper by Zorzi
and Nelson [8]. Note that the equation of motion for the shaft element in complex
form [11] does not contain internal damping, whereas the effects of both viscous and
hysteretic internal damping are included into the finite element model in the work by
Zorzi and Nelson [8].

Consider a symmetric rotor system as shown in Figure 1. The rotor system consists
of symmetrical rigid disks with negligible thicknesses, uniform circular Rayleigh shafts
with viscous internal damping, and n isotropic damped bearings with stiffnesses ki
and damping coefficients ci (i = 1, 2, ..., n). The rotor is balanced, and rotates at a
constant speed Ω(Ω > 0). The reference system Oxyz is fixed in space with the hori-
zontal x-axis coinciding with the undeformed rotor centerline. The external damping,
axial load and gravity are neglected.

x

y

z

O
Ω

k1
c1 cnkn

Figure 1. Symmetric rotor in isotropic damped bearings

Any node i of the rotor system has four degrees of freedom: two translations (vi, wi)
in the (y, z) directions, and two rotations (ϕyi, ϕzi) about the (y, z) axes, respectively.
The complex displacement vector of the ith node is defined by complex coordinates
[11] as

pi =

[
ri
ϕi

]
=

[
vi + iwi
ϕyi + iϕzi

]
, i =

√
−1 . (2.1)

The component equations and the system equation in complex form may be written
as presented below.

2.2. Rigid disk. The equation of motion for a rigid disk in complex form is given
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by (
Md

t + Md
r

)
p̈d − ΩGdṗd = Fd , (2.2)

where pd is the complex displacement vector corresponding to the four degrees of
freedom

(
vd, wd, ϕdy, ϕ

d
z

)
of the node at which the disk is attached. The translational

and rotational mass matrices
(
Md

t ,M
d
r

)
, and the gyroscopic matrix Gd are defined

as

Md
t =

[
md 0
0 0

]
, (2.3)

Md
r =

[
0 0
0 JD

]
, (2.4)

Gd =

[
0 0
0 iJP

]
, (2.5)

where md , JD and JP are the mass, the diametral and polar moments of inertia of
the disk, respectively.

2.3 Finite shaft element. By making use of the Lagrangian equations of motion
for the damped finite element presented in real form in the work by Zorzi and Nelson
[8], the equations of motion for the finite rotating shaft element with both hysteretic
and viscous forms of internal damping can be rewritten in complex form as

(Me
t + Me

r) p̈e + (ηV Ke
b − ΩGe) ṗe+[

1 + ηH√
1 + η2

H

Ke
b +

(
ηV Ω +

ηH√
1 + η2

H

)
Ke
c

]
pe = Fe , (2.6)

where

pe =

[
pi
pj

]
(2.7)

is the (4x1) complex nodal displacement vector of the shaft element with nodes i and
j, ηV is the internal viscous damping coefficient, ηH is the hysteretic damping loss
factor,

Ke
c = −iKe

b (2.8)

is the complex circulation matrix of the shaft element.

The translational and rotational mass matrices (Me
t ,M

e
r), the gyroscopic matrix

Ge, and the bending stiffness matrix Ke
b of the shaft element are defined as
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Me
t =

µl

420


156 Hermitian
i22l 4l2

54 −i13l 156
−i13l −3l2 −i22l 4l2

 , (2.9)

Me
r =

µr2

120l


36 Hermitian
i3l 4l2

−36 −i3l 36
i3l −l2 −i3l 4l2

 , (2.10)

Ge = i2Me
r , (2.11)

Ke
b =

EI

l3


12 Hermitian
i6l 4l2

−12 i6l 12
i6l 2l2 −i6l 4l2

 , (2.12)

where µ is the mass per unit length, l is the length of shaft element, r is the element
radius, EI is the bending rigidity of the shaft element. Since, in practice, η2

H � 1 ,
we may write equation (2.6) in an approximate form as

(Me
t + Me

r) p̈e+ (ηV Ke
b − ΩGe) ṗe+ [(1 +ηH)Ke

b + (ηV Ω +ηH)Ke
c]p

e = Fe . (2.13)

Note that the above equation is an extended form of equation (2.6) presented in the
work [13].

2.4. Linear isotropic damped bearings. The linear isotropic damped bearings
can be modeled by the equation:

Cbṗb+Kbpb= Fb , (2.14)

where pb is the complex displacement vector at the bearing location (node), Fb is the
complex bearing force vector. The damping and stiffness matrices

(
Cb,Kb

)
of the

isotropic bearings are defined as

Cb =

[
cb 0
0 0

]
, Kb =

[
kb 0
0 0

]
, (2.15)

where cb and kb are the direct damping and stiffness coefficients for the translational
displacements, respectively.

2.5. System equations. The equations of motion of the complete rotor-bearing
system can be obtained by assembling all component equations of the form equations
(2.2), (2.13) and (2.14). The resulting equation is of the form

Mp̈ + (ηV Kb + C− ΩG)ṗ + [1 + ηH − i(ηV Ω + ηH)]Kb + K]p = 0 , (2.16)

where
pT =

[
pT1 pT2 ...p

T
N

]
(2.17)

is the (2Nx1) complex nodal displacement vector of the rotor system ( N equals the
number of nodes), the letter “T “ denotes the transpose.
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2.6. Positive definite matrices. Since kinetic energy and strain energy cannot
be negative, the system matrices (M,Kb) are positive definite Hermitian matrices [9].
Thus the following relations hold:

p̄TMp > 0 , p̄TKbp > 0 , (p 6= 0) , (2.18)

where the bar denotes the complex conjugate operator.

Note that the system gyroscopic matrix G is not Hermitian, however, by using the
definitions of the component gyroscopic matrices presented by equations (2.5) and
(2.11) it, can be expressed as

G = iMg , (2.19)

where
p̄TMgp > 0, (p 6= 0) . (2.20)

Evidently C and K are positive definite diagonal matrices, the nonzero elements
of which are the damping coefficients and the stiffnesses of the isotropic bearings,
respectively.

3. Stability analysis

3.1. Stability threshold speed determination On seeking a solution to equation
(2.16) of the form

p = Peλt , (3.1)

we obtain the eigenvalue problem

{λ2M + λ (ηV Kb + C− ΩG) + [1 + ηH − i(ηV Ω + ηH)]Kb + K}P = 0 (3.2)

with 4N eigenvalues λj and the corresponding eigenvectors Pj (j = 1, 2, ..., 4N). The
eigenvalues λ are of the form

λ = α+ iω , (3.3)

where α is the damping coefficient or decay rate, ω is the damped natural frequency
or whirl speed.

For later use, the eigenvalue problem will be given in a modified form. To this end,
we premultiply equation (3.2) by the complex conjugate eigenvector P̄T . Then we
obtain the following scalar equation:

P̄T {λ2M + λ(ηV Kb + C− ΩG) + [1 + ηH − i(ηV Ω + ηH)]Kb + K}P = 0 , (3.4)

which can be rewritten as

mλ2 + (ηkb + c− igΩ)λ+ [1 + ηH − i(ηV Ω + ηH)] kb + k = 0 , (3.5)
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where the scalars m, kb, c, g and kB are in all positive real quantities [9] defined by

P̄TMP = m > 0 , (3.6)
P̄TKbP = kb > 0 , (3.7)
P̄TCP = c > 0 , (3.8)
P̄TGP = ig(g > 0) , (3.9)
P̄TKP = k > 0 . (3.10)

Note that the inequalities (3.6) - (3.10) hold on account of the positive definite ma-
trices of the rotor system (see Section 2.5.).

Instability occurs if one of the eigenvalues has a positive real part. Thus, the
problem of determining the limit of stability of the rotor system is reduced to finding
the shaft speed Ωs (threshold speed of instability), at which the greatest real part of
all eigenvalues λj equals zero. The corresponding imaginary part ωs is the whirling
speed.

For the possible limit ω , the substitution of the eigenvalue of the form

λ = iω (3.11)

into equation (3.5) yields

−mω2 + gωΩ + (1 + ηH)kb + k + i [ω(ηV kb + c)− (ηV Ω + ηH)kb] = 0 . (3.12)

After seperating equation (3.12) into real and imaginary parts, we obtain

−mω2 + gωΩ + (1 + ηH)kb + k = 0 , (3.13)
ω(ηV kb + c) = (ηV Ω + ηH)kb . (3.14)

It is clear from equation (3.14) and inequalities (3.7) and (3.8) that

Ω = ω

(
1 +

c

ηV kb

)
− ηH
ηV

> 0(ω > 0) . (3.15)

Thus the particular undamped whirl mode induced at the stability threshold speed
is forward (ω > 0) and asynchronous (Ω 6= ω) It is noteworthy that all backward
precessional modes of the rotor are stable for any rotational speed.

Now we shall prove that the rotor loses its stability at all speeds above the possible
stability limit. Here, we apply the eigenvalue sensitivity analysis. Let us suppose that
the shaft speed Ω is an independent parameter, and differentiate equation (3.5) with
respect to Ω :

λ′(2mλ+ ηV kb + c− igΩ)− igλ− iηV kb +m′λ2 +

+(ηV k
′
b + c′ − ig′Ω)λ+ [1 + ηH − i(ηV Ω + ηH)]k′b + k′ = 0 . (3.16)

where primes denote differentiation with respect to Ω . The quantity λ′ = ∂λ/∂Ω is
referred to as an eigenvalue sensitivity coefficient [12], which can be written, with the
aid of equation (3.3), in the form:

∂λ

∂Ω
=
∂α

∂Ω
+ i

∂ω

∂Ω
. (3.17)
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To calculate ∂λ/∂Ω from equation (3.16) at the possible limit Ω , we substitute again
equation (3.11) into equation (3.16):

∂λ
∂Ω [ηkb + c+ i(2mω − gΩ)] + gω − iηkb + (−m′ω2 + g′ωΩ + (1 + ηH)k′b + k′)

+i[ω(ηV k
′
b + c′)− (ηV Ω + ηV )k′b] = 0. .

(3.18)
Since the eigenvalue derivative ∂λ/∂Ω represents the unique solution of equation
(3.18) at the possible limit of stability, and hence its value is not influenced by any
normalization criterion for the eigenvector P, therefore the underlined terms will
vanish:

−ḿω2 + ωΩg′ + (1 + ηH)k′b + k′ = 0, (3.19)
ω(ηV k

′
b + c′) = (ηV Ω + ηV )k′b . (3.20)

We then obtain the following expression for the damping sensitivity coefficient ∂α/∂Ω

∂α

∂Ω
=

A

(ηV kb + c)2 + (2mω − gΩ)2
, (3.21)

where
A = [ηV (2mω − gΩ)− g(ηV Ω + ηH)]kb . (3.22)

Now let us show that A is positive. To this end we substitute (3.15) into equation
(3.22):

A = kbηV {2ω
[
m− g

(
1 +

c

ηV kb

)]
+ g

ηH
ηV
} . (3.23)

The bracketed term in equation (3.23) is positive:

m− g
(

1 +
c

ηV kb

)
> 0 , (3.24)

since in this case equation (3.13) has only one positive root ω . The latter statement
comes from the following equivalent form of equation (3.13):

ω2

[
m− g

(
1 +

c

ηV kb

)]
+ ωg

ηH
ηV
− [(1 + ηH)kb + k]} = 0 . (3.25)

We have thus proved that the damping sensitivity coefficient ∂α/∂Ω is positive at
any possible limit of stability. Thus, the lowest value of the above stability limits for
the particular forward whirl modes is considered as the threshold speed of instability
of the rotor-bearing system. Consequently, the whirling motion of the rotor becomes
unstable at all speeds above the threshold speed of instability.

3.2. Effect of bearing damping on rotor stability Now we shall prove that
an increase in the bearing damping coefficients results in an increase in the threshold
speed of instability, thus the rotor stability will be improved.

Let us consider the bearing damping coefficient ci(i = 1, 2, ..., n) of the i-th isotropic
damped bearing as an independent parameter, and differentiate equations (3.13) and
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(3.14) with respect to ci :

ω′(gΩ− 2mω) + ωgΩ′ + (−m′ω2 + ωΩg′ + (1 + ηH)k′b + k′) = 0 , (3.26)

ω′(ηV kb + c)− ηV kbΩ′ + ω(ηV k
′
b + c̃)− (ηV Ω + ηH)k′b = −ωc∗ , (3.27)

where primes denote differentiation with respect to ci ,

c̃ =
∂P̄T

∂ci
CP + P̄TC

∂P

∂ci
, (3.28)

and
c∗ = P̄T ∂C

∂ci
P > 0 . (3.29)

By using the same reasoning that we have applied in connection with equation (3.18),
it is clear that the underlined terms in equations (3.26) and (3.27) will vanish at the
threshold speed Ω . The whirling speed sensitivity coefficient ω′ and the threshold
speed sensitivity coefficient Ω′ can now be obtained from the above two equations as

dω

dci
=

gc∗ω2

A
, (3.30)

dΩ

dci
=

ω(2mω − gΩ)c∗

A
. (3.31)

By using equations (3.22) and (3.29) as well as the inequality (3.9), it is easy to see that
the above sensitivity coefficients are positive. Thus, the addition of bearing damping
improves the rotor stability. It is also clear that the whirling speed is always greater
than the first forward bending critical speed of the rotor system. The latter statement
follows from the fact that the threshold speed of symmetrical rotors with viscous
internal damping, supported by undamped isotropic bearing coincides with the first
forward critical speed [9]. It can further be concluded from equation (3.30) that when
the gyroscopic moments of the rotor are neglected (g = 0), then the whirling speed
remains constant (the first critical speed of the rotor) regardless of the magnitude of
the bearing damping coefficients.

3.3. Influence of internal hysteretic damping on rotor stability We shall
now prove that internal hysteretic damping is always a destabilizing influence on
rotor systems. Let us assume that ηH is an independent system parameter. By
differentiatiating equations (3.13) and (3.14) with respect to ηH , we get

ω′(−2mω + gΩ) + ωgΩ′−m′ω2 + g′ωΩ + (1 + ηH)k′b + k′ = −kb , (3.32)

ω′(ηV kb + c)− ηV kbΩ′ + ω(ηV k
′
b + c′)− (ηV Ω + ηH)k′b = kb , (3.33)

where prime denotes differentiation with respect to ηH . Since the underlined expres-
sions vanish at the stability threshold, the whirling speed sensitivity coefficientω′ and
threshold speed sensitivity coefficientΩ′ are determined by

dω

dηH
=
kbηV − gω

A
kb ,

dΩ

dηH
=
−(2mω − gΩ) + (ηV kb + c)

A
kb . (3.34)
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By using inequalities (3.6) - (3.10), and equations (3.13) and (3.14), simple reasoning
will show that the whirling speed sensitivity coefficient is positive, whereas the thresh-
old speed sensitivity coefficient becomes negative at the stability threshold speed. As
can be seen, the introduction of internal hysteretic damping ηH causes a reduction in
the threshold speed of instability, thus hysteretic damping has always a destabilizing
influence on rotor systems. It is noteworthy that the corresponding whirling frequency
will be raised. From equation (3.30) and the work by the author [9] it clearly follows
that the latter is always higher than the first forward bending critical speed.

4. Numerical examples

4.1. To demonstrate the validity of the above theoretical results, two numerical
examples are provided. In both examples, the simply supported uniform shaft studied
by Zorzi [8] is considered. The rotor model consists of a 10.16 cm diameter and 127 cm
long steel shaft supported by two identical isotropic damped bearings at both ends.
The stiffnesses of the bearings are: k1 = 1.75× 1011N/mT. The material properties
of shaft are: Young’s modulus E = 2.06 × 1011N/m2 , and density ρ = 7800 kg/m3.
The rotor is modeled as an assembly of four finite elements of equal length. In the
calculations, the damping coefficients c1 of the bearings and the hysteretic damping
loss factor ηH for the shaft are considered to be parameters.

4.2. As a first example, we shall examine the influence of the damping coefficient c1
on the rotor stability for ηV = 0.0002 s.and ηH = 0.0002. Table 1 shows the numerical

Table 1. Effect of bearing damping (c1) on rotor stability

bearing damping threshold speed whirling speed
(Ns/m) (rad/s) (rad/s)

0 520.410 521.412
100 543.115 521.417
200 565.835 521.430
300 588.563 521.450
400 611.315 521.478
500 634.083 521.513

values of the threshold speeds Ωs and the whirling speeds ωs of the rotor for different
values of c1. The first forward critical speed of the rotor was found to be ΩF1 =
521.392 rad/s .

As can be seen from Table 1, the introduction of bearing damping will raise the
threshold speed of instability, thus the stability of the rotor system will be improved.
It should be noted that increasing the bearing damping may cause only small increases
in the whirling speeds, which are greater than the first forward bending critical speed
of the rotor. Clearly the numerical results of Table 1 are in quite good agreement
with the theoretical results obtained in Section 3.2.

4.3. As a second example, we consider the influence of the hysteretic damping loss
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factor ηH on the rotor stability for c1 = 500Ns/m and ηV = 0.0002. Table 2 presents
the calculated values of the threshold speeds and whirling speeds for different values

Table 2. Effect of hysteretic damping (ηH) on rotor stability

hysteretic loss factor threshold speed whirling speed
(rad/s) (rad/s)

0.0002 634.083 521.513
0.0003 633.622 521.523
0.0004 633.152 521.533
0.0005 632.691 521.544

of ηH . The numerical results show clearly that the stability of the rotor is reduced
by increasing internal hysteretic damping. For example, for the hysteretic damping
loss factor of ηH = 0.0002 the rotor becomes unstable at the threshold speed Ωs =
634.083 rad/s. By increasing the hysteretic loss factor to ηH = 0.0003 , the stability
threshold speed of instability of the rotor will be reduced to Ωs = 633.622 rad/s. It
should be noted that increasing hysteretic damping causes only small increases in the
whirling speed ωs. Evidently the numerical results summarized in Table 2 are in good
agreement with the theoretical results presented in Section 3.3.

5. Summary and conclusions

In this paper a finite element stability analysis of self-excited bending vibrations
of symmetric rotors with both internal viscous and hysteretic damping, supported by
isotropic damped bearings has been presented. By combining the sensitivity method
and the eigenvalue problem of the rotor dynamics equations in complex form, it is
proved theoretically that the whirling motion of the rotor becomes unstable at all
speeds above the stability threshold speed. Furthermore, the rotor stability is im-
proved by increasing the damping provided by the bearings, whereas internal hys-
teretic damping destabilizes the whirling motion of the rotor. It is also shown that
the corresponding whirling speed of the rotor system is higher than the first forward
bending critical speed. Numerical examples are provided to confirm the validity of
the above theoretical results.
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Abstract. Weight or mass minimization is a usual way of finding optima of structures. Due
to the high cost of welding, weight and cost optima can be quite different. We have worked
out a cost calculation for welded steel structures, considering not only the material, but
preparation, cutting, edge grinding, welding, cleaning, painting costs as well. We have used
the backtrack combinatorial discrete optimization method for many years. We made weight
minimization. For cost minimization we had to modify the algorithm in order to be able to
handle cost function. This paper describes this modification. We show two examples for cost
minimization: the first example is cost optimization of welded box beams with longitudinal
stiffeners. First we show the economics of using stiffeners in the example. The second
example is the effect of post-welding treatments on the optimum fatigue design of welded
I-beams. We show how cost saving can be achieved by introducing additional treatment.

Keywords: Structural optimization, cost calculation, welded structures, backtrack method,
post-welding treatment

1. Introduction

Welding is a relatively expensive production technology, therefore it is important to
decrease the cost of welded structures. Designers select a suitable structural version
by comparison of several candidate structural solutions, but only optimized versions
can be realistically compared to each other. Thus, the structural optimization is a
basis not only for achieving savings in weight and cost, but also to help designers to
select the most suitable structural version.

Box beams are widely used in load-carrying structures because of their large bend-
ing and torsional stiffness. The minimum cross-sectional-area design of a simple
welded box beam shows that, in order to decrease this area, the web plate slen-
derness should be increased. This can be achieved using longitudinal stiffeners placed
in 1/5 distance of web height. Although these stiffeners increase the weight and cost,
significant savings can be achieved using them. To show these savings the minimum
weight and cost design should be worked out.

Fatigue fracture is one of the most dangerous phenomena for welded structures.
Welding causes residual stresses and sharp stress concentrations around the weld,
which are responsible for significant decrease of fatigue strength. Butt welds with
partial penetration, toes and roots of fillet welds are points where fatigue cracks
initiate and propagate.
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2. The cost function

We have developed a cost function for welded structures using the COSTCOMP
database [1,2]. This cost function contains nonlinear expressions for unknowns. The
cross-sectional area minimization can be solved analytically, but for the minimum
cost design, a computerized mathematical constrained function minimization method
should be used, since the cost function is nonlinear.

In the cost function the material and fabrication costs are included

K = Km +Kf = kmρV + kf
∑
i

Ti , (2.1)

where ρ is the material density, V is the volume of the structure, km and kf are the
corresponding cost factors, Ti are the fabrication times. (2.1) can be written in the
form of

K

km
= ρV +

kf
km

∑
i

Ti . (2.2)

We use the following cost factors: km = 0.5 ÷ 1 $/kg, kf max = 60 $/h = 1 $/min,
thus the ratio of km/kf can be varied in a wide range of 0 ÷ 2 kg/min. km/kf = 0
means that K/km is a weight (mass) function, km/kf = 2 kg/min can be used for
developed countries.

The fabrication times can be calculated as follows:∑
i

Ti = T1 + T2 + T3 + T4 . (2.3)

Time for preparation, assembly and tacking is

T1 = C1Θd

√
κρV , (2.4)

where C1 = 1 min/kg0.5 , Θd is a difficulty factor expressing the complexity of a
structure (planar or spatial, consisting of plates or tubes etc.), κ is the number of
elements to be assembled.

Time for welding is

T2 =
∑

C2ia
n
wiLwi , (2.5)

where C2ia
n
wi is given for different welding technologies and weld shapes according to

COSTCOMP software [1] and [2], aw is the weld size, Lw is the weld length.
The additional time for electrode changing, deslagging and chipping can be calcu-

lated as
T3 = 0.3T2 . (2.6)

The final form of the cost function contains T1, T2, T3 and T4 for post-welding treat-
ment, or some other times for cutting, edge grinding, surface preparation, flattening,
painting, etc.
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It can be seen that this function contains nonlinear members of the unknown struc-
tural dimensions, therefore an advanced backtrack method should be used for the
minimization.

3. The advanced backtrack method

The backtrack discrete programming method is suitable for problems with few un-
knowns, but till now, we have used it only for linear objective functions.

For nonlinear objective functions we have worked out a new advanced version. The
backtrack method is a combinatorial programming technique, which solves nonlinear
constrained function minimisation problems by a systematic search procedure. The
advantage of the technique is that it uses only discrete variables, so the solution is
usable. The general description of backtrack can be found in the works by Walker
[3] and Golomb & Baumert [4]. Farkas & Jármai [5] applied this method to welded
I-girder design.

The general formulation of a single-criterion nonlinear programming problem is the
following:

minimize
f(x), x1, x2, ..., xN (3.1)

subject to

gj(x) ≤ 0, j = 1, 2, ..., P (3.2)
hi(x) = 0, i = P + 1, ..., P +M . (3.3)

Here f(x) is a multivariable nonlinear function, gj(x) and hi(x) are nonlinear in-
equality and equality constraints. The equality constraints should be transformed to
inequality ones for the program to handle them:

hi(x) <p ε p , i = P + 1, ..., P +M (3.4)

ε is a given small number.
The algorithm is suitable for finding optimum for problems with monotonically

increasing or decreasing objective functions. Thus, the optimum solution can be
found by increasing or decreasing the variables. Originally the procedure can find
the minimum of the problem. If we are looking for maximum, we should introduce −
f(x). The search is time-consuming, because the procedure makes a detailed search.

To find the optimum for a single variable, many single variable search techniques are
available. An efficient and suitable search method is the interval halving procedure.
We assume that the objective function is monotonously decreasing if the variables are
decreasing. At the line search, when only one variable is changing, the aim is to find
the minimum feasible value of the variable, starting from the maximum value. All
values of variables are calculated by the halving procedure, except the last variable,
which is calculated from the objective function.

The starting point, i.e. the maximum value, should satisfy the constraints. When
the investigation shows that the minimum value satisfies the constraints, then the
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solution is found. If not, the region is divided into two subregions with the middle
value. If the constraints are satisfied with the middle value, then the upper region is
feasible, all points there satisfy the constraints. In this case we should investigate the
lower region, to find the border between the feasible and unfeasible regions.

In the backtrack method the variables are in a vector form x = {xi}T , (i = 1, ..., n)
for which the objective function f(x) will be a minimum and which will also satisfy
the design constraints g(x) ≥ 0, (j = 1, ..., P ). For the variables, series of discrete
values are given in an increasing order. In special cases the series may be determined
by xk,min, xk,max and by the constant steps ∆x between them.

First a partial search is carried out for each variable and if all variations have
been investigated, a backtrack is made and a new partial search is performed on the
previous variable. If this variable is the first one: no variations have to be investigated
(a number of backtracks have been made), then the process stops. The main phases
of the calculation are as follows.
1. With a set of constant values of xi,t(i = 2, ..., n), the minimum xi,m value sat-

isfying the design constraints is searched for. The interval halving method can
be employed. This method can be employed if the constraints and the objective
function are monotonous from the sense of variables.

2. As in the case of the first phase, the halving process is now used with con-
stant values, and the minimum value, satisfying the design constraints is then
determined.

3. The least value is calculated from the equation relating to the objective func-
tion f(x) where f is the value of the cost function calculated by inserting the
maximum x-values.

Regarding the value, three cases may occur as follows.

(3a) We decrease the variables step by step till the constraints are satisfied or till the
minimum values are reached. If all variations of the xn value have been inves-
tigated, then the program jumps to the previous variable xn−1 and decreases it
step by step till x satisfies the constraints or till minimum values are reached.

(3b) If xn,m < xn,1, we backtrack to xn−1 .

(3c) If xn,m does not satisfy the constraints, we backtrack to xn−1,m. If the con-
straints are satisfied, we continue the calculation according to (3a).

