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László BARANYI, Department of Fluid and Heat En-
gineering, University of Miskolc, 3515 MISKOLC,
Hungary, arambl@gold.uni-miskolc.hu
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K.II.42., 1521 BUDAPEST, Hungary,
lkollar@goliat.eik.bme.hu
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Gyula PATKÓ, Department of Machine Tools, Uni-
versity of Miskolc, 3515 MISKOLC, Hungary,
mechpgy@uni-miskolc.hu
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Gábor STÉPÁN, Department of Mechanics, Bu-
dapest University of Technology and Economics,
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Abstract. Chemical reaction, heat and mass transfer over an accelerating surface with
heat source and thermal stratification in the presence of suction and injection are studied.
The governing partial differential equations of this problem, subjected to their boundary
conditions are transformed and solved numerically by applying R.K. Gill method. It has been
observed that in the presence of mass diffusion (1) Due to the suction of the accelerating
surface the increase of the thermal stratification effect decelerates the fluid motion and
increases the temperature distribution and concentration of the fluid along the surface and
for injection, it accelerates the fluid motion and decreases the temperature distribution and
concentration of the fluid along the accelerating surface (2) Due to the increase of the values
of the thermal stratification parameter with constant suction and injection the skin friction
and rate of mass transfer decrease and the rate of heat transfer of the fluid increases with
an increase of the strength of the chemical reaction.

Mathematical Subject Classification: 76V05
Keywords : chemical reaction, thermal stratification, suction/injection, heat and mass trans-
fer, R. K. Gill method, Boussinesq’s approximation

Nomenclature

a Stretching rate
C Species concentration in the fluid
C∞ Species concentration with fluid away from the surface
Cw Species concentration near the surface
cp Specific heat at constant pressure
D Chemical molecular diffusivity
g Acceleration due to gravity
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Grx Grashof number
Gcx Modified Grashof number
k Thermal conductivity
m Pressure gradient parameter
n Parameter associated with thermal stratification
Pr Prandtl number
Rex Reynolds number
Sc Schmidt number
S Suction or Injection parameter
T Temperature of the fluid near the wall
Tw Temperature of the wall
T∞ Temperature of the fluid far away from the wall
u Axial velocity
α Thermal diffusivity
β Coeffi cient of volume expansion
β∗ Coeffi cient of expansion with concentration
ν Kinematic viscosity
ρ Density of the fluid
γ Dimensionless chemical reaction parameter
δ Non-dimensional longitudinal coordinate

1. Introduction

Mixed convection flow occurs frequently in nature. The temperature distribution
varies from layer to layer and these types of flows have wide applications in industry,
agriculture and oceanography. Further they are especially used in dyeing-industries.
One of the most significant types of flow which has many practical applications in
industrial manufacturing processes is the boundary layer behavior over a moving
continuous solid surface. For example, heat treated materials travelling on a conveyor
belt possess the characteristics of a moving continuous surface.

The effect of power law surface temperature and power law surface heat flux in the
heat transfer characteristics of a continuous linear stretching surface was investigated
by Chen and Char [1]. Processes involving the mass transfer effect have long been
recognized as important, principally in chemical processing equipment. Crane [2],
Vlegger [3] and Gupta and Gupta [4] analyzed the problem of a stretching surface
temperature. Georgantopoulos et. al [5] have studied the effects of free convective and
mass transfer in a conducting liquid, when the fluid is subjected to a transverse mag-
netic field. Heat and mass transfer on hydromagnetic flow over a stretching surface
with chemical reaction and thermal stratification effects was analyzed by Kandasamy
and Anjali Devi [6]. Recently, Acharya et. al [7] have studied heat and mass transfer
on an accelerating surface subjected to both power law surface temperature and power
law heat flux variations with a temperature dependent heat source in the presence
of suction and blowing. These investigations have a bearing on the tacit assumption
that the moving strip is inextensible.
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Many practical diffusional operations involve the molecular diffusion of a species
in the presence of chemical reaction within or at the boundary. There are two types
of reactions.

chemical reaction

homogeneous reaction heterogeneous reaction

A homogeneous reaction is one that occurs uniformly throughout a given phase. The
species generation in a homogeneous reaction is analogous to internal source of heat
generation. The study of heat and mass transfer with chemical reaction is of great
practical importance to engineers because of its almost universal occurrence in many
branches of science and engineering. In the present work, chemical reaction, heat and
mass transfer over an accelerating surface with heat source and thermal stratification
in the presence of suction and injection are analysed. The fluid is assumed to be
viscous and Boussinesq. The governing partial differential equations of the problem
subject to their boundary conditions are solved using effi cient R. K. Gill numerical
technique. In the absence of chemical reaction, the results are in excellent agreement
with that of [7] which elucidates the effi ciency of the numerical technique that has
been used. Numerical calculations for different values of dimensionless parameters
entering the problem under consideration are obtained for the purpose of illustrating
the results graphically. Examination of such flow models reveals the influence of
chemical reaction field on skin friction, rate of heat and mass transfer profiles. The
analysis of the results obtained shows that the flow field is influenced by the presence
of chemical reaction.

2. Mathematical Analysis

Consider a steady viscous and Boussinesq fluid flowing over an accelerating surface
in the presence of a temperature dependent heat source. The problem is considered
to be of boundary layer type and two-dimensional. Due to the coordinate system,
the x-axis is parallel to the vertical surface and the y-axis is chosen normal to it.
The fluid properties are also assumed to be constant in a limited temperature range.
The concentration of diffusing species is very small in comparison with other chemical
species and hence the species thermal diffusion and diffusion thermal energy effects are
neglected and viscous dissipation in the energy equation is negligible. The chemical
reactions are taking place in the flow and the physical properties ρ, µ, D and the rate
of chemical reaction, k1 are constant throughout the fluid. Under these conditions, the
governing boundary layer equations of momentum, energy and species concentration
for mixed convective flow with Boussinesq’s approximation are as follows:

∂u

∂x
+
∂v

∂y
= 0 (2.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ U + gβ (T − T∞) + gβ∗ (C − C∞) (2.2)
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u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

(
β1

u

ρcp

)
(T∞ − T ) (2.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− k1C (2.4)

The boundary conditions are

u = ax, v = v0, C = C∞ +A0x
r, T = T∞ +A1x

r at y = 0 (2.5)

u = 0, C = C∞, T = T∞ (x) = (1− n)To + nTw (x) as y −→∞
where r is the temperature parameter. For r = 0, thermal boundary conditions
become isothermal and n is constant, such that 0 ≤ n < 1. The n defined as above is
called thermal stratification parameter and it is equal to m1

(1+m1)
of [8, 9] where m1 is

a constant. To is constant reference temperature, say T∞(0). The suffi xes w and α
denote surface and ambient conditions.

As in [7] we introduce the following change of variables

Ψ (x, y) = (νa)
1/2

xf (η) (2.6)

η (x, y) = y
(a
ν

)1/2
. (2.7)

The velocity components are given by

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
. (2.8)

It can be easily verified that the continuity equation (2.1) is identically satisfied and
we set C∞ = 0 and introduce the non-dimensional form of temperature and the
concentration as

θ =
T − T∞
Tw − T∞

(2.9)

φ =
C − C∞
Cw − C∞

, δ =
β1x

ρcp
(2.10)

Rex =
Ux

ν
(Reynolds number) (2.11)

Grx =
νgβ (Tw − T∞)

U3
(Grashof number) (2.12)

Gcx =
νgβ∗ (Cw − C∞)

U3
(Modified Grashof number) (2.13)

Pr =
µcp
k

(Prandtl number) (2.14)

Sc =
ν

D
(Schmidt number) (2.15)

γ =
νk1
U2

(Chemical reaction parameter) (2.16)

S = −v0 (νa)
−1/2 (suction/injection parameter)

where m is a positive integer and U is the reference velocity.
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Equations (2.2), (2.3) and (2.4) become

f ′′′ +Gcxφ+GrxRexθ + ff ′′ − (f ′)
2

= 0 (2.17)

θ′′ − Pr
(

n

1− n

)
f ′r − Prθ (r + δ) f ′ + Prfθ

′ = 0 (2.18)

φ′′ − Scf ′φ (rh + γRex) + Scfφ
′ = 0 (2.19)

with boundary conditions

f (0) = −vo (νa)
−1/2

= S, f ′ (0) = 1, φ (0) = 1, θ (0) = 1 (2.20)

f ′ (α) = 0, φ (α) = 0, θ (α) = 0

where v0 is the velocity of suction if v0 < 0 and injection if v0 > 0.

Equations (2.17) to (2.19) with boundary conditions (2.20) are integrated using
Runge-Kutta Gill method. Heat and mass transfer of the fluid are studied for different
values of chemical reaction and thermal stratification effects. In the following section,
we discuss the results in detail.

3. Results and discussions

In order to get a clear insight into the physical problem, numerical results are
displayed with the help of graphical illustrations.

In the absence of chemical reaction, the results have been compared with those of
a previous work [7] and it is found that they are in good agreement. The obtained
numerical results are illustrated by means of Figures 1-6.

The effect of thermal stratification over the velocity, temperature distribution and
concentration of the fluid are elucidated with the help of Figures 1, 2 and 3.

Figure 1 depicts the dimensionless velocity profiles f ′(η) for different values of ther-
mal stratification effect with suction (S > 0) and injection (S < 0) respectively. Due
to the suction of the accelerating surface, it is observed that the component of the
velocity of the fluid along the surface decreases with increase of the thermal stratifica-
tion effect and for injection, the velocity of the fluid along the surface increases with
increase of the thermal stratification effect. On the other hand, due to the suction
of the accelerating surface, the dimensionless temperature θ (η) and concentration
φ (η) of the fluid increase and for injection, the temperature and concentration of the
fluid decrease with increase of the thermal stratification effect and these are shown
in Figures 2 and 3, respectively. So, for suction, the increase of the thermal stratifi-
cation effect decelerates the fluid motion and increases the temperature distribution
and concentration of the fluid along the surface. On the other hand, in the case of
injection, the increase of the thermal stratification effect accelerates the fluid motion
and decreases the temperature distribution and concentration of the fluid along the
accelerating surface.
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Figure 1. Effect of thermal stratification over the velocity profiles

Figure 2. Influence of thermal stratification over the temperature profiles
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Figure 3. Effect of thermal stratification over the concentration profiles

The influence of chemical reaction over the skin friction, rate of heat and mass
transfer are shown in Figures 4, 5 and 7.

Figure 4. Influence of chemical reaction over the skin friction profiles
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Figure 5. Effect of chemical reaction over the rate of heat transfer profiles

Figure 6. Influence of chemical reaction over the rate of mass transfer profiles
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Figure 4 depicts the dimensionless skin friction profiles f ′′ (0) for different values of
chemical reaction parameter γ = 0.00, 1.00 and 2.00. Due to the increase of thermal
stratification parameter 0 ≤ n < 1 for both the cases of suction and injection, it is
observed that the skin friction of the fluid decreases with increase of chemical reaction
parameter γ.

Figure 5 represents the dimensionless rate of heat transfer profiles θ (0) for different
values of chemical reaction parameter γ = 0.00, 1.00 and 2.00. Due to the increase of
thermal stratification parameter 0 ≤ n < 1 for both the cases of suction and injection,
it is clear that the rate of heat transfer of the fluid increases with increase of chemical
reaction parameter γ.

Figure 6 stands for the dimensionless rate of mass transfer profiles φ′ (0) for different
values of chemical reaction parameter γ = 0.00, 1.00 and 2.00. Due to the increase
of thermal stratification parameter 0 ≤ n < 1 for both the cases of suction and
injection, it is observed that the rate of mass transfer of the fluid decreases with
increase of chemical reaction parameter γ.

4. Conclusion

In the absence of chemical reaction, in general the results are identical to those of
Acharya et.al [7].

We conclude the following from the previous results and discussions:

Due to the suction of the accelerating surface, the increase of the thermal stratifi-
cation effect decelerates the fluid motion and increases the temperature distribution
and concentration of the fluid along the surface and for injection, it accelerates the
fluid motion and decreases the temperature distribution and concentration of the fluid
along the accelerating surface.

Due to the increase of the strength of thermal stratification with constant suction
and injection, the increase of the effect of chemical reaction decelerates the skin friction
and rate of mass transfer of the fluid and accelerates the rate of heat transfer of the
fluid and accelerates the rate of heat transfer of the fluid along the surface.

It is hoped that the present results can be used for understanding more complex
two dimensional problems involving the flow of electrically conducting fluids.

Acknowledgement. One of the authors (R. K) wishes to thank Dr. R. Vadivel, Principal
and Dr. K. Periyasamy, Assistant Professor of Chemistry, IRTT, Erode, for their encour-
agement.
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Abstract. The aim of this paper is to give closed, exact and general formulae for the
eigenvalues and eigenvectors of a (in an arbitrarily large measure) perturbated conservative
linear oscillator, which are also valid for the case of invariant (persistent) and degenerated
(or having both properties) eigenvalues. Such formulae are established and their properties
are investigated. Some special inverse eigenvalue problems are presented and solved using
the formulae established; in this manner a so-called deflation can also be solved. We show
that the Lancaster formula [11] (not systematically derived there) is a special case of our
results. We embed these results in some relevant problems of the literature.

Mathematical Subject Classification: 70J15, 34A30, 34A55
Keywords : linear oscillator, finite degrees of freedom, large perturbation, inverse eigenvalue
problem

1. Introduction. Formulation of the problem

The most simple form of the problem raised in the title can be formulated as follows.
Let us consider the differential equation

Mẍ+C1x = 0

whereM and C1 are symmetric, constant and real matrices of order n,M is positive
definite, C1 is positive definite or semidefinite, x is an unknown column matrix of
order n, differentiation with respect to time is denoted by dotted letters, accordingly
ẍ is the second time derivative of x. From physical point of view this equation can
describe the oscillations of linear mechanical, electrical or electromechanical systems.
In the first case m is the mass (inertia-) matrix and C1 is the matrix of restoring
forces (moments); the name spring matrix is also usual. Looking for a particular
solution of the form

x = xo sinαt

where xo and α are unknown constants, we obtain the so-called original (or starting)
eigenvalue problem (

−α2M+C1
)
xo = 0 . (1.1)
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Designating its solutions by

α21 ≤ α22 ≤ . . . α2n ≤ ; xo1,xo2 . . .xon (1.2a)

and considering them as known quantities the most simple form of the problem raised
in the title reads: writing

M+ ∆M for M and C1 + ∆C1 for C1

in equation (1.1) —here ∆M and ∆C1 are real symmetric and constant matrices such
thatM+ ∆M is positive definite and C1 + ∆C1 positive definite is or semidefinite —
how the solutions of the eigenvalue problem perturbated according to the above, i.e.,
the eigenvalues and eigenvectors

α ′ 21 ≤ α ′ 22 ≤ . . . α ′ 2n ; x ′o1,x
′
o2 . . .x

′
on (1.2b)

can be found by making use of the solutions (1.2a) of the original one.

In the following this most simple case of our problem will be examined.

The relevant literature gave in the beginning such approximate formulas for

α′ 2i and x′oi , i = 1, 2, ..., n

which were the more exact, the smaller was some measure of ∆M and ∆C1. Up to
the time of its publication, Patkó [1] summarizes the most important relevant results
from the point of view of the practice, it generalizes them also; for the generalization
the same assertion is valid, which was mentioned in our preceding sentence.

Probably the paper [2] by Fraeijs de Veubeke is the first in which the idea taking
∆M and ∆C1 in a special diadic form is published and exact equalities are found for
the quantities sought, therefore it is not necessary to limit some measure of ∆M1 and
∆C1 in the interest of a prescribed accuracy.

The significance of dyads are emphasized more and more, e.g. especially by Egerváry
[3], Rózsa [4], Tevan [5], Zurmühl and Falk [6], Housholder [7]. Additional material
can be found from Bazley’s thoughts [8] in connection with the theory of perturbation
of linear operators and from Fichera’s works e.g. [9].

Hereinafter starting from the works cited above —generalizing them to a certain
extent - we try to give first a solution for the above quoted most simple form, then
we also intend to show some other applications and certain generalizations.