The number of all possible variations is
∏n
i=1 ti where ti is the number of discrete

sizes for one variable. However, the method investigates only a relatively small number
of these. Since the efficiency of the method depends on many factors (number of
unknowns, series of discrete values, position of the optimum values in the series,
complexity of the cost function and/or that of the design constraints), it is difficult
to predict the run time. The main disadvantage of the method is that the run time
increases exponentially if we increase the number of unknowns.

The original version of backtrack was modified by rebuilding the algorithm so that
it is independent from the number of variables, since in the original algorithm all
variable values are calculated by the halving procedure, except the last one. Another
development is that the Van Wijngaarden-Dekker-Brent method (Brent [6]) was built
into the algorithm to calculate the last variable value from the cost function. In case
of mass minimization this calculation is relatively easy, because of the linearity,
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Figure 1. The flowchart of the backtract method

but introducing a nonlinear cost function the analytical solution in most cases is
impossible. This method combines root bracketing, bisection and inverse quadratic
interpolation to converge from the neighbourhood of a zero crossing. While the false
position and secant methods assume approximately linear behaviour between two
prior root estimates, inverse quadratic interpolation uses three prior points to fit an
inverse quadratic function. This method combines the sureness of bisection with the
speed of a high-order method when appropriate. This calculation is built into the
computer code with subroutines. The flowchart of the backtrack method is shown in
Figure 1.
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4. Minimum cross-sectional-area for box beams with stiffeners

In this section we deal with the design of minimum cross-sectional-area for bending
of box beams with longitudinal stiffeners. As can be seen from Figure 2 the cross-
sectional area to be minimized is

A = 2htw + 2btf + 2ts(b1 + b2) , (4.1)

The stress constraint can be expressed as

σmax =
Mmax

Wx
≤ fy , (4.2)

where Mmax is the maximum bending moment, Wx is the section modulus, fy is the
yield stress. In the moment of inertia the effect of stiffeners is neglected, thus

Ix '
h3tw

6
+ 2btf

(
h

2

)2

. (4.3)

The stress constraint (4.2) can be written in the following form

Wx '
Ix
h
2

=
h2tw

3
+ btfh ≥Wo =

Mmax

fy
. (4.4)

From (4.1) we obtain

btf =
A

2
− htw −AS . (4.5)

Substituting (4.5) into (4.4) we get

Wx =
Ah

2
− 2h2tw

3
−ASh ≥W0 . (4.6)

In addition it follows from (4.6) that

A ≥ 2W0

h
+

4h2tw
3

+ 2AS . (4.7)

According to Eurocode 3 [7] the local buckling constraint for the compression flange
can be expressed as

b

tf
≤ 1

δ
= 42ε and ε =

√
235

fy
. (4.8)

The local buckling constraint for the upper part of the webs is

0.2h

tw
≤ 42ε

0.67 + 0.33ψ
. (4.9)
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Figure 2. Stiffened box beam and the detail of a stiffener

If ψ = 0.6 we get

h/tw ≤ 242ε = 1/β . (4.10)

For the lower part of the webs ψ = −5/3 = −1.667 and

0.8h/tw ≤ 62ε(1− ψ)
√
−ψ (4.11)

or

h/tw ≤ 267ε (4.12)

thus, the limiting slenderness defined by (4.10) is governing.
The local buckling constraints for the cold-formed stiffeners according to DASt

Richtlinie 0l6 [8] are

b1/ts ≤ 1.33
√
E/fy (4.13)

and

b2/ts ≤ 0.43
√
E/fy (4.14)
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or in other form

b1/ts ≤ 30ε = δ1 and b2/ts ≤ 12.5ε = δ2 . (4.15)

According to API design rules [9] the overall buckling constraints for compressed
stiffeners are of the form

Iξ ≥ 4at3w and Cs =
1

12

(
δ31 +

3δ21δ
2
2

δ1 + δ2

)
, (4.16)

where a is the distance of diaphragms. With

b1 = δ1tS and b2 = δ2tS (4.17)

the centre of gravity for a stiffener (Figure 2) is

ξG =
tSδ

2
1

2(δ1 + δ2)
(4.18)

and the moment of inertia is given by

Iξ = CSt
4
S . (4.19)

Expressing a in terms of h
a = Cah (4.20)

and using (4.19), from (4.16) one obtains (4.21)

tS = 4

√
4Caβ4

CS
. (4.21)

Consequently relation (4.7) can be written as

A = 2W0/h+ 4βh2/3 + 2h2CA , (4.22)

CA = (δ1 + δ2)
√

4Caβ3/CS . (4.23)

The condition dA/dh = 0 gives the optimum beam height

hopt = 3

√
W0

4β/3 + 2CA
. (4.24)

Without longitudinal stiffeners we obtain

hopt = 3

√
3W0

4β0
(4.25)
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where
1

β0
= 124ε (4.26)

as was already shown in the book [10] by Farkas. Expressing hopt from (4.24), or from
(4.25) and substituting it into (4.22) we get

Amin = 3

√
18W 2

0 (2β + 3CA) . (4.27)

If there are no stiffeners

A0.min = 3

√
36β0W 2

0 . (4.28)

Comparison of beams with and without stiffeners: taking fy = 235 MPa, we calculate
with the following values: 1/β = 242, 1/βo = 124, δ1 = 30, δ2 = 12.5, Cs = 3077.2,
in (4.22) taking Ca = 1.5 we get CA = 1/2006.

With (4.24) and (4.25) we obtain

hopt = 5.36 3
√
W0 (4.29)

and
h0.opt = 4.53 3

√
W0 , (4.30)

respectively, i.e., a beam with longitudinal stiffeners has 15% higher webs than without
stiffeners.

According to (4.27)

Amin = 0.5601 3
√
W0 (4.31)

and with (4.28)

A0.min = 0.6622 3
√
W0 , (4.32)

i.e., a beam with stiffeners has 18% smaller weight than without stiffeners.

5. Minimum cost design of longitudinally stiffened box beams

A simply supported beam of span length L = 20 m is subjected to uniformly
distributed factored normal load of intensity p = 73.5 N/mm. It is assumed that
the beam is constructed with 11 transverse diaphragms of uniform distance a = 2
m to stabilize the stiffeners against flexural buckling and to avoid distortions of the
rectangular box shape. The longitudinal stiffeners are interrupted and welded to
diaphragms.

The volume of the structure is

V = AL+ 11bhtD/4 + 2ASL (5.1)
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where
A = 2htW + 2btf . (5.2)

The thickness of diaphragms is tD = 0.7tW , but rounded to 4, 5 or 6 mm.
The cross-sectional area of a stiffener is

AS = (b1 + b2)tS (5.3)

in which b1 and b2 can be calculated according to the equations (4.17)1,2.
The number of structural elements to be assembled is κ = 4 + 11 + 20 = 35. The

difficulty factor is taken to be Θd = 3.
The following welding times are considered.
For longitudinal fillet welds of size aw = 0.5tw, SAW (submerged arc welding),

aw = 0÷ 15 mm
T21 = 0.2349L(0.5tw)2x10−3 (L in mm) . (5.4)

For transverse fillet welds of constant size aw = 4 mm connecting the diaphragms to
the box section, SMAW (shielded metal arc welding)

T22 = 0.788911(b+ 2h)42x10−3 (b and h in mm) . (5.5)

For the two longitudinal fillet welds of size aw = 4 mm connecting the stiffeners to
the webs GMAW-C (gas metal arc welding with CO2)

T23 = 0.3394x2Lx42x10−3 (L in mm) (5.6)

For transverse fillet welds of size aw = 4 mm connecting the stiffeners to the di-
aphragms, SMAW

T24 = 0.7889(42.5tSε)4
2x20x10−3 (tS in mm) . (5.7)

6. Design constraints

Stress constraint due to bending

M

Wx
=

pL2

8Wx
≤ fy (6.1)

where the first moment and the moment of inertia for the cross secrion are

Wx =
2Ix
h+ tf

and Ix =
h3tw

6
+
btf (h+ tf )2

2
. (6.2)

Note that the moment of inertia of stiffeners is neglected.
The local buckling constraints for box beam webs and flange are given by equations

(4.17). The constraint on flexural buckling of stiffener parts with buckling length of
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a = 2000 mm is given by equation (4.16). Using equations (4.17) and (4.19) the
moment of inertia of a stiffener can be calculated as

Iξ = 3077ε3t4S (6.3)

The unknowns in the optimization are as follows: h, b, tw, tf , tS .

7. Optimization and results

The optimization of the box beam is performed by the Hillclimb and backtrack meth-
ods. In the case of longitudinally stiffened box beam the cost function (2.2) should
be minimized considering the constraints (4.2, 4.8, 4.10, 6.1). In the case of box
beams without stiffeners the following modifications should be used: tS = 0 and
T23 = T24 = 0. The results are given in Tables 1 and 2.

Table 1. Optimum dimensions in mm of the box beam without longitudinal
stiffeners obtained by the Hillclimb method

kf/km h tW b tf K/km (kg)
0 1100 9 540 20 6580
1 900 8 740 20 9249
2 910 8 730 20 11474

It can be seen that the results obtained by the Hillclimb and backtrack methods
are nearly the same, so the new version of backtrack is suitable for nonlinear objec-
tive functions. The comparison of results obtained for unstiffened and stiffened box
beams shows cost savings of 18-21%, so the application of longitudinal stiffeners is
economical.

Figure 3. Optimum sizes of box beams without and with longitudinal stiffeners, for
kf/km = 2
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Figure 3 shows the optimized box beams without and with longitudinal stiffeners. It
can be seen that the beam with stiffeners is higher and narrower.

Table 2. Optimum dimensions in mm of the box beam with longitudinal stiffeners
obtained by the Hillclimb and backtrack method

Method kf/km h tW b tf tS K/km (kg)
0 1450 6 440 18 5 5610

Hillclimb 1 1450 6 490 16 5 7588
2 1440 6 500 16 5 9619
0 1450 6 490 16 5 5591

Backtrack 1 1440 6 470 17 5 7608
2 1440 6 490 16 5 9585

8. Post-welding treatments and optimum fatigue design of welded I-beams

In order to eliminate or decrease the danger of fatigue fracture several methods have
been investigated. Post-welding treatments (PWT-s) such as toe grinding, TIG-
dressing, hammer peening and ultrasonic impact treatment (UIT) are the most ef-
ficient methods. These methods have been tested and a lot of experimental results
show their effectiveness and reliability.

For designers it is important to know the measure of saving in structural weight and
cost, which can be achieved by using these treatments. Optimum design is suitable for
this task, since the additional cost of PWT can be included in the cost function and
the improved fatigue stress range can be considered in the fatigue strength constraint.
Thus, our aim is to illustrate this saving by means of a simple numerical example of
a welded I-beam.

In this case the transverse fillet welds used for vertical stiffeners decrease the fatigue
stress range, thus the effect of PWT can be illustrated minimizing the cost function,
which contains also the additional cost of PWT and the increased fatigue stress range
can be included in the fatigue stress constraint. Note that Farkas [11] has treated
this problem in a recent article for a welded box beam using only a few experimental
data given by Woodley [12].

Table 3. Some improvement data according to [13]

Stress range (MPa) at 2x106 Improvement % at 2x106

As welded 86 –
UIT 190 121

TIG dressing 132 53
TIG+UIT 202 135

Haagensen et al [13] have summarized the results of investigations relating to the
measure of improvement in a table, from which we cite some basic data in Table 3.
Note that the data are obtained for high strength steel of yield stress 780 MPa.
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A wide overview of results is given by Braid et al [14]. This article gives a hammer-
peening speed of 25 mm/s and uses 6 passes, i.e., 6x1000/(25x60) = 4 min/m.

Maddox et al [15] have given the improvement citing the UK standard fatigue
classes stating that the fatigue limit for weld toe burr grinding or hammer peening
equals the UK class C at 2x106 cycles. According to BS 5400 Part 10 (1980) [16] for
transverse fillet welds in as welded state the fatigue limit is given by Class F of 40
MPa at 107 cycles, and for Class C of 78 MPa. Calculation for 2x106 cycles gives 68
and 123 MPa, respectively, thus, the improvement is 123/78 = 1.8 (80%).

Lobanov and Garf [17] have treated the effect of UIT in connections of tubular
structures.

According to Gregor [18] TIG-dressing results in 40% improvement. Woodley [12]
gives also 40% improvement for toe burr grinding and the necessary time for grinding
60 min/m.

According to Janosch et al [19] the ultrasonic peening of fillet welded T-joints results
in a fatigue stress range at 2x106 cycles of 290 MPa, which is 70-80% improvement
compared to the as-welded value of 168 MPa. For a treatment of 3 passes 15 min/m
specific time has been necessary.

Huther et al [20] worked out a summary of improvement methods and results using
data of 51 references. For fillet welded T- or cruciform joints the following final
design fatigue stress ranges at 2x106 cycles can be used: for TIG dressing 124 MPa
(70% improvement as compared to EC3 data); for hammer peening 209 MPa (190%
improvement). These data are valid for steels of yield stress less than 400 MPa.

For our purpose those publications are suitable in which data are given not only for
the measure of improvement (α), but also for the time required for treatment (T0).
These data are summarized in Table 4.

Table 4. Measure of improvement and specific treatment time for various treatments
according to the published data

Method Reference T0 (min/m) Improvement % α Remark
Grinding [12] 60 40 1.4

TIG dressing [21] 18 40 1.4 70-100%
Hammer peening [14] 4 100 2.0 175-190%

UIT [19] 15 70 1.7

It should be mentioned that we want to calculate with the minimum value of im-
provement. A value larger than 100% cannot be realized in our numerical example.

9. Minimum cost design of a welded I-beam considering the improved

fatigue stress range and the additional PWT cost

In the investigated numerical example transverse vertical stiffeners are welded to a
welded I-beam with double fillet welds. PWT is used only in the middle of the span,
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Figure 4. Welded I-beam with vertical stiffeners. Double fillet welds with (1) and
without (2) PWT

since near the supports the bending stresses are small. The tension part of stiffeners
in the middle of span is not welded to the lower flange and to the lower part of the
web. Thus, PWT is needed only for welds connecting the stiffeners to the upper
flange (Figure 4). For this reason two types of stiffeners are used as it can be seen in
Figure 4.

The beam is loaded by a pair of forces fluctuating in the range of 0÷Fmax , so the
bending stress range is calculated from Fmax .

Time for PWT is
T4 = T0Lt (9.1)
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where T0 is the specific time (min/mm) and Lt is the treated weld length (mm).
The final form of the cost function is as described in [22]

K

km
= ρV +

kf
km

(
Θd

√
κρV + 1.3

∑
C2ia

n
wiLwi + T0Lt

)
. (9.2)

10. Design constraints

The constraint on fatigue stress range can be formulated as

FmaxL1

Wx
≤ α∆σC

γMf
(10.1)

where

Wx =
Ix

h
2 +

tf
2

; Ix =
h3tw
12

+ 2btf

(
h

2
+
tf
2

)2

. (10.2)

According to Eurocode 3 (EC3) the fatigue stress range for as welded structure is
∆σC = 80 MPa, the fatigue safety factor is γMf = 1.25 .

The quotient α expresses the measure of improvement

α =
∆σCimproved
∆σCaswelded

. (10.3)

The constraint on local buckling of the web according to EC3 is

h

tw
≤ 69ε; ε =

√
235

α∆σC/γMf
(10.4)

Note that we calculate in the denominator of ε with the maximum compressive stress
instead of yield stress [23].

The constraint on local buckling of the compression flange is

b/tf ≤ 28ε . (10.5)

11. Numerical example

Data: Fmax = 138 kN, L = 12 m, L1 = 4 m, ∆σC/γMf = 80/1.25 = 64 MPa,
ε = 1.916/

√
α ; Θd = 3. The number of stiffeners is 2x7 = 14, thus κ = 3 + 14 = 17.

The volume of the structure is

V = (htw + 2btf )L+ 4bhtS + 1.5bhtS

(
1 +

1

α

)
(11.1)

in which ts = 6 mm.
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The second member expresses the volume of stiffeners without PWT, the third
member gives the volume of stiffeners with PWT.

For longitudinal GMAW-C (gas metal arc welding with CO2 ) fillet welds of size 4
mm we calculate with

C2a
n
wLw = 0.3394x10−3x42x4L = 260 mm , (11.2)

for transverse SMAW (shielded metal arc welding) fillet welds the following formula
holds

C2a
n
wLw = 0.7889x10−3x42

[
6

(
b+

2h

α

)
+ 16 (b+ h)

]
. (11.3)

For the constrained minimization of the nonlinear cost function the Rosenbrock Hill-
climb mathematical programming method is used complemented with an additional
search for optimum rounded discrete values of unknowns. The results of computation,
i.e. the unknown dimensions h, tw, b and tf as well as the minimum costs for different
values of kf/km and α are given in Table 5.

Table 5. Optimum rounded dimensions in mm and K/km (kg) values for different
kf/km ratios for various PWT-s. kf/km = 0 means the minimum weight design

without effect of PWT

PWT kf/km (kg/min) h tw b tf K/km (kg)
as 0 1300 10 320 14 2191

welded 1 1230 10 310 16 3802
2 1230 10 310 16 5399

Grinding 1 940 9 340 15 3343
2 890 8 300 19 4704

TIG 1 1000 9 330 14 3235
dressing 2 1110 10 310 12 4770
Hammer 1 820 9 310 13 2762
peening 2 820 9 310 13 3999
UIT 1 970 10 300 12 3021

2 810 8 300 17 4202

12. Conclusions

In this paper the benefits of using optimization methods for welded structures are
presented. The two examples shown illustrate the possibility of cost and mass re-
duction. In the first example comparisons of the optimized cross-sectional areas and
costs of box beams without and with longitudinal stiffeners placed at a distance of
1/5 web height show that the use of stiffeners results in considerable savings. The
minimum cross-sectional area design is solved analytically deriving closed formulae
for the optimum beam dimensions. The cost function contains material and welding
costs, considering also the welds necessary for transverse diaphragms. Since this cost
function is nonlinear, a new version of backtrack discrete combinatorial programming
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method is developed and used. This version contains a subroutine for the computa-
tion of the roots of a nonlinear function (cost function) with one variable. Results
obtained by Hillclimb and backtrack methods are nearly the same, so the new version
of backtrack is suitable for nonlinear objective functions. The comparison of results
obtained for unstiffened and stiffened box beams shows cost savings of 18-21%, so the
application of longitudinal stiffeners is economical.

In the second example a welded I-beams with vertical stiffeners was optimized using
double fillet welds with and without post-welding treatment. It can be seen, that using
various treatment methods one can achieve cost saving even if these treatments are
expensive. The example shows that elimination or decreasing the danger of fatigue
fracture in welded structures can be connected to cost saving. The following cost
savings can be achieved: grinding 14-15 %, TIG dressing 13-17 %, hammer peening
35-38 %, UIT 26-28 %. Thus, the cost savings are significant, and the most efficient
method is hammer peening. It can be also seen that PWTmethods affect the optimum
dimensions.
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Abstract. Using the Green function matrix, self adjoint eigenvalue problems governed by
degenerate systems of differential equations and homogeneous linear boundary conditions
can be replaced – like the case of scalar equations – by an eigenvalue problem for a system of
Fredholm integral equations with the Green function matrix as a kernel. We have determined
the Green function matrix for simply supported and fixed circular arches provided that the
arch is also subjected to a hydrostatic follower load. In the knowledge of the Green function
matrix, the self adjoint eigenvalue problem giving the natural frequencies of the vibrations
as a function of the follower load can be replaced by an eigenvalue problem described by
a system of Fredholm integral equations. The latter is reduced to an algebraic eigenvalue
problem and the first eigenvalues are computed by applying the QZ algorithm. The results
computed show how the load affects the first natural frequencies of the arches.

Keywords: Circular arch, natural frequencies, stability, hydrostatic follower load, Green
function matrix, eigenvalue problem

1. Introduction

There is a classical definition for the Green function of ordinary linear inhomogeneous
differential equations associated with homogeneous boundary conditions [1]. The
definition has been generalized – see paper [2] for details – for a degenerate system
of linear differential equations by keeping up the structure of the definition given in
[1]. It is also well known that in the knowledge of the corresponding Green function
eigenvalue problems for the differential equation can be replaced by an eigenvalue
problem for a Fredholm integral equation with the Green function as a kernel. The
latter can effectively be solved by various algorithms – see [3] for details.

There are a lot of works on eigenvalue problems associated with the free vibration
and stability of circular arches. Without trying to achieve completeness we should
mention the book by Federhoffer [5], and the papers [6,7]. For further references the
reader is referred to the papers mentioned. To the author’s knowledge the issue how
the load affects the vibration of the arch has not been investigated yet. With regard
to this fact the main objectives of the present paper are as follows:

– to determine the Green function matrices for simply supported and fixed circular
arches subjected to a constant hydrostatic follower load;

– to reduce the eigenvalue problem giving the natural frequencies of the free
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vibrations as a function of the hydrostatic follower load to an eigenvalue problem
for a system of Fredholm integral equations with the Green function matrix as
a kernel and

– to compute and analyse the first natural frequencies as functions of the follower
load.

The paper is organized into four sections. Section 2 is devoted to some preliminaries
with an emphasis on the definition of the Green function matrix. Section 3 presents
the governing equations for the two problems and gives the corresponding Green
functions. Section 4 is a brief summary of the solution algorithm and some solutions
can also be found there. The last section is a summary of the results.

2. The Green function matrix

Consider the degenerate system of differential equations

K(y) =

n∑
ν=0

ν

P(x)y(ν)(x) =

=

[
0 0

0
n

P22

] [
y1

y2

](n)
+ · · ·+

[
0 0

0
k+1

P 22

] [
y1

y2

](k+1)

+

+

 k

P11

k

P12

0
k

P22

[ y1

y2

](k)
+ · · ·+

[ s

P11

s

P12
s

P21

s

P22

] [
y1

y2

](s)
+

+ · · ·+

 0

P11

0

P12
0

P21

0

P22

[ y1

y2

]
=

[
r1
r2

]
(2.1)

where n > k > s > 0, l is the number of unknown functions (the size of y), j is the

size of y2 and the matrices
ν

P and rT = [ rT1 | rT2 ] are continuous for x ∈ [a, b]; a < b.

The matrices
n

P22 and
k

P11 are assumed to be invertible if x ∈ [a, b].

The system of ODEs (2.1) is associated with linear homogeneous boundary condi-
tions

Uµ(y) =

n−1∑
ν=0

[
Aνµy

(ν)(a) + Bνµy
(ν)(b)

]
=

=

n−1∑
ν=0


 11

Aνµ

12

Aνµ
21

Aνµ

22

Aνµ

[ y1(a)
y2(a)

](ν)
+ +

 11

Bνµ

12

Bνµ
21

Bνµ

22

Bνµ

[ y1(b)
y2(b)

](ν) =

[
0
0

]
(2.2)

where µ = 1, . . . , n; and for ν ≤ k the constant matrices Aνµ and Bνµ fulfill the
conditions

11

Aνµ =
21

Aνµ =
11

Bνµ =
21

Bνµ = 0.



Vibrations of circular arches subjected to follower loads 169

Solution to the boundary value problem (2.1),(2.2) is sought in the form

y(x) =

∫ b

a

G(x, ξ)r(ξ)dξ (2.3)

in which G(x, ξ) is the Green function matrix [3,4].

If there exists the Green function matrix for the BVP (2.1), (2.2) then the vector
(2.3) satisfies the differential equation (2.1) and the boundary conditions (2.2) [3,4].

As regards a proof of existence for the Green function matrix we refer to [4].

Let the system of differential equations read

K[y] = λy (2.4)

in which K[y] is given by (2.1) and λ is the eigenvalue sought. The ODEs (2.4)
are associated with the linear homogeneous boundary conditions (2.2). These are
assumed to be independent of λ.

Recalling (2.3) the eigenvalue problem (2.4), (2.2) can be replaced by an eigenvalue
problem for the system of integral equations

y(x) = λ

∫ b

a

G(x, ξ)y(ξ)dξ. (2.5)

On the basis of [3] a procedure for the numerical solution of the above problem (2.5)
has been presented in [4].

3. Vibration of circular arches subjected to a hydrostatic follower load

The arch with radius R is symmetric with respect to the plane of its center line. The
cross sectional area and the second moment of inertia with respect to the centroidal
axis perpendicular to the plane of the arch are denoted by A and I, respectively. The
angle coordinate ϕ changes in the interval [−ϑ, ϑ], the central angle ϑ̄ subtended by
the arch is equal to 2ϑ. The Young modulus of elasticity is denoted by E.

Vibrations of circular arches subjected to a constant follower load are governed by
the differential equation

K[y,ε0] =

[
0 0
0 1

] [
U
W

](4)
+

[
−m 0

0 2−mε0

] [
U
W

](2)
+

+

[
0 −m
m 0

] [
U
W

](1)
+

[
0 0
0 M −mε0

] [
U
W

]
= λ

[
U
W

]
. (3.1)

Here (. . . )(n) = d(n)/dϕ(n), U and V are the amplitudes of the tangential and normal
displacements,

M=
AR2

I
, m = M − 1. (3.2)
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ε0 is the axial strain on the center line of the circular arch (this value is constant
and uniquely determined constant by the current volume of the load). Neglecting the
vibrations, i.e., setting λ to 0 we obtain an ODE

U (6) + 2U (4) + U (2) −mε0
(
U (4) + U (2)

)
= 0 (3.3)

which – provided that it is associated with appropriate boundary conditions – gives
the critical load. Setting ε0 to 0 we get a system of ODEs for the free vibrations of
the arch [4].

It can be proved that the first critical axial strain (for the first buckling mode) [2]
is of the form:

ε0crit = − 1

m

[(
si
π

ϑ

)2
− 1

]
< 0 (3.4)

where

s1 = 1 (3.5)

for a simply supported arch and

s2 = s2 (ϑ) ≈

≈
{

0.03436558207ϑ2 − 0.01102140558ϑ+ 1.431758411 if ϑ ∈ (0; 1.7]
0.1760886555ϑ2 − 0.5259986022ϑ+ 1.899253872 if ϑ ∈ (1.7; 3.14]

(3.6)

for a fixed arch.

The corresponding hydrostatic follower load can be obtained from the equations

pcrit =
1

ki (m,ϑ)

IE

R3

[(
si
π

ϑ

)2
− 1

]
(3.7)

where

ki =
gi (ϑ)

ϑ/m+ gi (ϑ)

and

g1 =
3

2
ϑ+ tanϑ

[
ϑ

2
tanϑ− 3

2

]
, g2 = ϑ− 2 sin2 ϑ

ϑ+ sinϑ cosϑ
. (3.8)

There are no closed form solutions giving the natural frequencies of the free vibration
of the arches.

Depending on the supports applied, the system of ODEs (3.1) is associated with
the following boundary conditions:
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Simple supported arch [i = 1] :

U(−ϑ) = 0 U(ϑ) = 0
W (−ϑ) = 0 W (ϑ) = 0

W (2)(−ϑ) = 0 W (2)(ϑ) = 0
(3.9)

Fixed arch [i = 2] :

U(−ϑ) = 0 U(ϑ) = 0
W (−ϑ) = 0 W (ϑ) = 0

W (1)(−ϑ) = 0 W (1)(ϑ) = 0
(3.10)

Each of the eigenvalue problems (3.1),(3.9) and (3.1), (3.10) is self adjoint and positive
definite if ε0 < 0. The corresponding Green function matrix assumes the form

G(ϕ,ψ)︸ ︷︷ ︸
(2×2)

=

4∑
j=1

Yj(ϕ) [Aj(ψ)±Bj(ψ)] (3.11)

where the sign is {positive}[negative] if {ϕ ≤ ψ}[ϕ ≥ ψ] and

Y1 =

[
cosϕ 0
sinϕ 0

]
Y2 =

[
− sinϕ 0

cosϕ 0

]

Y3 =

[
cos (kϕ) (M −mεo)ϕ
k sin (kϕ) −m

]
Y4 =

[
− sin (kϕ) 1
k cos (kϕ) 0

] (3.12)

are solutions of the homogenous K[y,ε0] = 0 with

k2 = 1 + ε0 −Mε0, (3.13)

and

Aj =

 j

A11

j

A12
j

A21

j

A22

 , Bj =

 j

B11

j

B12
j

B21

j

B22

 j = 1, . . . , 4 (3.14)

are functions of the angle coordinate ψ. The equation systems giving the unknowns

a =
1

B1i, b =
2

B1i, c =
3

B1i, d =
3

B2i, e =
4

B1i, f =
4

B2i i = 1, 2

can be set up from the second property of the Green function matrix – see the def-

inition in [4]. The functions
1

B11(ψ), . . . ,
4

B22(ψ);ψ ∈ [−ϑ, ϑ] are independent of the
boundary conditions.
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The first system of equations (i = 1):


cosψ − sinψ cos (kψ) (M −mεo)ψ − sin (kψ) 1
sinψ cosψ k sin (kψ) −m k cos (kψ) 0
− sinψ − cosψ −k sin (kψ) M −mεo −k cos (kψ) 0
cosψ − sinψ k2 cos (kψ) 0 −k2 sin (kψ) 0
− sinψ − cosψ −k3 sin (kψ) 0 −k3 cos (kψ) 0
− cosψ sinψ −k4 cos (kψ) 0 k4 sin (kψ) 0




a
b
c
d
e
f

 =


0
0
1

2m
0
0
0


(3.15)

We have found the following solutions:

a =
1

B11 = − 1

1− k2
sinψ

2
b =

2

B11 = − 1

1− k2
cosψ

2

c =
3

B11 =
1

2

sin kψ

k3 (1− k2)
d =

3

B21 =
1

2mk2

e =
4

B11 =
cos kψ

2k3 (1− k2)
f =

4

B21 = −1

2

(
k2 +m

) ψ

mk2


(3.16)

The second system of equations (i = 2):


cosψ − sinψ cos(kψ) (M −mεo)ψ − sin (kψ) 1
sinψ cosψ k sin(kψ) −m k cos (kψ) 0
− sinψ − cosψ −k sin(kψ) M −mεo −k cos (kψ) 0
cosψ − sinψ k2 cos(kψ) 0 −k2 sin (kψ) 0
− sinψ − cosψ −k3 sin(kψ) 0 −k3 cos (kψ) 0
− cosψ sinψ −k4 cos(kψ) 0 k4 sin (kψ) 0




a
b
c
d
e
f

 =


0
0
0
0
0
− 1

2


(3.17)

We have found the following solutions:

a =
1

B12 =
cosψ

2 (1− k2)
b =

2

B12 = − sinψ

2 (1− k2)

c =
3

B12 = − cos kψ

2k2 (1− k2)
d =

3

B22 = 0

e =
4

B12 =
1

2k2 (1− k2)
sin kψ f =

4

B22 =
1

2k2


(3.18)

Taking into account that the Green function matrix should meet boundary conditions
(3.9) (3.10) one can find the functions

1

A11(ψ), . . . ,
4

A22(ψ); ψ ∈ [−ϑ, ϑ]

as well.
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Simply supported arch (i = 1):


cosϑ sinϑ cos (kϑ) −(M −mεo)ϑ sin (kϑ) 1
cosϑ − sinϑ cos (kϑ) (M −mεo)ϑ − sin (kϑ) 1
− sinϑ cosϑ −k sin (kϑ) −m k cos (kϑ) 0
sinϑ cosϑ k sin (kϑ) −m k cos (kϑ) 0
sinϑ − cosϑ k3 sin (kϑ) 0 −k3 cos (kϑ) 0
− sinϑ − cosϑ −k3 sin (kϑ) 0 −k3 cos (kϑ) 0





1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=


−a cosϑ− b sinϑ− c cos (kϑ) + d(M −mεo)ϑ− e sin (kϑ)− f
a cosϑ− b sinϑ+ c cos (kϑ) + d(M −mεo)ϑ− e sin (kϑ) + f

a sinϑ− b cosϑ+ ck sin (kϑ) + dm− ek cos (kϑ)
a sinϑ+ b cosϑ+ ck sin (kϑ)− dm+ ek cos (kϑ)
−a sinϑ+ b cosϑ− ck3 sin (kϑ) + ek3 cos (kϑ)
−a sinϑ− b cosϑ− ck3 sin (kϑ)− ek3 cos (kϑ)

 (3.19)

Solving the equations (3.19) we have

1

A1i =
1

C

[(
1− k2

)
b cosϑ+ dk2m

]
2

A1i =
1

D

{
k cos kϑ

[
−k2m cosϑ+ ϑ

(
1− k2

)
(M −mεo) sinϑ

]
−

−m sin kϑ sinϑ} a− k3m

D
[c+ f cos kϑ]

3

A1i = − 1

k (1− k2) sin kϑ

[
dm− ek

(
1− k2

)
cos kϑ

]
3

A2i =
k

D

[
a
(
1− k2

)
cos kϑ+ c

(
1− k2

)
cosϑ+ f

(
1− k2

)
cos kϑ cosϑ

]
4

A1i =
1

D

{
am+ c

[
kϑ
(
1− k2

)
(M −mεo) sin kϑ cosϑ+

+m
(
k3 sin kϑ sinϑ+ cos kϑ cosϑ

)]
+ fm cosϑ

}
4

A2i = − 1

k (sin kϑ)C

{
bk
(
1− k2

)
sin kϑ+ ek

(
1− k2

)
sinϑ

}
+

+
1

k (sin kϑ)C
d
[
kϑ
(
1− k2

)
(M −mεo) (sin kϑ sinϑ)−

−m
(
k3 sin kϑ cosϑ− cos kϑ sinϑ

)]



(3.20)

where

C =
(
1− k2

)
sinϑ

D = ϑk
(
1− k2

)
(M −mεo) cos kϑ cosϑ+mk3 cos kϑ sinϑ−m sin kϑ cosϑ.
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Fixed arch (i = 2):


cosϑ sinϑ cos (kϑ) −(M −mεo)ϑ sin (kϑ) 1
cosϑ − sinϑ cos (kϑ) (M −mεo)ϑ − sin (kϑ) 1
− sinϑ cosϑ −k sin (kϑ) −m k cos (kϑ) 0
sinϑ cosϑ k sin (kϑ) −m k cos (kϑ) 0
cosϑ sinϑ k2 cos (kϑ) 0 k2 sin (kϑ) 0
cosϑ − sinϑ k2 cos (kϑ) 0 −k2 sin (kϑ) 0





1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=


−a cosϑ− b sinϑ− c cos (kϑ) + d(M −mεo)ϑ− e sin (kϑ)− f
a cosϑ− b sinϑ+ c cos (kϑ) + d(M −mεo)ϑ− e sin (kϑ) + f

a sinϑ− b cosϑ+ ck sin (kϑ) + dm− ek cos (kϑ)
a sinϑ+ b cosϑ+ ck sin (kϑ)− dm+ ek cos (kϑ)
−a cosϑ− b sinϑ− ck2 cos (kϑ)− ek2 sin (kϑ)
a cosϑ− b sinϑ+ ck2 cos (kϑ)− ek2 sin (kϑ)

 (3.21)

Solving the equation system (3.21) we have:

1

A1i =
1

D

[
ek2 + b (k cos kϑ cosϑ+ sinϑ sin kϑ)− dmk cos kϑ

]
2

A1i = − 1

C
a
[
m
(
1− k2

)
sin kϑ cosϑ−

−ϑk (M −mεo) (k sinϑ sin kϑ+ cos kϑ cosϑ)]

3

A1i = − 1

kD
[b+ ek (k sinϑ sin kϑ+ cos kϑ cosϑ)− dm cosϑ]

3

A2i = − 1

C

[
a
(
1− k2

)
sin kϑ+ ck

(
1− k2

)
sinϑ−

−fk (k sin kϑ cosϑ− cos kϑ sinϑ)]

4

A1i = − 1

C
c [kϑ (M −mεo) (k cosϑ cos kϑ+ sin kϑ sinϑ)]−

− 1

C

[
a (M −mεo)ϑ+ cm(1− k2) cos kϑ sinϑ+mf sinϑ

]
4

A2i =
1

D

[
1
k b
(
1− k2

)
cos kϑ+ e

(
1− k2

)
cosϑ

]
−

− 1

kD
d [kϑ (M −mεo) (sin kϑ cosϑ− k sinϑ cos kϑ)−

−m
(
1− k2

)
cos kϑ cosϑ

]



(3.22)
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where

C = m(1− k2) (sinϑ sin kϑ) + ϑk (M −mεo) (k sin kϑ cosϑ− sinϑ cos kϑ)

D = k cos kϑ sinϑ− sin kϑ cosϑ.

In the knowledge of the above functions we can substitute in the formula (3.11) to
get the Green function matrix.

The eigenvalues λ = λ [ε0(p)] and the natural frequencies α = α [ε0(p)] – each as
a function of the follower load p – can then be obtained by solving the eigenvalue
problem

y(ϕ) = λ

∫ b

a

G(ϕ,ψ, ε0)y(ψ)dψ . (3.23)

The numerical solution was found by reducing the eigenvalue problem (3.23) to an
algebraic eigenvalue problem and solving the latter by the QZ algorithm - see [3,4]
for details.

The functions λ1/λ1free = λ1/λ1free(ε0/ε0crit) and α2
1/α

2
1free = α2

1/α
2
1free (p/pcrit)

have proved to be linear for the central angles considered. Here λ1 and α1j are the
first eigenvalues and the natural freqencies computed for a value of ε0 while λ1free
and α1free are also the eigenvalue and the corresponding natural freqency for the
same circular arch if it is free of loads (ε0 = 0).

4. Conclusions

Using the Green function matrix, self adjoint eigenvalue problems, which are governed
by a degenerate system of differential equations and homogeneous linear boundary
conditions, can be replaced by an eigenvalue problem for a system of Fredholm integral
equations with the Green function matrix as kernel.

We have determined the Green function matrix for simply supported and fixed
circular arches subjected to hydrostatic and constant follower loads. In the knowledge
of the Green function matrix the self adjoint eigenvalue problem giving the natural
frequencies of the free vibrations as a function of the hydrostatic follower load has
been replaced by an eigenvalue problem described by a system of Fredholm integral
equations. The latter is reduced to an algebraic eigenvalue problem and the first
eigenvalues as functions of the load are computed by using the QZ algorithm.

The results are shown in Figures 1 and 2.

The variable along the longitudinal axis is the quotient
p

pcrit
=

ε0
ε0crit

(4.1)

where ε0crit and pcrit are given by the equation (3.4) and (3.7).

Figures 1 and 2 represent the quotient

λ1
λ1free

=
α2
1

α2
1free

(4.2)
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for simply supported and fixed arches respectively. λ1 and α1 are the eigenvalues and
the corresponding circular frequencies computed under the assumption that the

Table 1
Simply supported arch(1) Fixed arch(2)

ϑ m Symbol ε0/ε0crit λ1/λ1free ε0/ε0crit λ1/λ1free

0,4 35000 ◦

0.1153
0.346
0.5767
0.8074

0.8847
0.654
0.4233
0.1926

0.2229
0.4457
0.6686
0.8914

0.7821
0.562
0.3392
0.1133

0,6 60000 +

0.2271
0.4543
0.6814
0.9086

0.7729
0.5457
0.3185
0.0913

0.1206
0.3619
0.7237
0.965

0.7821
0.562
0.3392
0.1133

0,8 120000 ♦

0.0008
0.3328
0.6657
0.9985

0.99
0.667
0.3339
0.009

0.2057
0.4104
0.615
0.8197

0.8022
0.6014
0.3969
0.1881

1
240000(1)

and
360000(2)

�

0.1082
0.4329
0.7576
0.8658

0.8918
0.567
0.2423
0.1339

0.1027
0.3068
0.5102
0.9183

0.9056
0.7136
0.5163
0.1001

l 1/l 1free

e0/e0crit
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 1.
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0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

l 1/l 1free

e0/e0crit

Figure 2.

arch is subjected to a follower load p which produces the axial strain ε0. λ1free and
α1free are also the eigenvalue and corresponding circular frequency for the same but
unloaded arches.

Computations were carried out for m = 20000; 35000; 60000; 120000; 240000; 360000
provided that ϑ ∈ [0.1; 3]. Some numerical results are presented in Table 1.

Figures 1 and 2 represent the quotient λ1/λ1free as a function of the quotient
ε0/ε0crit. It is clear from Figures 1 and 2 that

λ1
λ1free

= 1− ε0
ε0crit

(4.3)

for both cases, i.e., this result is the same for both support arrangements. We remark
that the agreement of (4.3) with the results computed - see Figure 2 - is not as good
for the fixed arch as for the simple supported arch. The reason for this is probably the
fact that the solution for s2 (3.8) is also an approximation obtained by the method
of least squares [2]. It is also worthy of mention that function (4.3) is independent of
m.

Acknowledgement. The support provided by the Hungarian National Research Founda-
tion (project No. T031998) is gratefully acknowledged.
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Abstract. The purpose of the paper is to present an extension of Trefftz’s idea. The essen-
tial of this method is to obtain lower bounds for eigenfrequencies of the elastic continuous
structures. Let us suppose that we have good upper bounds that are sufficient in number
and accuracy as well. This paper also contains a discussion of differential operators and their
inverses or generalized inverses. A new example presents a technique for making generalized
Green matrix.

Keywords: Trefftz’s method, inverse of differential operator, Moore Penrose generalized in-
verse of differential operator

1. Introduction

The estimation of natural frequencies for elastic continuous rod structures is possible
in several ways [1, 2]. For certain procedures - we think of the method of Trefftz
or the method of orthogonal invariants - the explicit knowledge of the inverse to
the ordinary differential operators is needed [3]. These procedures essentially lead
to the construction of Green matrices. The present paper has two aims, one is an
extension of Trefftz’s idea [4] to obtain lower bounds for the eigenfreqencies of elastic
continuous structures if we have good upper bounds, the other is to examine some
problems related to the inverses of differential operators. Both will be illustrated by
examples.

2. Differential operator and the Green matrix

By the interval [a, b] we mean the set of all real numbers t such that a ≤ t ≤ b. Thus
[a, b] = {t ∈ R : a ≤ t ≤ b a, b ∈ R} is a finite closed set, and R denotes the set
of all real numbers. Let L2(a, b) denote the set of all Lebesgue integrable n-vector
functions with real-valued coordinates. If x,y ∈ L2(a, b) are n-vector functions with
the property that yTx is integrable, then

〈x,y〉 =
∫ b

a

y(t)Tx(t) dt (2.1)

is the inner product, where y(t)T as a row vector is the transpose of the column vector
y(t). Thus L2(a, b) with the inner product (2.1) is a Hilbert space [5]. (A complete
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inner product space is called Hilbert space.) Let A1 and A0 denote n × n matrix
functions, A1 being absolutely continuous and nonsingular, and A0 being integrable
on the interval [a, b]. Then

Ax = A0(t)x
, + A1(t)x . (2.2)

is a linear differential operator with the domain DA which is the collection of all
absolutely continuous n-dimensional vector functions x. In order to formulate the
boundary conditions as well, let ξ be a 2n-vector made up of the n components
of x(a) followed by the n components of x(b). Thus

DA = {x ∈ L2(a, b) : Ax = L2(a, b) ∧ Mξ = 0}, (2.3)

where the boundary conditions are given by the relation Mξ = 0, M denotes an r×2n
matrix (r ≤ 2n) and ξ ∈ R2n is composed of the elements of the vectors x(a) ∈ Rn,
and x(b) ∈ Rn. Since the set of solutions of the differential equation Ax = 0 is n-
dimensional, KerA is a finite-dimensional vector space. If dimKerA = k, it is known
[3, 6], that

max(0, n− r) ≤ k ≤ min(n, 2n− r).

Now suppose that the operator A is invertible and its inverse is A−1. Then A is an
injective operator (k = 0) and its range is the set RA = L2(a, b). If A is invertible
then A−1 is an integral operator with the kernel G(t, s). G(t, s) is an n × n matrix
and is called Green’s matrix. The inversion of A is given by the formula

x(t) = (A−1y)(t) =
∫ b

a

G(t, s)y(s) ds (2.4)

∀y ∈ L2(a, b), and (2.4) is equivalent toAx = y. Existence, uniqueness and properties
of the Green matrix have been proved by several authors [5, 6]. The existence theorem
for the Green matrix reads as

Theorem 1 If the boundary value problem Ax = 0, Mξ = 0 has only a trivial solu-
tion, then there is one and only one Green matrix G(t, s) of the differential operator
A generated by the differential expression (2.2). The matrix G(t, s) has the following
properties:

– the elements of G(t, s) are continuous and have continuous first derivatives in t
except at t = s; t, s ∈ [a, b];

– as t increases through s, G(t, s) has a jump discontinuity equal to A0(s)
−1,

namely
G(s+ 0, s)−G(s− 0, s) = A0(s)

−1; (2.5)

– as a function of t, G(t, s) satisfies the boundary value problem AG = 0, Mξ = 0
for a ≤ t ≤ s ≤ b and a ≤ s ≤ t ≤ b.

If A is an invertible differential operator and its kernel is the matrix G(t, s), we
find by using (2.4) that

(Ax)(t) =

∫ b

a

(AG)(t, s)y(s) ds = y(t) . (2.6)
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According to [3, 6] and (2.6) we have the following equations:

AG = δA, MG = 0, (2.7)

where δA = δE, E is a unit matrix and δ is Dirac’s distribution [2]. The elements of
the Green matrix can be obtained by integrating the equations (2.7) and the arbitrary
functions consequent upon the integration can be determined by using the properties
in Theorem 1.

3. An extension of Trefftz’s method

Let A−1 be a real symmetric positive semidefinite completely continuous integral
operator defined on the interval [a, b] by the equation

(A−1x)(t) =
∫ b

a

G(t, s)x(s) ds,

in which G(t, s) = G(s, t) is the kernel. Then A−1 is also self-adjoint [6]. According
to the Hilbert - Schmidt theorem [3] for k ∈ N (N is the set of all natural numbers)

(A−1x)(t) =
∫ b

a

G(t, s)x(s)ds =
∫ b

a

x(s)TG(t, s) ds =

=
∑
k

λk

(∫ b

a

x(s)Txk(s) ds

)
xk(t) =

=

∫ b

a

x(s)T

(∑
k

λkxk(s)xk(t)
T

)
ds.

Since the function x(t) ∈ L2(a, b) is arbitrary we can write

G(t, s) =
∑
k

λkxk(t)xk(s)
T , (3.1)

where {xi} is an orthonormal collection of the eigenvectors for A−1 with associated
eigenvalues {λi} and xi ∈ L2(a, b), i ∈ N. If A−1 is a positive compact self-adjoint
operator, then the eigenvalues λi of A−1 are all real and nonnegative. Moreover, we
have ∫ b

a

SpurG(t, t) dt =
∑
k

λk

∫ b

a

xk(t)
Txk(t) dt =

∑
k

λk. (3.2)

For the application of the Trefftz’s method let’s suppose A−1 being a symmetric
positive semidefinite completely continuous integral operator and we have the first k
of the lower bounds

µ1 ≥ µ2 ≥ · · · ≥ µk (3.3)
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ordered to the first k of the eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λk (3.4)

of the integral operator. If j ≤ k according to Trefftz [4] and (3.2) we get

λj ≤ µj +
∫ b

a

Spur G(t, t) dt−
k∑
i=1

µi := νj, (3.5)

which is an estimation for the jth eigenvalue. (3.5) is a new extension of the method
of Trefftz. Thus, with the knowledge of the lower bounds (3.3) and the Green matrix
G(t, s) one can use the inequality (3.5) to find upper bounds for the first k eigenvalues
from the set of eigenvalues {λi} that belong to the integral operator A−1.

4. Numerical example

Suppose that A is the differential operator

Ax = A0(t)x
, + A1(t)x, (4.1)

A0(t) =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , x,(t) =


x,1(t)
x,2(t)
x,3(t)
x,4(t)

 ,

A1(t) =


0 0 0 0
0 0 0 −1
0 0 −p−1 0
0 −1 0 0

 , x(t) =


x1(t)
x2(t)
x3(t)
x4(t)

 ,

on L2(0, 1), with the domain DA ⊂ L2(0, 1); and p(t) > 0, ∀t ∈ [0, 1]. The boundary
conditions are

x1(0) = x2(0) = x3(1) = x4(1) = 0.

We note that the operator A is self-adjoint, namely

〈Ax,y〉 = 〈x,Ay〉 , ∀x,y ∈ L2(0, 1).

It should be noted that

〈Ax,y〉 =

∫ b

a

(x4y
,
1 + x3y

,
2 + x2y

,
3 − x1y

,
4 − x4y2 − p−1x3y3 − x2y4) dt+

+ [−x4y1 − x3y2 + x2y3 + x1y4]
1
0 .
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The integral operator A−1 is self-adjoint as well, and G(t, s) = G(s, t). It can be seen
easily from [2] and (2.7), that for instance

G11(t, s) = H(t− s)
∫ t

s

∫ u

s

v − s
p(v)

dsdu+

∫ t

0

∫ u

0

s− v
p(v)

dvdu (4.2)

where H is Heaviside’s distribution. Now consider the transverse vibration of a beam
[2]. The equation of motion is of the form

∂2

∂x2

(
EIz

∂2u

∂x2

)
= −ρQ∂

2u

∂t2
.

where E = 2.1 · 107 [Pa], ρ = 7.86 · 103 [kg/m3], Q(x) = π
4 (−10

−2x+ 4 · 10−2)2 [m2],
Iz(x) = π

64 (−10
−2x + 4 · 10−2)4 [m4], and x ∈ [0, 1] for our example. If we assume

that u(x, t) = v(x) sin(αt) we obtain

d2

dx2

(
EIz

d2v
dx2

)
= α2ρQv , (4.3)

in which α stands for the angular eigenfrequency. By assumption equation (4.3) is
associated with the boundary conditions (beam fixed at the left end and free at the
right end):

v(0) = v,(0) = v,,(1) = v,,,(1) = 0.

By introducing the functions

p(x) = EIz(x), q(x) = ρQ(x),

we can easily see that the 4th-order differential operator in (4.3) can be reduced by
elementary transforms to the differential operator (4.1). Now to obtain lower bounds
for eigenfrequencies of the beam we can use the inequality (3.5). By introducing the
function

K(t, s) =
√
q(t)

√
q(s)G11(t, s),

the inequality (3.5) becomes in our case (on basis of [2])

1

α2
j

≤ 1

(αuj )
2
+

∫ b

a

K(t, s) dt−
k∑
i=1

1

(αui )
2
:=

1

(αlj)
2
, j ≤ k, (4.4)

where αj is the angular eigenfrequency, αlj is the lower bound and αuj is the upper
bound (j ∈ N). It is also easy to see from (4.3), if the inequality (3.5) is formulated
for the squares of the angular eigenfrequencies as the eigenvalues, that the lower and
upper designations exchange their roles. The table shows the numerical results of the
calculations:

j = 1 j = 2 j = 3 j = 4 j = 5
αuj 2.06152 10.8457 28.8438 55.7227 91.5596
αlj 2.03926 8.5541 12.5324 13.4998 13.7565
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The first line of the table contains upper bounds calculated by the method of interval-
matrices. In the second line lower bounds calculated by the aid of the estimation
(4.4) can be found. The numerical investigations show that the estimation is good
only for the first eigenfrequency and is not satisfactory in the other cases. A little
improvement can be achieved by taking more eigenfrequencies into account. The
problem is of theoretical importance and our aim was to show a practical application
of the inequality (3.5). Obviously, the estimation becomes a useful tool in the case of
complicated structures.