As regards the perturbated problem, a practical approach is to produce its solution
numerically with a computer. However we would like to emphasize: in this paper
we intend to express explicitly the eigenelements (eigenvalues and eigenvectors) of
the modified (perturbated) problem by those of the original (starting) one. The
method followed in this way can facilitate the solution of certain inverse eigenvalue
problems and can give a comprehensive insight into the theoretical background of
these problems, stimulating the raising perhaps of new thoughts in this way.
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2. Solution to the most simple problem

Without violating generality it is suffi cient to investigate instead of equation (1.1) the
problem (

−α2I+C
)
yo = 0, (2.1)

where I is the unit matrix of order n, neverthelessC =
(
RT
)−1

C1R
−1, whereR is the

upper triangle matrix in the Cholesky-decompositionM = RTR of the positive defi-
nite matrix M. If the positive definite matrix M is diagonal, C = M−1/2C1M

−1/2,
then the properties of definiteness of C are the same as those of C1.

In the following we regard equation (2.1) as our point of departure: equation (2.1)
will be considered to be the original problem and its solutions will be designated by

α21 ≤ α22 ≤ . . . ≤ α2n and y1,y2, . . . ,yn . (2.2)

It is well known that the eigenvectors yi (i = 1, 2, ..., n) are orthogonal to each other
and can be normed in such a way that

yTi yj = δij ; i, j = 1, 2, ..., n. (2.3a)

(If we work instead of I with the general inertia matrix M, the norming

yTi Myi = δij ; i, j = 1, 2, ..., n (2.3b)

must be applied to maintain the validity of the subsequent formulae.) As is known,
the eigenvalue problem (2.1) can also have degenerated (multiple) eigenvalues. If α2j
is an eigenvalue with the multiplicity sj , then sj linearly independent eigenvector(s)
yj , j = 1, 2, ..., sj belong to α2j . These can be chosen such that the complete system
of eigenvectors is orthonormal.

Let vi (i = 1, 2, ..., n) be real, linearly independent column matrices of order n.
Later on it will turn out that the most suitable forms for ∆I (written in place of
∆M) and ∆C are sums of dyads:

∆I =

n∑
i=1

aiviv
T
i and ∆C =

n∑
i=1

biviv
T
i . (2.4)

Here ai and bi (i = 1, 2, ..., n) are real constants. (By this assumption the symmetry
of the modification is ensured.)

We shall make some comments on the physical background of equation (1.1) (more
precisely of equation (2.1) or (2.4) ):

(i) If C is diagonal, furthermore ∆C is non-diagonal, but ∆I is diagonal, then
perturbation (2.4) can be interpreted in such a way that the original sys-
tem composed of isolated oscillators (each with one degree of freedom) was
rendered through the perturbation elastically coupled. If ∆C is tridiagonal
(keeping in mind that now∆I is diagonal), the result of the ”coupling”is a lon-
gitudinal chainlike oscillator which consists of pointlike masses of which only
the immediate neighboring mass points are connected by (massless) springs.
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It is possible that the massless spring connects (springs connect) might involve
springs attached to a fixed point.

(ii) If C and ∆C are diagonal and ∆I is non-diagonal, then according to equation
(2.4) the perturbation can be interpreted in such a way that the original
oscillator consisting of a number of n isolated oscillators with one degree of
freedom is made by the perturbation to be inertia-coupled.

(iii) Let C and ∆C be tridiagonal. Further let ∆I be diagonal. Then the original
chainlike structure remains of the same structure. Also the second sentence
of item (i) is valid here.

3. Solution of problem (2.1) perturbated according to (2.4)

Consequently, we seek the solution of equation[
−α2

(
I+

n∑
i=1

aiviv
T
i

)
+

(
C+

n∑
i=1

biviv
T
i

)]
yo = 0 (3.1)

for α2 and yo if the original eigenelements are known. (For the sake of simplicity we
have applied the notation yo in the same way here as in equation (2.1) though their
meanings are different.)

The homogeneous problem (3.1) can be written in an inhomogeneous form, and
both sides can be multiplied by sinαt; referring to the fact, that after multiplication
the problem can be considered to be one in connection with steady forced vibrations.
This inhomogeneous form is(

−α2I+C
)
yo sinαt = fo sinαt (3.2)

where

fo =

(
α2

n∑
i=1

aiviv
T
i −

n∑
i=1

biviv
T
i

)
yo. (3.3)

Introducing diagonal matrices 〈a1, a2, ..., an〉 〈b1, b2, ..., bn〉 and using the identity valid
for any vectors ui,vi and scalars ci:

[u1,u2, ...,un] 〈c1, c2, ..., cn〉


vT1
vT2
...
vTn

 ≡
n∑
k=1

ckvkv
T
k (3.4)

we get from (3.3) that

fo = α2 [v1,v2, ...,vn] 〈a1, a2, ..., an〉


vT1
vT2
...
vTn

yo−
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− [v1,v2, ...,vn] 〈b1, b2, ..., bn〉


vT1
vT2
...
vTn

yo =

= [v1,v2, ...,vn]
(
α2 〈a1, a2, ..., an〉 − 〈b1, b2, ..., bn〉

)

vT1
vT2
...
vTn

yo (3.5)

As is well known when solving (3.2) for yo one has to distinguish two cases.

Characteristic for the case denoted by (a) is that α2 6= α2i , i = 1, 2, ..., n, i.e., none
of the wanted perturbated eigenvalues coincides with an eigenvalue of the original
system, that is perturbation does not permit any of the original system’s eigenvalues
to be invariant. Usually this case is characterized also by the designation: there is
(are) no persistent eigenvalue(s).

Characteristic for the case denoted by (b) is that, after the perturbation at least
one - let us say the jth- original eigenvalue remains invariant, i.e. α2 = α2j . Usually
in this case we speak about persistent eigenvalue(s). For the sake of generality we
shall assume that α2j is degenerated, its multiplicity is sj and the linearly independent
eigenvectors yj , (l = 1, 2, ..., sj) belong to it.

In case (a) solution of equation (3.5) assumes the form (omitting the common factor
sinαt):

yo =

n∑
k=1

yTk fo
α2k − α2

yk . (3.6a)

In case (b) however, the solution is (substituting, in accordance with our assump-
tion, αj instead of α):

yo =

n∑
k=1

′ y
T
k fo

α2k − α2j
yk +

sj∑
l=1

dlyjl , (3.6b)

where the constants dl (l = 1, 2, ..., sj) can be calculated from additional reasonings;
the comma on the first

∑
means that from this summing all quantities (in a number

sj) which belong to the invariant (and degenerated) α2j must be left out.

For case (b) solution exists if and only if

yTjl · fo = 0, l = 1, 2, ..., sj . (3.6c)

First case (a) will be examined. For this reason we substitute expression (3.5) for fo
in equation (3.6a) and get:

yo =

n∑
k=1

yTk
α2k − α2

[v1, ...,vn]
(
α2 〈a1, ..., an〉 − 〈b1, ..., bn〉

) vT1
...
vTn


yoyk
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in which the coeffi cient of the last yk on the right side is a scalar. Consequently, we
can write

yo =

n∑
k=1

yky
T
k

α2k − α2

[v1, ...,vn]
(
α2 〈a1, ..., an〉 − 〈b1, ..., bn〉

) vT1
...
vTn


yo . (3.7)

Equation (3.7) is a homogeneous linear system of equations for the perturbated
eigenelements. Since we are interested only in solutions different from zero, the nec-
essary and suffi cient condition for this is the disappearance of the determinant:

∣∣∣∣∣∣∣I−
n∑
k=1

yky
T
k

α2k − α2

[v1, ...,vn]
(
α2 〈a1, ..., an〉 − 〈b1, ..., bn〉

) vT1
...
vTn



∣∣∣∣∣∣∣ = 0 . (3.8)

With the knowledge of yk, αk, vk, and bk (k = 1, 2, ..., n) only α2 is unknown. The
values of α2, i.e., the perturbated eigenvalues can be computed by making use of a
numerical method. Determination of the corresponding eigenvectors yo requires the
solution of equations (3.7).

We can see that no matter how ”large”perturbations we have, in principle we can
work with accurate equations.

To apply those general reasonings which are the main subject of this paper, determi-
nant (3.8) should be transformed into a more auspicious form. This transformation is
based on the following statement: if the system of equationA (α)x = 0 with quadrat-
ical coeffi cient matrix is multiplied from the left by a matrix V, independent of α,
and with non-vanishing determinant, then from equation VA (α)x = 0 regarded as
a condition for x 6= 0 we find the same values of α, when working with the original
equation.

Consequently let us multiply equation (3.7) reduced to zero from the left by the
matrix

V =



vT1
...
vT2
...
vTn

 ,

the determinant of which does not depend on α, and does not vanish, because -
according to our starting point - v1, ...,vn are linearly independent. Hence the product
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in question is: vT1
...
vTn


I− n∑

k=1

yky
T
k

α2k − α2

[v1, ...,vn]
(
α2 〈a1, ..., an〉 − 〈b1, ..., bn〉

) vT1
...
vTn



yo =

=

I− n∑
k=1

1

α2k − α2

[vT1 v1, ...,vT1 vn] · 〈α2a1 − b1, ..., α2an − bn〉
 vT1

...
vTn



yo = 0 .

(3.9)

Stating the above equation we used the fact that the unit matrix is commutable with
an arbitrary matrix; furthermore the rule of associativity. Owing to the transforma-
tions we can switch over instead of determinant (3.8) to the determinant following
from equation (3.9)∣∣∣∣∣∣∣I−

n∑
k=1

1

α2k − α2

 vT1 yk
...

vTnyk

{[yTk v1, ...,yTk vn] · 〈α2a1 − b1, ..., α2an − bn〉}
∣∣∣∣∣∣∣ .
(3.10)

Knowing yk, αk, vk, ak, bk (k = 1, 2, ..., n) this latter determinant - which must
be equal to zero - also makes possible the calculation of the perturbated eigenvalues
no matter how "large" the perturbations are. Equation (3.8) has yet the favourable
property that by choosing

vk = yk, k = 1, 2, ..., n1 (3.11)

we get due to equation (2.3a) the following form:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
I−

n∑
k=1

1

α2k − α2



0
...
0
1
0
...
0



(1

(k

(n

[
1
^

0 . . . 0

k
^

1 0 . . .

n
^

0

] 〈
α2a1 − b1, ..., α2an − bn

〉
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

=

∣∣∣∣∣I−
n∑
k=1

1

α2k − α2

〈
0 . . . 0

k
^

1 0 . . . 0

〉〈
α2a1 − b1, ..., α2an − bn

〉∣∣∣∣∣ =

1In place of equation (3.11) - if we work not with I, but with the ”general” inertia matrix M -
it follows that vk =Myk, and equation (2.3a) should be replaced by (2.3b); the further reasonings
are valid in unaltered form.
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=

∣∣∣∣∣∣I−
n∑
k=1

1

α2k − α2

〈
0, . . . , 0,

k
^

α2ak, 0, . . . , 0

〉∣∣∣∣∣∣ . (3.12)

In what follows when seeking the solution of equation (3.2) we shall investigate case
(a) only.

Let us change over to case (b), in which to sum up - let us say that α2j with the
multiplicity sj remains invariant (persistent). Our following formulas apply to this
αj .

Let us substitute back the expression (3.5) for fo into (3.6b) and (3.6c) and accord-
ing to the assumption of invariance α2j in place of α

2; the result is:

yo =

n∑
k=1

′

 yky
T
k

α2k − α2j
[v1, ...,vn]

〈
α2ja1,−b1, ..., α2jan − bn

〉 vT1
...
vTn


yo +

sj∑
l=1

dl yjl ,

(3.13a)

yTjl

[v1, ...,vn]
〈
α2ja1,−b1, ..., α2jan − bn

〉 vT1
...
vTn


yo = 0, l = 1, 2, ..., sj .

(3.13b)

The homogeneous linear system of equations (3.13a) and (3.13b) can be recast in the
partitioned system of equation introducing the new unknown vector uT = [yTo , d1, ..., dsj ] =

[yTo ,d
T ] (here dT ·

= [d1, ..., dsj ]):
U

(n×n)
11 U

(n×sj)
12

U
(sj×n)

21 0

 u = 0 (3.14)

in which

U11 = I−
n∑
k=1

′ yky
T
k

α2k − α2j

[v1, ...,vn]
〈
α2ja1 − b1, ..., α2jan − bn

〉 vT1
...
vTn


 , (3.15a)

U12 = [yj1 , ...,yjsj ] , (3.15b)

U21 =


 yTj1

...
yTjsj

 [v1, ...,vn]
〈
α2ja1 − b1, ..., α2jan − bn

〉 vT1
...
vTn


 (3.15c)

Naturally only those solutions of equation (3.14) have to be taken into consideration
for which yTo 6= 0. This is only possible if and only if % (U21) < n, where % is the rank
of the matrix in the parenthesis. In the following we inquire if this inequality is valid.
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As can be seen from the definitions (3.15b) and (3.15c)

U21 = UT
12 [v1, ...,vn]

〈
α2ja1 − b1, ..., α2jan − bn

〉 vT1
...
vTn

 . (3.16)

Since the vectors yjl (l = 1, 2, ..., sj ) are linearly independent: % (U21) = sj , and
because multiplication cannot increase the rank, it follows from equation (3.16)

% (U21) ≤ sj . (3.17)

Let us investigate if sj and n should satisfy some general inequality. First we would
like to prove that sj 6= n. (It is clear from the definitions of sj and n that sj > n is
impossible. Int the following we show that sj < n. As a matter of fact in the extreme
case for which the original system has only one n-fold (n-fold degenerated) eigenvalue
invariant in spite of the perturbation, it holds that sj = n. This extreme case never-
theless cannot occur, because in this case the n-dimensional vector fo (carrying the
perturbation) according to (3.6b) had to be orthogonal to the linearly independent
vectors yjl (l = 1, 2, ..., sj = n), therefore fo should be the vector zero, thus there is
no perturbation. Consequently

sj < n . (3.18)

If we compare the above inequality and (3.17), we obtain

% (U21) < n, (3.19)

from which it follows for the case we are interested in that the fulfillment of the
inequality

yTo 6= 0

is possible. According to an investigation [10] (here not detailed), conditions for the
existence of a solution for yTo 6= 0 are as follows:

(b1) either (if det U11 6= 0)

det U21U
−1
11 U12 = 0, % (U21) = sj , sj < n; then d 6= 0, (3.20a)

(b2) or (if det U11 = 0
−
); here two subcases are possible:

(b21) if the condition d = 0 is to be satisfied

% (U12) < n

is necessary
(b22) if we prescribe d 6= 0 either

% (U12) = sj, sj < n (3.21)

or

% (U12) < min (sj , n) (3.22)

is necessary.
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The general considerations of this paper in turn can get a more auspicious form, if
we multiply equation (3.14) from the left by the hypermatrix

U =


V

(n×n)
0

(n×sj)

0
(sj×n)

Isj

 (3.23)

which is nonsingular and independent of α where the meaning of V is the same as it
was defined before, Isj , however, is the unit matrix of order sj .

After performing the multiplication we obtain

U

[
U11 U12

U21 0

] [
yo
d

]
=

[
VU11 yo +VU12 d

U21yo 0

]
=

[
0
0

]
. (3.24)

Let the first member of the first block-equation on the left side of equation (3.24) be
transmuted as we did it in connection with equation (3.9).

In this way we obtain

VU11 yo =I− n∑
k=1

′
1

α2k − α2

v
T
1 yk
...

vTnyk

{[yTk v1, ...,yTk vn] 〈α2ja1 − b1, ..., α2jan − bn〉}

v

T
1
...
vTn

yo=0

(3.25)

Therefore equation (3.24) has the form[
V11 VU12

V21 0

] [
Vyo
d

]
= 0 (3.26)

where

V11 = I−
n∑
k=1

′
1

α2k − α2j

 vT1 yk
...

vTnyk

 [yTk v1, ...,yTk vn] 〈α2ja1 − b1, ..., α2jan − bn〉
(3.27)

V21 =

[
yTj1v1, ...,y

T
j1
vn

yTjsj
v1, ...,y

T
jsj
vn

] 〈
α2ja1 − b1, ..., α2jan − bn

〉
. (3.28)

This transformation makes it possible to express conditions (3.20a,b,c) substituting
U11,U12,U21 succesively for V11,VU12, and V21. Our formulas will be again more
simple using the choice (3.11).