5. Appendix. The generalized Green matrix

The aim of this section is to give a summary - on the basis of [6,7,8,9] - for the case
when the differential operator A is noninvertible. If r 6= n or r = n but k 6= 0, neither
the operator A, nor A∗ is invertible. (The adjoint of A is denoted by A∗.) There are
various ways to define a generalized inverse for A [6]. In this section we shall use an
analogue to the Moore Penrose generalized inverse, often called pseudoinverse [6], for
differential operators:

Definition 2 Let P and Q denote the projections whose ranges are RP =KerA and
RQ =KerA∗. Let E = I − P and F = I − Q be two projections where I is the unit
operator. The generalized inverse of A denoted by A†, is given by

A† = EAF , (5.1)

where A is such a generalized inverse of A that if z ∈RA and y = Az, then y ∈ DA
and Ay = z, and RA ⊂ DA.

A† as defined above is unique. The generalized inverse as defined is an integral
operator with a uniquely defined kernel, which will be denoted by G†(t, s). G†(t, s) is
referred to as the generalized Green matrix for the operator A. There are several ways
of constructing G†(t, s), based on the various properties of the generalized inverse.
In this paper we shall give two ways for constructing G†(t, s). We shall need explicit
expressions for the projections P and Q.

Let u1(t), · · · ,uk(t) be linearly independent solutions to the equation Ax = 0.
This set is a basis for the vector space KerA where dimKerA = k. Let U(t) denote
an n × n matrix with k columns denoted by u1(t), · · · ,uk(t). Due to the linear
independence of the columns u1(t), · · · ,uk(t), the k × k matrix

WP =

∫ b

a

U(w)TU(w)dw (5.2)

is a nonsingular, positive definite symmetric one. Let the kernel GP(t, s) be defined
by

GP(t, s) = U(w)W−1
P U(w)T . (5.3)
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Clearly, GP(t, s) is also an n × n matrix. The projection P onto KerA is then the
integral operator

(Px)(t) =

∫ b

a

GP(t, s)x(s) ds. (5.4)

The operator P as defined by (5.4) is clearly Hermitian and idempotent. Similarly
if KerA∗ (dimKerA∗ = k′) is spanned by the linearly independent set of solutions
v1(t), · · · ,vk′(t) to the equation A∗x = 0, we can form the matrix V(t) with k′

columns

WQ =

∫ b

a

V(w)TV(w)dw, (5.5)

and the kernel is
GQ(t, s) = V(w)W−1

Q V(w)T . (5.6)

The projection Q onto KerA∗ is given by

(Qx)(t) =

∫ b

a

GQ(t, s)x(s) ds. (5.7)

Note, that if the vectors u and the vectors v are chosen to be orthonormal, then
WP = WQ = E. Now we require a kernel for the operator A. Let us solve the
differential equation

Ax = z z ∈RA (5.8)

by variation of parameters. The solution to this problem can always be made to
satisfy the boundary conditions Mξ = 0 of A. In fact, there will always remain k
undetermined constants after integration because an arbitrary element of KerA can
always be added to the solution. The formula for x in terms of z is the integral

x(t) =

∫ b

a

G(t, s)z(s)ds (5.9)

where G(t, s) can be chosen as simply as possible. As a function of t, G(t, s) will
satisfy the boundary conditions for A and will have, as t increases through s, the
same continuity properties as the Green matrix for an invertible operator. Therefore
the kernels GP(t, s), G(t, s) and GQ(t, s) are available.

Theorem 3 The kernel of A†, i.e., the generalized Green matrix, assumes the form
[6]:

G†(t, s) = G(t, s)−
∫ b

a

GP(t, u)G(u, s) du−
∫ b

a

G(t, v)GQ(v, s) dv +

+

∫ b

a

∫ b

a

GP(t, u)G(u, v)GQ(v, s) dv du. (5.10)
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In the noninvertible case a similar calculation is possible as in the invertible case.
The kernels G and G† have the same discontinuity at t = s as the ordinary Green
matrix. When the operator A is applied to

g(t) =

∫ b

a

G(t, v)f(v) dv, (5.11)

the result is f(t) = (Ag)(t), whereas it is AG = 0 for a ≤ t < s ≤ b and for
a ≤ s < t ≤ b. Since AGP = 0, we find from (5.10) that

AG† = −GQ a ≤ t < s ≤ b a ≤ s < t ≤ b. (5.12)

We can recover G†(t, s) by determining the solution of the differential equation (5.12),
so as to satisfy, as a function of t, the known properties of G†(t, s), namely
1. G†(t, s) should have the appropriate discontinuity at t = s,
2. G†(t, s) should satisfy the boundary conditions Mξ = 0 of the operator A and
3. G†(t, s) should be orthogonal to KerA.
It can also be proved that these properties uniquely determine G†(t, s).

6. A new example for the generalized Green matrix

As a brief example, consider the differential equation of the simple harmonic motion

x′′ + α2x = 0. (6.1)

We obtain a system of first order equations by the elementary transforms

x1 + x,2 = 0,
−x,1 + α2x2 = 0.

(6.2)

Now consider the differential operator from (6.2)

Ax =

(
x1 + x,2
−x,1 + α2x2

)
with the boundary conditions x1(0) = x1(π) and x2(0) = x2(π). For simplicity we
shall assume that α = 2m, m ∈ N. Under these conditions the fundamental matrix
Φ(t) for the equation Ax = 0 is:

Φ(t) =

(
α sinαt −α cosαt
cosαt sinαt

)
.

The orthonormal base vectors are given by

U(t) =
(

u1(t) u2(t)
)
=

√
2

π(1 + α2)
Φ(t).
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On the basis of (5.6) we have

GQ(t, s) =
2

π(1 + α2)

(
α2 cos(α(t− s)) α sin(α(t− s))
−α sin(α(t− s)) cos(α(t− s))

)
.

For example one of the solutions of the differential equation AG† = −GQ is:

G†21(t, s) =

 C11(s) cosαt+ C21(s) sinαt−
t

π
cos(α(t− s)) t < s

C12(s) cosαt+ C22(s) sinαt−
t

π
cos(α(t− s)) t > s

.

Since

A−10 =

(
0 −1
1 0

)
,

the elements of the matrix G† satisfy the discontinuity conditions:

G†11(s+ 0, s)−G†11(s− 0, s) = 0,

G†12(s+ 0, s)−G†12(s− 0, s) = −1,
G†21(s+ 0, s)−G†21(s− 0, s) = 1,

G†22(s+ 0, s)−G†22(s− 0, s) = 0.

Hence

G†21(t, s) =

 C11(s) cosαt+ C21(s) sinαt−
t

π
cos(α(t− s)) t < s

C11(s) cosαt+ C21(s) sinαt− (1− t

π
) cos(α(t− s)) t > s

.

It can be seen easily that if

g1(t) =

(
G†11(t, s)

G†21(t, s)

)
, g2(t) =

(
G†12(t, s)

G†22(t, s)

)
,

and ∫ π

0

gi(t)uj(t)dt = 0 i, j = 1, 2,
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then the elements of the generalized Green’s matrix G†(t, s) are

G†11(t, s) =


γ1(s) cos(α(s− t)) +

α

2π
(π − 2(s− t)) sin(α(s− t)) t < s

γ1(s) cos(α(t− s)) +
α

2π
(π − 2(t− s)) sin(α(t− s)) t > s

,

G†21(t, s) =


γ2(s) sin(α(s− t))−

1

2π
(π − 2(s− t)) cos(α(s− t)) t < s

−γ2(s) sin(α(t− s)) +
1

2π
(π − 2(t− s)) cos(α(t− s)) t > s

,

G†12(t, s) =


−γ2(s) sin(α(s− t)) +

1

2π
(π − 2(s− t)) cos(α(s− t)) t < s

γ2(s) sin(α(t− s))−
1

2π
(π − 2(t− s)) cos(α(t− s)) t > s

,

G†22(t, s) =


γ3(s) cos(α(s− t)) +

1

2απ
(π − 2(s− t)) sin(α(s− t)) t < s

γ3(s) cos(α(t− s)) +
1

2απ
(π − 2(t− s)) sin(α(t− s)) t > s

where γ1, γ2, and γ3 are constants depending on α2 [8].

7. Conclusions

The method outlined in Section 3 will produce lower bounds for eigenfrequencies
of the elastic continuous structures by using (3.5) if we have good upper bounds
calculated by some kind of a simple method. Since the solution of our problem
requires the invertation of differential operators we expatiated on the constructions of
Green matrices by solving the matrix equation (2.7). In the first part of the Appendix
we give a short summary of the results connected to the generalized Green matrix
on the basis of [6]. In Section 6 with the help of the example, not published yet, we
present a technique for making a generalized Green matrix.
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Abstract. Making use of the principle of minimum complementary energy we have clarified
what conditions the strains should meet in order to be kinematically admissible for some
mixed boundary value problems of micropolar elasticity in a dual formulation. Emphasis
is laid on the question as to what form the boundary conditions have since neither the
displacements nor the microrotations belong to the set of fundamental variables.

Keywords: Dual system, mixed boundary value problems, micropolar elasticity, strain
boundary conditions

1. Introduction

1.1. The necessary and sufficient conditions the strains in the linear theory of mi-
cropolar elasticity should meet in order to be kinematically admissible were found by
Kozák-Szeidl [1] under the conditions that the boundary surface S of the region V
under consideration was divided into two parts Su and St on which tractions (force
stresses and couple stresses) and generalized displacements (displacements and mi-
crorotations) were imposed.

Similar investigations within the framework of the classical theory have been per-
formed by Kozák [2] who used stress functions of order two when setting up the entire
system of variational principles in the dual system of elasticity. The necessary and
sufficient conditions of kinematic admissibility for the strains were obtained from the
stationary condition of the corresponding functionals.

Bertóti [3] confined himself to the case when the stresses are given in terms of stress
functions of order one and under this condition he clarified, among other things, what
form the equation system of linear elasticity has including those conditions the strains
should meet in order to be kinematically admissible on a simple connected region.
Some generalizations of these results are given in [4].

Returning to the micropolar theory, to the author’s knowledge the cases when force
stresses and microrotations or couple stresses and displacement fields are given on a
part of the boundary (tractions are imposed on the other part of the boundary) has
not been investigated yet though there are some preliminary results in this respect
for the first plane problem – see Szeidl [5] and Iván-Szeidl [6] for details.
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1.2. The main objective of the present paper is to clarify the form of the boundary
conditions in the dual system if microrotations ϕ̂b and force stresses t̂k are imposed
on the part Stϕ of the boundary surface S while tractions (force stresses t̂k and couple
stresses µ̂b) are prescribed on the other part Stµ (Stµ∪Stϕ = S, Stµ∩Stϕ = ∅). It is a
further aim to derive the unknown boundary conditions if displacements ûl and couple
stresses µ̂b are imposed on Suµ while tractions (force stresses t̂k and couple stresses
µ̂b) are given on Stµ (Stµ ∪ Suµ = S, Stµ ∩ Suµ = ∅). By solving the problem posed
we shall also clarify all the conditions the strains should meet to be kinematically
admissible under the given boundary conditions.

Observe that the problems posed are meaningless in the primal system of microp-
olar elasticity since the displacement field ul and the microrotation ϕb (referred to
together as displacements) are the configuration variables in this system.

1.3. The paper is organized into six Sections. In Section 2 notations and some
preliminary results are presented. Sections 3 and 4 are devoted to the derivation of the
missing conditions. Our analysis is based on the principle of minimum complementary
energy which, as a variational principle, ensures the fulfillment of all conditions the
strains should meet in order to be kinematically admissible. Section 5 is a short
summary of the results. The last Section is an Appendix which contains some longer
transformations.

2. Notations and preliminaries

2.1. For the sake of simplicity we shall assume that the volume region V occupied by
the body under consideration is simple-connected. The boundary surface S is divided
into two parts from which the boundary conditions on Stµ are the same for the two
problems considered. The common bounding curve is denoted by g. Figure 1 rep-
resents the region V and the parts Stϕ, Stµ and Suµ, Stµ for both problems.Indicial
notations and two coordinate systems, the (x1, x2, x3) curvilinear and the (ξ1, ξ2, ξ3)
curvilinear, defined on the surface S – see [7] for details – are employed throughout
this paper. Scalars and tensors, unless otherwise stated, are denoted independently of
the coordinate system by the same letter. Distinction is aided by the indication of the
arguments x and ξ being used to denote the totality of the corresponding coordinates.
Volume integrals and surface integrals are considered, respectively, in the coordinate
systems (x1x2x3) and (ξ1ξ2ξ3). Consequently, in the case of integrals, arguments are
omitted. In accordance with the general rules of indicial notations summation over
repeated indices is implied and subscripts preceded by a semicolon denote covariant
differentiation with respect to the corresponding subscripts. Latin and Greek indices
range over the integers 1, 2, 3 and 1, 2 respectively. εklm and εpqr stand for the per-
mutation tensors; δlk is the Kronecker delta. In the system of coordinates (x1x2x3)
gk and gl are the covariant and contravariant base vectors. The corresponding metric
tensors are denoted by gkl and gpq. The equation of the boundary surface is written
as xk = xk(ξ1, ξ2) where the coordinates ξ1 and ξ2 are the surface parameters. Let ξ3
be the distance measured on the outward unit normal n to the surface. On S ξ3 = 0 .
[Base vectors] {Metric tensors} on S are denoted by [ak and ak] {akl and akl}. In the
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Figure 1.

coordinate system (ξ1ξ2ξ3)

n = a3 = a3 , n3 = 1 and nη = 0 . (2.1)

If
∣∣ξ3∣∣ /(min{|R1|, |R2|}) < 1 in which R1 and R2 are the principal radii of curvature

on S then the relationship xk = xk(ξ1, ξ2, ξ3) is always one-to-one.

2.2. The components of the asymmetric strain tensor and rotation tensor (together
strains), and the force stress tensor and couple stress tensor (together stresses) are
denoted by γlk, κ b

a and tkl, µab respectively. In the primal system of micropolar
elasticity the field equations can be given by the displacements ul, ϕb as configuration
variables, the strains γlk, κ b

a as intermediate variables of order one and the stresses
tkl, µab as intermediate variables of order two:

kinematic equations:

γlk = ul;k + εlksϕ
s, κ b

a = ϕb;a x ∈ V (2.2)

Hook’s law for centrosymmetric body [8]:

tkl = a
−1

klpq γpq, µab = c
−1

klpq κpq x ∈ V (2.3)

equilibrium equations:

tkl;k + bl = 0, µab;a + εbpqt
pq + cb = 0 x ∈ V (2.4)

where a
−1

klpq and c
−1

klpq are the tensors of elastic coefficients while bl and cb are body

forces and couples. These equations are associated with the boundary conditions

n3t
3l = t̂l, ϕa = ϕ̂a ξ ∈ Stϕ (2.5a)

n3t
3l = t̂l, n3µ

3
b = µ̂b ξ ∈ Stµ (2.5b)
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for the first problem and with the boundary conditions

ul = ûl , n3µ
3
b = µ̂b ξ ∈ Suµ (2.6a)

n3t
3l = t̂l , n3µ

3
b = µ̂b ξ ∈ Stµ (2.6b)

for the second one.

2.3. The stresses tkl and µab are said to be equilibrated {statically admissible} if
they satisfy the equilibrium equations (2.4) {and the traction boundary conditions
(2.5a)1, (2.5b) or (2.6a)2, (2.6b) }. Let

◦
tkl = pl;mg

mk and
◦
µab = gam(εmbyp

y + qb;m) x ∈ V (2.7a)

where

gmnpl;mn = −bl and gmnqb;mn = −cb . x ∈ V (2.7b)

Further let F l
y and Hyb x ∈ V be stress function tensors. Then the stresses

tkl = εkmyF l
y ;m +

◦
tkl, µab = εapy

(
Hyb;p + εbpsF s

y

)
+
◦
µab x ∈ V (2.8)

are equilibrated and
◦
µab,

◦
tkl are particular solutions to the equilibrium equations (2.4)

[9,10]. We shall assume that the particular solutions are known.

Remark 2.1.: Let αyb(x) and β
y
l(x) be differentiable otherwise arbitrary tensors

on V . Further let AB and L
K be the subsets of the index pairs yb and l

y for which the
differential equations

rL;K = βLK(x) and wB;A + εBAsr
s = αAB(x) x ∈ V (2.9)

always have a solution for the vector fields rl and wb. It can be shown that the stress
function triplets HAB and F L

K can be set to zero [1].

Remark 2.2.: The proof of Remark 2.1 [1] is based on the observation that there
belong identically zero stresses to the stress functions

F l
y = rl ;y(x) and Hyb = wb;y(x) + εbysr

s(x) . x ∈ V (2.10)

Remark 2.3.: Let XY and T
S be the complementary subsets of the index pairs AB

and L
K . It follows from Remark 2.1 that any stress condition can be given in terms

of the stress functions F T
S and HAB , i.e., by means of six-six stress functions.

Remark 2.4.: For this reason we shall assume that the stress functions and their
variations have only six independent components each which are identified by the
index pairs XY and T

S .

2.4. The strains γlk, κ b
a are said to be compatible {kinematically admissible} if

the kinematic equations (2.2) have single valued solutions for the displacements ul,
ϕb {and the solutions meet the boundary condition (2.5a)2 or (2.6a)2}.
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The incompatibility tensors Y xy and Dst are defined by the equations

Y xy(x) = εxpaκ y
a ;p and Dst(x) = εspk

(
γkt;p + εktbκ

b
p

)
. x ∈ V (2.11)

It can be seen [1] that the strains γlk, κ b
a are compatible on a simple connected

domain V if the six-six compatibility field equations

Y XY (x) = 0 and DST (x) = 0 x ∈ V (2.12a)

and the compatibility boundary conditions

n3Y 3b(x) = 0 and n3D3
t(x) = 0 ξ ∈ S (2.12b)

are satisfied [1].

2.5. In the dual system of micropolar elasticity the stress functions F T
S , HXY are

the configuration variables (F L
K and HAB are set to zero), the stresses tkl, µab are

the intermediate variables of order one and the strains γlk, κ b
a are the intermediate

variables of order two. The field equations consists of
the dual kinematic equations

tkl −
◦
tkl = εkmyF l

y ;m, µab −
◦
µab = εapy

(
Hyb;p + εbpsF s

y

)
x ∈ V (2.13)

Hook’s law

γkl = aklpqt
pq, κab = cabpqµ

pq x ∈ V (2.14)

(aklpq and cabpq are the inverses of a
−1

klpq and c
−1

klpq)

and the dual equilibrium equations

Y XY (x) = εXpaκ Y
a ;p = 0 , DST (x) = εSpk

(
γkT ;p + εkTbκ

b
p

)
= 0 . x ∈ V

(2.15)
In view of (2.13) it follows from equations (2.5a,b) and (2.6a,b) that the field equations
(2.13), (2.14) and (2.15) should be associated with the traction boundary conditions

n3
◦
t3l + n3ε

3µηF l
η ;µ = t̂l ξ ∈ S (2.16a)

n3
◦
µ3
b + n3ε

3πη
(
Hηb;π + εbπsF s

η

)
= µ̂b ξ ∈ Stµ (2.16b)

for the first problem and with the traction boundary conditions

n3
◦
t3l + n3ε

3µηF l
η ;µ = t̂l ξ ∈ Stµ (2.17a)

n3
◦
µ3
b + n3ε

3πη
(
Hηb;π + εbπsF s

η

)
= µ̂b ξ ∈ S (2.17b)

for the second one.

It is obvious that the compatibility boundary conditions (2.12b) should also be
fulfilled.
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We remind again the reader of the fact that no boundary conditions can be imposed
directly on the displacements ul and ϕb since these variables do not belong to the set
of dual variables.

The strains γkl, κab are said to be statically admissible if they are given in terms
of statically admissible stresses tpq and µpq by means of Hook’s law (2.14).

3. Kinematic admissibility of strains for the first problem

3.1. The total complementary energy functional for the first problem assumes the form

KI =
1

2

∫
V

(
tklγkl + µabκ

b
a

)
dV −

∫
Stϕ

n3µ
3
bϕ̂
b dA (3.1)

where both the stresses tkl, µab and the strains γkl, κ b
a are statically admissible.

According to the principle of minimum complementary energy, the first variation
of the functional KI should vanish:

δKI = IV1 + I
Stϕ
1 =

∫
V

(
γklδt

kl + κ b
a δµ

a
b

)
dV −

∫
Stϕ

n3δµ
3
bϕ̂
b dA = 0 . (3.2)

Because the stresses and strains are statically admissible, variations δtkl and δµab of
the force and couple stresses can not be arbitrary but should meet the side conditions

δtkl;k = 0 , δµab;a + εbklδt
kl = 0 x ∈ V (3.3a)

and

n3δt
3l = 0 , ξ ∈ S (3.3b)

n3δµ
3
b = 0 . ξ ∈ Stµ (3.3c)

In the sequel we shall assume that the variations of the particular solutions
◦
tkl and

◦
µab are equal to zero.

It can be proved by direct substitutions that the side conditions (3.3a) are identi-
cally fulfilled if the variations of stresses are given in terms of the variations of stress
functions as follows:

δtkl = εkmyδF l
y ;m , x ∈ V (3.4a)

δµab = εapy
(
δHyb;p + εbpsδF s

y

)
. x ∈ V (3.4b)

Let rl and wb be arbitrary differentiable vector fields on S and Stµ, respectively.
Further let the variations of the stress functions on Stµ and Stϕ be given in terms of
the variations of rl and wb as follows:

δF l
η = δrl ;η , ξ ∈ S (3.5a)

δHηb = δwb;η + εbπlr
l . ξ ∈ Stµ (3.5b)
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If this is the case, side conditions (3.3b) and (3.3c) are also identically satisfied.

3.2. If we utilize that

δKI = IV2 + I
Stϕ
1 + IS1 = IV2 + I

Stϕ
2 + I

Stϕ
3 + I

Stµ
1 + I

Stµ
2 + IS2 + IG1

(the details of the manipulations leading to this form are given in Subsection 6.2) and
substitute equations (6.5), (6.6) and (6.7) into the above equation then the stationary
condition (3.2) yields

δKI =

∫
V

(Y XY δHXY +DST δF T
S ) dV −

∫
Stϕ

ε3πη(κ b
π − ϕ̂b;π)δHxy dA

−
∫
Stϕ

ε3ηχ(γχl;η − εχlbϕ̂b;η)δrl dA−
∫
Stµ

[
n3Y3bδwb + n3D3

lδr
l
]
dA

+

∫
g

τη(κ b
η − ϕ̂b;η)δwb ds = 0 . (3.6)

With regard to the arbitrariness of the variations δHXY , . . . , δwb this equation is
equivalent to the compatibility field equations (2.15), the strain boundary conditions

κ b
π − ϕ̂b;π = 0 , ξ ∈ Stϕ (3.7)

ε3ηχ(γχl;η − εχlbϕ̂b;η) = 0 , ξ ∈ Stϕ (3.8)

the compatibility boundary conditions (2.12b) on Stµ and the continuity condition
dϕ̂b/ds− τηκ b

η = 0 on g.

Remark 3.1.: It can be shown with ease that the fulfillment of the strain bound-
ary conditions (3.7) and (3.8) ensures that of the compatibility boundary conditions
(2.12b) on Stϕ .

4. Kinematic admissibility of strains for the second problem

4.1. The total complementary energy functional and the corresponding stationary
condition are of the form

KII =
1

2

∫
V

(
tklγkl + µabκ

b
a

)
dV −

∫
Suµ

n3t
3lûl dA (4.1)

and

δKII = IV1 + ISuµ1 =

∫
V

(
γklδt

kl + κ b
a δµ

a
b

)
dV −

∫
Suµ

n3δt
3lûl dA = 0 , (4.2)

respectively. In this case the variations δtkl and δµab of the force and couple stresses
should meet the side conditions (3.3a) and

n3δt
3l = 0 , n3δµ

3
b = 0 , ξ ∈ Stµ (4.3a)

n3δµ
3
b = 0 . ξ ∈ Suµ (4.3b)
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Side conditions (3.3a) are again identically fulfilled if the variations of stresses are
given in terms of the variations of stress functions in the same form as for the first
problem – see equations (3.4a,b) for details.

Let rl and wb be arbitrary differentiable vector fields on Stµ, respectively. If the
variations of the stress functions on Stµ are given in terms of the variations of rl and
wb:

δF l
η = δrl ;η δHηb = δwb;η + εbπlr

l ξ ∈ Stµ (4.4)

then side conditions (4.3a) are fulfilled. If the variations of the couple stresses are
given in terms of the variations of stress functions, then substitution of representation
(3.4b) into the side condition (4.3b) yields

n3δµ
3
b = ε3πη

(
δHηb;π + εbπsδF s

η

)
= 0 ξ ∈ Suµ (4.5)

from which it follows with regard to (6.2,c) that the variations δF 2
2 and δF 3

β can
not be arbitrary but should meet the conditions

δF 2
2 = −δF 1

1 − ε3πη(δHη3||π + bσπδHησ − bηπδH33) , ξ ∈ Stu (4.6a)

δF 3
ρ = ε3πηδHηρ;π = ε3πη

(
δHηρ||π − bηπδH3ρ − bρπδHη3

)
. ξ ∈ Stu (4.6b)

Derivation of the equations that follow from the stationary condition (4.2) requires
a lengthy formal transformation which is based on the use of equations (3.4a,b) and
(4.4), (4.6a,b) since their fulfillment ensures that of the side conditions on V and
S. In addition integrations by parts should be performed by utilizing the Gauss and
Stokes theorems. As regards the transformation the details are given in Subsections
6.3 to 6.4. Here we confine ourselves only to gathering the results. Comparison of the
stationary condition (4.2) with equations (6.8), (6.9), (6.13) and (6.15) yields

δKII = IV1 + I
Suµ
1 = IV2 + I

Suµ
2 + I

Suµ
3 + I

Stµ
3 + IG2 =

= IV2 + I
Suµ
4 + I

Stµ
3 + IG2 + IG3 = IV2 + I

Suµ
4 + I

Stµ
4 + IG2 + IG3 + IG3 = 0 . (4.7)

The final form of stationary condition (4.7) is obtained by substituting (6.4) for IV2 ,
(6.14a) for ISuµ4 , (6.16a) for IStµ4 and (6.17) for IG2 + IG3 + IG3 . After making some
rearrangements we have

δKII =

∫
V

(Y XY δHXY +DST δF T
S ) dV +

∫
Suµ

ε3πη(ϕ̃ρ||π − b
ρ
πϕ̃

3 − κ ρ
π )δHηρ dA+

+

∫
Suµ

[
ε312 (û1;1 − γ11) δF 1

2 + ε321 (û2;2 − γ22) δF 1
1

]
dA+

+

∫
Suµ

ε3πη(ϕ̃3
||π + bρπϕ̃

ρ − κ 3
π )δHη3 dA−

−
∫
Suµ

ε312 [û2;1 + û1;2 − (γ12 + γ21)] δF 1
1 dA−

∫
Stµ

[
n3Y3bδwb + n3D3

lδr
l
]
dA

−
∮
g

(
dϕ̃b

ds
− τηκ b

η )δwb ds−
∮
g

[
dûλ
ds
− τη

(
γηλ + εηλ3ϕ̃

3
)]
δrλ ds = 0 . (4.8)
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Since the variations δHXY , . . . , δrλ in the stationary condition δKII = 0 are arbitrary
we obtain

– the compatibility field equations
(2.12a);

– the strain boundary conditions

ϕ̃ρ||π − b
ρ
πϕ̃

3 − κ ρ
π = 0 , ξ ∈ Suµ (4.9a)

ϕ̃3
||π + bρπϕ̃

ρ − κ 3
π = 0 , ξ ∈ Suµ (4.9b)

and

û1;1 − γ11 = 0 , û2;2 − γ22 = 0 , ξ ∈ Suµ (4.10a)
û2;1 + û1;2 − (γ12 + γ21) = 0 ; ξ ∈ Suµ (4.10b)

– the compatibility boundary conditions
(2.12b)

on Stµ
and

the continuity conditions

dϕ̃b

ds
− τηκ b

η = 0 ,
dũλ
ds
− τη

(
γηλ + εηλ3ϕ̃

3
)
. ξ ∈ g (4.11)

Remark 4.1.: It can be shown by performing lengthy paper and pencil calcula-
tions, which require some attention, that the fulfillment of the strain boundary con-
ditions (4.9a,b) and (4.10a,b) ensures that of the compatibility boundary conditions
(2.12b) on Suµ .