If there are more than one invariant and distinct eigenvalues, then the problem can
be described by as many determinant equations —according to equations (3.14) or
(3.15a) —as the number of the invariant eigenvalues prescribed.
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One can raise the question, if in the case of single eigenvalues such a non zero
perturbation exists which leaves every single eigenvalue invariant. This problem is
described by a number of n, from equation (3.14) following determinant equations
(individually of order n + 1). If we consider the vectors v1 to be fixed and consider
for example the coeffi cients ai, bi (i = 1, ..., n) to be unknowns, then we can generally
assume arbitrarily n from them. For instance, the coordination of the (persistent)
eigenvalues with other eigenvectors is feasible, as before.

In what follows, based on our previous results, we shall consider solutions of various
problems of common interest.

4. Perturbation with one term for single original eigenvalues

We shall call the perturbation ”having one term referring to the index r”, if the
coeffi cients ai, bi are non-zero only for the index i = r, i.e., if

fo = [v1, ...,vr, ...vn]
〈
0, ..., α2ar − br, , ..., 0

〉


vT1
...
vTr
...
vTn

 , (4.1)

and in accordance with the method presented above ar 6= 0, br 6= 0.

The determinant (3.11) that provides the perturbated eigenvalues assumes the form∣∣∣∣∣∣∣∣∣∣∣∣
I−

n∑
k=1

1

α2k − α2



vT1 yk
...

vTr yk
...

vTnyk


[
yTk y1, ...,y

T
k vr, ...,y

T
k vn

] 〈
0, ..., α2ar − br, ..., 0

〉
∣∣∣∣∣∣∣∣∣∣∣∣
.

Taking the opportunity of the choice vk = yk this determinant is very similar to that
defined by equation (3.12):∣∣∣∣∣I−

n∑
k=1

1

α2k − α2
〈
0, 0, ...α2ar − br, 0, ..., 0

〉∣∣∣∣∣
= det

〈
1, 1, ..., 1− α2ar − br

α2r − α2
, 1, ..., 1

〉
= 1− α2ar − br

α2r − α2
. (4.2)

The determinant will be equal to zero if

α2 =
α2r + br
1 + ar

, (4.3)

i.e., if one single eigenvalue is perturbated. This formula does not say yet what index
the perturbated eigenvalue has.
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Inserting the eigenvalues (4.3) in (3.9) we get the components vTk yo (k = 1, 2, ..., n)
of the perturbated eigenvector projected on vk = yk; this equation reads disregarding
the details of the calculations (observing that on the left side of equation (3.9) only
the member with index k = r is not zero):

〈
1, 1, ...,

r
^

0 , 1, ..., 1

〉


yT1 yo
...

yTr yo
...

yTnyo

 = 0 , (4.4)

from which

yT1 yo = 0 , etc. yTr−1yo = 0 , yTr+1yo = 0 , etc. yTnyo = 0 ,

but in turn it must be yTr yo 6= 0, otherwise the unknown vector yo was orthogonal
to the linearly independent n-dimensional vectors y1, ...,yn, and therefore it would
be zero. The product yTr yo can be assumed as an arbitrary real number and we can
agree to choose it to 1:

yTr yo = 1 . (4.5)

Equations (4.4) and (4.5) will be interpreted in such a way that to the single pertur-
bated eigenvalue belongs as eigenvector the original eigenvector with index r.

According to equation (4.3) - as we saw it - only one single eigenvalue is perturbated.
In the following we shall check if the circumstance that the rest of the eigenvalues
remain invariant fits in - as needed - the formerly elucidated thoughts in connection
with the invariant (persistent) eigenvalues.

The check consists in investigating whether the single eigenvalues

α21, α
2
2, ..., α

2
r−1, α

2
r+1, ..., α

2
n

one after the other satisfy the conditions (3.20a) or (3.21) formulated by now in terms
of V11, VU12 and V21. First we assume case (b1), i.e., (3.20a) is valid, which now
means that we substitute V11 for U11 (detV11 6= 0). In our case with the choice
vk = yk

V11 = I−
n∑
k−1

′
1

α2k − α2

 yT1 y
k

...
yTnyk

[yTk y1, ..., y
−
T

k

yn

] 〈
0, 0, ..., α2ar − br, ..., 0, 0

〉
.

If we want to check the values of α21, then we must substitute α
2
1 for α

2, and we have
to omit the index k = 1 from the above sum. In this way we get

V11 = I−


1

α22 − α21


0
1
0
...
0

 [0, 1, 0, ..., 0] +
1

α23 − α21


0
0
1
...
0

 [0, 0, 1, ..., 0] + ...+
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+
1

α2r − α21


0
...
1
0
0

 (r

[
0, 0, ...,

r
^

1 , 0, 0

]
+, ...,

+
1

α2n − α21


0
0
...
0
1

 [0, ..., 0, 1]
〈
0, 0, ..., α21ar − br, 0, ..., 0

〉

〈
0, 0, ..., α21ar − br, 0, ..., 0

〉
=

= I− 1

α2r − α21
〈
0, 0, ..., α21ar − br, 0, ..., 0

〉
=

〈
1, 1, ..., 1− α21ar − br

α2r − α21
, 1, ..., 1

〉
.

If we intend to check generally the values α2i (i = 1, 2, ..., r − 1, r + 1, ..., n), then we
should write

V11 = I−


1

α21 − α2i


1
0
...
0
0

 [1, ..., 0] +
1

α22 − α2i


0
1
...
0
0

 [0, 1, 0, ..., 0] + ...+

+
1

α2i−1 − α2i



0
...
1
...
0

(i−1
0, ..., 0,

i−1
^

1 , 0, ..., 0

 +

+
1

α2i+1 − α2i



0
...
1
...
0

(i+1
0, ..., 0,

i+1
^

1 , 0, ..., 0

 +

+
1

α2r − α2i


0
...
1
0
0

(r
[

0, ..., 0,

r
^

1 , 0, 0

]
+
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+...+
1

α2n − α2i


0
0
...
0
1

 [0, ..., 1]


〈
0, 0, ..., α2i ar − br, ..., 0

〉
=

= I− 1

α2r − α2i



0
0
...
1
...
0
0


(r

[
0, 0, ...,

r
^

1 , ..., 0, 0

] 〈
0, 0, ..., α2i ar − br, ..., 0

〉

=

〈
1, 1, ..., 1− α2i ar − br

α2r − α2i
, 1, ..., 1

〉
.

Summing up: if we substitute α2i for any eigenvalue different from α2r, i.e., α
2
i is an

eigenvalue, but α2i 6= α2r, then

|V11| = 1− α2i ar − br
α2r − α2i

, and thus |V11| 6= 0 ,

which is in accordance with our expectations.

We shall check making use of the relation (3.20a) whether the equality

det
(
U21U

−1
11 U12

)
= det

(
V21V

−1
11 VV12

)
holds. It can be seen for i = 1, 2, ..., r − 1, r + 1, ..., n that

V21V
−1
11 VU12 =

=
[
yTi v1, ...,y

T
i vr, ...,y

T
i vn

] 〈
0, 0, ..., α2i ar − br, 0, ..., 0

〉
×

×
〈

1, ..., 1,
α2r − α2i

α2r − α2i − α2i ar + br
, ..., 1

〉


vT1
...
vTr
...
vTn

yi =

= [0, 0, 0, ..., 0]

〈
1, ..., 1,

r
^

α2r − α2i
α2r − α2i − α2i ar + br

, ..., 1

〉


0
...
1
...
0

(i6=r = 0

therefore det
(
V21V

−1
11 VU12

)
= 0 as it should be.
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Investigation of condition (b2) and its subcases (b21) and (b22) will be not pre-
sented.

It may be of interest, however, to examine the perturbated eigenvectors belonging
to these invariant eigenvalues. Based on equation (3.26) and the foregoing equation for
Vyo containing the components (projected on v1, ...,vn) of the eigenvectors searched
we write 

1 0
1 0

. . .
...

1− α2iar−br
α2r−α2i

1

1 0
. . .

...
1 0

0 0 · · · 0 0 · · · 0 1 0


(i



vT1 yo
...

vTr yo
...
d1

 = 0.

The rank of its coeffi cient matrix is n, because 1 − α2iar−br
α2r−α2i

6= 0 for i 6= r thus the
defect is 1, which is the number of the free unknowns. From the first n equations
then follows

vT1 yo = 0, ...,vTr yo = 0, ...,vTi yo + d1 = 0, ...,vTnyo = 0 .

The n+ 1th equation is automatically satisfied. d1 can be taken as the free unknown;
choosing d1 = −1, vTi yo = 1, —because now vTi = yi - the perturbated eigenvector is
the same as the original eigenvector that belongs to α2i .

Summing up our results: in the case of single original eigenvalues, and of a one-term
perturbation referring only to the index r and using the special choice (3.11), nearly
all eigenvalues remain invariant; among the eigenvalues only the one having the index
r changes to α2r+br

1+ar
. (However, it is not certain if this will be the rth eigenvalue of the

perturbated system.)

5. Two subcases of the investigation of the preceding item

In the subcase characterized by the equation

α2r + br
1 + ar

= α2i , i 6= r (5.1)

the perturbation makes the originally ith eigenvalue α2i a double one. If

α2r−1 <
α2r + br
1 + ar

< α2r+1,

then the perturbated rth eigenvalue remains the rth eigenvalue of the perturbated
system. If this inequality chain is invalid, the perturbation alters the original order
of the eigenvalues.
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Let us investigate how the perturbated eigenvectors can be formed if for fixed i
and r equation (5.1) holds. This equation can be interpreted in such a way that the
ith original eigenvalue remains invariant. The corresponding blocks in the partitioned
hypermatrix of equation (3.26), which gives the perturbated eigenvectors, are as fol-

lows (α2 = α2i =
α2r+br
1+ar

, and we have omitted the term with index k = i from the sum
and have chosen vj = yj):

V11 = I−


1

α21 − α2i


1
0
...
0

 [1, 0, ..., 0]
〈
0, 0, ..., α2i ar − br, ..., 0, ..., 0

〉
+ ...+

+
1

α2i−1 − α2i



0
...
1
...
0

 (i−1
0, ...,

i−1
^

1 , ..., 0

〈0, 0, ..., α2i ar − br, 0, ..., 0〉 +

+
1

α2i+1 − α2i



0
...
1
...
0

 (i+1
0, ...,

i+1
^

1 , ..., 0

〈0, 0, ..., α2i ar − br, ..., 0, ..., 0〉 + ...+

+
1

α2n − α2i



0
...
0
...
1

 [0, ..., 0, ..., 1]
〈
0, 0, ..., α2i ar − br, 0, ..., 0

〉


= I− 1

α2r − α2i

〈
0, ..., 0, α2i ar − br, 0, ..., 0

〉
=

〈
1, 1, ...,

r
^

1 − α2i ar − br
α2r − α2i

, 1, 1, ..., 1

〉
;

V21 =

[
0, 0, ...,

i
^

1 , 0, ..., 0

] 〈
0, 0, ..., α2i ar − br, 0, ..., 0

〉
= [0, ..., 0] ;

VU12 =

 yT1
...
yTn

 [yi] =



0
...
1
...
0

 (i
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Algebraical details helping calculation of V11:

1− α2i ar − br
α2r − α2i

=
α2r − α2i − α2i ar + br

α2r − α2i
=

=
α2r + br − α2i (1 + ar)

α2r − α2i
=
α2r + br − α2r+br

1+ar
(1 + ar)

α2r −
α2r+br
1+ar

= 0.

Equation (3.26) reads:

1 0
1 0

. . .
...

1 1
0 0

1 0
. . .

...
1 0

1 0
0 0 · · · 0 0 0 · · · 0 0 0


(r

(i



vT1 yo
...

vTi yo
...

vTnyo
d1


= 0

from which it follows for the non-trivial solutions

vT1 yo = 0, vTr yo 6= 0, etc. ,vTi yo + d1 = 0, etc. vTnyo = 0.

Thus yo can have non-zero components only in the directions vr = yr and vi = yi.
It is possible to state the assumption yo = cryr + civi. We can norm it with the
prescription y T

o yo = 1, which yields c2r + c2i = 1 and either cr or ci can be assumed.

6. Solution of an inverse eigenvalue problem

The above reasonings make it possible to design a system with n degrees of freedom
with prescribed eigenvalues. We start with a known system and modify it using a
perturbation having n terms, and we are looking for the coeffi cients

ai, bi, (i = 1, 2, ..., n).

Let us suppose that the prescribed eigenvalues α
′2
i (i = 1, 2, ..., n) satisfy the con-

ditions

0 < α
′2
1 < α

′2
2 < ... < α

′2
n

and

α′2i 6= α
′2
j , i = 1, 2, ..., n; j = 1, 2, ..., n,

consequently the prescribed eigenvalue are differing from each other, and there are no
invariant eigenvalues. Further let 0 < α21 < α22 < ... < α2n.



134 Á. Bosznay

This task can indeed be solved by a perturbation having n terms. A more detailed
expanding of determinant (3.12) is:∣∣∣∣∣i−

n∑
k=1

1

α2k − α2
〈
0, 0, ..., 0, α2ak − bk, 0, ...0

〉∣∣∣∣∣
=

∣∣∣∣〈1− α2a1 − b1
α21 − α2

, 1− α2a2 − b2
α22 − α2

, ..., 1− α2an − bn
α2n − α2

〉∣∣∣∣ .
This diagonal determinant can be set to zero by setting to zero at least one of its
elements. In this way - wishing the perturbated eigenvalues to be just the prescribed
ones - we get the equations below with the agreement that the first element of the
diagonal is set to zero by making use of the first eigenvalue and so on:

1− α′21 a1 − b1
α21 − α′21

= 0, 1− α′22 a2 − b2
α22 − α′22

= 0, 1− α′2n an − bn
α2n − α′2n

= 0.

It follows from these equations that the coeffi cients ai, bi should satisfy the equations

−α
′2
i ai + bi = −α2i + α

′2
i , i = 1, 2, ..., n.

Having altogether 2n coeffi cients we can posit arbitrarily a number of n, or a number
of n surplus stipulations can be taken.

Equation for the components yTi yoi of the perturbated eigenvectors yoi projected
on the vectors yi is of the form

〈
1− α′2i a1 − b1

α21 − α′2i
, 1− α′2i a2 − b2

α22 − α′2i
, ..., 1− α′2ai − bi

α2i − α′2i
, ..., 1− α′2i an − bn

α2n − α′2i

〉


yT1 yoi
...

yTi yo
...

ynyo

= 0 .

Only the ith element of the above determinant will be zero, i.e., only the ith element
of the unknown column vector can differ from zero, the other elements must be equal
to zero. In other words this vector (with an appropriate agreement for norming) can
be equal to the ith eigenvector of the original system.

In what has gone before we adhered to the convention that the first element of the
diagonal matrix in question will be set to zero by the prescribed eigenvalue with the
index 1, and so on. Let us depart now from this agreement for instance in such a way
that, the prescribed eigenvalue with the index 1 should set to zero the nth element,
the prescribed eigenvalue with the index 2, however, the (n − 1)th element, and so
on. If n is even, we can agree that the prescribed eigenvalue with the index j sets
the (n− j)th element to zero. If n is odd, this agreement does not refer to the n−1

2

th

element; this will be made zero also now by the n−1
2

th
prescribed eigenvalue.

Making use of this agreement if n is even, only the n−jth element of the eigenvector
belonging to the prescribed eigenvector with the index j can differ from zero, i.e., the
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perturbated eigenvector can be considered equal to the original eigenvector with the
index n− j.

7. Designing an oscillator with n degrees of freedom and one degenerated
eigenvalue α2d with multiplicity n

We shall assume that the eigenvalues of the original system fulfill the relations

0 < α21 < α22 < ... < α2n

and
α2d 6= α2i , i = 1, 2, ..., n.