5. Concluding remarks

5.1. We have clarified what boundary conditions the strains of the micropolar theory
should meet in order to be kinematically admissible if

– microrotations and force stresses
or
– displacements and couple stresses

are imposed on a part of the boundary surface. The corresponding boundary condi-
tions – like those found by Kozák-Szeidl in 1981 [2], - are referred to as strain boundary
conditions. We draw the reader’s attention to the fact that the fulfillment of the strain
boundary conditions ensures that of the compatibility boundary conditions for both
problems – see Remarks 3.1 and 4.1.

5.2. It is a further issue what form the strain boundary conditions have if for
instance displacements are given in the tangent plane to the surface and force stress
is prescribed perpendicularly to it and so on. Investigations to find an appropriate
reply to the latter problem are in progress.
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6. Appendix

6.1. Let bσπ and bηπ be the mixed and covariant components of the tensor of curvature
on S. Further let ϕ̃b and Hηb be differentiable vector and tensor fields defined on V
and S. The covariant derivatives taken on the surface with respect to the surface
coordinates and the surface covariant derivatives are denoted by ϕ̃ρ|π, Hηb|π and ϕ̃ρ||π,
Hηb||η, respectively. The following relations hold

ϕ̃ρ;π = ϕ̃ρ|π = ϕ̃ρ||π − b
ρ
πϕ̃

3 , (6.1)

Hηβ;π = Hηβ|π = Hηβ||π − bηπH3β − bβπHη3 , (6.2)
Hη3;π = Hη3|π = Hη3||π + bσπδHησ − bηπδH33 . (6.3)

6.2. Transformation of the volume integral IV1 – see equation (3.2) – requires
– substitution of (3.4a,b) for the variations δtkl and δµab
– performance of integrations by parts making use of the Gauss theorem
and
– an appropriate rearrangement after utilizing the definitions given by (2.11) for
Yxy and Dst.

In addition one should utilize the assumption in Remark 2.4. After performing
the steps listed above we have

IV1 = IV2 + IS1 =

=

∫
V

(Y XY δHXY +DST δF T
S ) dV −

∫
S

(ε3χηγχlδF l
η + ε3πηκ b

π δHηb) dA . (6.4)

This transformation is valid both for the first problem and for the second one.
Integral IStϕ1 of equation (3.2) can be manipulated into a more suitable form by

applying the Stokes theorem:

I
Stϕ
1 =

∮
g

τηϕ̂bδHηb ds+
∫
Stϕ

ε3πηϕ̂b;ηδHηbdA−
∫
Stϕ

ε3πηεbπsδF s
η ϕ̂

b dA .

Substituting (3.5a,b) into the sum I
Stϕ
1 + IS1 and taking the relation S = Stϕ ∪ Stµ

into account we have

I
Stϕ
1 + IS1 = I

Stϕ
2 + I

Stϕ
3 + I

Stµ
1 + I

Stµ
2 + IS2 + IG1 (6.5)

where

I
Stϕ
2 = −

∫
Stϕ

ε3πη
(
κ b
π − ϕ̂b;η

)
δHηb dA , I

Stϕ
3 = −

∫
Stϕ

ε3πηεbπsδr
s
;ηϕ̂

b dA ,

I
Stµ
1 = −

∫
Stµ

ε3πηκ b
π δwb;η dA , I

Stµ
2 = −

∫
Stµ

ε3πηεbπlκ
b
π δr

ldA ,

IS2 = −
∫
S

ε3χηγχlδr
l
;η dA , IG1 =

∮
g

τηϕ̂b
(
δwb;η + εbπlδr

l
)
ds .

(6.6)
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If we now integrate the right sides of IStϕ2 , I
Stµ
1 and IS3 by parts – this transformation

is based upon the Stokes theorem – then perform integrations by parts along the curve
g, we obtain

I
Stϕ
3 + I

Stµ
1 + I

Stµ
2 + IS2 + IG1 = −

∫
Stϕ

ε3ηχ
(
γχl;η + εχlbϕ̂

b
;η

)
δrl dA

−
∫
Stµ

[
n3Y3bδwb + n3D3

lδr
l
]
dA+

∫
g

τη(κ b
η − ϕ̂b;η)δwb ds . (6.7)

6.3. Substituting equation (3.3a) into the integral ISuµ1 and making use of the
Stokes theorem we have:

I
Suµ
1 = I

Suµ
2 + IG2 =

∫
Suµ

ε3χηûl;χδF l
η dA+

∮
g

τηûlδF l
η dA . (6.8)

Recalling the relation S = Suµ∪Stµ the integral taken over S in (6.4) can be resolved
into two parts

IS1 = I
Stµ
3 + I

Suµ
3 =

∫
Stµ

. . . dA+

∫
Suµ

. . . dA . (6.9)

In view of (6.9) it is now our aim to transform the sum

I
Suµ
2 + I

Suµ
3 = −

∫
Suµ

ε3πηκ 3
π δHη3 dA−

∫
Suµ

ε3πηκ β
π δHηβ dA

+

∫
Suµ

(û3;χ − γχ3) ε3χρδF 3
ρ dA+

∫
Suµ

(ûλ;χ − γχλ) ε3χρδF λ
ρ dA (6.10)

into a more appropriate form. This aim can be achieved
– if we introduce the notations

ϕ̃ρ = −ε3χρ (û3;χ − γχ3) ξ ∈ Suµ (6.11)

and

ϕ̃3 = −ε132 (û2;1 − γ12) , ξ ∈ Suµ (6.12)

– if we substitute the representation (as a matter of fact side condition) (4.6b) for
δF 3

ρ ,
– if we write (4.6b) for δF 2

2 in the last integral of equation (6.10),
– if we substitute the right sides of the equations

−
∫
Suµ

ϕ̃ρε3πηδHηρ||π dA =

∫
Suµ

ε3πηϕ̃ρ||πδHηρ dA+

∮
g

τηϕ̃ρδHηρ ds

−
∫
Suµ

ϕ̃3ε3πηδHη3||π dA =

∫
Suµ

ε3πηϕ̃3
||πδHη3 dA+

∮
g

τηϕ̃3δHη3 ds

each obtained by making use of the Stokes theorem
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and
– if we make an appropriate rearrangement.
After performing the aforementioned steps we get

I
Suµ
2 + I

Suµ
3 = I

Suµ
4 + IG3 (6.13)

where

I
Suµ
4 =

∫
Suµ

[
ε312 (û1;1 − γ11) δF 1

2 + ε312 (û2;2 − γ22) δF 2
1

]
dA

−
∫
Suµ

ε312 [û2;1 + û1;2 − (γ12 + γ21)] δF 1
1 dA

+

∫
Suµ

ε3πη
[
ϕ̃ρ||π − b

ρ
πϕ̃

3 − κ β
π

]
δHηρ dA

−
∫
Suµ

ε3πη
[
ϕ̃3
||π − bρπϕ̃

ρ − κ 3
π

]
δHη3 dA (6.14a)

and
IG3 =

∮
g

τηϕ̃ρδHηρ ds+
∮
g

τηϕ̃3δHη3 ds . (6.14b)

6.4. The integral

I
Stµ
3 = −

∫
Stµ

(ε3χηγχlδF l
η + ε3πηκ b

π δHηb) dA

can be manipulated into the form

I
Stµ
3 = I

Stµ
4 + IG4 (6.15)

where

I
Stµ
4 = −

∫
Stµ

[
n3Y3bδwb + n3D3

lδr
l
]
dA (6.16a)

and

IG4 =

∮
g

τηγηlδr
l
b ds+

∮
g

τηκ b
η δwb ds (6.16b)

if we substitute (4.4)1,2 for δF l
η and δHηb and then perform integrations by parts –

the latter step is based on the Stokes theorem.
The sum of the line integrals IG3 + IG4 can be cast into the final form

IG2 +IG3 +IG4 = −
∮
g

(
dϕ̃b

ds
−τηκ b

η )δwb ds−
∮
g

[
dũb
ds
− τη

(
γηb + εηb3ϕ̃

3
)]
δrλ ds (6.17)

if we substitute (4.4)1,2 for δF l
η and δHηb and then perform integrations by parts

in order to remove the covariant derivatives from the integrand obtained after the
substitution.
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Abstract. The present paper is devoted to the boundary contour method for plane problems
in the dual system of elasticity. It has been shown that the integrals on the right side of the
corresponding boundary integral equations are divergence free in the dual system provided
that the unknown functions satisfy the field equations. Consequently these integrals can
be given in closed form if appropriate shape functions have been chosen to approximate
the unknown functions on the contour. Numerical examples prove the effi ciency of this
technique.

1. Introduction

It has been proved in the article [1] by A. Nagarajan, E. Lutz and S. Mukherjee
that the integrand of the direct boundary element method is divergence free in the
primal system of the two and three-dimensional elasticity theory. The authors of
[1] have come to the conclusion that the numerical solution of three-dimensional
problems require the calculation of line integrals instead of surface integrals, while for
planar problems evaluation of functions should be performed instead of calculating
line integrals. Article [1] supposes linear approximation. The accuracy is greatly
increased if one uses quadratic elements [2]. This method can also be employed for
rewriting hypersingular integral equations into boundary contour equations. With
this technique one can compute stresses and can solve shape optimization problems
in two dimensions [3].

The boundary integral equations of the direct method in the dual system of elas-
ticity and for plane problems can be found in a thesis [4]. In view of the formulation
presented in [4] there arises the question if it is possible to repeat the line of thought
leading to the boundary contour method in a dual formulation as well. The reply to
this question is yes and the main result of the present paper is a dual formulation
similar, as regard its main features, to that given in paper [1].

The paper is organized into seven sections. Section 2 is devoted to some prelim-
inaries. It is proved in Section 3 that the integrand of the direct boundary element
method is divergence free in the dual system of elasticity. In addition we have deter-
mined the corresponding shape functions provided that the approximation is linear.
Discretized equations are set up in Section 4. The aim is to prepare an algorithm for
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our computations. Section 5 is devoted to the question of how to compute stresses at
internal points. Section 6 presents some simple numerical examples. The last Section
is a summary of the conclusions. The paper is also supplemented with an Appendix
in which the shape functions and some manipulations are presented.

2. Fundamental solutions and integral equations of the direct method

Cartesian coordinates and indicial notations are used throughout this paper. {Greek}
[Latin] subscripts have the range {1, 2}, [1, 2, 3], summation over repeated indices is
implied. In accordance with the notations introduced δκλ is the Kronecker symbol,
∂κ stands for the derivatives with respect to xκ and ε3κλ is the permutation tensor.
Fλ stands for the stress functions of order one. In plane components of stresses and
strains are denoted by tκλ and eκλ. If there are body forces, the particular solution

of the equilibrium equations is
o
tκλ. The shear modulus of elasticity and the Poisson

number are denoted by µ and ν, respectively. The rigid body rotation is denoted by
ϕ3.

In the dual system of elasticity plane strain problems are governed by the dual
kinematic equations

tκλ = εκρ3Fλ ∂ρ +
o
tκλ , (2.1)

the inverse of Hook’s law

eκλ =
1

2µ
(tκλ − νtψψδκλ) , (2.2)

the dual balance equations
εκρ3eλκ∂ρ + ϕ3∂λ = 0 (2.3)

(equations of compatibility for a simply connected region) and the symmetry condition

ε3λκtλκ = 0 . (2.4)

For simplicity first we shall consider a simply connected inner region Ai. The contour
Lo of the region Ai can be divided into two parts denoted by Lt and Lu. We shall
assume that [Lt] {Lu} is the union of those arcs on which [stress functions (loaded
arcs)] {displacements} are imposed. These arcs are denoted by Lt2, Lt4 and Lu1, Lu3,
respectively. The corresponding boundary conditions are of the form

Fλ (s) = F̂λ + Cλ(Pti) s ∈ Lti i = 2, 4 (2.5)

and
dûλ
ds

= nρ [ερκ3eκλ − ϕ3δρλ] s ∈ Lu , (2.6)

where F̂λ (s) and ûλ (s) are known functions, while Cλ is an integration constant, the
number of which equals the number of loaded arcs. Here and in the sequel we shall
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assume that there are no body forces. In the absence of body forces

F̂λ(s) =

∫
t̂λ(s)ds , (2.7)

where t̂λ(s) is the stress vector on Lt.
Substituting the dual kinematic equation (2.1) into Hook’s law (2.2) and the result

into the compatibility equations (2.3) we get two scalar equations. These equations
are associated with the symmetry condition, i.e., we have three equations for the
unknowns F1,F2 and ϕ3 a∆− b∂1∂1 −b∂2∂1 −∂1

−b∂2∂1 a∆− b∂2∂2 −∂2
−∂1 −∂2 0

 F1
F2
−ϕ3

 =

 0
0
0

 (2.8)

where

a =
1

2µ
(1− υ) b =

1

2µ
(
1

2
− υ) . (2.9)

Let Dik (i, k = 1, 2, 3) be the differential operator in equation (2.8). Further let uk =
(F1 | F2 | −ϕ3) be the vector of unknowns (or state vector). With these notations
equation (2.8) can be rewritten as

Dikuk = 0 . (2.10)

Let Q(η1, η2) and M(x1, x2) be the source point and the point of effect. The position
vector of M(x1, x2) relative to Q(η1, η2) is rλ = xλ − ηλ. The distance between Q
and M is R = R (M,Q) = |r|. For a two point function f(R) it holds that

∂

∂xλ
f(R) = − ∂

∂ηλ
f(R) . (2.11)
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Let ei(Q) be a unit vector at Q. Solution to the differential equation

M

Dikuk + δ (M −Q) ei(Q) = 0 (2.12)

is referred to as fundamental solution. Here the letter M over Dik denotes that the
derivation is taken with respect to the point M. It can be shown that

uk = Ukl(M,Q)el(Q) , (2.13)

where

[Ukl(M,Q)] =
µ

4π(1− ν)
×

×


−2 lnR− 3− 2

r2r2
R2

2
r1r2
R2

2

µ
(1− ν)

r1
R2

2
r2r1
R2

−2 lnR− 3− 2
r1r1
R2

2

µ
(1− ν)

r2
R2

2

µ
(1− ν)

r1
R2

2

µ
(1− ν)

r2
R2

0


(2.14)

For our later considerations we shall introduce the notation

tλ = −duλ
ds

. (2.15)

The vector tλ is opposite to the derivative of the displacement vector with respect to
the arc coordinate s measured on the contour Lo. Omitting the long formal transfor-
mations for the vector tλ calculated from the fundamental solution we get [4]

tλ(
o

M) = el(Q)Tlλ(
o

M,Q) (2.16)

where

Tlλ(
o

M,Q) =
1

8π(1− ν)R2
×

×



n1r1

(
4
r22
R2
− 2(3− 2v)

)
+n2r2

(
4
r22
R2
− 2(3− 2v)

) −n2r1
(

4
r22
R2

+ 2(1− 2v)

)
−n1r2

(
4
r21
R2
− 2(1− 2v)

)

−n1r2
(

4
r21
R2

+ 2(1− 2v)

)
−n2r1

(
4
r22
R2
− 2(1− 2v)

) n2r2

(
4
r21
R2
− 2(3− 2v)

)
+n1r1

(
4
r21
R2
− 2(3− 2v)

)

−n1
2

µ
(1− ν)

r21 − r22
R2

−n2
4

µ
(1− ν)

r1r2
R2

−n1
4

µ
(1− ν)

r1r2
R2

+n2
2

µ
(1− ν)

r21 − r22
R2



(2.17)
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Here and in the sequel the small circle over the letters Q and M shows that the
corresponding point is located on the contour. The normal nλ is taken at the point
o

M .

If we take two elastic states of the region Ai —the second state is denoted by asterisk
which is placed over the corresponding letters — then the so-called dual Somigliana
identity can be written as∫

Ai

[
uk(Dkl

∗
ul)−

∗
uk (Dklul)

]
dA =

∮
Lo

[uλ
∗
tλ −

∗
uλtλ] ds . (2.18)

If the quantities denoted by asterisks are from the fundamental solution and Q ∈ Ai,
then exploiting the above, we have the first dual Somigliana formula

uk(Q) =

∮
Lo
Ukλ(

o

M,Q)tλ(
o

M) ds o
M
−
∮
Lo
Tkλ(

o

M,Q)uλ(
o

M) ds o
M
. (2.19)

If Q =
o

Q ∈ ∂Ai = Lo, then equation (2.18) yields the second dual Somigliana formula

cκλ(
o

Q)uλ(
o

Q) =

∮
Lo
Ukλ(

o

M,
o

Q)tλ(
o

M) ds o
M
−
∮
Lo
Tkλ(

o

M,
o

Q)uλ(
o

M) ds o
M
, (2.20)

where cκλ(
o

Q) depends on the angle formed by the tangents to the contour at
o

Q. The
above integral equation is that of the direct method in the dual system of elasticity.
Finally if Q /∈ (Ai ∪ Lo), then the left side of the identity (2.18) is identically equal
to zero and the third dual Somigliana formula can immediately be set up

0 =

∮
Lo
Ukλ(

o

M,Q)tλ(
o

M) ds o
M
−
∮
Lo
Tkλ(

o

M,Q)uλ(
o

M) ds o
M
. (2.21)

3. Fundamental relations for linear approximation

We shall assume that the stress functions uλ fulfill the basic equations and tλ is calcu-
lated from uλ. Under this condition the opposite to the derivative of the displacement
vector can be obtained from (2.6):

tλ(
o

M) = −nρ(
o

M)

(
ερπ3eπλ

o

(M)− δρλϕ3
o

(M)

)
. (3.1)

We denote again the quantities derived from the fundamental solution by asterisks.

Let
∗
ekπλ(

o

M,Q) be the strain tensor that follows from the stress function vec-

tor
∗
uλ(

o

M) = Ukλ(
o

M,Q). It is also clear that the corresponding rotation
∗
ϕ3(

o

M) is

Uk3(
o

M,Q). Making use of these notations and the relation (3.1) we can write

∗
tλ(

o

M,Q) = Tkλ(
o

M,Q) = −nρ(
o

M)

(
ερπ3

∗
ekπλ(

o

M,Q)− δρλUk3(
o

M,Q)

)
(3.2)
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for the derivative −d
∗
uλ/ds. Upon substitution of

∗
uλ(

o

M) for uλ and
∗
tλ(

o

M,Q) for tλ
in (2.19) we have, after renaming some dummy indices, that

Iκ(Q) =

∮
Lo
nρ(

o

M)

(
−Uκλ(

o

M,Q)

(
ερπ3eπλ

o

(M)− δρλϕ3
o

(M)

)
+

+

(
ερπ3

∗
eκπλ(

o

M,Q)− δρλUκ3(
o

M,Q)

)
uλ(

o

M)

)
ds o
M
. (3.3)

Since those terms for which k = 3 in (2.19) will play no role in the further transfor-
mation we have dropped them by writing κ for k.

Let Pκρ be the coeffi cient of nρ(
o

M) in (3.3):

Pκρ(
o

M) = Pκρ(
o

M,Q) = −Uκλ(
o

M,Q)

(
ερπ3eπλ

o

(M)− δρλϕ3
o

(M)

)
+

+

(
ερπ3

∗
eκπλ(

o

M,Q)− δρλUκ3(
o

M,Q)

)
uλ(

o

M) . (3.4)

By using Gauss’s theorem the line integral Iκ(Q) can be transformed into a surface
integral:

Iκ(Q) =

∮
Lo
Pκρ(

o

M,Q)nρ(
o

M)ds o
M

=

∫
Ai

Pκρ(M,Q)
M

∂ ρdAM , (3.5)

where, as can be seen after some hand-made calculations — see the Appendix for
details —it holds

Pκρ(M,Q)
M

∂ ρ = 0 , (3.6)

that is, there exists a function φκ (M,Q) such that

Pκ1 =
∂φκ (M,Q)

∂x2
and Pκ2 = −∂φκ (M,Q)

∂x1
. (3.7)

This means that the integrand Pκρ is divergence free.

Taking now the line integral between the contour points
o

M1 and
o

M2 and using the
above results we get the desired solution

∫ o
M2

o
M1

Pκρ(
o

M,Q)nρ
o

(M)ds o
M

=

∫ o
M2

o
M1

τπ
o

(M)φκ(
o

M,Q)
M

∂πds o
M

= φκ(
o

M2, Q)−φκ(
o

M1, Q) .

(3.8)
When deriving the above relations we have not taken the position of Q relative to the
region Ai into account. In other words the above results remain valid for the second
and third dual Somigliana formulae as well.

Assume that the contour is divided into nbe boundary elements. The extremities of
the elements are locally denoted byM1 andM2. (Here and in the sequel for simplicity



Boundary contour method for plane problems in dual system 211

we have omitted the zero standing over the letter M .) Then integrating element by
element we have

Iκ(Q) =

nbe∑
e=1

[φeκ(M2, Q)− φeκ(M1, Q)] (3.9)

where the upper index e shows that φκ is taken on the e-th element.

Let K be the middle point of the element e. Over the element and its neighbor-
hood we shall approximate the unknown vector uk by linear functions for the stress
functions, and by a constant for the rigid body rotation, i.e., F1F2

−ϕ3

e =

 a1 + a2x1 + a3x2
a4 + a5x1 − a2x2

a6

 . (3.10)

The constants
(ae)

T
=
[
a1 a2 a3 a4 a5 a6

]
(3.11)

in (3.10) are related to the six physical quantities

(pe)
T

=
[
F M1
1 F M1

2 tK1 tK2 F M2
1 F M2

2

]
(3.12)

taken on the element e via the equation

Teae = pe , (3.13)

where the transformation matrix Te depends only on the nodal coordinates and the
outward unit normal at K. After some hand-made calculations we have

Te =



1 xM1
1 xM1

2 0 0 0

0 −xM1
2 0 1 xM1

1 0

0
1

2µ
nK1

1

2µ
(1− ν)nK2 0

1

2µ
νnK2 nK1

0 − 1

2µ
nK2

1

2µ
νnK1 0

1

2µ
(1− ν)nK1 nK2

1 xM2
1 xM2

2 0 0 0

0 −xM2
2 0 1 xM2

1 0


. (3.14)

Since M1, M2 and K are different, the matrix Te is invertible.

For our later considerations a new local coordinate system (η1, η2), centered at the
point M1(x1, x2) is introduced. The axes η1 and η2 are parallel to the axes x1 and x2
of the global coordinate system. For the shape functions in the local system we get
from (3.10) that F1F2

−ϕ3

e =

 (a1 + a2x1 + a3x2) + a2η1 + a3η2
(a4 + a5x1 − a2x2) + a5η1 − a2η2

a6

 =

 â1 + a2η1 + a3η2
â4 + a5η1 − a2η2

a6

 .
(3.15)
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The vector of constants in the local system is denoted by

(âe)
T

=
[
â1 a2 a3 â4 a5 a6

]
. (3.16)

It can be shown with ease that the following relation holds

âe = B ae , (3.17)

where the transformation matrix B depends only on the coordinates x1 and x2 of the
point M1:

B =


1 xM1

1 xM1
2 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

0 −xM1
2 0 1 xM1

1 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (3.18)

Relation (3.15) is a linear combination of those linearly independent state vectors
which satisfy the fundamental equation:

uT1 =
[

1 0 0
]
, uT2 =

[
η1 −η2 0

]
,

uT3 =
[
η2 0 0

]
, uT4 =

[
0 1 0

]
, (3.19)

uT5 =
[

0 η1 0
]
, uT6 =

[
0 0 1

]
.

The functions φκi that follow from the vectors ui (i = 1, . . . , 6) have been calculated
by making use of equation (3.7). These functions are given in the Appendix. In what
follows we shall assume that the origin of the local coordinate system is located at
the collocation point Qj .