Making use of the determinant (3.12) again, we obtain

1− α2da1 − b1
α21 − α2d

= 0, 1− α2da2 − b2
α22 − α2d

= 0, 1− α2dan − bn
α2n − α2d

= 0.

It is possible anew to prescribe yet n conditions, or n coeffi cients can be chosen
arbitrarily from the coeffi cients ai, bi (i = 1, 2, ..., n).

8. About the inverse eigenvalue task of Lancaster

Lancaster in his paper [11] supplies - inter alia - it seems that without a detailed
demonstration — a perturbation (falling in the topic of the present paper), which
leaves the eigenvectors and zero eigenvalues (if they exist) invariant. We would like to
show the connection between this perturbation and that in the present paper. In order
to make Lancaster’s formulas close to ours, we shall set forth them with a designation
differing a little from Lancaster’s original ones.

Lancaster starts - with our denotations - with the eigenvalue task (1.1):(
−α2M+C1

)
x = 0,

then divides the perturbation task in two parts, considering first the problem(
−α2

∧
M+C1

)
yo = 0, (8.1)

then the problem (
−α2M+

∧
C1

)
yo = 0, (8.2)

where
∧
M and

∧
C1 are appropriately perturbated forms of M and C1 respectively. In

the sequel - combining the two problems - we shall deal with the problem(
−α2

∧
M+

∧
C1

)
yo = 0. (8.3)

We introduce the modal matrix X formed by the eigenvectors xoi (i = 1, ..., n) of
problem (1.1) as

[xo1,xo2, ...,xon] = X,
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which is assumed to satisfy the orthonormality condition XTMX = I. From the
latter we get (

XT
)−1

= MX and X−1 = XTM . (8.4)
Lancaster’s special perturbation is

∧
M = M−

(
XT
)−1 〈δ1, ..., δn〉 (I+ 〈δ1, ..., δn〉)−1X−1, (8.5)

and
∧
C1 = C1 +

(
XT
)−1 〈

α21, ..., α
2
n

〉
〈γ1, ..., γn〉X−1, (8.6)

where δi and γi are the so-called ”perturbational factors”—we remark that Lancaster
took also δi instead of γi (i = 1, ..., n); and α2i (i = 1, ..., n) are the eigenvalues of
(1.1).

Equation (8.3) can be written in the inhomogeneous form corresponding to (3.2),
where taking (8.5) and (8.6) into consideration:

fo =
{
−α2MX 〈δ1, ..., δn〉 (I+ 〈δ1, ..., δn〉)−1XTM

−MX
〈
α21, ..., α

2
n

〉
〈γ1, ..., γn〉XTM

}
yo. (8.7)

Comparing equation (8.7) and our formula (3.5) with the special assumption vk =
Mxok in (3.5) we find that Lancaster’s formulae can be derived from ours, if we make
use of the choices

〈a1, ..., an〉 = −〈δ1, ..., δn〉 (I− 〈δ1, ..., δn〉)−1 (8.8a)

and
〈b1, ..., bn〉 =

〈
α21, ..., α

2
n

〉
〈γ1, ..., γn〉 . (8.8b)

It follows from (8.8a,b) that

ai =
δi

1 + δi
and bi = α2i γi (i = 1, ..., n) (8.9)

consequently the relation corresponding to (4.3) expressed in terms of δi and γi is:

α2 = α2i (1 + γi)(1 + δi), i = 1, ..., n. (8.10)

This means Lancaster’s formula is a subcase of ours and at the same time we have
given a proof for his formulas.

9. Perturbation of a simply connected chain-like oscillator leaving these
properties invariant

The system mentioned in the title can be described by equation (2.1), where C is
tridiagonal and excepting for one row (which can be either the first one or the last
one) the sum of the elements should be zero. The perturbation must be such that
after perturbation I remains diagonal and C also remains tridiagonal.

The perturbation in the form (2.4) can leave I diagonal by vi 6= 0 (i = 1, 2, ..., n),
if for

ai 6= 0, i = 1, 2, ..., n the matrix
n∑
aiviv

T
i
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is diagonal, and C will be perturbated to be tridiagonal, if
n∑
i=1

biviv
T
i is tridiagonal.

Assume that vivTi is not diagonal for all i. Then the constants ai can only ensure

that the matrix
n∑
i=1

aiviv
T
i is diagonal if they satisfy more than n conditions, which

is generally not possible. Accordingly, vivTi (i = 1, 2, ..., n) must be diagonal, which
is only possible, if each vi contains only one element different from zero.

In accordance with all that was said above ai 6= 0, (i = 1, 2, ..., n) and vivTi
(i = 1, 2, ..., n) should contain in the main diagonal at most one non-zero element.

Therefore
n∑
i=1

biviv
T
i can perturbate at most elements of C in the main diagonal. This

means that if C belongs to a single connected chain-like system, then the perturbated
spring matrix cannot be interpreted unconditionally belonging to a simply connected
chain-like system. By that namely - as has been said above - (excepting for example
the first or the last row), the sum of the elements of each row must be zero. In
general the perturbated spring matrix will characterize such a system, to which not
only the immediately neighbouring masses are connected by a spring but in general
there belong springs to each mass coupling it to a fixed point.

However, if we assume that ai = 0, (i = 1, 2, ..., n), then we can proceed in the same
way as in case (iiii) —see page 120. Since then ∆I = 0, the perturbated mass matrix
is again the unit matrix. Let us survey in this case some possibilities for inserting the
vectors vi.

If we take only the first element of v1, then only the first and second one of v2, ...,
afterwards only the (n − 2)th and (n − 1)th element of vn−1, thereafter only the
(n− 1)

st and nst element of vn as differing from zero, then the perturbation adheres
to the tridiagonal form of C. For the case of fixed vectors bi, however, in general
the property mentioned above does not remain in connection with the sum of the
elements in the rows of the perturbated C.

10. Remarks helping to find relationship with some relevant results

According to Falk [12] the differential equation (1.1) - if there are no degenerated
eigenvalues - can be transformed by the (diagonal) S and real quadratical T matrices
- which can be calculated without the knowledge of the eigenvalues leaving these
invariant - to the form

STTTMTS
..
x+ STTTC1TSx = 0,

which corresponds to a chain-like longitudinal oscillator without springs connecting
not immediately neighboring masses.

Rutishauser [13], however, gives an orthogonal Hessenberg matrix (constructing it
with the help of a known eigenvector) which transforms (knowing also the eigenvalues
belonging to this known eigenvector) the original problem with a similarity transfor-
mation without changing the band width of the original matrices to an eigenvalue
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problem which has a zero eigenvalue corresponding to the known eigenvector used
to the construction of the transformation matrix mentioned, and the other original
eigenvalues remain invariant. Usually one speaks in this case about ”deflation”. By
this procedure it is not warranted that the transformed problem corresponds to chain-
like oscillator without springs connected not immediately to the neighboring masses,
even if the starting problem was characterized with this property.

To Rutishauser’s transformation always can be ordered such a series of dyad-
separations, which results in the same effect as Rutishauser’s similarity transforma-
tion.

In the preceding paragraph we mentioned shortly the notion of deflation. We give
first a very simple definition of this idea suiting to our main subject. Let us suppose,
we have an oscillator with the eigenfrequencies

α′21 , α
′2
2 , ..., α

′2
k−1, α

′2
k , α

′2
k+1, ..., α

′2
n .

How can we very simply describe another oscillator by making use of the eigenfre-
quencies

α′21 , α
′2
2 , ..., α

′2
k−1, α

′2
k+1, ..., α

′2
n ,

i.e., a series consisting of the original eigenfrequencies with α′2k as a missing eigenfre-
quency. At the same time - if we wish - (naturally the following is only possible by
an oscillator with finite degrees of freedom) we can diminish by one the number of
its degrees of freedom. The above thoughts about the solution of the inverse eigen-
value problems give an immediate possibility to solve the problem of deflation with
or without diminishing the number of its degrees of freedom.

11. Concluding remarks

We truly hope that we could show using the dyads the outlines promised in the
title and perhaps more generally and comprehensively as before. It was not necessary
to limit some measure of the perturbations in the interest of a prescribed measure of
the perturbations in the interest of a prescribed measure of exactness; nonpersistent
and persistent eigenvalues can be examined as well. Applicability of the results was
explained to simpler and more complex problems. Multiplying the original equation
by two kinds of partitioned matrices allowed an expressive interpretation of results.
Lancaster’s known formulas showed themselves to be a subcase of our results. We
investigated possible forms of the dyadic perturbation which leave the main properties
of a simply connected chain-like oscillator unchanged.
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Abstract. Relations have been deduced for the material time rates of deformation tensors
of a body in coordinate systems moving arbitrarily with respect to each other. The concept
of materially objective time rates of tensors is associated with the concept of co-ordinates
systems moving arbitrarily (the transformations are time dependent and arbitrary) which
respect to each other, rather than with rigid body motion (the transformations are orthogo-
nal) as generally accepted in the literature. It has been shown that one part of the materially
objective time rates of tensors found in literature and also those proposed in this paper are
materially objective for arbitrary time dependent transformations, while their other part for
orthogonal transformations only.
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1. Introduction

1.1. The first part of this paper (Kozák [14]) gives the kinematic quantities for
coordinate systems moving arbitrarily (capable of deformation) with respect to each
other. It has also been shown how the material time rates defined in these coordinate
systems are related to each other.

Making use of the results of the first part, the present second part gives a new
and more general definition for the materially (physically) objective time rates of
continuum mechanics. In addition, they are arranged into a system. An outline
is provided about the issue how the physically objective time rates of continuum
mechanics are related to each other both for those being defined in the paper and for
those taken from the literature.
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1.2. Section 2 is devoted to the material time rates of the tensors describing the
deformations of continuum both in the fixed coordinate system and in another one
moving arbitrarily with respect to the fixed one. The spin tensors of the principal
directions of strains and the rotation tensor are also determined in these coordinate
systems.

In Section 3 materially objective tensors determined by the velocity field and the
deformation of continuum are sought and then the basic system of materially objective
time rates of a tensor is defined by making use of the relations established between
the material time rates defined in coordinate systems moving arbitrarily with respect
to each other in Section 4 of Part I. It is also shown how the objective time rates
found in the literature follow from the basic system and the objective tensors defined
in the first part of the present section. In addition to this, new materially objective
time rates are defined.

1.3. Notations and notational conventions are the same as in the first part. When
citing equations of the first part, the equation number is followed by a point and the
roman numeral ”I”.

2. Material time rates of deformation tensors of a body

2.1. For our later considerations the material time rates of the scalar line elements
ds, the stretch λe, the deformation gradient F , the rotation tensor FR, the left
stretch tensor V and the eigenvectors np as well as the conclusions obtained from the
investigation of these rates deserve special attention.

Consider first the material time rates defined in the coordinate system {xp}.
For the vectorial line element dr, the scalar line element ds, the stretch λe and the

deformation gradient F we may write the known formulae

(x) (dr)
·
= d(x)v = (x)L · dr , (2.1)

(x) (ds)
·

ds
= e · (x)D · e = ep

(x)

dpqe
q , (2.2)

(x)λ̇e
λe

= (x) (lnλe)
·
= e · (x)D · e , (2.3)

(x)F · = (x)L · F . (2.4)

2.2. Let
(nx)W = (nx)W

K

LGKG
L

(2.5)

be the spin tensor referring to the coordinate system {νp} in the reference configura-
tion (see Subsection 3.4. of Part I.). Further let

(nx)W = (nx)W p
qgpg

q (2.6)

be the spin tensor referring to the co-ordinate system {νp} in the present configura-
tion. (nx)W and (nx)W are both skew tensors.
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The eigenvectors np and nq of the principal axes of strains U and V remain unit
vectors during the deformation of the body and are always orthonormal to each other.
Consequently, the following relations hold in the coordinate systems {νp} and {νp}
rotating together with the principal axes

(n)ṅp = 0 and (n)ṅq = 0 . (2.7)

Apply formulae (4.13.I) and determine the material time rates of the eigenvectors
np and nq i.e., the corotate rates, taking into account that the motion of coordinate
systems {νp} and {νp} with respect to the coordinate system {xp} is a rigid body
motion, i.e., (nx)L = (nx)W and (nx)L = (nx)W . In this way we have

(x)
·
np =

(n)
·
np − np · (nx)W = (nx)W · np, (2.8)

(x) ·nq =
(n) ·nq − nq · (nx)W = (nx)W · nq. (2.9)

Following this we proceed to determine the material time rate of the expression np =
R · np (see 3.15.I):

(x) ·np =
(x)R· · np +R · (x)

·
np.

After substitutions and taking into account that np can be any of the eigenvectors,
we obtain:

(nx)W = (x)R· ·RT +R · (nx)W ·RT. (2.10)

Since both (nx)W and (nx)W are skew and the product R · (nx)W ·RT is also skew,
it follows that so is (x)R· ·RT. Let the corresponding spin tensor (the rate of rotation
tensor) be

(x)R· ·RT = (Rx)W , (2.11)

from which we obtain the material time rate of the rotation R :

(x)R· = (Rx)W ·R. (2.12)

As can be seen from (2.10) the spin tensors (nx)W , (nx)W and (Rx)W we have
introduced should meet the relation

(nx)W = (Rx)W +R · (nx)W ·RT. (2.13)

2.3. According to (3.16.I) it holds for the left stretch tensor in the coordinate
system {νp} rotating together with the eigenvectors that

(n)V · = (n)λ̇pδ
p
qnpn

q . (2.14)

Therefore it follows from (4.14.I) that

(x)V · = (n)V · + (nx)W ·V − V · (nx)W =

= (x)λ̇pδ
p
qnpn

q + (nx)W · V − V · (nx)W . (2.15)

Here we have utilized the relation (n)λ̇p = (x)λ̇p which holds in the coordinate systems
{xp} and {νp} which perform a rigid body motion with respect to each other (For
the sake of comparison it is worth recalling formula (2.21), which we present later).
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2.4. Recalling the polar decomposition (3.14.I) for the deformation gradient F , it
follows from (2.4)

(x)L = (x)F · · F−1 =
(
(x)V · ·R+ V · (x)R·

)
·RT · V −1 .

Making use of equations (2.15) and (2.12) we have

(x)L = (x) (lnV )
◦
+ (nx)W + V

(
(Rx)W −(nx)W

)
· V −1 , (2.16)

where
(x) (lnV )

◦
=
(
(x)λ̇pδ

p
qnpn

q
)
· V −1 = (x)

(
lnp

)·
δpqnpn

q . (2.17)

2.5. When formulating relative material time rates, we shall utilize the relations
being set up between material time rates defined in the coordinate systems {xp} and{
x̂k
}
in Section 4 of Part I.

In the case of the vectorial line element we obtain from (4.30.I), (2.1) and (3.27.I)
that

(x̂) (dr∗)
·
= d(x̂)v = (x) (dr)

·− (Gx)
L · dr = (x̂)L · dr . (2.18)

For the scalar line element the result follows from the expression

(x̂) (ds · ds)· = 2(x̂) (ds)· ds = (x̂) (dr·dr)· .

If we substitute equation (2.18) and take (3.28.I) also into consideration we obtain:

(x̂) (ds) ·

ds
= e · (x̂)D · e = e ·

(
(x)D − (Gx)D

)
· e =

(x) (ds)
·

ds
− e · (Gx)D · e ,

(2.19)
(x̂)λ̇e
λe

= (x̂) (lnλe)
·
= (x) (lnλe)

· − e · (Gx)D · e . (2.20)

Here e is the unit vector in the direction of the line element.

It follows from (2.17) and (2.20) that

(x) (lnV )
◦
= (x)

(
lnλp

)·
δpqnpn

q =
[
(x̂)
(
lnλp

)·
+ np · (Gx)D · nq

]
δpqnpn

q . (2.21)

2.6. In the case of the deformation gradient equation (4.30.I) should be applied
since F has only one index relating to the present configuration. Substituting (2.4)
and (3.27.I) equation

(x̂) (F ∗)
·
= (x)F · − (Gx)D · F = (x̂)L · F (2.22)

is obtained.