4. Discretized equations

The contour Lo of the region Ai is discretized into nbe boundary elements —see Figure
2. The boundary element method equations are enforced only at the end points M1

and M2 of the elements. Turning to global numbering we denote these points by Qj
where j = 1, . . . , nbe. Let uTj = [u1(Qj) | u2(Qj)] be the matrix of stress functions.
The matrix C is defined by the equation

C(Qj) =

[
c11(Qj) c12(Qj)
c21(Qj) c22(Qj)

]
. (4.1)

Exploiting equations (3.13) and (3.17) the boundary integral equation (2.19) can be
manipulated into the form

C(Qj)uj =

nbe∑
e=1

Φje Bj (Te)
−1

pe j = 1, . . . , nbe , (4.2)
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x2

x1

iA

1, 2M nbeM1

1, 2M 1M2

1
,

2M 2M3

Knbe

K2

K1

Mnbe

1

Figure 2.

where

Φje =

[
φje11 (M2)− φje11 (M1) φje12 (M2)− φje12 (M1) ... φje16 (M2)− φje16 (M1)

φje21 (M2)− φje21 (M1) φje22 (M2)− φje22 (M1) ... φje26 (M2)− φje26 (M1)

]
.

(4.3)
With the notation

Mje = Φje Bj (Te)
−1 (4.4)

equation system (4.2) can be cast into the form
M11 M12 . . . M1nbe

M21 M22 . . . M2nbe

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mnbe1 M22 . . . Mnbenbe


︸ ︷︷ ︸

2nbe×6nbe


p1

p2

. . .
pnbe


︸ ︷︷ ︸
2nbe×1

=


C (Q1) u1
C (Q2) u2
· · ·

C (Qnbe) unbe


︸ ︷︷ ︸

2nbe×1

, (4.5)

where (
p1
)T

=
[
F1M1
1 F1M1

2 t1K1 t1K2 F1M2
1 F1M2

2

](
p2
)T

=
[
F2M1
1 F2M1

2 t2K1 t2K2 F2M2
1 F2M2

2

] (4.6a)

and

(pnbe)
T

=
[
FnbeM1
1 FnbeM1

2 tnbeK1 tnbeK2 FnbeM2
1 FnbeM2

2

]
. (4.6b)

With regard to the assumed continuity of the stress functions at the points Qj we
have

FnbeM2

λ = F1M1

λ , FeM2

λ = F (e+1)M1

λ e = 1, . . . , nbe − 1 . (4.7)
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Introducing the notation

Me =


M1e

M2e

· · ·
Mnbee

 e = 1, . . . , nbe (4.8)

and taking equation (4.7) into account one can see that the last two columns of the
matrix Me and the first two columns of the next matrix Me+1 are multiplied, due to
the continuity, by the same Fλ. Accordingly, the corresponding columns can be added
to each other. It is also obvious that the last two columns of the matrix Mnbe should
be added to the first two columns of the matrix M1. After these transformations the
size of the equation system (4.5) has been decreased. Finally we have

H f = q , (4.9)

where H is a matrix with size (2nbe ∗ 4nbe),

f =
[
F1M1
1 F1M1

2 t1K11 t1K12 F2M2
1 F2M2

2 . . . FnbeMnbe
1 FnbeMnbe

1

]
(4.10)

is the vector of physical quantities and q is the right side of equation system (4.5).

It should be noted that the functions φ11, φ21, φ14 and φ24 which have been
obtained from the constant shape functions, are singular when the point of effect M
approaches the source point Qj because the distance between the two points tends to
zero. In order to avoid strongly singular integrals we should take into account that

tλ(
o

M) = 0 if uλ(
o

Q) = uλ(
o

M) = constant. Under this condition equation (2.20) yields

cκλ(
o

Q)uλ(
o

Q) =

nbe∑
e=1

∫
Le

nρ(
o

M)

(
ερπ3

∗
eκπλ(

o

M,
o

Q)− δρλ
∗
Uκ3(

o

M,
o

Q)

)
uλ(

o

Q) ds o
M
.

(4.11)
Subtracting now equation (4.11) from (2.20) we obtain

0 =

nbe∑
e=1

∫
Le

−nρ(
o

M)Uκλ(
o

M,
o

Q)

(
ερπ3eπλ(

o

M)− δρλϕ3(
o

M)

)
+ (4.12)

+nρ(
o

M)

(
ερπ3

∗
eκπλ(

o

M,
o

Q)− δρλ
∗
Uκ3(

o

M,
o

Q)

)(
uλ(

o

M)− uλ(
o

Q)

)
ds o
M
.

After this transformation cκλ(
o

Q) has also been eliminated from the equation. Equa-
tion (4.12) differs from equation (2.20) in the extra term

nρ(
o

M)

(
ερπ3

∗
eκπλ(

o

M,
o

Q)− δρλ
∗
Uκ3(

o

M,
o

Q)

)
uλ(

o

Q) . (4.13)

This term is divergence free, therefore the new coeffi cient of nρ(
o

M) on the right side

is also divergence free. Thus, for this purpose, uλ(
o

Q) can be regarded as a constant.
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If we consider the j-th element which involves the source point
o

Q at its first nodal

point M1, then these constants are denoted by u1(
o

Q) = âj1 and u2(
o

Q) = âj4 in the
local coordinate system. With these notations for the e-th element we get(

uλ
o

(M)− uλ
o

(Q)

)e
= Ue (η1, η2) ãe (4.14)

where the columns of Ue (η1, η2) are formed by the vectors ui (i = 1, . . . , 6). The
vector of constants ãe can now be rewritten as

(ãe)
T

=
[ (

âe1 − â
j
1

)
ae2 ae3

(
âe4 − â

j
4

)
ae5 ae6

]
. (4.15)

φ11, φ21, φ14 and φ24 are singular when the point of effect approaches the source
point, but in this case âe1 = âj1 and â

e
4 = âj4, therefore we can avoid the evaluation

of these potential functions. Consequently the line of thought presented in Section
3 can be repeated word by word and it turns out that the functions φκi will remain
unchanged. Finally the discretized equation corresponding to the equation (4.12)
assumes the form

0 =

nbe∑
e=1

Φje ãe j = 1, . . . , nbe (4.16)

where the elements of the matrix Φje are those integrals obtained from the shape
functions. The structure of the matrix Φje has already been presented —see equation
(4.3).

The next transformation becomes clearer, if the equation (4.16) is written out in
full: 

Φ11 Φ12 . . . Φ1nbe

Φ21 Φ22 . . . Φ2nbe

. . . . . . . . . . . . . . . . . . . . . . . . . .
Φnbe1 Φ22 . . . Φnbenbe


︸ ︷︷ ︸

Φ


c̃1

c̃2

. . .
c̃nbe

 =


0
0
· · ·
0

 . (4.17)

Clearly, if the j-th element (j is the equation counter or, which is the same, the block
row counter) coincides with the e-th element (e is the element counter or which is
the same the block column counter), then we are in the main diagonal, i.e., the j-th
element involves the source point, consequently âe1− â

j
1 = 0 and âe4− â

j
4 = 0. Thus the

singular terms φjjκ1(M1), φ
jj
κ4(M1) of the matrix φ

jj
κi(M1) drop out and the other terms

in matrix φjjκi(M1) have already been zero. With regard to the assumed continuity
of the stress functions at the nodal points, the previous establishment is true for the
matrix φjj−1κi (M2).

Decompose ãe into two parts. The first part is the vector âe, the part left is denoted
by

(de)
T

=
[
−âj1 0 0 −âj4 0 0

]
. (4.18)
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The point M2 of the element e coincides with the point M1 of the element e + 1.
Assuming continuity it follows that φeκi(M2) = φe+1κi (M1), therefore we can write

0 =

nbe∑
e=1

Φje de j = 1, . . . , nbe . (4.19)

With regard to equation (4.19), the following relations hold for the diagonal blocks
of the matrix Φ :

Φkk =

[
φkk11 (M2) φkk12 (M2) ... φkk16 (M2)
φkk21 (M2) φkk22 (M2) ... φkk26 (M2)

]
k = 1, . . . , nbe . (4.20a)

In the same way we have

Φk,k−1 =

[
−φk,k−111 (M1) −φk,k−112 (M1) ... −φk,k−116 (M1)

−φk,k−121 (M1) −φk,k−122 (M1) ... −φk,k−126 (M1)

]
k = 2, . . . , nbe

(4.20b)
and

Φ1,nbe−1 =

[
−φ1,nbe−111 (M1) −φ1,nbe−112 (M1) ... −φ1,nbe−116 (M1)

−φ1,nbe−121 (M1) −φ1,nbe−122 (M1) ... −φ1,nbe−126 (M1)

]
. (4.20c)

Making use of equations (4.20a,b,c), (3.13) and (3.17), equation system (4.17) can be
manipulated into the form

0 =

nbe∑
e=1

Φje âe =

nbe∑
e=1

Φje Bj
(
T−1

)e
pe j = 1, . . . , nbe . (4.21)

We remark that this equation is originated from the second dual Somiglina formula
(2.20). Introducing the notation

Nje = Φje Bj (Te)
−1 (4.22)

the equation system (4.21) can be written as

nbe∑
e=1

Njepe = 0e j = 1, . . . , nbe . (4.23)

It has not been taken into account so far that the matrices pe should meet the
continuity condition (4.7). Under this condition the line of thought leading to (4.9)
can be repeated word by word. Finally we get

K f = 0 , (4.24)

where K is a matrix with size (2nbe ∗ 4nbe) and f denotes the vector of physical
quantities —see (4.10) for details.
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5. Stresses at internal points

If the physical quantities at the nodal points are known, then for computing the vec-
tors of constants we should apply the equation

ae = [Te]
−1

pe . (5.1)

With the knowledge of the vector ae we can compute the stress functions at an
arbitrary point. Making use of the equation (2.19) and applying the notations we
have introduced, equation (2.19) can be manipulated into the form

u(Q) =

nbe∑
e=1

ΦQe BQ ae (5.2)

where BQ is the transformation matrix corresponding to the internal source point Q.
Recalling equation (2.1) for the stress components at Q we can write

σ11 =
∂u1(Q)

∂x2
, τ12 =

∂u2(Q)

∂x2
,

τ21 = −∂u1(Q)

∂x1
, σ22 = −∂u2(Q)

∂x1
.

(5.3)

Derivatives of the stress functions are obtained from equation (5.2)

u(Q)∂xα =

nbe∑
e=1

[
(ΦQe∂xα) BQ + ΦQe (BQ∂xα)

]
ae . (5.4)

Using equation (2.11) the above equation (5.4) can be rewritten as

u(Q)∂xα =

nbe∑
e=1

[
ΦQe (BQ∂xα)− (ΦQe∂ηα) BQ

]
ae . (5.5)

6. Examples

The main step of the numerical computations consists in solving the equation sys-
tem (4.24). It is worthy of repeating that the matrix K is not a square one and the
vector f involves the physical quantities. The total number of physical quantities is
4nbe on the contour Lo. Some of them are known from the boundary conditions.
(Three physical quantities can be prescribed from the six possible physical quantities
on each element. The total number of the physical quantities that can be prescribed
is, however, less than 3 × 2nbe since continuity must hold at the extremities.) The
columns of the matrix K that are multiplied by the prescribed quantities should be
grouped on the right side of the equation to get the right side of the equation system
to be solved. We should know at least 2nbe physical quantities from the boundary
conditions to get a solvable linear equation system.
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In case of mixed boundary value problems we have more equations than the number
of unknowns. If we regard some of the prescribed quantities as unknowns, then we
can obtain a solvable linear equation system.

Two simple numerical examples are presented. The material properties (µ = 8 ·
104 MPa, ν = 0.3) are the same for each example.

Problem 1. First we shall consider a circular region with radius r0 = 10 mm.
On the arc BC of the contour for which the polar angle ϕ ∈ [0, π] the normal
stress is σo = 100 MPa and there is no shear stress. On the arc CB of the con-
tour uo = (1− 2ν)σoro/2µ is the radial displacement and there is no displacement in
the circumferential direction —see Figure 3. In this case

F1 = σox2 = σor sinϕ , F2 = −σox1 = −σor cosϕ ,

σ11 = σ22 = σo = 100 MPa , τ12 = 0 ,

u1 =
1− 2ν

2µ
σor sinϕ , u2 =

1− 2ν

2µ
σor cosϕ .

The exact solutions for this problem are given by the equations

u1 = F1 = σoro sinϕ , u2 = F2 = −σoro cosϕ ,

t1 =
1− 2ν

2µ
σo sinϕ , t2 = −1− 2ν

2µ
σo cosϕ .

where r and ϕ are polar coordinates. One can check with ease that these solutions
determine a homogenous state of stress. At the internal points the exact solutions for
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the stresses are as follows:

σ11 = σ22 = σo = 100 [MPa], τ12 = 0 .

Table 1 below represents numerical results at various internal points.

Table 1: Solutions for stress components

x1 [mm] x2 [mm] σ11 [MPa] τ12 [MPa] σ22 [MPa]

-8.00 0.00 100.00 1.69·10−15 100.00

-6.00 0.00 100.00 7.61·10−15 100.00

-4.00 0.00 100.00 1.07·10−14 100.00

-2.00 0.00 100.00 1.12·10−14 100.00

0.00 0.00 99.99 0.08 100.00

2.00 0.00 100.00 1.69·10−13 100.00

4.00 0.00 100.00 0 100.00

5.00 5.00 100.00 5.73·10−15 100.00

5.00 7.00 100.00 1.73·10−14 100.00

Problem 2. The width and length of the rectangle ABCD in plane strain are
20 mm and 100 mm, respectively. The rectangle is subjected to a horizontal and
uniform load σo = 200MPa on the line BC. The upper and lower sides are, however,
unloaded. The right end of the region is supported as shown in Figure 3. In this case
the solutions computed are comparable with the solutions σ11 = 200MPa, τ12 = 0
and σ22 = 0 valid for a bar in tension. Table 2 below contains numerical results for
the stresses at some internal points located on the line n− n (x1 = 50 mm).

Table 2: Solutions for stress components

x1 [mm] x2 [mm] σ11 [MPa] τ12 [MPa] σ22 [MPa]

50.00 2.00 200.00 7.42·10−17 -3.46·10−15

50.00 4.00 200.00 -1.38·10−17 2.53·10−15

50.00 6.00 200.00 -7.63·10−17 -4.73·10−15

50.00 8.00 199.99 8.60·10−16 3.88·10−16
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7. Conclusion

The boundary contour method for plane problems of elasticity in a dual formulation
(regarding the stress functions of order one and the rigid body rotation as unknowns)
is presented in this paper. After having shown what form the Somigliana formulae
have in the dual system of elasticity we proved that the integrand of the direct method
is divergence free like the case of primal system [1,2]. Making use of this property an
implementation is carried out with linear approximation and the idea that there are
no stresses due to constant stress functions has also been taken into account. The
corresponding shape functions φki are also given. It is an advantage of the resulting
system of linear equations that there is no need to perform numerical integration when
one computes the coeffi cient matrix and the right side. It is a further advantage that
computation of stresses on the boundary elements requires derivations, that is, on the
contrary to conventional BEM, one can avoid computation of singular integrals. Two
simple examples are given to illustrate the applicability of the method.

It is the aim of our further investigations to apply quadratic approximation and to
clarify how to use the method for outer regions if there is a constant stress state at
infinity. This work is in progress.

8. Appendix

The compatibility equation and the symmetry conditions for the elastic state
∗
uλ

are of the form [
ερπ3

∗
eκπλ(

o

M,Q)− δρλUκ3(
o

M,Q)

]
M

∂ ρ = 0 (8.1)

and
ελπ3

∗
tκπλ = 0 (8.2)

Since
∗
tκπλ and eκλ are ’elastic states’we can write

∗
tκπλeπλ = tπλ

∗
eκπλ (8.3)

With regard to (2.3), (2.4), (8.1), (8.2) and (8.3) it follows from (3.6) that

Pκρ(M,Q)
M

∂ ρ = −
(
Uκλ(

o

M,Q)
M

∂ ρ

)(
ερπ3eπλ

o

(M)− δρλϕ3
o

(M)

)
−

−Uκλ(
o

M,Q)

([
ερπ3eπλ

o

(M)− δρλϕ3
o

(M)

]
M

∂ ρ

)
+

+

([
ερπ3

∗
eκπλ(

o

M,Q)− δρλUκ3(
o

M,Q)

]
M

∂ ρ

)
uλ(

o

M)+

+

(
ερπ3

∗
eκπλ(

o

M,Q)− δρλUκ3(
o

M,Q)

)(
uλ(

o

M)
M

∂ ρ

)
=
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= −
(
Uκλ(

o

M,Q)
M

∂ ρ

)
ερπ3eπλ

o

(M) + ερπ3
∗
eκπλ(

o

M,Q)

(
uλ(

o

M)
M

∂ ρ

)
+

+

(
Uκλ(

o

M,Q)
M

∂ ρερπ3

)
ελπ3ϕ3(

o

M)−
(
uλ(

o

M)
M

∂ ρερπ3

)
ελπ3Uκ3(

o

M,Q) =

= −
∗
tκπλeπλ + tπλ

∗
eκπλ + ελπ3

∗
tκπλϕ3(

o

M)− ελπ3tκπ
∗
ϕ3(

o

M) = 0

In other words Pκρ is divergence free.

Without entering into details, below we list the shape functions:
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Abstract. An anisotropic numerical contact algorithm has been developed for real
composite-steel surfaces in sliding contact. The results were based on measured surface
roughness data, under conditions of different fibre orientations relative to the sliding direc-
tion. The location of the real contact area at certain positions of sliding contact could be
predicted. These results can be considered as input data for contact temperature calculations
and wear predictions.

Keywords : Anisotropic numerical contact algorithm, sliding contact, real contact area

1. Introduction

Sliding contact of metal bodies having real engineering surfaces can usually be char-
acterised as load transmission through isolated contact spots forming the real contact
area. Over the real contact area the real contact pressure is much higher than the
nominal contact pressure. The denominations are shown in Figure 1. Sliding contact

A A

A A

n c

e r

(nominal) (contour)

(examined) (real)

Figure 1. Definitons of different contact areas
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of composite-steel bodies produces a slightly different behaviour due to the anisotropy
of the composite material, the fibre-matrix structure, etc. At the starting moment
of the wear process an asperity type contact may dominate the situation, but after a
certain running-in period other conditions can be found, such as the formation of a
flat layer of debris material due to matrix wear and worn fibre particles. In addition,
in the case of unidirectional composites, the fibre orientation, relative to the sliding
direction, also has a dominant effect on the wear mechanism.

To evaluate the contact parameters of rough surfaces different models were devel-
oped in the last two decades [1-6]. In the earlier analytical and numerical solutions
elastic models were applied, later elastic-plastic or plastic models with different plas-
tic limit pressure (p∗) conditions [2, 6] were introduced. In these considerations p∗

was equal to (1.6,...,3.0)σY , where σY is the yield strength of the material.

Anisotropic contact problems were studied in [7-9]. In these works the plane of
isotropy was oriented normal to the plane of contact. Váradi et al. extended their
isotropic contact algorithm [5] to solve anisotropic contact problems [10] by using
the influence matrix approach where the elements of the anisotropic influence matrix
were obtained by coupled FE models. The approximate coupling technique consid-
ered only the displacements along the coupled surfaces. Their numerical algorithm
took into consideration the non-linear material behaviour of a composite structure,
based on plastic limit pressure condition, using an approximate approach. Ovaert and
Ramachandra [11] used a 2D contact model to estimate the mean asperity contact
pressure and the real area of contact of the worn polymer specimens after sliding
against hardened steel disks.

Table 1. Mechanical and thermal properties of the materials in sliding
contact E, G and ν are the anisotropic elastic material properties, σY is
the yield strength of the isotropic materials)

CF/PEEK
Vf = 0.6 Steel [13] CF[14] PEEK [14] Composite

(calculated)
E11 [MPa] 235000 142440
E22 [MPa] 210000 15000 3600 6618
E33 [MPa] 15000 6618
G12 [MPa] 6432 2932
G13 [MPa] 80769 6432 1286 2932
G23 [MPa] 5357 2196

ν12 0.166 0.26
ν13 0.3 0.166 0.4 0.26
ν13 0.4 0.507
σY 1000 119

The present paper aims to study the real contact area formation between composite-
steel surfaces in sliding contact at the very beginning of the wear process assuming
asperity contact. The evaluation of the real contact area is the first step to obtain
reliable contact temperature results and therefore data for realistic wear prediction at



Contact analysis of composite and steel surfaces in sliding contact 225

a later state of the study. The contact analysis of rough surfaces requires measured
surface roughness data obtained by laser profilometry.

The composite material is a unidirectional continuous carbon fibre-polyetheretherke-
tone (PEEK) system, having a fibre volume fraction of =0.6 (XC-2, ICI Fiberite,
USA). The material properties of the composite, together with the properties of the
steel, the carbon fibres and the PEEK, respectively, are collected in Table 1, for
further numerical evaluations. Anisotropic material properties are calculated by rule-
of-mixture type equations.

2. The measured surface pairs

To study the real contact area formation between sliding composite-steel surfaces,
pin-on-disk experiments were carried out using CF/PEEK pins prepared and located
in normal (N), parallel (P) and anti-parallel (AP) fibre orientations relative to the
sliding direction. The disk was made of 100Cr6 steel.

Figure 2. Surface roughness measurement for worn pin surface in the case of N-fibre
orientation

Figure 3. Surface roughness measurement for worn pin surface in the case of P-fibre
orientation
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Figure 4. Surface roughness measurement for worn pin surface in the case of
AP-fibre orientation

Figure 5. Surface roughness measurement for the steel disk

For the different fibre orientations worn surface pairs were measured by laser pro-
filometry. The wear test run 10 seconds with a nominal pressure of p̄ = 1 MPa and
a sliding speed of v = 1 m/s. The reason of the short running time was to keep the
asperity contact situation before the transfer film layer of the matrix material started
to form.

In each case the measured area was 0.5 × 0.5 mm2 and the resolution was 500
points/mm. Figures 2 to 5 show the measured surface segments for some representing
surface types.

3. Contact analysis of real surfaces

3.1. Measured surfaces Using the measured surface roughness data, a surface
segment of 0.1 × 0.1 from the measured pin surface and a segment of 0.1 × 0.2 from
the measured steel disk surface were selected for sliding contact evaluations. The
arrangement is shown in Figure 6.
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Pin Surface

25   mµ

Figure 6. The measured surfaces of pin and disk for simulation of the real contact
areas in sliding

3.2. 3D anisotropic numerical contact algorithm. The present algorithm
is based on an elastic contact solution for rough surfaces described in [5]. This al-
gorithm has an approximate elastic-plastic version using the plastic limit pressure
condition of p∗ = 3.0σY , presented also in [5]. This approximate technique gives
results in the range of larger plastic deformations, which are in good agreement with
the elastic-plastic finite element (FE) evaluation of the same problem. In the range
of the limited plastic deformation, however, the accuracy of the numerical contact
algorithm is reduced. To improve the accuracy a new version of this algorithm has
been developed and verified by a non-linear FE solution.

Compared to the original version of the contact algorithm [5], the displacement
and stress type contact conditions are the same, whereas the plastic limit pressure
condition will not be constant. Referring to [2], in the case of isotropic materials the
first plastic deformation starts at p∗ = 1.6σY and its maximum is p∗ = 3σY in the
range of larger plastic deformations. In the case of limited plastic deformation let’s
consider p∗ = 2σY as a good ”starting value”(see comments on FE results at the end
of this Section).

Considering a single asperity at first, F is the total force transferred in this vicinity.
F0 is the limiting load, at which the maximum contact pressure, in the ”middle”of
the contact area reaches the value of p∗min = 2σY . This results in the beginning of
local plastic deformation. If F is much higher than F0 a high amount (”large”) plastic
deformation will represent this case. Based on the results in [2] and the present FE
elastic-plastic verification, about 25F0 is the load level that represents the beginning
of large plastic deformation where p∗ = 3σY . Between these two limit pressure values
linear interpolation is assumed, i.e. the actual limit pressure conditions are as follows:

p∗ =

 p∗min +
p∗max − p∗min
25F0 − F0

(F − F0) if F0 ≤ F ≤ 25F0

p∗min if F > 25F0
(3.1)
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To be able to evaluate (within an acceptable accuracy) the limiting load F0 for each as-
perity in contact, the approximate elastic-plastic contact algorithm solves the contact
problem by using increasing loads during the subsequent calculations. The evaluated
F0 values are assigned to each asperity in contact, and at higher loads the actual
plastic limit pressure value can be calculated by (3.1) for each asperity. This iteration
is part of the numerical contact analysis, so it does not require extra CPU time, but
the complete solution itself is time consuming because it needs a series of solutions
while the load is increased until its required value.

The algorithm was verified by an axisymmetric elastic-plastic FE evaluation for a
rigid asperity compressed into a flat PEEK surface under the following data:
— asperity radius: R = 100 µm,
— asperity load: F = 0.3 N,
— material properties listed in Table 1.
The FE model (Figure 7) contains 3672 2D elements and 40 contact elements,

similar to [12].

Results are plotted in Figure 8 for each contact parameter. Comparing the results
obtained by the numerical and FE techniques, it can be concluded that the results
are in good agreement both in the range of limited and large plastic deformations.
Considering the contact pressure distributions (Figure 9), the p∗ = 2σY condition
and the assumed linear limit pressure condition (3.1) improved the accuracy of the
numerical contact technique.

Therefore, the technique developed can better evaluate the location of the ”contact
spots”forming the real contact area, the contact pressure distribution and the normal
approach for a given load specified as an average pressure, acting over the nominal
contact area (see Figure 1). In the case of sliding friction this contact technique can
also be used. The friction force as a distributed traction would not change the contact
results basically because the normal displacement component due to the traction
is much smaller than the displacement due to the normal contact pressure that is
involved in the contact equations [5]. At the same time the contact pressure value,
that produces plastic deformation, is lower because the distributed traction has also
effect on the stress state.

a

b

Figure 7. Axisymmetric FE model for the PEEK body (b) indented by a rigid
asperity (a) (the upper figure is an enlargement of the details in the circular area)
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Figure 8. Contact parameters obtained by the numerical contact algorithm (CA)
and FE technique
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Figure 9. Contact pressure distributions

If anisotropic bodies are considered, the described algorithm is applicable if the
influence matrix represents the anisotropic body. It requires a FE solution for a seg-
ment of the anisotropic half space following the multiple coupling technique described
[10]. Material properties were taken from Table 1.