As regards the left stretch tensor V , equation (4.14.I) should be followed:

(x̂) (V ∗∗)
·
= (x)V · − (Gx)D · V + V · (Gx)D .
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In view of equation (2.15) we find
(x̂) (V ∗∗)

·
= (x)λ̇pδ

p
qnpn

q − (Gx)D · V + V · (Gx)D+

+
(
(nx)W − (Gx)W

)
· V − V ·

(
(nx)W − (Gx)W

)
. (2.23)

The relative velocity gradient is obtained with the aid of equation (3.27.I). Substi-
tuting equation (2.16) we can write

(x̂)L = (x) (lnV )◦ +
(
(nx)W −(Gx)W

)
−

− V ·
[(

(nx)W −(Gx)W
)
−
(
(Rx)W −(Gx)W

)]
−(Gx)D , (2.24)

where
(x) (lnV )

◦
=
[
(x̂)
(
lnλp

)·
+ np · (Gx)D · nq

]
δpqnpn

q .

Remark: The result (2.24) could also be deduced from the equation for the relative
velocity gradient (x̂)L = (x̂) (F ∗)

· ·F , which follows from (2.22).

2.7. The well-known material time rate of the Eulerian strain tensor, i.e., the
relation

E =
1

2

[
I −

(
F−1

)T · F−1] (2.25)

valid in the coordinate system {xp} is obtained by utilizing equation (2.4)
(x)E· = (x)D − (x)LT ·E −E ·(x) L . (2.26)

Making use of equation (4.13.I) we can write in the coordinate system
{
x̂k
}

(x̂) (E∗∗)
·
= (x̂)D − (x̂)LT ·E −E · (x̂)L+(Gx)D . (2.27)

2.8. Now we introduce the quantities
(nx̂)W = (nx)W −(Gx)W , (nx̂)wpq =

(nx)wpq − (Gx)wpq , (2.28)

and (Rx̂)W = (Rx)W −(Gx)W , (Rx̂)wpq =
(Rx)wpq − (Gx)wpq. (2.29)

where (nx̂)W and (nx)W are both the spin tensors of the coordinate system {νp}.
Moreover (Rx̂)W and (Rx)W are both rates of the rotation tensor.

One can come to further conclusions from formulae (2.16) and (2.24) giving velocity
gradients in the coordinate systems {xp} and

{
x̂k
}
. For this purpose we shall write

the formulae mentioned in the coordinate system {νp} of the principal axes by taking
the additive decomposition of (x)L and (x̂)L also into consideration:

(x)
(
lnλp

)·
δpq +

(nx)wpq

(
1−

λp

λq

)
+ (Rx)wpq

λp

λq
= (x)dpq +

(x)wpq , (2.30)

(x̂)
(
lnλp

)·
δpq +

(nx̂)wpq

(
1−

λp

λq

)
+ (Rx̂)wpq

λp

λq
=

= −
(
np · (Gx)D · nq

)
δpq +

(x)dpq +
(x̂)wpq . (2.31)
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It should be emphasized that equations (2.30), (2.31) and formulae (2.32)-(2.39) pre-
sented later are all regarded in the coordinate system {νp} of the principal strains
without drawing the reader’s attention to this fact by a separate notation.

Assuming the velocity gradient (x)L to be known, formulae (2.30) can be regarded
as a linear system of equations with nine unknowns by which are meant the three
values (x) (lnλp)

· and the three independent components of the skew tensors (nx)wpq
and (Rx)wpq each. To find the unknowns from (2.30) we shall set up two sets of linear
equations:

(x) (lnλp)
·
=

(x)λ̇p
λp

= (x)d
p
p , p = q , (2.32)

(nx)wpq

(
1−

λp

λq

)
+ (Rx)wpq

λp

λq
= (x)dpq +

(x)wpq , p 6= q , (2.33)

− (nx)wpq

(
1−

λq

λp

)
− (Rx)wpq

λq

λp
= (x)dpq − (x)wpq , p 6= q . (2.34)

Assuming different eigenvalues, i.e., λ1 6= λ2 6= λ3 6= λ1, the solution of equation
systems (2.33), (2.34) takes the form

(nx)wpq =
(x)wpq −

(
λp

)2
+
(
λq

)2
(
λp

)2
−
(
λq

)2 (x)dpq , p 6= q , (2.35)

(Rx)wpq =
(x)wpq −

λp − λq
λp + λq

(x)dpq , p 6= q . (2.36)

The spin tensor of the coordinate system {νp} in the reference configuration is
obtained from (2.13):

(nx)wKL = − R K
p

2λpλq(
λp

)2
−
(
λq

)2 (x)dpqR
q
L, K 6= L. (2.37)

For coinciding eigenvalues the above results change to a certain extent. If, for
example, λ1 = λ2 6= λ3, then

- for p = 1 and p = 2

(Rx)w12 =
(x)w12 while (nx)w12 is undetermined,

- for p 6= q and p, q = 2, 3 formulae (2.35), (2.36) remain valid.

If λ1 = λ2 = λ3 and p 6= q, then

(Rx)wpq =
(x)wpq while (nx)wpq is undetermined.
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In view of the formal similarity of (2.30) to (2.31) it follows at once by repeating
the preceding line of thought that on the one hand:

(x̂) (lnλp)
·
= (x̂)d

p
p =

(x)d
p
p − (Gx)d

p
p

[which has already been known - see (2.20)], and on the other hand:

(nx̂)wpq =
(x̂)wpq −

(
λp

)2
+
(
λq

)2
(
λp

)2
−
(
λq

)2 (x)dpq , p 6= q , (2.38)

(Rx̂)wpq =
(x̂)wpq −

λp − λq
λp + λq

(x)dpq , p 6= q . (2.39)

2.9. Comparing (2.35) and (2.38) as well as (2.36) and (2.39), further results are
obtained for the spin tensors:

(x̂)W − (nx̂)W = (x)W − (nx)W , (2.40)
(x̂)W − (Rx̂)W = (x)W − (Rx)W . (2.41)

By subtracting (2.40) from (2.41) we have

(nx̂)W − (Rx̂)W = (nx)W − (Rx)W . (2.42)

2.10. In the case when (x)dpq = 0 for p 6= q, i.e., when the angles formed by the
principal axes of the stretch tensors do not change at the instant under consideration:

(nx)W = (Rx)W = (x)W , (nx)W = 0 and (nx̂)W = (Rx̂)W = (x̂)W . (2.43)

3. Materially objective time rates of tensors and their system

3.1. In the present paper tensors are understood as materially (or physically) objec-
tive (or objective for short) quantities if their components follow the general transfor-
mation laws of tensors in coordinate systems moving arbitrarily (being deformable)
with respect to each other.

Summarizing briefly: an objective tensor and its objective time rates are invariant
under arbitrary time dependent transformations, more briefly: if they are objective,
they can be defined independently of the choice of coordinate systems.

In literature invariance under orthogonal time dependent transformations is under-
stood as the criterion for objectivity. For this reason we distinguish, in the sequel,
tensors being objective under arbitrary time dependent transformation from those
being objective for orthogonal time dependent transformation only.

3.2. On the basis of the results presented in Sections 2, 3 and 4 of Part I we can
conclude that the tensors describing the time rate of change of tensors and being,
therefore, defined in a certain co-ordinate system do not satisfy, in general, the above
criterion of objectivity. As examples we could mention, among others, the velocity
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vector fields, the velocity gradient, the strain rate tensor, the spin tensors (3.36.I)-
(3.39.I), the material time rates (4.13.I)-(4.16.I) of a tensor, and the material time
rates of line elements and those of stretches (2.19), (2.20).

At the same time we can also conclude on the basis of formulae (2.40)-(2.42) that
some tensors, which are defined as a difference between various spin tensors, are
independent of the choice of a coordinate system even if the coordinate systems un-
der consideration move arbitrarily with respect to each other. They are, therefore,
objective.

If we restrict the criterion for objectivity to orthogonal transformations only, ad-
ditional objective tensors can be obtained. In this case, (Gx)D = 0 and for example
according to (2.19), (2.20), the material time rates of the scalar line element and the
stretch are objective.

In the present Section the objective tensors are considered first and then their
objective time rates are investigated.

Since the sum, difference and product of objective tensors are also objective addi-
tional objective tensors can be established with the aid of the known ones.

In what follows, marking the co-ordinate system {xp} as such in which the tensors
are defined, we collect the objective tensors introduced in Section 2 and, in addi-
tion, we also deduce further objective tensors by means of the rule mentioned in the
preceding paragraph.

The tensors and the time rates of tensors that are objective under arbitrary time
dependent transformation will be separated from those being objective under orthog-
onal transformation only.

3.3. Objective tensors under arbitrary time dependent transformations:

- according to (2.40)-(2.42):

(x)W − (nx)W , (x)W − (Rx)W , (nx)W − (Rx)W , (3.1)

- according to (3.1):

(x)L− (x)D− (nx)W , (x)L− (x)D− (Rx)W , V ·
(
(nx)W − (Rx)W

)
·V −1 , (3.2)

- according to (3.2):

(x)L− (x)LI where (x)LI =
(x)D+ (nx)W − V ·

(
(nx)W − (Rx)W

)
·V −1 . (3.3)

3.4. Objective tensors under orthogonal time dependent transformations only. In
the case of an orthogonal transformation motion of the grid (i.e. of the coordinate
system

{
x̂k
}
relative to the coordinate system {xp}) is that of a rigid body. Conse-

quently, in this case the tensors listed below are all objective:

- according to (3.28.I) the strain rate tensor:

(x)D , (3.4)
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- according to (3.2) and (3.4):
(x)L− (nx)W , (x)L− (Rx)W , (3.5)

- according to (2.19) and (2.20):
(x) (ds)

·
, (x) (λe)

·
, (x) (lnλe)

·
, (3.6)

- according to (2.17) and (3.6):

(x) (lnV )
◦
= (x)

(
lnp

)·
δpqnpn

q , (3.7)

- according to (3.2), (3.4) and (3.7)
(x)L− (x)LII , (3.8a)

where
(x)LII =

(nx)W + (x) (lnV )
◦
= (x)V · · V −1 + V · (nx)W · V −1,

and
(x)L− (x)LIII , (3.8b)

where
(x)LIII =

(Rx)W + (x) (lnV )
·
,

- according to (3.5) and (3.6):
(x)L− (x)LIV , (3.9)

where (x)LIV =
(x)LI − (x)D = (nx)W − V ·

(
(x)D − (Rx)W

)
· V −1 .

3.5. Making use of the equations (4.13.I)-(4.16.I) one can define the objective
time rate of an arbitrary tensor (the term objective refers to the objectivity of the
materially objective time rate as a tensor).

3.6. Objective time rates for arbitrary time dependent transformations. Substitu-
tion of (Gx)L from (3.27.I) into (4.13.I) yields:

(x̂) (A∗∗)
·
+ (x̂)LT ·A+A · (x̂)L = (x)A· + (x)LT ·A+A · (x)L.

Similarly, other three relations, which are not detailed here, can be obtained from
(4.14.I)-(4.16.I).

Now we can define the so called basic system of the time rates [written here in the
coordinate system {xp}] being objective under any time dependent transformations
(or the basic system of objective rates for brevity’s sake). Denoting them by a small
triangle used as superscript we may write:

I. (A∗∗)
∇
= (x)A· + (x)LT ·A+A · (x)L, (3.10)

II. (A∗∗)
∇
= (x)A· − (x)L ·A+A · (x)L, (3.11)

III. (A ∗
∗ )
∇
= (x)A· + (x)LT ·A−A · (x)LT, (3.12)

IV. (A∗∗)
∇
= (x)A· − (x)L ·A−A · (x)LT. (3.13)
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We write only equation (3.11) in indicial notation:(
apq
)∇
= (x)

(
apq
)· − (x)lpsa

s
q + a

p
s
(x)lsq. (3.14)

Equation (3.10) can be identified as the Cotter-Rivlin rate (1955, [8]); (3.13) as the
Oldroyd (1950, [6]) or Trusdell (1955, [7]) rate. All the four objective rates have been
given by Atluri (1984, [2]).

The objective time rates obey the general rules valid for addition and multiplication
of tensors.

Decomposing the tensor (x)L and introducing the quantity
(x)Aw =

(x)W ·A−A · (x)W , (3.15)

the basic system (3.10)-(3.13) can be transformed into other form:

I. (A∗∗)
∇
= (x)A· + (x)D ·A+A · (x)D − (x)Aw, (3.16)

II. (A∗∗)
∇
= (x)A· − (x)D ·A+A · (x)D − (x)Aw, (3.17)

III. (A ∗
∗ )
∇
= (x)A· + (x)D ·A−A · (x)D − (x)Aw, (3.18)

IV. (A∗∗)
∇
= (x)A· − (x)D ·A−A · (x)D − (x)Aw. (3.19)

From the basic system of objective rates additional objective rates can be deduced
with the help of objective tensors (see Subsection 3.3. on page 148). Consider (3.1)
as an example. Since the tensor(

(x)W − (nx)W
)
·A+A ·

(
(x)W − (nx)W

)
is also physically objective, new objective rates are obtained by adding it to the right
hand side of equations (3.16)-(3.19). Following the same procedure in respect of
equation (3.1), let us introduce the quantities

(x)Awn =
(x)W ·A−A · (x)W −

(
(x)W − (nx)W

)
·A+A ·

(
(x)W − (nx)W

)
(x)Awn =

(nx)W ·A−A · (nx)W , (3.20)

(x)AwR =
(x)W ·A−A · (x)W −

(
(x)W − (Rx)W

)
·A+A ·

(
(x)W − (Rx)W

)
(x)AwR =

(Rx)W ·A−A · (Rx)W (3.21)

by the use of which we obtain the objective rates:

I. (A∗∗)
∇
J =

(x)A· + (x)D ·A+A · (x)D − (x)AJ, (3.22)

II. (A∗∗)
∇
J =

(x)A· − (x)D ·A+A · (x)D − (x)AJ, (3.23)

III. (A ∗
∗ )
∇
J =

(x)A· + (x)D ·A−A · (x)D − (x)AJ, (3.24)

IV. (A∗∗)
∇
J =

(x)A· − (x)D ·A−A · (x)D − (x)AJ. (3.25)

where ”J” is either ”wn” or ”wR”.
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New objective rates are obtained with the help of the objective tensor (3.3). Ac-
cording to (3.10) and (3.3) the rate

(A∗∗)
∇
I =

(x)A· + (x)LT ·A+A · (x)L−

−
[(

(x)L− (x)LI

)T
·A+A ·

(
(x)L− (x)LI

)]
= (x)A· +

(
(x)LI

)T
·A+A · (x)LI

is, for example, objective. In this way we find the following objective rates:

I. (A∗∗)
∇
I =

(x)A· +
(
(x)LI

)T
·A+A · (x)LI, (3.26)

II. (A∗∗)
∇
I = (x)A· − (x)LI ·A+A · (x)LI, (3.27)

III. (A ∗
∗ )
∇
I = (x)A· +

(
(x)LI

)T
·A−A ·

(
(x)LI

)T
, (3.28)

IV. (A∗∗)
∇
I = (x)A· − (x)LI ·A−A ·

(
(x)LI

)T
. (3.29)

Since
(X)

v = 0 and
(X)

L = 0 in the convected coordinate system, making use of
the convected material time rate deduced in the same manner as (4.11.I), we obtain

I. (A∗∗)
∇
= (X) (A∗∗)

·
=
∂aKL
∂t

∣∣∣∣
(X)

GKGL, (3.30)

II. (A∗∗)
∇
= (X) (A∗∗)

·
=
∂aKL
∂t

∣∣∣∣
(X)

GKG
L, (3.31)

III. (A ∗
∗ )
∇
= (X) (A ∗

∗ )
·
=
∂a L

K

∂t

∣∣∣∣
(X)

GKGL, (3.32)

IV. (A∗∗)
∇
= (X) (A∗∗)

·
=
∂aKL

∂t

∣∣∣∣
(X)

GKGL (3.33)

for the basic system of objective rates in convected coordinates. Equations (3.30)-
(3.33) have already been given by Sedov (1960, [3]) and Atluri (1984, [2]).