3.2. Contact Failure Criteria Contact failure criteria for a unidirectional con-
tinuous fibre matrix system under static conditions were studied in [10] and verified
by ball indentation tests. Assuming a steel counterpart sliding over composite struc-
tures the following statements, as first ideas, can be specified for N-, P- and AP-fibre
orientations:
1. If the fibres are arranged under N-orientation, failure of the composite due to
sliding steel asperities can occur by plastic deformation and rupture of the ma-
trix, fibre/matrix shear and compressive damage including fracture of the fibres.
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Figure 10. Contact failure criteria for composites

To specify a pressure limit at which shear strains at the fibre/matrix interface
exceed a critical value requires further analysis of the behaviour of the composite
structure. According to [11] initiation of failure starts below the surface followed
by subsequent crack propagation to the surface.
To control the compression damage of the composite structure studied, the lon-
gitudinal compressive strength σ||C should be considered. (σ||C is an average
value representing the failure of the matrix, the interface and the fibers.) This
approach is an approximation, because the overall compression of a body and
the local contact behaviour are not the same problem.
The condition of the longitudinal compressive strength may be considered as an
upper limit for the vertical stresses inside the contact area. This condition does
not allow any further plastic type deformation (Figure 10). The contact failure
type criterion is therefore assumed to be:

p∗ = σ||C (3.2)

2. If the fibers are arranged under P-orientation, failure of the composite, due to
sliding steel asperities, relates primarily to plastic deformation of the matrix and
flexural fracture of the fibres (Figure 10).

As a first order approach, the transverse compressive strength of the composite
structure σ⊥C may be considered as a yield strength type criterion. The matrix
can accumulate certain plastic deformation without any fracture type failure. To
approximate this type of behaviour, the plastic limit pressure conditions, in equation
(3.1)1 are as follows:

p∗min = 2σ⊥C (”starting” plastic deformation)
p∗min = 2σ⊥C (in the range of larger plastic deformation)

(3.3)

For the composite material studied here, the limiting strength values were chosen as
follows: σ∗||C = 1200 MPa and σ∗⊥C = 220 MPa [14].

3.3. The Real Contact Area and the Contact Pressure Distribution in
Sliding Contact Applying the described contact algorithm and the contact failure
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criteria, different surface pairs were brought into contact to evaluate the locations of
the real contact areas and the contact pressure distributions. The nominal pressure
was p̄ = 10MPa for each fibre orientation. Contact results are presented in Figure
11 representing two arbitrary positions of the sliding motion shown in Figure 6. It
becomes obvious that different tendencies for the N-, P- and AP-fibre orientation exist.
In the case of N-fibre orientation, due to the contact failure criterion used, smaller
contact areas and higher pressure maxima than in the other two cases appear.
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Figure 11. The real contact area and contact pressure distribution between
composite and steel real surfaces in the case of N- (a), P- (b) and AP-fibre (c)

orientations
Comparing the new version of the numerical contact algorithm with the previous

one, the contact pressure maxima follow the pressure distribution given by equation
(3.1), however, due to this change the real contact area becomes larger in the related
calculations.
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4. Concluding remarks

The new version of a numerical contact algorithm, applied for composite steel surfaces,
produced more accurate contact simulation results, especially in the range of limited
plastic deformation. Furthermore it can evaluate the location of the real contact area
and the contact pressure distribution assuming different failure criteria.

When analysing the contact conditions under a compressive loading situation, the
real contact area obtained by both the contact algorithm and the experimental tech-
niques [15] show the same tendencies, i.e. asperity-type contact, verifying that in
the case of composite-steel contact we have (at least at the beginning of the test)
asperity-type contact, similarly to that known for metal-metal contact.
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Abstract. The constitutive equations are formulated in the unrotated reference frame.
Kinematic and isotropic hardening rules are assumed and the radial return mapping algo-
rithm is applied to find the actual yield surface. By assuming large and incompressible plastic
deformations, the total Lagrangian formulation of the finite element method is applied with
p-extension elements making use of the truncated space and the product space.

Keywords : Elastoplastic problems, large strains, finite elements with p-extension

1. Introduction

Workstations and the latest PC-s make the numerical solution of plastic problems
with large strains possible. A great number of conferences have been devoted to the
problems arising during the simulation of plastic processes [1]-[9]. More and more
papers are published with the aim of developing effective procedures for the solution
of plastic problems. Finite rotations of material axes make the treatment of strain-
stress rates and their numerical integration over a load step diffi cult. As is well known,
there are various objective stress rates, the rules for their systematic constructions
and a couple of new ones are presented in the paper [10] by Kozák.

The Jauman stress rate has been used in large strain plastic problems over the
past ten years. However, stress oscillations were experienced for large rotations and
during the treatment of a complex material behavior (e.g., viscoplasticity, kinematic
hardening, isotropic hardening).

The oscillatory response can be removed if the Cauchy stress measure and its
objective rate are defined in an unrotated orthogonal reference frame established by
means of the polar decomposition of the deformation gradient at each material point.
Using this concept, it can be shown that the stress response will increase monotonically
in simple shear for incremental linear-elasticity. The same idea was used by Hallquist



236 I. Páczelt, F. Nándori and T. Szabó

[5,6] to work out implicit dynamic codes and by Flangan and Taylor [4] to develop
codes for a transient dynamic analysis with explicit time integration. With the strains,
stresses and their objective rates, each defined in the unrotated frame, the structure
of small-strain plasticity is fully retained, which is advantageous to develop a finite
element code. This concept firstly used by Hallquist was further developed by Healy
and Dodds [7].

In this paper first we will summarize the kinematics of finite deformations, then
present the strain-stress rates and the elastoplastic constitutive equations by assuming
that the kinematic and isotropic hardening rules are valid. Finally, we will apply
the finite element method to axisymmetric problem with p-extension elements. The
approximation of the p-extension elements can be constructed either by the truncated
space or the product space [18]. The two approaches are different in the number of the
bubble functions. The approximations of the displacement field and the volumetric
change will also be investigated. Numerical examples demonstrate the effectiveness
of the applied elastoplastic theory.

2. State variables

A number of textbooks are devoted to the formulation of nonlinear solid mechanics —
see for instance [2, 12]. Here we summarize the most important basic relations that
are required for a finite element formulation.

In our analysis we consider the motion of a body in a fixed Cartesian coordinate
system (X1, X2, X3). The position vector of a generic material point is denoted by
X at time 0 (in the reference or undeformed configuration), and by x at time t (in
the deformed or current configuration). The reference and deformed configurations
are denoted by B0 and B, respectively.

The displacement vector is given by

u = x−X . (2.1)

The fundamental measure of deformation is the deformation gradient

F =
∂ x

∂X
. (2.2)

If the mapping X = x(X, t) is one-to-one, then

J = det F > 0 . (2.3)

As is well known, the deformation gradient F can be decomposed into a product of
two matrices

F = V ·R = R ·U (2.4)

where R is the orthogonal rotation tensor, while V and U are the symmetric left and
right stretch tensors. The principal values λi of V and U are equal.
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The velocity field, which is the material time derivative of the displacements, is
written as

v =
∂ x

∂ t
= ẋ . (2.5)

The velocity gradient L (velocity strain tensor) is defined as the gradient of the
velocity field with respect to the current configuration. Making use of the chain rule
and (2.2), we can write

L =
∂ v

∂ x
=
∂ v

∂X

∂X

∂ x
= Ḟ · F−1

. (2.6)

We denote the symmetric and skew parts of the velocity gradient by D (the rate of
the deformation tensor) and W (the spin rate of the velocity gradient). According to
the decomposition theorem

L = D + W where D =
1

2

(
L + LT

)
and W =

1

2

(
L− LT

)
. (2.7)

The tensors D and W are both instantaneous rates, i.e., are not associated with the
load history. When integrated over the load history, the principal values of D are
the logarithmic strains of the line elements oriented in the principal directions if the
principal directions do not rotate.

Applying the polar decomposition theorem to F, we have

L = (R ·U)
· · F−1 = Ṙ ·U · F−1

+ R · U̇ · F−1
=

= Ṙ ·U ·U−1·R−1 + R · U̇ ·U−1·R−1 ,

since
(R ·U)

−1
= U−1 ·R−1 = U−1RT , and Ω = Ṙ ·RT

.

In view of the fact that R is an orthogonal tensor (RT = R−1) we obtain

L = ṘR
T

+ R · U̇ ·U−1·RT= Ω + R · U̇ ·U−1·RT . (2.8)

Furthermore, we have

RT ·R = 1 and
d
(
RTR

)
d t

= 0

in which 1 is the unit tensor. It is obvious that

ṘT ·R = −RT · Ṙ . (2.9)

With (2.8), (2.7)2 yields

D = R · 1

2

(
U̇ ·U−1

+U−1 · U̇
)
·RT ≡ R · d ·RT (2.10a)

where d is the unrotated deformation rate:

d =
1

2

(
U̇ ·U−1

+ U−1 · U̇
)

= RTDR . (2.10b)
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The double scalar product of the Cauchy stress tensor T and the rate of deformation
tensor D gives the stress power per unit volume

T : D . (2.11)

Introducing the unrotated Cauchy stress tensor

t = RT ·T ·R , (2.12)

the double scalar product (2.11) can be written as

T : D = RT ·T ·R : RT ·D ·R = t : d . (2.13)

The right and left Cauchy-Green tensors C and D are defined by

C = FT · F = U2 and B = F · FT = V2 , (2.14)

respectively. We remark that the eigenvalues of the two tensors are identical but the
eigenvectors are different.

We adopt the total Lagrangian formulation of the problem. This means that all
quantities are taken in the reference configuration. As is well known, the deformation
measure, i.e., the Green-Lagrange strain tensor is defined by

E =
1

2

(
U2 − 1

)
=

1

2

(
FT · F− 1

)
. (2.15)

Furthermore, we have

Ė =
1

2

(
ḞT ·F + FT · Ḟ

)
= FT ·D · F , (2.16)

which, as can be seen by using (2.6) and (2.7), includes the velocity gradient

D =
1

2

(
Ḟ · F−1

+
(
F−1

)T · ḞT) .

Substituting the polar decomposition F = R ·U into equation (2.16), we obtain

Ė = UT ·RT ·D ·R ·U (2.17)

from which, with regard to equation (2.10b), it follows

Ė = U
T · d ·U . (2.18)

Since U = UT is a symmetric tensor, the unrotated deformation rate d can be ex-
pressed from (2.18):

d = U−1 · Ė ·U−1
. (2.19)

The work-conjugate of the Green-Lagrange strain tensorE is the second Piola-Kirchhoff
stress tensor PII , which can be given in terms of the Cauchy stress tensor T as follows

PII = J F−1·T · F−T . (2.20)
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Substituting the polar decomposition F = R ·U into (2.20) and using (2.12), we have

PII = J U−1 · t ·U−1 . (2.21)

Deriving this equation with respect to time t, we obtain a formula for the rate of the
stress tensor

ṖII = J̇ U−1 ·t ·U−1 +J
(
U−1

)· ·t ·U−1 +J U−1 · ṫ ·U−1 +J U−1 ·t ·
(
U−1

)·
(2.22)

where
J̇ = J tr (D) (2.23)

in which tr (D) is the trace of the tensor D. In order to determine (U−1)· we consider
the equation

U−1 ·U = 1 (2.24)

as our point of departure. Taking its derivative with respect to time t, we have

(U−1)· ·U + U−1 · U̇ = 0 (2.25)

from which
(U−1)· = −U−1 · U̇ ·U−1

. (2.26)

Substituting (2.23) and (2.26) into (2.22) and making use of (2.21), we obtain the
relation

ṖII = J U−1 · ṫ ·U−1 + tr (D) PII −U−1 · U̇ ·PII −PII · U̇ ·U−1
(2.27)

for the stress rate.

3. Large strain elastoplasticity

3.1. An objective time derivative of the Cauchy stress tensor. The consti-
tutive law for an elastoplastic material determines the relation between a materially
objective stress rate and a work conjugate deformation rate.

Let us consider the equation relating the unrotated stress tensor t to the Cauchy
stress tensor T:

t = RT ·T ·R . (3.1)

After taking the time derivative of the above equation, we get

ṫ = Ṙ
T ·T ·R + RT · Ṫ ·R + R

T ·T · Ṙ . (3.2)

Utilizing the expression Ω = Ṙ ·RT in (2.8), we can express the rate of the orthogonal
rotation tensor and its transpose:

Ṙ = Ω ·R , Ṙ
T

= RT ·ΩT
= −RT ·Ω (3.3)
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by which equation (3.2) gives

ṫ = R
T ·T∇ ·R , T∇ = Ṫ−Ω ·T + T ·Ω (3.4)

where T∇ is the Green-Naghdi objective stress rate tensor [2, 10].

With the tensor of material constants Cep the constitutive equation takes the form

T∇= Cep: D . (3.5)

Let us reformulate the constitutive law in the unrotated but deformed configuration.
Making use of equations (3.4), (3.5) and (2.10b), we have

ṫ = R
T · (Cep

: D) ·R = C
ep

: (R
T ·D ·R) = C

ep
: d . (3.6)

One can see from equation (3.6) that the integration of the rate of the rotation tensor
over the load history is avoided. However, all quantities should be transformed into the
unrotated deformed configuration. Constitutive law (3.6) was first used by Hallquist
[5]. When this method is chosen it is essential to perform the polar decomposition of
the deformation gradient as accurately as possible.

3.2. Determination of the elastoplastic state. We shall assume that the
material is isotropic and the undeformed configuration is stress free. The Mises yield
surface is applied together with the associated flow rule. The hardening rule, which
specifies how the yield function is modified during a plastic flow, can be kinematic,
isotropic or a combination of the previous two. The yield surface is given as

f (ξ, ep) = ‖ξ‖ −
√

2

3
κ (ep) ≤ 0 (3.7)

where

— κ (ep) is the hardening rule,
— ξ = s − α, in which the deviatoric stress s = dev t = t − 1

3 tr (t) 1 , α is the
centre of the yield surface (called back stress),

— ‖ξ‖ =
√
ξ : ξ,

— ep is the equivalent plastic strain ep =
t∫
0

√
2
3 ‖d

p (τ)‖ dτ ,

— d = de + dp is the strain rate decomposed into elastic and plastic parts.
The decomposition of d is based on the decomposition of the deformation gradient

proposed by Lee [11] for ductile metals

F = Fe · Fp (3.8)

where Fe represents the elastic deformation, i.e., the distortion of the lattice, while
Fp represents the plastic deformation. Substituting (3.8) into (2.6), we have

L = Ḟ · F−1
= Ḟe·Fp·

(
F−p·F−e

)
+Fe·Ḟp·

(
F−p·F−e

)
=

= Ḟe·F−e + Fe·Ḟp·F−p·F−e ≡ Le+Fe·Lp·F−e (3.9)
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We shall assume in the course of elastoplastic deformations that the elastic strains
are vanishingly smaller than the plastic strains. Furthermore, we shall also assume
for the elastic deformation that Fe = Ve in (3.9), i.e., the rigid rotation is added to
plastic term. Hence, we can rewrite the decomposition

F = Fe · Fp= Ve·Vp·R. (3.10)

Assuming small elastic strains εe, it holds

Fe= 1 + εe≈ 1 . (3.11)

Consequently, we can decompose the approximation of the velocity strain tensor and
its symmetric part into the forms

L ≈ Le+Lp, and D ≈ De + Dp. (3.12)

Substituting (3.12)2 into (2.10b) the unrotated deformation rate can also be decom-
posed into elastic and plastic parts

d = RT · (De + Dp) ·R = de + dp (3.13)

as is the case for small strain plasticity.

3.3. Determination of the stresses in the unrotated configuration. The
integration of the plastic equations is performed over finite time increments. A good
review can be found in the works of Simo and Taylor [16,17]. The radial return
mapping procedure seems to be very effective for integrating the elastoplastic problem
numerically.

Imposing kinematic and isotropic hardening rules, the yield surface will be both
translated and inflated. The translation is associated with the plastic modulusH

′

α (ep),
and the inflation with the hardening rule κ (ep), where e is the equivalent strain.

Points inside the yield surface (3.7) (f ≤ 0) refer to elastic states, and points on
the yield surface (f = 0) refer to plastic states.

As is known from the Prandtl-Reuss equations

s = 2G(ė− ėp) , (3.14)

where s is the deviatoric stress rate, ė is the deviatoric strain rate, ėp is the plastic
part of the deviatoric strain rate, G is the elastic shear modulus and

e = ε− 1

3
tr (ε) 1 (3.15)

where ε is the strain tensor. According to the associative rule

dp = ėp = γ
∂ f

∂ ξ
= γn̂ (3.16a)

where γ is the plastic coeffi cient:

γ ≡ ‖ėp‖ =

∥∥∥∥γ ∂ f∂ ξ
∥∥∥∥ = ‖γn̂‖ =

1

1 +
κ′+H′α

3G

. (3.16b)
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Here H
′

α (ep) and κ′ (ep) are obtained by derivation with respect to ep and n̂ is the
unit normal of the yield surface:

n̂ =
ξ

‖ξ‖ . (3.16c)

The translation rate of the centre of the yield surface is given by

α̇ =
2

3
H
′

α (ep) ėp (3.17)

where H
′

α (ep) is the plastic modulus.

The pressure rate due to the elastic volume change is calculated as

ṗ =
1

2
tr
(
ṫ
)

= K tr (ε̇) (3.18)

where K is the bulk modulus: K = E/ (3− 6ν), E is the Young’s modulus, ν is the
Poisson’s ratio.

Regarding equation (3.14) as our point of departure, a standard transformation
leads to the following equation

ṡ = 2G[I− γn̂⊗ n̂] : ė (3.19)

in which I is a fourth order unit tensor, ⊗ denotes the tensor product, the element
ijkl of the tensor [n̂⊗ n̂] is evaluated from the relation n̂ij n̂kl, and n̂ij is the element
of the tensor n̂.

In view of the representation

t = s +
1

3
tr (t) 1 , (3.20)

a rate constitutive equation can be obtained by using (3.15), (3.18) and (3.19):

ṫ = Cep (t) : ε̇ (3.21)

where Cep is the fourth order tensor of the tangent moduli

Cep (t) = K 1⊗ 1+2G

[
I− 1

3
1⊗ 1

]
− 2Gγn̂⊗ n̂ . (3.22)

Integration of the nonlinear equation (3.19) with respect to time t is not simple since
the elastoplastic problem depends on the load history. A great number of return
mapping algorithms are available. The radial return mapping seems to be the most
effi cient procedure (see Appendix 1).

4. Consistent tangential stiffness matrix

With the knowledge of σn, epn and εn at time t
n, the vector of the strain increments

∆ε = ε− εn (4.1)
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can be determined by using the nonlinear constitutive law and satisfying the yield
surface as well:

∆ε→ σ̃(t, epn, εn,∆ε) . (4.2)

The principle of the virtual work can be applied to find a unique value for ∆ε. The
principle itself assumes the form

G(u, δu) =

∫
V

ρü · δu dV +

∫
V

σ̃ (tn, εn, ē
p
n,∇u− εn) : ∇δu dV−

−
∫
V

ρk · δu dV −
∫
Ap

p · δu dA = 0 (4.3)

where δu is the variation of u (δu = 0 if r ∈Au), ρk stands for the body forces and
ü is the acceleration.

Equation (4.3) can be written in linearized form and can be solved with the Newton
iteration. This means that one should solve a sequence of linearized problems given
by

DG(u
(i)
n+1, δu) ·∆u

(i)
n+1 ≡

∫
V

∇δu :
[
C

(i)
n+1 : ∇

(
∆u

(i)
n+1

)]
dV = −G(u

(i)
n+1, δu) (4.4)

until the residual G(u
(i)
n+1, δu) vanishes.

In order to achieve fast convergency during the numerical computations we need a
constitutive tensor C

(i)
n+1 in a consistent form. Simo and Taylor [16] gave this tensor

in the following form

C
(i)
n+1= Cep

n+1=K 1⊗ 1+2Gβ

[
I− 1

3
1⊗ 1

]
− 2G γ̄ n̂⊗ n̂ (4.5)

where

β =

√
2

3

[κn+1 + ∆Hα]∥∥ξ∗n+1

∥∥ and γ̄ =
1

1 +
[κ′+∆H′α]

n+1

3G

− (1− β) .

The matrix version of (4.5), which is applied in the finite element applications, was
given by Dodds [3]. This matrix relates the increments of the unrotated stresses and
strains

∆t = C∗ep∆d (4.6)

where
C∗ep = C̃− 2Gγ n nT

(∆t, ∆d,n are vectors with six components). The components of the tensor C̃ are
as follows

C̃11 = C̃22 = C̃33 = K +
4

3
G β̃ , C̃21 = C̃31 = C̃32 = K − 2

3
G β̃

C̃44 = C̃55 = C̃66 = G β̃ .
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Here

β̃ =

[
s

(i)
n+1: s

(i)
n+1

s
∗(i)
n+1: s

∗(i)
n+1

]
, n =

s
(i)
n+1(vector)

R
(i)
n+1

and R
(i)
n+1 =

√
2

3
κ
(
e
p(i)
n+1

)
.

For the numerical treatment of large plastic deformations we shall apply the total
Lagrangian formulation. The increment of the stress tensor is measured by the second
Piola-Kirchhoff stress tensor PII . Using the components of stress tensor PII we
construct the vector of stresses S which is related to the vector of the Green-Lagrange
strains εG through the matrix of tangent moduli. For the vectors of stresses and strain
increments, we assume that

PII → ∆S = Cep∆εG. (4.7)

Integrating equation (2.27) in a finite time interval, we have

∆PII = J U−1 ·∆t ·U−1 + tr (∆D) PII −U−1 ·∆U ·PII −PII ·∆U ·U−1. (4.8)

The integration of equation (2.19) gives the increment in terms of the unrotated
deformation rate

∆d = U−1 ·∆E ·U−1 . (4.9)

In order to obtain a symmetric matrix Cep for the tangent moduli from the combi-
nation of (4.8), (4.9) and (4.6), we shall assume the followings:
1. Since the plastic deformation is incompressible the larger deformations are the
more negligible the value of tr (∆D) is.

2. The term ∆U is negligible comparing to U−1 and PII . This assumption will
slow down the convergency to some extent.

Based on the preceding assumptions, we can write

∆PII = J U−1 ·∆t ·U−1 =⇒ ∆S = Cep∆εG (4.10)

where
Cep=JQC∗epQT . (4.11)

Making use of the notations

u1 = U−1
11 , u2 = U−1

21 , u3 = U−1
22 , u4 = U−1

31 , u5 = U−1
32 , u6 = U−1

33 ,

the matrix Q can be given in the form

Q =


u2

1 u2
2 u2

4 2u1u2 2u2u4 2u1u4

u2
2 u2

3 u2
5 2u2u3 2u3u5 2u2u5

u2
4 u2

5 u2
6 2u4u5 2u5u6 2u4u6

u1u2 u2u3 u4u5 u1u3 + u2
2 u4u3 + u2u5 u1u5 + u2u4

u2u4 u3u5 u5u6 u2u5 + u4u3 u3u6 + u2
5 u2u6 + u4u5

u1u4 u2u5 u4u6 u1u5 + u2u4 u2u6 + u4u5 u1u6 + u2
4

 . (4.12)

For axially symmetric and 2D problems, the matrix Q is tailored by deleting the
appropriate rows and columns. The rows and columns of Q are ordered as follows:
x, y, z, xy, yz, xz.
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The fast convergence of the Newton iteration with the tangential matrix C∗ep

proves its effi ciency in spite of the two preceding assumptions we made in connection
with the transformation.

5. Solution of the nonlinear elastoplastic problem

5.1. The total Lagrangian formulation. In the course of elastoplastic deforma-
tions, the points of the body assume different elastoplastic states. Some points are in
elastic state and the rest are in plastic state. We treat the elastoplastic problem by
means of the principle of the virtual work. Referring to the book by Bathe [2] but
not entering into details, we write the variational equation∫

oV

[
δ
(

∆Ẽ
(i)
L

)
: Cep : ∆Ẽ

(i)
L + δ

(
∆Ẽ

(i)
NL

)
: PII

n

]
doV =

= δWn+1 −
∫
oV

δ
(

∆Ẽ
(i)
L

)
: PII

n doV , (5.1)

which expresses the equilibrium and compatibility requirements over the time period
from tn to tn+1. The Green-Lagrange strain tensor at the time tn+1 is given by

E =
1

2

[
FTn+1 · Fn+1 − 1

]
(5.2)

where

Fn+1 =
∂ (X + un+1)

∂X
= 1 +

∂ un+1

∂X
= 1 + (∇u)n+1 ≡ 1 + grad (un+1) . (5.3)

En+1 can be expressed in terms of the displacement vector as well:

En+1 =
1

2

[
(∇u)

T
+ (∇u) + (∇u)

T · (∇u)
]
n+1

. (5.4)

If convergency is achieved in the ith iteration step by performing a load step from
time tn to tn+1, then it is expedient to decompose the displacement as follows

u
(i)
n+1 = un + ũ(i) = un+ũ(i−1)+

≈
u

(i)
≡ u

(i−1)
n+1 +

≈
u

(i)
, (5.5)

where ũ(i) denotes the displacement increment corresponding to ∆u(i). Consequently,
equation (5.4) can be rewritten:

E
(i)
n+1 = En + ∆Ẽ

(i)
L + ∆Ẽ

(i)
NL , (5.6)

where

∆Ẽ
(i)
L =

1

2

[(
∇ũ(i)

)T
+
(
∇ũ(i)

)
+ (∇un)

T ·
(
∇ũ(i)

)
+
(
∇ũ(i)

)T
· (∇un)

]
(5.7)
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(a) (b)Figure 1. Iteration schemes for one load step

and

∆Ẽ
(i)
NL =

1

2

[(
∇ũ(i)

)T
·
(
∇ũ(i)

)]
. (5.8)

It is more favorable to recalculate the constitutive matrix Cep in each iteration step
(see Figure 6.1b) than to follow the iteration scheme shown in Figure 6.1a. Therefore
equation (5.1) is modified as

∫
oV

[
δ

(
∆
≈
E

(i)

L

)
: Cep

(i−1) : ∆
≈
E

(i)

L + δ

(
∆
≈
E

(i)

NL

)
: PII

n

]
doV =

= δWn+1 −
∫
oV

δ

(
∆
≈
E

(i)

L

)
: P

II(i−1)
n+1 doV, (5.9)

where

E
(i)
n+1 = E

(i−1)
n+1 + ∆

≈
E

(i)

L + ∆
≈
E

(i)

NL. (5.10)

∆
≈
E

(i)

L =
1

2

[(
∇≈u

(i)
)T

+

(
∇≈u

(i)
)

+
(
∇u

(i−1)
n+1

)T
·
(
∇≈u

(i)
)

+

(
∇≈u

(i)
)T
·
(
∇u

(i−1)
n+1

)]
(5.11)

∆
≈
E

(i)

NL =
1

2

[(
∇≈u

(i)
)T
·
(
∇≈u

(i)
)]

(5.12)

P
II(i−1)
n+1 = J

(i−1)
n+1

(
U

(i−1)
n+1

)
· t(i−1)
n+1 ·

(
U

(i−1)
n+1

)−1

(5.13)

5.2. Finite element discretization. For the numerical treatment of (5.9), we per-
form the discretization by the finite element method. The increment in displacement
is approximated as

≈
u

(i)
=⇒ N(X)

≈
q

(i)
(5.14)
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where N(X) is the matrix of shape functions,
≈
q

(i)
is the vector of displacement para-

meters. The matrix of shape functions can be constructed by using either the product
space or the truncated space [18].