3.7. Objective time rates for orthogonal time dependent transformations. Accord-
ing to (3.4) the strain rate tensor is objective for orthogonal time dependent transfor-
mations. Consequently, from equations (3.16)-(3.19) and (3.22)-(3.25) objective rates
independent of the index positions are at once obtained:

A∇w =
(x)A· − (x)W ·A+A · (x)W , (3.34)

A∇wn =
(x)A· − (nx)W ·A+A · (nx)W , (3.35)

A∇wR =
(x)A· − (Rx)W ·A+A · (Rx)W . (3.36)

Equation (3.34) can be identified as the Jaumann rate (1911, [1]); (3.35) as the
Soverby-Chu rate (1984, [12]); (3.36) as the Green-Naghdi (1965, [9]) or Green-
McInnis (1967, [10]) or Dienes (1984, [11]) or Atluri (1984, [2]) rate. These equations
have also been given by Dubey (1987, [4]), who employed a method that he called
principal axis technique.
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Since (x)D is objective, so is the rate

A∇S =
(x)A· − (x)W ·A+A · (x)W + (x)DIA (3.37)

independently of the position of indices; (x)DI is the first scalar invariant of (x)D.

Objective rates depending on the position of indices can be obtained from the
basic system (3.10)-(3.13) if we utilize tensors (3.8a)-(3.9) which are objective for
orthogonal transformation only:

I. (A∗∗)
∇
K = (x)A· +

(
(x)LK

)T
·A+A · (x)LK, (3.38)

II. (A∗∗)
∇
K = (x)A· − (x)LK ·A+A · (x)LK, (3.39)

III. (A ∗
∗ )
∇
K = (x)A· +

(
(x)LK

)T
·A−A ·

(
(x)LK

)T
, (3.40)

IV. (A∗∗)
∇
K = (x)A· − (x)LK ·A−A ·

(
(x)LK

)T
. (3.41)

Here ”K = II, III, IV”and the tensors (x)LK are identified by equations (3.8a)-(3.9).

For ”K = IV” equations (3.39)-(3.41) coincide with the Balla-Szabó rate (1988,
[5]).

Using (x)DI from (3.13) we get an objective rate

(A∗∗)
∇
T =

(x)A· − (x)L ·A−A · (x)LT + (x)DIA (3.42)

which, when written for the stress tensor, can be identified as the Trusdell rate (1955,
[7]).

The arithmetic mean of equations (3.42) and (3.37), i.e., the tensor

(A∗∗)
∇
D =

1

2

(
(A∗∗)

∇
T +A

∇
S

)
=

= (x)A· −
(
1

2
(x)D + (x)W

)
·A−A ·

(
1

2
(x)D − (x)W

)
+ (x)DIA (3.43)

is also an objective rate which can be identified as the Durban-Baruch rate (1977,
[13]).

3.8. In the remainder of the present Section we shall consider some particular
cases.

For the metric tensor gpq it follows on the basis of equations (3.10) and (3.13) that

(gpq)
∇
= 2(x)dpq, (gpq)

∇
= − 2(x)dpq (3.44)

which hold also for any arbitrary transformation.

For orthogonal transformation (gpq)
∇
w = (gpq)

∇
wn = (gpq)

∇
wR = 0.

3.9. Assuming an orthogonal transformation, objective rates of the left stretch
tensor V are provided by equations (2.15) and (3.34)-(3.36). If, in addition, we
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utilize equation (2.32) we get

V ∇w = λp
(x)d

q
pδ
p
qnpn

q −
(
(x)W − (nx)W

)
· V + V ·

(
(x)W − (nx)W

)
, (3.45)

V ∇wn = λp
(x)d

q
pδ
p
qnpn

q, (3.46)

V ∇wR = λp
(x)d

q
pδ
p
qnpn

q −
(
(Rx)W − (nx)W

)
· V + V ·

(
(Rx)W − (nx)W

)
. (3.47)

Making use of relations (2.35) and (2.36) we write formulae (3.45) and (3.47) entirely
in the coordinate system {νp} of the principal axes:

V ∇w = λp
(x)d

q
pδ
p
qnpn

q +

(
λp

)2
+
(
λq

)2
λp + λq

(
(x)dpq −(x) d

q
pδ
p
q

)
npn

q, (3.48)

V ∇wR = λp
(x)d

q
pδ
p
qnpn

q +
2λpλq

λp + λq

(
(x)dpq −(x) d

q
pδ
p
q

)
npn

q. (3.49)

3.10. As regards the Eulerian strain tensor, from equations (3.10) and (2.26) we
get for arbitrary time dependent transformations that

(E∗∗)
∇
= (x)D . (3.50)

3.11. For orthogonal time dependent transformations the Jaumann rate is obtained
from equations (3.34) and (2.26):

E∇w =
(x)E· − (x)W ·E +E · (x)W =

= (x)D − (x)D ·E +E · (x)D. (3.51)

Let us generalize formulae (3.34)-(3.36) for the Eulerian Hill’s strain tensor:

Ẽ = f
(
λp

)
δpqnpn

q , (3.52)

and for arbitrary spin tensors (x)W̃ ((x)W̃ is a skew tensor):

Ẽ
∇
= Ẽ · + Ẽ · (x)W̃ − (x)W̃ · Ẽ. (3.53)

One can raise the following question: what tensors Ẽ and (x)W̃ satisfy equation

Ẽ
∇
= Ẽ · + Ẽ · (x)W̃ − (x)W̃ · Ẽ = (x)D (3.54)

which is formally objective.

As Reinhardt and Dubey [16] have shown if

Ẽ = lnV = lnλpδ
p
qnpn

q ,

then
(x)w̃pq =

(nx)wpq +
1

lnλp − lnλq
(x)dpq , λp 6= λq, p 6= q, (3.55)
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in the coordinate system {νp}, where according to equation (2.35)

(nx)wpq =
(x)wpq −

(
λp

)2
+
(
λq

)2
(
λp

)2
−
(
λq

)2 (x)dpq , λp 6= λq, p 6= q ,

and (x)W̃ is the so-called logarithmic spin tensor. The second term on the right side
can be manipulated further:(
λp

)2
−
(
λq

)2
(
λp

)2
+
(
λq

)2 =
λp
λq
− λq

λp

λp
λq
+

λq
λp

=
e
ln
λp

λq − e− ln
λp

λq

e
ln
λp

λq + e
− ln

λp

λq

= tanh ln
λp

λq
= tanh

(
lnλp − lnλq

)
.

If we take the foregoing into account, equation (3.55) assumes the form:

(x)w̃pq =
(x)wpq +

 1

lnλp − lnλq
− 1

tanh
(
lnλp − lnλq

)
 (x)dpq , λp 6= λq, p 6= q.

(3.56)

Xiao at all. [15] have shown that equation (3.54) has a solution if and only if
Ẽ = lnV . Summarizing what has been said above, we can conclude that equation
(3.54) has the following solution

(lnV )
∇
= (lnV )

·
+ lnV · (x)W̃ − (x)W̃ · lnV = (x)D, (3.57)

where (x)W̃ is given by equation (3.56) and with regard to (2.9)

(lnV )
·
=
(
lnλp

)·
δpqnpn

q + lnλp (ṅpn
q + npṅ

q) =

=
(
lnλp

)·
δpqnpn

q + (nx)W · lnV − lnV · (nx)W . (3.58)

The objective time rate tensor (lnV )∇ is the so-called logarithmic strain rate ten-
sor which can be obtained by comparing formulae (3.55), (3.57) and (3.58). It is
remarkable that (lnV )· 6= (lnV )◦ .

4. Concluding remarks

In the present paper invariance under arbitrary time dependent transformations
(valid for co-ordinate systems moving arbitrarily with respect to each other) is re-
garded as a criterion for material objectivity of tensors. This means that the com-
ponents of materially objective tensors and those of their objective time rates follow
the general transformation rules valid for tensors in coordinate systems moving ar-
bitrarily with respect to each other. In these cases the matrix of transformation is
a function of time. The investigations that have been carried out are based on the
relations we established in Part I (Kozák [14]) between material time rates defined in
various co-ordinate systems.
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Section 2 of the present Part II treats the material time rates of tensors describing
the deformation of the continuum both in the fixed co-ordinate system and in the
co-ordinate system moving arbitrarily with respect to the fixed one. The spin tensors
of the principal directions of strains and of the rotation tensor are also determined
in both co-ordinate systems. In this way we introduce some objective tensors (being
objective partly for arbitrary partly for orthogonal time dependent transformations)
each of which is determined directly or indirectly by the left stretch tensor and the
velocity gradient.

Section 3 is devoted to materially objective time rates of tensors. By applying the
relations, which have been deduced for the material time rates taken in coordinate
systems moving arbitrarily with respect to each other, to an arbitrary tensor we
have found a basic system of the objective time rates which is valid for arbitrary time
dependent transformations and can be given in any coordinate system. Regarding the
basic system as a point of departure and making use of the objective tensors which
describe the state of velocity and deformation of a continuum, we have established
objective time rates being partly new and partly published in literature.

It has been shown that one part of the objective time rates found in literature is
objective under arbitrary time dependent transformation, while the other part under
orthogonal transformation only.

Although the chain of thought is detailed for second-order tensors only, the non-
particular results are valid for a tensor of any order.

The paper restricts its attention to the issue of objectivity of time rates and disre-
gards the part these rates play in constitutive equations.
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Abstract. The optimum condition for the unloaded shape of prestressed tents is met by
minimum surfaces. The simplest type of such structures is a rotationally symmetric catenary
surface. In this paper, the authors present an analysis which shows that catenary surfaces
cannot fit arbitrarily chosen boundary circles of the tent, and also that if a solution of the
problem exists, also a dual solution can be found.
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1. Introduction

The problem about the existence and uniqueness of minimum surfaces under certain
geometric constraints arose in connection with the optimum shapes of prestressed
tents. The shape of a tent is considered optimum, if the fabric can be brought into a
uniform stress state by prestressing.

In a previous paper [5] the mathematical background for the analysis of optimum
shapes of tents with fixed boundaries has been published. It was shown that surfaces
which meet the statical optimum condition are minimum surfaces as well. Also an
iterative solution of the non-linear partial differential equation for the shape-function
of membranes developing a self-stress state of uniform membrane forces has been
presented. In certain cases the iteration proved divergent, which led to the analysis
of conditions for the existence of the solution.

For the sake of simplicity, axisymmetric membranes will be dealt with. However,
the nature of conditions for the existence of optimum shapes shows that they may
also apply to other surfaces.
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2. The shape of the meridian

In the case of axisymmetric membranes the problem of optimum shapes can be math-
ematically reduced to the analysis of the meridian. This analysis can be made ana-
lytically.

For an unloaded membrane of axisymmetric shape the following connection of the
membrane forces and principal radii (principal curvatures) holds [1]:

Nα
Rα

+
Nϑ
Rϑ

= 0, (2.1)

where Nα, Nϑ are the membrane forces in meridian and annular directions, and
Rα, Rϑ are the radii of curvatures in the same directions. These curvatures are the
principal curvatures.

As the membrane of optimum shape develops a uniform tension self-stress state

N = Nα = Nϑ .

Equation (2.1) leads to the geometric condition

1

Rα
= − 1

Rϑ
. (2.2)

If the meridian of the surface is given as a function of z, i.e., in the form r = r(z)
then the principal curvatures can be expressed as

1

Rα
=

r′′[
1 + (r′)

2
]
3/2

,
1

Rϑ
=

−1
r
[
1 + (r′)

2
]
1/2

, (2.3)

where the differentiation with respect to z is denoted by ()′.

r

r

­z
z

Figure 1. The meridian of the surface
Substituting equations (2.3) into equation (2.2), a non-linear second-order differential
equation can be formed for r:

r′′r − (r′)2 − 1 = 0 . (2.4)

The general solution of this differential equation is given in [3] as

r (z) = a cosh

(
z − b
a

)
, (2.5)
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where a and b are parameters of the solution. It follows from equation (2.5) that the
meridians of rotationally symmetric membranes are chain-curves. The parameter ‘a’
can be interpreted as the radius of the throat circle of the catenoid surface (Figure 1)
(or the height of the deep point of the chain-curve) while ‘b’is its distance from the
z = 0 co-ordinate plane.

If the levels zB1, zB2 and the radii rB1, rB2 of the boundary circles are given
values (Figure 1), the real parameters a and b have to be calculated by solving the
conditional equation system:

rB1 = a cosh

(
zB1 − b

a

)
, rB2 = a cosh

(
zB2 − b

a

)
. (2.6)

We have found, on the one hand, that the above equation system does not always
have a real solution for the parameters a and b, and, on the other hand, if there exist
a pair of real numbers for a and b which fulfill the equation system, then another pair
of a and b can be found. These facts give rise to two questions: one, which conditions
decide that the mechanical problem has or does not have any solution, and another,
which of the multiple mathematical solutions is the real solution for the mechanical
problem.

In the subsequent sections, first, conditions for the existence of the solution will
be dealt with, then the minimum property of the surfaces obtained by the multiple
mathematical solutions will be checked.

3. The envelope of chain-curves intersecting at a common point

On the basis of the general solution of equation (2.5) a transformed form can be
derived which makes analyzing our problem easier. First, let r/a be replaced by ρ,
z/a by ζ, b/a by β, then let a common multiplier coshβ of ρ and ζ be introduced into
the general solution. In this way we can arrive at the equation

ρ (ζ, β) =
1

coshβ
cosh (ζ coshβ − β) . (3.1)

This form makes analyzing our problem easier because one of the boundary points
of the meridian always gets to the point ζ = 0, ρ = 1. Setting parameter β to
different values, equation (3.1) generates a set of chain-curves passing through that
common point — see Figure 2. The problem of fitting a chain-curve to the points
with co-ordinates (zB1, rB1) and (zB2, rB2) can be transformed to that of selecting
chain-curves from the set generated by equation (3.1), which passes through the point
of the co-ordinates

ζB =
zB2 − zB1

rB1
, ρB =

rB2
rB1

. (3.2)

A glance at the diagram of the series of chain-curves generated by equation (3.1)
(see Figure 2) makes it obvious that there is an envelope which divides the co-
ordinate plane (ζ, ρ) into a part where points cannot be reached by chain-curves
passing through the point (0,1), and another part, where it is possible. Figure 2
also shows the shape of the envelope resembles a shifted chain-curve ρ = cosh ζ − 1,
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however, it must differ from that curve because the envelope has to get closer to the
diagram of ρ = cosh ζ if ζ has a larger absolute value.

ζ

ρ

Figure 2. Chain-curves passing through the point (0, 1)
The equation of the envelope of the series of curves generated by a parametric equation
is determined by the conditions that points of the envelope are also points of those
curves touching the envelope, and the first order variation of the parametric equation
with respect to its parameter must vanish at the touching points. These two conditions
can be expressed as

F (ρ, ζ, β) = 0 , (3.3)

∂F (ρ, ζ, β)

∂β
= 0 (3.4)

where equation (3.3) is the equation of the curves with parameter β. The equation
of the envelope can be obtained by eliminating β from equations (3.3) and (3.4) [4].

In our case F (ρ, ζ, β) is the same as equation (3.1) arranged to zero, conditions
(3.3) and (3.4) yield a system of transcendent equations as follows:

ρ coshβ − cosh (ζ coshβ − β) = 0 , (3.5)

ρ sinhβ − sinh (ζ coshβ − β) (ζ sinhβ − 1) = 0 . (3.6)

Though β cannot be analytically eliminated from the above equation system, the
envelope can be plotted point by point using numerical solutions of equations (3.5)
and (3.6) for different values of β.

The plot of the envelope is the continuous line in Figure 3. For small values of ζ
its shape seems to osculate the curve of the function ρ = cosh ζ − 1, which is shown
with dashed line in Figure 3.

However, for large values of β, the numerical solutions of equations (3.5) and (3.6)
are getting more and more inaccurate and they do not permit us even to settle the
question whether the envelope starts with a zero or nonzero slope at the origin.
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This question can be answered by analyzing the curve of the deep points of the
chain-curves in Figure 2. Co-ordinates of the deep points of chain-curves passing

envelope

Figure 3. The envelope curve

through the point (0, 1) are

ρ0 =
1

coshβ
ζ0 =

β

coshβ
.

These expressions permit us to eliminate parameter β and to express the equation of
the curve of the deep points as

ζ0 = ρ0 · arccosh
1

ρ0
. (3.7)

Though equation (3.7) cannot be made explicit for ρ0, it enables us to answer whether
the curve of the deep points starts with a zero or with nonzero slope from the origin.
Producing the first derivative of equation (3.7) as

d ζ0
d ρ0

= arccosh
1

ρ0
− 1

ρ0 ·
√
1− ρ20

,

then performing the limit transition for its reciprocal at ρ0 = 0, we find

lim
ρ0→0

(
d ζ0
d ρ0

)−1
= 0,

which means that the curve starts with a zero slope.

Since the deep points of the chain-curves are above the envelope curve, if the curve
of the deep points starts with a zero slope at the origin, the envelope does the same.

Again the diagram of the chain-curves generated by equation (3.1) shows that each
point (ζB , ρB) of the domain of possible solutions is a point of intersection of two
curves of the series, that is, if we have a solution of our problem, we always have a
dual solution as well. If the point (ζB , ρB) is exactly on the envelope curve, then the
two meridians coincide.
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The domain of the possible solutions can be divided into a part (A), where the
deep points of the intersecting chain-curves lie on different sides of the co-ordinate
plane split by axis ρ, and another part (B), where the deep points lie on the same
side

envelope

(A)

(B)

Figure 4. Two regions of the domain of solutions
The two regions are separated by the chain-curve the deep point of which lies on axis
ρ (Figure 4). Since we could not derive a closed formula for the envelope, its shape
can be analyzed only numerically. The approximate formula

Envζ ≈ cosh ζ − 1

yields fairly good first estimates both for small values of ρ and for larger values as well.
For values of ζ larger than about 0.7 we find a more accurate envelope by assuming
that the condition

dEnv(ζe)

dζe
=
dF (ρe, ζe, β)

dζe

holds for the first estimate, where the index e refers to the place of the envelope. In
this way we can write

sinh ζe ≈ sinh(ζe coshβ − β) ,

which permits us to approximate ζe in the form

ζe ≈
β

coshβ − 1 , (3.8)

and then the corresponding ρe as

ρe =
1

coshβ
cosh

(
1

coshβ − 1

)
. (3.9)

In Figure 5 the plots of the first estimate (dashed line) and the refined envelope
calculated using equations (3.8) and (3.9) are shown
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0.5

0.5

1.0

1.0

1.5

1.5

2.0

2.0

Figure 5. Approximate envelopes
The envelope gives an answer to our first question: the data of the boundaries

determine that in the given geometrical case a membrane with optimum shape does
or does not exist. For any pairs of the radii of the boundary rings there exists a
maximum value of height of the surface that permits us to connect the rings with a
surface of optimal shape. If the height is less than this value, we can find two surfaces
which meet the optimum condition, if the height is chosen bigger than this value, we
cannot find solutions.

4. The minimum surface

It was shown in [5] that the surface of the optimum shape of unloaded membranes
is minimum. However, in the last section two solutions were found for the optimum
shape. This result raises the problem: which curve specifies the minimum-surface and
what extreme property the other curve exhibits.

To answer this question two types of numerical investigation were performed.

First we shall consider a combination of the two solutions.

Let the functions of the curves passing through an arbitrarily chosen point within
the envelope be called ρ1(ζ) and ρ2(ζ). Let ρ1(ζ) belong to the curve which runs
higher between the points of intersection than the other curve.

The curves representing the function

ρα(α, ζ) = α ρ1 + (1− α ) ρ2
also pass through the end points of the curves belonging to ρ1(ζ) and ρ2(ζ). If α = 1,
then ρα(ζ) = ρ1(ζ), if α = 0, then ρα(ζ) = ρ2(ζ), if 0 < α < 1, then the curve of
ρα(ζ) lies between that of ρ1(ζ) and ρ2(ζ).

The area A(α) of the surface assigned by ρα(α, ζ) can be analytically expressed as
a fairly complicated definite integral. Instead of using this integral, we numerically
calculated the surface area for some values of α, and then plotted the results.

Figure 6 shows a typical plot of A(α). In this case co-ordinates ζ of the deep points
of the curves have the same sign, however, plots belonging meridians with deep points
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that lie at values of ζ with different signs show the same characteristics. The plots
clearly show that meridians at α = 1 result in local minima of surface areas, and at
α = 0 in their local maxima. Hence, meridians ρ1(ζ) can be stable solutions, but
ρ2(ζ) are always unstable ones.

It may cause diffi culties to explain that at certain negative values of α the com-
puted surface area gets lower than the minimum at α = 1. The reason may be that
the combined meridians do not always characterize surfaces with a physically realistic
surface. If the meridian intersects the axis of rotation, between the points of intersec-
tion the integral takes into account a negative surface area. However, the plots of the
meridians show that in some cases the area of the combined surface can get smaller

A(  )

A1

A2

­0.5 0.0 0.5 1.0 1.5

α

α

Figure 6. The plot of A(α)
than the local minimum before this intersection happens. To clarify this unexpected
result, an individual analysis of the extreme properties of the surfaces was performed.

Secondly, we consider a variation of different functions.

The extreme property of the meridians ρ1(ζ) and ρ2(ζ) can be individually in-
vestigated by a numerical variational analysis. For that purpose we have to choose
functions which take zero values at the boundaries like

δρ = ζ (ζB − ζ) ,

δρ = sin

(
π ζ

ζB

)
,

δρ = cosh

(
ζ − ζB

2

)
− cosh

(
ζB
2

)
,

and to use them to vary the meridians and the surfaces. By adding ε δρ to functions
ρ1(ζ) and ρ2(ζ) we can numerically calculate the surface area

A(ρ1) + δA(ρ1) = A(ρ1 + ε δρ),

A(ρ2) + δA(ρ2) = A(ρ2 + ε δρ)

for different values of ε, then plot the results in a common co-ordinate system.

Figure 7 shows some characteristic results of the analysis made in this way. On
the left hand-side of Figure 7 the variation of the surface area is shown for a pair of
meridians fitting the same boundary points. Plots A1 and A2 clearly show that both
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A(ρ1) and A(ρ2) have local extreme values at ε = 0. That is, both A(ρ1) and A(ρ2)
are extremals of the numeric variational problem, because their first order variation
is zero. On the other hand, A(ρ1) has a local minimum and A(ρ2) also has a local
maximum at ε = 0, which means, their second order variations are differently signed.
This difference indicates different extreme properties: the surface which belongs to ρ1
is a stable minimum surface, while the other is unstable.

A(  )

A1

1 2=2

ε A(  )ε

ε ε

A AA

Figure 7. Variation of surface areas

On the right-hand side of Figure 7 the variation of the surface area is shown which
belongs to coinciding meridians ρ1 = ρ2. In this case both the first and second order
variations are zero and the surface assigned by the meridians is at the limit of the
stability.

The plots again show that the condition stated by equation (2.4) for axisymmetric
minimum surfaces is not a global minimum condition. It can be met by surfaces which
are locally minimum surfaces and also by surfaces which are not minimum surfaces
at all. Moreover, it may happen that the area of the varied surface is smaller than
that of the minimum surface.

5. Connection with the areas of the boundary rings

If we neglect the small effect of gravity, the shape of soap films stretched between
concentric circular boundary rings is an annular plate, which turns into a catenoid
shaped minimum surface if the planes of the boundary rings get separated. Exper-
iments with such soap films can be used to check the results of the above analysis.
Sometimes they show an interesting phenomenon: by increasing the distance of the
rings, the catenoid gets more and more laced, and at a certain distance it snaps into
two separate circular plates stretched on the two boundary rings.

This snapping is usually explained by the reasoning that the catenoid snaps into
separate circles when its area gets equal to the sum of the area of the two circles.
However, the existence of axisymmetric surfaces with a smaller area than the stable
minimum surface and also the local nature of the minimum property of minimum
surfaces give rise to serious doubts about the tenability of that reasoning.
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Our results can also be used to settle this problem. The area of the catenoid
surfaces generated by equation (3.1) can be analytically expressed as

A (ζB , β) =
2π

cosh2 β

ζB∫
0

cosh2 (ζ · coshβ − β) dζ coshβ =

=
π

cosh2 β

[
sinh 2 (ζB · coshβ − β)

2
+ (ζB · coshβ − β)

]
and A(ζB , β) can be matched with the sum of the area of the boundary rings

AR(ζB , β) = π

[
cosh2 (ζB · coshβ − β)

cosh2 β
+ 1

]
Parameters, when A(ζB , β) = AR(ζB , β), specify pairs of coordinates ζB and ρB of
boundary circles of our interest
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Figure 8. The envelope of global minima
In Figure 8 a continuous line represents the boundary points of those meridians for

which the area of the stable minimum surface is equal to the sum of the areas of their
boundary circles. The first (and everywhere conservative) estimate of the envelope is
also plotted (dashed line). The figure shows that the two curves permit solutions of
the rotationally symmetric minimum surface problem, where the area of the minimum
surface is larger than the sum of area of the boundary circles.

The continuous line can also be considered as an envelope. If the points within the
continuous line are connected to the point (0,1) by chain-curves we obtain minimum
surfaces with globally minimum surface area.

6. Conclusions

The analysis has shown that the differential equation for the meridian of axisymmet-
ric minimum surfaces cannot be solved for arbitrary values of the boundary radii and



On the multiple solution of axisymmetric minimum surfaces 167

if a solution can be found, also a dual solution exists, unless the two solutions coin-
cide. It means that in typical cases, besides the minimum surface, another surface
of revolution exists, which also develops uniform self-stress state. Both surfaces are
catenary surfaces, but the area of the minimum surface behaves as a minimum, while
that of the dual solution behaves as a maximum against small variations. In case of
coinciding solutions only stationarity can be found.

Both minimum and maximum properties are of local nature. It is quite obvious for
the surface maximum, but more or less unexpected for the minimum surface, because
in case of appropriate values of radii and distance of boundary circles, the area of
the minimum surface is larger than that of properly chosen surfaces fitting the same
boundaries. The analysis has also clarified under what conditions the area of the
minimum surface is the global minimum of the problem.

These results make it clear why does the stability of our iterative method depend
both on the geometrical data, and on the mesh of the discretizing net and why does
it also exhibit the same sensibility in any minimum surface problems characterized
by two or more boundary curves. Similarly to the catenary surface problem, the
existence of these surfaces is also conditioned by the data of the boundaries and the
solutions are multiple solutions as well. The closer the multiple solutions are to each
other the poorer the stability of the iterative solution is. Refinement of the mesh does
not only improves the solution but also makes the iteration more stable because it
decreases the chance to drop from a convergent path into a closely divergent one.
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Abstract. The numerical solution of the thermal part of a coupled thermo-mechanical con-
tact problem is presented. The hp-version finite element method is used for the discretization
of the temperature field in space, and finite difference method in time. The mesh is modi-
fied during the computation, therefore the temperature field has to be transferred between
different meshes. A mapping technique is developed for the p-version of the finite element
method. Numerical examples are presented.
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1. Introduction

This paper is concerned with the numerical solution of the thermal part of the coupled
thermo-mechanical contact problem. Many papers deal with contact problems but
without thermo-dynamical effects [1, 2, 3]. When friction is considered and the bodies
slide on each other, heat generation and heat conduction have to be taken into account.

The contact problems are usually treated with the h-version of the finite element
method. In recent years some papers tried to treat the contact problem with the
p-version of the finite element method [1, 2, 4, 5]. The advantages of the p-version
are the higher accuracy, faster convergence and coarser mesh [6]. The numerical
solution of the heat conduction problem, (both the h- and p-versions), is well known
[6, 7], but the coupling with the mechanical contact problem causes some difficulties.
During the computation of the mechanical problem, a minor modification of the mesh
is needed to avoid oscillations in the numerical solution [1, 2]. Heat conduction is a
temporal process, and the temporal part of the discretization is usually treated with
the finite difference method. The temperature field of the previous time step is needed
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to determine the current temperature field. The temperature field of the previous and
current time steps appears in the same system of equations, that is why they have to
be given in the same nodal points, i.e. in the same mesh. When the mesh is modified,
the temperature parameters have to be transferred from the old mesh to the new
mesh. There are many mapping techniques in the literature, but mostly for the h-
version. Some papers dealing with plastic deformation apply mapping techniques for
data transfer between different meshes [8, 9, 10, 11]. In our investigation a mapping
technique is developed for the p-version.

In this paper three dimensional axisymmetrical bodies are investigated with a two
dimensional mathematical model. Numerical examples are presented.

2. The heat conduction problem

Let us consider two disjoint regions Ωe (e = 1, 2) with piecewise smooth boundaries
∂Ωe (e = 1, 2) occupied by two continuous deformable bodies. We intend to inves-
tigate the heat conduction during the sliding contact of the bodies. Let the initial
temperature be equal to the ambient temperature everywhere in Ωe. The surfaces of
the bodies can be split into two parts: the contact area of the bodies, which is denoted
by Γec (Γec ∈ ∂Ωe), and the rest of the surfaces, which is denoted by Γes (Γes ∈ ∂Ωe),
where Γec ∪ Γes = ∂Ωe and Γec ∩ Γes = ∅. When the bodies slide on each other, heat
is generated on the surfaces Γec due to friction. The generated heat partially flows
into the bodies and partially flows across the surfaces Γes. During this heat conduc-
tion process the temperature distribution of the bodies changes. To determine the
temperature distribution T e(r, t) the equation of heat conduction can be applied

ρeceṪ e(r, t) = ∇·(ke∇T e(r, t)) +Qe r ∈ Ωe (2.1)

where r is the position vector, t is time, ρe is density, ce is the specific heat, ke is ther-
mal conductivity, Qe is the generated heat within Ωe and e = 1, 2. The temperature
distribution T e(r, t) has to satisfy the following initial and boundary conditions:

T e(r, 0) = T e0 (r) r ∈ Ωe (2.2)

qec = −k∇T e(r, t) · ne = qefr(r, t) + qeex(r, t) r ∈ Γec (2.3)

qes = −k∇T e(r, t) · ne = qeco(r, t) r ∈ Γes (2.4)

where T e0 (r) is the initial temperature, ne is the outward normal unit vector of ∂Ωe,
qec is the heat flux flowing out of the eth body through Γec and qes is the heat flux
flowing out of the eth body through Γes. The heat flux qec consists of two parts. The
first part arises from the frictional dissipation:

q1
fr(r, t) = −cDβv(r, t)p(r, t) and q2

fr(r, t) = −cD(1− β)v(r, t)p(r, t), (2.5)

where cD a constant from experiment (cD ≤ 1), β =
k1

k1 + k2
and 0 ≤ β ≤ 1, v(r, t)

and p(r, t) are the relative velocity of the bodies and the contact pressure at the point
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r and at time t, respectively. The second part is the heat exchange between the bodies
arising from the different temperatures of the bodies at the contact interface:

qeex(r, t) = α̂(T e(r, t)− T e
∗
(r, t)), (2.6)

where α̂ is the coefficient of surface heat transfer between the bodies, e and e∗ are
the number of the bodies. If e = 1, then e∗ = 2, and if e = 2, then e∗ = 1. The heat
flux qeco denotes convective heat flux, defined as

qeco(r, t) = αe(T e(r, t)− T∞), (2.7)

where αe is a coefficient of surface heat transfer and T∞ is the specified ambient
temperature of the surrounding medium. The area of the contact surface Γec and the
contact pressure can be obtained by solving the contact problem with the appropriate
boundary conditions.

3. The weak formulation of the heat conduction problem

The weak formulation of the above mentioned heat conduction problem can be
obtained by applying Galerkin’s method. Let us multiply equation (2.1) by virtual
temperature Θe and integrate it on Ωe:

2∑
e=1

∫
Ωe

(ρeceṪ e −∇·(ke∇T e)−Qe)ΘedΩ = 0 .