Using the approximation (5.14), we can give the vector of the strain increments
corresponding to the Green-Lagrange strain tensor

∆
≈
E

(i)

=⇒ ≈
ε

(i)

L +
≈
ε

(i)

NL = B
(i−1)
L (X)

≈
q

(i)
+ B

(i−1)
NL (X)

≈
q

(i)
(5.15)

where
≈
ε

(i)

L and
≈

ε
(i)
NL are the so-called linear and nonlinear strain increments, respec-

tively.

Making use of equations (5.14) and (5.15), we can discretize the integrals below:∫
oV

δ

(
∆
≈
E

(i)

L

)
: Cep

(i−1) : ∆
≈
E

(i)

L doV =⇒ δ
≈
q

(i)T
∫
oV

B
(i−1)T
L Cep

(i−1)B
(i−1)
L doV

︸ ︷︷ ︸
K
(i−1)
L

≈
q

(i)
,

(5.16)∫
oV

δ

(
∆
≈
E

(i)

NL

)
: PII

n doV =⇒ δ
≈
q

(i)T
∫
oV

B
(i−1)T
NL σn B

(i−1)
NL doV

︸ ︷︷ ︸
K
(i−1)
NL

≈
q

(i)
, (5.17)

∫
oV

δ

(
∆
≈
E

(i)

L

)
: P

II(i−1)
n+1 doV =⇒ δ

≈
q

(i)T
∫
oV

B
(i−1)T
L σ̂(i−1)

n doV

︸ ︷︷ ︸
f
(i−1)
σ

, (5.18)

δWn+1 = δ
≈
q

(i)T

∫
oV

NTo (ρk)n+1 doV −
∫
oAp

NTopn+1 doA

 = δ
≈
q

(i)T
fn+1 . (5.19)

The load vectors evaluated over the volume oV and the surface oAp correspond to the
reference configuration. Consequently, the traction p̄n+1 exerted at time tn+1 can be
transformed into the reference configuration

op̄n+1 = F−1
n+1 · p̄n+1 . (5.20)

However, the body force follows the transformation rule

o(ρk)n+1 = (det J)
−1

(ρk)n+1 . (5.21)

With the integrals (5.16)-(5.19) and the transformations (5.20), (5.21), the incremen-
tal form of the virtual work is discretized as

δ
≈
q

(i)T
{

[K
(i−1)
L +K

(i−1)
NL ]

≈
q

(i)
−
(
fn+1−f (i−1)

σ

)}
= 0 i = 1, 2, . . . (5.22)
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where δ
≈
q

(i)T
is arbitrary, consequently the following equation holds

[K
(i−1)
L +K

(i−1)
NL ]

≈
q

(i)
= fn+1−f (i−1)

σ ≡ r(i−1) (5.23)

in which the sum in brackets is the tangential stiffness matrix:

K
(i−1)
L +K

(i−1)
NL = K

(i−1)
T (5.24)

At the beginning of the iteration (i = 1) we use the elastoplastic state obtained at
time tn to initialize the iteration. The iteration is terminated if the unbalanced load
vector r(i) vanishes, i.e., if∥∥∥r(i)

∥∥∥ =
√

r(i)T r(i) ≤ TOL ‖fn+1‖ (5.25)

where TOL = 0.001− 0.0001.

5.3. Updating the stress state. The solution of equation (5.23) in the ith iteration

gives the vector of displacements
≈
q

(i)
, in this way we can calculate

≈
u

(i)
from (5.14)

and u
(i)
n+1 from (5.5). Then we obtain the actual stress state as given subsequently.

The time integration of the velocity is performed by the method proposed by Pin-
sky, Ortiz and Pister [13]. This is a mid-increment scheme, second order accurate and
unconditionally stable. The procedure determines the displacement at the middle of
the time interval

u
(i)
n+1/2 =

1

2

(
un + u

(i)
n+1

)
(5.26)

The steps of the algorithm:

Step 1. Determination of the deformation gradient for the states n+ 1/2 and n+ 1

F
(i)
n+1 =

∂
(
X + u

(i)
n+1

)
∂X

, J
(i)
n+1 = det

(
F

(i)
n+1

)
, F

(i)
n+1/2 =

∂
(
X + u

(i)
n+1/2

)
∂X

.

(5.27)
Step 2. Polar decomposition with the method described in Appendix II:

F
(i)
n+1 = R

(i)
n+1 ·U

(i)
n+1, F

(i)
n+1/2 = R

(i)
n+1/2 ·U

(i)
n+1/2 . (5.28)

Step 3. Integration of the tensor L = Ḟ · F−1
:

Since

L =
∂ v

∂ x
=
∂ v

∂X
· F−1 ,

we can write
∂

∂ x

∂ u

∂ t
=

∂

∂X

∂ u

∂ t
· F−1 ,

from which it follows by an integration with respect to time t that∫
∂

∂ x

∂ u

∂ t
dt =

∫
∂

∂X

∂ u

∂ t
· F−1 dt .
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If the deformation gradient is taken at the middle of the time step we get∫
∂

∂ x
du =

∫
∂

∂X
du · F−1

n+1/2 .

The deformation gradient is then calculated as follows

∂
(
∆u(i)

)
∂ x

=
∂
(
∆u(i)

)
∂X

· F−1
n+1/2 ,

where ∆u(i) is the displacement increment

∆u(i) = ũ(i) = u
(i)
n+1−un .

For the increment of L we now can write

∆L(i) = ∆F(i) · F−1
n+1/2 , (5.29)

where the increment of the deformation gradient F is

∆F(i)=
∂
(
∆u(i)

)
∂X

. (5.30)

Step 4. Computation of the symmetric part of ∆L(i):

∆D(i) =
1

2

[
∆L(i) + ∆L(i)T

]
. (5.31)

Step 5. Transformation of the increment in the rate of deformation tensor to an
increment of the unrotated deformation rate tensor:

∆d(i) = R
(i)T
n+1/2·∆D(i)·R(i)

n+1/2 . (5.32)

Step 6. With the knowledge of ∆d(i) we can perform the calculations detailed in
Appendix I in order to determine the elastoplastic state together with the yield surface
and the Cauchy stress tensor. Using a symbolic notation

t
(i)
n+1 ⇐= RRA(t

(i−1)
n+1 , e

p(i−1)
n+1 ,α

(i−1)
n+1 ,∆d(i)) , (5.33)

where RRA denotes the radial return mapping algorithm.

In the course of the time integration we obtain the following quantities:

the equivalent plastic strain
e
p(i)
n+1 , (5.34)

the deviatoric stress at the centre of the yielding surface

α
(i)
n+1 , (5.35)

the deviatoric stress tensor
s

(i)
n+1 , (5.36)
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the total stress tensor
t
(i)
n+1 ,

and the elastoplastic consistent matrix Cep
(i) (see (4.11) for details).

Applying the p-version of the finite element method the hydrostatic stress field is
smoothed by a low order approximation (p/2).

Step 7. Let us transform the Cauchy stress t
(i)
n+1 obtained in the unrotated config-

uration to the reference coordinate system

P = J
(i)
n+1(U

(i)
n+1)

−1 · t(i)
n+1 · (U

(i)

n+1
)−1 . (5.37)

5.4. The global algorithm of the nonlinear problem. As is given in the previous
subsection, we perform the seven steps in each Gauss integration point, and we obtain
the pointK1 starting from pointK0 in iteration i = 1, then pointK2 from pointK1 in
iteration i = 2, and so on (see Figure 6.1b). That is, in each iteration i we determine
the stiffness matrices K

(i−1)
L , K

(i−1)
NL and the vector of internal forces f

(i−1)
σ with the

quantities calculated in the seven steps.

The external forces are applied gradually in a sequence of load steps, and in the
course of the equilibrium iteration (i) the elastoplastic condition is always checked.

The scheme of the algorithm:
Loop for the load steps (n = 1, 2, ..., nload).

α. Equilibrium iteration (i = 1, 2, ...).

A/ Generate the system matrices and vectors:

K
(i−1)
L , K

(i−1)
NL , f (i−1)

σ , f (0)
σ = 0 .

B/ Solve for
≈
q

(i)

[K
(i−1)
L +K

(i−1)
NL ]

≈
q

(i)
= fn+1−f (i−1)

σ ≡ r(i−1) .

C/ Update the vector of displacement parameters

q
(i)
n+1= q

(i−1)
n+1 +

≈
q

(i)
.

D/ Loop for the finite elements (e = 1, ..., ne) :
a/ Loop for the Gauss integration points:

I/ Determination of the displacement field

u
(i)
n+1= N (X) q

(i)
n+1 .

II/ Calculate the displacement of the half step

u
(i)
n+1/2 =

1

2

(
u(i)
n + u

(i)
n+1

)
.
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III/ Update the stresses (Step 1-7) in accordance with Section 5.3.
b/ Generate the element stiffness matrices and the vector of internal forces(

K
(i)
L

)
e
,
(
K

(i)
NL

)
e
,
(
f (i)
σ

)
e
.

E/ Check for convergence
if
∥∥r(i)

∥∥ ≤ TOL ‖fn+1‖ then go to (β) else i = i+ 1 and go to (A) .

β. Prepare the next load step n = n+ 1

qn ⇐= qn+1, fn ⇐= PII
n .

If n ≤ nload then go to (α) else STOP.

6. Numerical example

An axisymmetric cylinder with a height of 40 mm and a diameter of 35 mm is
compressed between two rough rigid plates (see Figure 2). The material is elastoplastic
with the following hardening rule

κ (ep) = σ∞ − (σ∞ − σY ) exp (−γep) + σoep

where σ∞ = 0.343 MPa, σY = 0.243 MPa, σo = 0.15 MPa, γ = 0.1. The elastic
properties of the material are characterized by Young’s modulus and Poisson’s ratio:
E = 70 MPa, ν = 0.2.

Two meshes were used for the discretization of the quarter of the domain. In the
first mesh denoted by (2×2) there are 4 axsisymmetric p-extension elements [18], the

35

40

m=oo

m=oo

Figure 2.

mesh has two elements in the radial
direction and two elements in axial
direction. The second mesh denoted by
(4 × 4) has a double density compared
to the first one, i.e., it has direction
and four elements in the axial direc-
tion. First we will use the product
space for the approximation of the
displacement fields. We note that the
number of bubble functions of the
truncated space is equal to 15 for p = 8,
however we have 49 bubble functions
in the product space for p = 8. This
gives a possibility to investigate differ-
ent ways in which the approximation of
the volumetric change. Symmetry condi-
tions are specified on the axis and in the

middle plane of the cylinder. Sticking conditions and a prescribed compressive dis-
placement are specified at the tool-workpiece interface.
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The total height reduction of 20% is obtained in 10 increments. The polynomial
degree of the approximation is p = 8, the numerical integration is performed on 9× 9
Gauss points. The volumetric change is evaluated directly from the displacement
fields.

The deformed shapes and the distributions of the plastic strains ep are displayed
for the two meshes in Figures 3 and 4. In the gray scale of plastic strains black
corresponds to the maximum value (1.137) and white corresponds to the minimum
value (0). The maximum value (1.137) has been computed at the upper right corner of
the domain. The corresponding von Mises stresses have also been evaluated as shown
in Figures 5 and 6. In the gray scale of the von Mises stresses black corresponds to the
maximum value (0.4015MPa) and white corresponds to the minimum value (0). The
results for the different meshes show good agreement. Here we see the effectiveness
of the p-extension as the results are reliable also for a coarse mesh.

Figure 3. Figure 4.

Distribution of plastic strains for
the mesh (2× 2)

Distribution of plastic strains for
the mesh (4× 4)

Figure 5. Figure 6.

Distribution of the von Mises
stress for the mesh (2× 2)

Distribution of the von Mises
stress for the mesh (2× 2)
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The weakening of the volumetric change is not needed for the product space if p = 8
and the order of integration is 9×9. In this case, the number of integration points for
one element (81) is smaller than the number of bubble functions (98), therefore the
element has extra degrees of freedom to satisfy the elastoplastic equations.

The truncated space [18] can also be used for the solution of the elastoplastic
problem. We experienced that the volumetric change should be weakened. Therefore
we applied the least square method with a polynomial degree of p/2 to smooth the
volumetric change field. The same layout of the problem has been analyzed with the
following material parameters: σ∞ = 30 MPa, σY = 20 MPa, σo = 2 MPa, γ = 0.1.
The elastic properties are given by the Young’s modulus E = 2700 MPa, and the
Poisson’s ratio ν = 0.35. The total height reduction, which is 10%, is obtained in 5
increments.

For the second mesh (4 × 4) we performed the computations for different degrees
of approximation by using the truncated space. The computed characteristic stress
components are shown in Table 1. As can be seen, we obtained similar results for
p = 6 and p = 8, i.e., convergence has been achieved by the p-version of the finite
element method for a large strain elastoplastic problem.

Table 1. Characteristic stress values

p min/max σr σϕ σz τ rz

2 min −0.2745 · 102 −0.2797 · 102 −0.4076 · 102 −0.1042 · 102

2 max +0.1604 · 102 +0.1155 · 102 −0.3289 · 101 +0.5686 · 101

4 min −0.4093 · 102 −0.4094 · 102 −0.6099 · 102 −0.9211 · 101

4 max +0.1123 · 102 +0.1121 · 102 −0.8859 · 101 +0.6156 · 101

6 min −0.2970 · 102 −0.3262 · 102 −04746 · 102 −0.8916 · 101

6 max +0.6110 · 101 +0.9757 · 101 −0.1119 · 102 +0.5541 · 101

8 min −0.3086 · 101 −0.3204 · 102 −0.4609 · 102 −0.8887 · 101

8 max +0.6110 · 101 +0.9766 · 102 −0.1118 · 102 0.6324 · 101

We note that when the height reduction was increased over 20%, the element in the
upper right corner of the mesh became distorted so the convexity of the element was
destroyed.

7. Conclusion

A finite element code has been developed to solve large strain elastoplastic problems
using p-extension elements. The total Lagrangian formulation of the finite element
method has been implemented. Large and incompressible plastic deformations were
assumed. The constitutive computations have been performed in the unrotated frame.
The radial return mapping algorithm was used for the treatment of the yield surface.
Kinematic and isotropic hardening rules were adopted.

From the numerical experiments we concluded that p-extension of the finite el-
ements can be applied for the analysis of large strain elastoplastic problems. The
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approximation of the displacement fields has been investigated by means of two dif-
ferent polinomial spaces: the product space and the trunceted space.

Making use of the product space and integrating numerically with a (9×9) integra-
tion order, we obtained smooth solutions for the case when p was equal to 8 both for
the displacement fields and for the volumetric change. The advantageous behavior of
the product space follows from the fact that the number of bubble functions is greater
than the number of integration points.

Applying the truncated space with polynomial degree p for the approximation of
the displacement fields, we obtained smooth solutions if the volumetric change was
weakened. We experienced that smoothing the volumetric change by the least square
method with polynomials of degree p/2 provides a proper choice for the different
values of p (for p = 2, 4, 6, 8).

Since the p-extension of the finite elements are sensitive for stress concentrations,
the deformed elements may be distorted at the vicinity of the singular points. There-
fore remeshing of the domain is required even for relatively small displacements.

8. Appendix I: Radial return mapping

We shall assume that all quantities are known at time tn. Increasing the load
gradually we determine all quantities with an elastic prediction. Therefore the point
representing the elastic state we have predicted will be, in all probability, outside the

P

s
n+1
*

f
Q

s
n

s
n+1

Figure 7.

yield surface. Then due to an orthogonal
mapping the point will be placed on the sur-
face. The elastic prediction gives the stress
deviatoric tensor:

s∗n+1 = sn + 2G∆en+1 . (8.1)

The treatment of the plastic problem is prac-
tically an optimization problem. Let f be
an arbitrary but convex yield surface. We
have to find the point of f with the small-
est distance from a point elastically predicted
and located outside f. The unit normal to the
yield surface at the end of the time interval
[tn, tn+1] is denoted by n. It is obvious that

n̂ =
∂ f

∂ ξ

∣∣∣∣
n+1

· 1∥∥∥∂ f∂ ξ∥∥∥
n+1

=
ξn+1∥∥∥∂ f∂ ξ∥∥∥

n+1

. (8.2)

Making use of equation (3.7) we can write

∂ f

∂ ξ
=

∂

∂ ξ

√
ξ : ξ =

ξ

‖ξ‖ ,
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where
ξ = sn+1 −αn+1 . (8.3)

Starting from the elastoplastic state corresponding to tn one can obtain the state at
tn+1 through the following integral

tn+1∫
tn

2Gėpdτ =

tn+1∫
tn

2Gγn̂ dτ,

which is calculated approximately as

2G (γ∆t) n̂ ,

where ∆t is the time step (∆t = tn+1 − tn). Therefore

sn+1 = s∗n+1 − 2G (γ∆t) n̂ . (8.4)

Since the yield surface is modified due to hardening, we need to calculate the equiv-
alent strain as well

ēpn+1 = ēpn +

tn+1∫
tn

√
2

3
‖ėp‖ dτ = ēpn +

√
2

3
(γ∆t) . (8.5)

Making use of equation (3.17), we can write

αn+1 = αn +
tn+1∫
tn

2

3
H ′α (ēp) γn̂ dτ = αn + 2

3H
′
α

(
ēpn+1/2

)
(γ∆t) n̂

= αn +
2

3

Hα(ēpn+1)−Hα(ēpn)

ēpn+1−ē
p
n

(γ∆t) n̂

for the translation of the centre of the yield surface. Taking (8.5) into account and
introducing the notation

∆Hα = Hα

(
ēpn+1

)
−Hα (ēpn)

we have

αn+1 = αn +

√
2

3
∆Hα n̂ . (8.6)

From (8.3), (8.4) and (8.6) the value of ξ at time tn+1 is written as

ξn+1 = sn+1 −αn+1 = s∗n+1 −αn −
[

2G (γ∆t) +

√
2

3
∆Hα

]
n̂ . (8.7)

Substituting the tensor
ξ∗n+1 = s∗n+1 −αn , (8.8)

we can determine the normal vector n̂

n̂ =
ξ∗n+1∥∥ξ∗n+1

∥∥ . (8.9)
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From (3.7), (8.7) and (8.9) a nonlinear equation is obtained

f = f(γ∆t) = −
√

2
3κ
(
ēpn+1

)
+

∥∥∥∥ξ∗n+1 −
[
2G (γ∆t) +

√
2
3∆Hα

]
ξ∗n+1

‖ξ∗n+1‖

∥∥∥∥
= −

√
2
3κ
(
ēpn+1

)
+
∥∥ξ∗n+1

∥∥− [2G (γ∆t) +
√

2
3∆Hα

]
= 0 ,

(8.10)

where

ēpn+1 = ēpn +

√
2

3
(γ∆t) ,

and the functions κ (ēp) , Hα (ēp) are also nonlinear. Since all the quantities are known
at time tn, we can determine (γ∆t). Introducing the notation λ = γ∆t, the steps of
the Newton iteration are as follows:

I ē
p(k)
n+1 = ēpn +

√
2

3
λ(k) ,

II D f
(
λ(k)

)
≡ ∂ f

∂ ēpn+1

∂ ēpn+1

∂ λ
= −2G

[
1 +

κ′ +H ′α
3G

](k)

,

III λ(k+1) = λ(k) −
f
(
λ(k)

)
Df

(
λ(k)

) ,
IV If

∣∣∣f (λ(k)
)∣∣∣ ≥ TOL then k ←− k + 1 and goto(I) else STOP.

Solving the nonlinear equation (8.10), we can calculate ēpn+1 from (8.5) and αn+1

from (8.6). The deviatoric stress tensor sn+1 is determined in such a way that we
measure the radius of the yield surface, that is the value

sn+1 = αn+1 +

√
2

3
κ
(
ēpn+1

)
n̂ (8.11)

from the centre of the yield surface in the direction n̂. The elastic part of the stress
tensor is calculated from the volume change:

tn+1 = sn+1 +K tr(∆ε) 1 = sn+1 +K (det Fn+1 − 1) 1 (8.12)

where
∆ε = ε− εn . (8.13)

The iteration over the interval [tn, tn+1] leads to the elastoplastic state to be sought.
The quantities in the iteration step i are denoted by ()

(i)
n+1.

9. Appendix II: The polar decomposition of F

The steps of the procedure detailed below were proposed by Hager and Carlson [9],
Healy and Dodds [7]:
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Step 1: Calculate the right Cauchy-Green strain tensor and its second power

C = FT · F, C2= CT ·C . (9.1)

Step 2: Determine the eigenvalues

λ2
1, λ

2
2, λ

2
3 (9.2)

of C using the Jacobi method [2].

Step 3: Determine the scalar invariants of the tensor U

IU = λ1 +λ2 +λ3, IIU = λ1λ2 +λ2λ3 +λ3λ1, IIIU = λ1λ2λ3 = det F = J . (9.3)

Step 4: Determine U and U−1 in terms of the invariants of C, C2

U = β1

(
β21 + β3C−C2

)
, (9.4)

where
β1 =

1

(IUIIU − IIIU )
, β2 = IUIIIU , β3 = I2

U − IIU

and
U−1 = γ1

(
γ21 + γ3C + γ4C

2
)

(9.5)

where

γ1 =
1

IIIU (IUIIU − IIIU )
, γ2 = IUII

2
U − IIIU

(
I2
U + IIU

)
γ3 = −IIIU − IU

(
I2
U + 2IIU

)
, γ4 = IU .

Step 5: Calculation of the tensor R in the knowledge of F and U−1

R = F ·U−1 (9.6)
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decessor of the University of Miskolc moved to Sopron (Hungary) where, in 1929, it
started the series of university publications with the title Publications of the Mining
and Metallurgical Division of the Hungarian Academy of Mining and Forestry Engi-
neering (Volumes I.-VI.). From 1934 to 1947 the Institution had the name Faculty
of Mining, Metallurgical and Forestry Engineering of the József Nádor University of
Technology and Economical Sciences at Sopron. Accordingly, the publications were
given the title Publications of the Mining and Metallurgical Engineering Division (Vol-
umes VII.-XVI.). For the last volume before 1950 – due to a further change in the
name of the Institution – Technical University, Faculties of Mining, Metallurgical and
Forestry Engineering, Publications of the Mining and Metallurgical Divisions was the
title.

For some years after 1950 the Publications were temporarily suspended.

After the foundation of the Mechanical Engineering Faculty in Miskolc in 1949 and
the movement of the Sopron Mining and Metallurgical Faculties to Miskolc, the Pub-
lications restarted with the general title Publications of the Technical University of
Heavy Industry in 1955. Four new series - Series A (Mining), Series B (Metallurgy),
Series C (Machinery) and Series D (Natural Sciences) - were founded in 1976. These
came out both in foreign languages (English, German and Russian) and in Hungarian.

In 1990, right after the foundation of some new faculties, the university was renamed
to University of Miskolc. At the same time the structure of the Publications was
reorganized so that it could follow the faculty structure. Accordingly three new series
were established: Series E (Legal Sciences), Series F (Economic Sciences) and Series
G (Humanities and Social Sciences). The seven series are formed by some periodicals
and such publications which come out with various frequencies.

Papers on computational and applied mechanics were published in the

Publications of the University of Miskolc, Series D, Natural Sciences.

This series was given the name Natural Sciences, Mathematics in 1995. The name
change reflects the fact that most of the papers published in the journal are of math-
ematical nature though papers on mechanics also come out.

The series

Publications of the University of Miskolc, Series C, Fundamental
Engineering Sciences

founded in 1995 also published papers on mechanical issues. The present journal,
which is published with the support of the Faculty of Mechanical Engineering as a
member of the Series C (Machinery), is the legal successor of the above journal.
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Károly JÁRMAI: Optimization of welded structures for cost 149–166

Katalin KELEMEN: Vibrations of circular arches subjected to hydrostatic
follower loads – computations by the use of Green functions 167–178

György RICHLIK: The inverse of differential operators and an extension of
Trefftz’s method 179–189

György SZEIDL: Kinematic admissibility of strains for some mixed bound-
ary value problems in the dual system of micropolar theory of elas-
ticity 191–203

Sándor SZIRBIK: Boundary contour method for plane problems in a dual
formulation with linear elements 205–222

Károly VÁRADI, Zoltán NÉDER and Klaus FRIEDRICH: Contact analysis
of composite and steel surfaces in sliding contact 223–233

Review Paper
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