After integrating by parts and employing the Gauss theorem, the weak form will be
the following:

2∑
e=1

∫
Ωe

ρeceṪ eΘedΩ +

∫
∂Ωe

qenΘedΓ +

∫
Ωe

ke∇T e ·∇ΘedΩ−
∫
Ωe

QeΘedΩ

 (3.1)

where qen = −ke∇T · ne is the heat flux orthogonal to the surfaces of the bodies,
and positive if the heat flows out of the bodies. The bodies can exchange heat with
each other through the surfaces Γec. To take into account this effect and the other
boundary conditions, equation (3.1) must be specialized to bodies 1 and 2. The
superscript indices denote the appropriate bodies:∫

Ω1

ρ1c1Ṫ 1Θ1dΩ +

∫
Ω1

k1∇T 1 ·∇Θ1dΩ +

∫
Γ1
s

αe(T 1 − T∞)Θ1dΓ−
∫
Γ1
c

cDβvpΘ
1dΓ+

+

∫
Γ1
c

α̂(T 1 − T 2)Θ1dΓ +

∫
Ω2

ρ2c2Ṫ 2Θ2dΩ +

∫
Ω2

k2(∇T 2 ·∇Θ2)dΩ+

+

∫
Γ2
s

αe(T 2 − T∞)Θ2dΓ−
∫
Γ2
c

cD(1− β)vpΘ2dΓ +

∫
Γ2
c

α̂(T 2 − T 1)Θ2dΓ = 0 .

(3.2)
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4. Finite element discretization

The temperature field T e (e = 1, 2) is a function of the position vector and the time.
We cannot give the exact solution of (3.2) in a closed form, that is why T e can be
determined only approximately. To find an approximation to T e, we create a set of
functions by subdividing Ωe into a number of domains, called finite elements. We
define a set of basis functions on Ω in such a way that each of the basis functions is
nonzero over individual elements. Applying orthogonal basis functions the round off
error can be minimized [6]. In this way the temperature distribution can be written
as:

T e(r, t) =

ne∑
i=1

N∑
j=1

T eij(t)Nj(r) , (4.1)

where ne is the number of finite elements of the body e, N is the number of shape
functions, Nj(r) are the shape functions and T eij are the nodal temperatures and
parameters of the ith element. In a similar way, the virtual temperature also can be
approximated:

Θe(r, t) =

ne∑
i=1

N∑
j=1

Θe
ij(t)Nj(r) (4.2)

We restrict our investigation to axially symmetric problems, where a three dimensional
problem can be treated with a two dimensional mathematical model. Using the
summation convention

N∑
j=1

T eijNj(r) ≡ T eijNj(r),

the functional (3.2) can be written with cylindrical coordinates and with the approx-
imated temperature T e(r, t) and virtual temperature Θe(r, t) in the following form:

0 = 2π

n1∑
q=1

∫
Ω1

ρ1c1NiṪ
1
qiNkΘ1

qkrdrdz+

∫
Ω1

k1

(
∂Ni
∂r

T 1
qi

∂Nk
∂r

Θ1
qk+

∂Ni
∂z

T 1
qi

∂Nk
∂z

Θ1
qk

)
rdrdz+

+

∫
Γ1
s

α1(NiT
1
qi−T∞)NkΘ1

qkrds−
∫
Γ1
c

cDβvpNiΘ
1
qirds+

∫
Γ1
c

α̂(NiT
1
qi−NkT 2

q∗k)NlΘ
1
qlrds

+

+2π

n2∑
q=1

∫
Ω2

ρ2c2NiṪ
2
qiNkΘ2

qkrdrdz+

∫
Ω2

k2

(
∂Ni
∂r

T 2
qi

∂Nk
∂r

Θ2
qk+

∂Ni
∂z

T 2
qi

∂Nk
∂z

Θ2
qk

)
rdrdz+

+

∫
Γ2
s

α2(NiT
2
qi−T∞)NkΘ2

qkrds−
∫
Γ2
c

cD(1−β)vpNiΘ
2
qirds−

∫
Γ2
c

α̂(NiT
2
qi−NkT 1

q∗k)NlΘ
2
qlrds


(4.3)

where ds =
√
dr2 + dz2. The finite elements at the contact zone are in front of each

other, so that the nodes of this elements are in coincidence. If the qth element is in
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the contact zone, q∗ concerns the element which is in the other body in front of the
qth element. Let us use the following notation:

M
(1)
ik = ρ1c1

∫
Ω1

NiNkrdrdz M
(2)
ik = ρ2c2

∫
Ω2

NiNkrdrdz

K̃
(1)
ik = k1

∫
Ω1

(
∂Ni
∂r

∂Nk
∂r

+
∂Ni
∂z

∂Nk
∂z

)
rdrdz K̃

(2)
ik = k2

∫
Ω2

(
∂Ni
∂r

∂Nk
∂r

+
∂Ni
∂z

∂Nk
∂z

)
rdrdz

C̃
(1)
ik = α1

∫
Γ1
s

NiNkrds C̃
(2)
ik = α2

∫
Γ2
s

NiNkrds

˜̃C
(1)
ik = α̂

∫
Γ1
c

NiNkrds
˜̃C

(2)
ik = α̂

∫
Γ2
c

NiNkrds

F̃
(1)
i = cDβ

∫
Γ1
c

vpNirds F̃
(2)
i = cD(1− β)

∫
Γ2
c

vpNirds

For the sake of simplicity let T∞ be equal to zero. Obviously, for the element whose
side is not on Γec the integral in ˜̃C

(e)
ik and F̃ (e)

i vanish. With the help of this notation
and the fact that equation (4.3) can be split into two parts associated with coefficients
Θ1
ik, Θ2

ik we have
n1∑
q=1

(
M

(1)
ik Ṫ

1
qk + K̃

(1)
ik T

1
qk + C̃

(1)
ik T

1
qk + ˜̃C

(1)
ik T

1
qk −

˜̃C
(1)
ik T

2
q∗k − F̃

(1)
i

)
= 0

n2∑
q=1

(
M

(2)
ik Ṫ

2
qk + K̃

(2)
ik T

2
qk + C̃

(2)
ik T

2
qk + ˜̃C

(2)
ik T

2
qk −

˜̃C
(2)
ik T

1
q∗k − F̃

(2)
i

)
= 0

(4.4)

We have to distinguish two cases. In the first one the elements are not situated on
Γec. In this case the integrals ˜̃C

(e)
ik and F̃ (e)

i vanish, and equation (4.4) can be written
in a simpler form.

ne
n∑

q=1

( M
(e)
ik︸ ︷︷ ︸

(q)Mik

Ṫ eqk︸︷︷︸
Ṫqk

+ (K̃
(e)
ik + C̃

(e)
ik )︸ ︷︷ ︸

(q)K̃ik

T eqk︸︷︷︸
Tqk

) = 0 (4.5)

where nen is the number of the elements, which are not situated in the contact zone.
In the second case the elements situated on Γec are considered. Now the integrals in
˜̃C

(e)
ik and F̃ (e)

i do not vanish. Because of the coupling in equation (4.4) two systems
of linear equations have to be computed simultaneously. These equations concern the
elements situated in front of each other in Γec.
ne
c∑

q=1

{[
M

(1)
ik 0

0 M
(2)
ik

]
︸ ︷︷ ︸

(q)Mik

[
Ṫ 1
qk

Ṫ 2
q∗k

]
︸ ︷︷ ︸
Ṫqk

+

[
K̃

(1)
ik + C̃

(1)
ik + ˜̃C

(1)
ik − ˜̃C

(1)
ik

− ˜̃C
(2)
ik K̃

(2)
ik + C̃

(2)
ik + ˜̃C

(2)
ik

]
︸ ︷︷ ︸

(q)K̃ik

[
T 1
qk

T 2
q∗k

]
︸ ︷︷ ︸
Tqk

−

[
F̃

(1)
i

F̃
(2)
i

]
︸ ︷︷ ︸

(q)F̃i

}
=0

(4.6)
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where q runs from 1 to the number of contacting elements of one body (e.g. n1
c), and

q∗ means the element in front of the actual element (q), and it is situated in the other
body. The superscript (q) on the left concerns the numbering of the elements. (q)Mik,
(q)K̃ik and (q)F̃i must be computed for every element and be added to the global
convection matrix Mik, conductivity matrix K̃ik and load vector F̃i, respectively.
Obviously, the element level temperature parameters are added to a global vector of
temperature parameters (Tk). Equations (4.5) and (4.6) are first order differential
equations in time. The usual way of discretizing such equations is the so-called ϑ-
method

Mik
T
{n+1}
k − T {n}k

∆t
+ K̃ik(ϑT

{n+1}
k + (1− ϑ)T

{n}
k )− (ϑF̃

{n+1}
i + (1− ϑ)F̃

{n}
i ) = 0

where the superscript indices in brace denote the number of time steps, ∆t means the
length of the time step and ϑ is a real number between 0 and 1. Since T {n}k is known
from the previous time step, a system of linear equations is obtained:

(Mik+∆tK̃ikϑ)︸ ︷︷ ︸
Kik

T
{n+1}
k︸ ︷︷ ︸
Tk

−((Mik−∆tK̃ik(1−ϑ))T
{n}
k +∆t(ϑF̃

{n+1}
i +(1−ϑ)F̃

{n}
i ))︸ ︷︷ ︸

Fi

= 0 ,

(4.7)
The final system of linear equations has the form

KikTk = Fi (4.8)

where the indices i and k run from 1 to m, i.e., the number of degrees of freedom of
the problem.

5. A mapping technique

Let us consider an axisymmetrical contact problem. The two contacting bodies slide
over each other, which causes heat generation and wear on the contact surface. The
generated heat flows into the bodies, therefore the temperature distribution of the
bodies changes. The heat conduction equation has to be solved because the tem-
perature field is needed for computing the thermal expansion, which is part of the
displacement field. Due to the wear and the thermal expansion, the contact area
changes continuously. When the contact problem is solved, the boundary of the con-
tact zone is unknown a priori. In order to treat such contact problems, an adaptive
hp-version method is required [1, 2].

One of the advantages of the p-version is that for smooth problems only coarse
meshes are needed, since the error in energy norm decreases exponentially when the
polynomial degree of elements is increased [6]. When the p-version is used, then the
accuracy is typically high enough for the singularities to induce oscillations in the
numerical solution. In the boundary of the contact region the normal stress may have
jumps in its derivatives, which are regarded as singularities. Concerning the finite
element discretization, we have a problem of category C [6], i.e., the mesh in 2D
cannot be constructed so that the points, where the solutions are not analytic, are at
nodal points. Our aim is to convert the problem of category C into one of category B
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[6]. The oscillations are minimized when nodes (or nodes and edges) in two dimensions
(three dimensional problems) are located at the boundary of the contact zone [1].

The coupled thermo-mechanical contact problem can be solved via the operator
split technique [12]. The problem is split into separately solved thermal and mechan-
ical parts. A possible way to solve the mechanical part is detailed in [1, 12]. In this
paper we focus our attention on the thermal part.

The heat conduction problem is both a spatial and a temporal process, which are
discretized by the finite element method and the finite difference method, respectively
[7]. Computation of a time step consists of the computation of the contact problem,
and after that the computation of the heat conduction problem, iteratively. The heat
conduction problem has to be solved in the modified, new mesh, where the nodal
points are located on the new boundary of the contact region. For the determination
of the new temperature field, the temperature field given in the old mesh is needed.
There are several mapping techniques in the literature (e.g. in connection with plastic
deformation), but mostly for the h-version. For a high order approximation in FEM
one can find two approaches in the literature. The first is based on the Lagrangian
polynomials, the shape functions are associated with nodal point parameters. The
nodal point parameter is the actual value of the field in question at the location of
the node. (We can speak of e.g. nodal displacement, nodal temperature, and so on.)
For the rest of the nodes with the same shape function the field value is zero. The
state variables (e.g. temperature) can be easily interpolated from the nodal points of
the old mesh to the nodal points of the new mesh [8, 9, 10, 11].

In the second approach, which is applied here, Legendre polynomials are used for
the approximation. It should be emphasized that the shape functions constructed
by the Legendre polynomials are not associated with nodal parameters. We have so
called side modes, internal modes (bubble modes), edge modes and so on. That is,
the parameters of the shape functions do not correspond to a field value in a specific
location. Therefore the parameters have no direct physical meaning contrary to the
nodal parameters. We can speak only of parameters associated with displacements
and temperatures [6]. The least-squares method is more suitable for determining
these parameters. The least-squares method has already been applied successfully
for the h-version, where the mapped fields have to respect the local and the global
equilibriums [13], or when the mesh is coarsed [14]. The data transfer can be applied
similarly in the p-version via the least-squares method as has been done in the above
mentioned h-version.

When the mesh modification is performed, the new temperature field can be solved
by equation (4.7). In this equation Fi depends on the temperature field of the previous
time step, which is given in the old mesh, hence the temperature field has to be
transferred to the new mesh. The nodal values and parameters of the temperature
field have to be known in the new mesh to perform the matrix multiplication in Fi.
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These values can be determined by the least-squares method:
n∑
i=1

∫
Si

∫ [
T (r, z)− T̃ (r, z)

]2
drdz = min. , (5.1)

where n = n1 +n2, Si is the surface of one finite element, T (r, z) is the temperature in
the new mesh, T̃ (r, z) is the temperature given in the old mesh and n is the number of
elements in the new mesh. Let us substitute (4.1) into equation (5.1), and transform
it into the [−1, 1] interval, so that the numerical integration can be computed via
Gauss quadrature.

n∑
i=1

1∫
−1

1∫
−1

[
Nj(ξ, η)Tij −Nj(ξ̃, η̃)T̃ĩj

]2 ∣∣∣∣∣ ∂r
∂ξ

∂z
∂ξ

∂r
∂η

∂z
∂η

∣∣∣∣∣ dξdη = min. , (5.2)

where the subscripts i and ĩ denote the elements in the new mesh and those elements
in the old mesh, which coincide with the point with coordinates (ξ, η) in the new mesh,
respectively. The subscript index j refers to the shape functions. Let Tl be a vector.
The size of this vector equals the number of degrees of freedom of the problem. After
the summation in (5.2) the components of Tij are added to the appropriate element
of Tl. This element of Tl can be determined by the connection between the local and
global numbering [6]. After deriving equation (5.2) with respect to Tij and making
the summation for every element, the following linear system of equations is obtained:

m∑
l=1

AklTl = bk , (5.3)

where m is the number of degrees of freedom of the temperature field,

Akl =

n∑
i=1

1∫
−1

1∫
−1

Nk(ξ, η)Nl(ξ, η)

∣∣∣∣∣ ∂r
∂ξ

∂z
∂ξ

∂r
∂η

∂z
∂η

∣∣∣∣∣ dξdη ,
and

bk =
n∑
i=1

1∫
−1

1∫
−1

Nk(ξ, η)Nj(ξ̃, η̃)T̃ĩj

∣∣∣∣∣ ∂r
∂ξ

∂z
∂ξ

∂r
∂η

∂z
∂η

∣∣∣∣∣ dξdη .
From this equation the vector of temperature parameters Tl can be computed. The
values of temperature have to be known in Gauss or Lobatto points (ξ, η) because of
the numerical integration. However, the Gauss or Lobatto integration points in the
new mesh and in the old mesh do not coincide. So the problem is to find the point
P in the appropriate element (̃i) with local coordinates (ξ̃, η̃) in the other mesh with
practically the same contour – see Figure 1.

Instead of checking each element on whether it contains the point P or not (as in
[10]), the searching process is realized by a new recursive algorithm. It is practical to
create a list of the surrounding elements of each element, and a list of already checked
elements [15]. Within a step one element is examined. If the element has already
been checked, the step is finished. The local coordinates (ξ̃, η̃) of the point P have to
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be computed by the Newton-Raphson method. If the local coordinates are between
−1 and 1, the algorithm is finished. If ξ̃ and η̃ are outside the interval [−1, 1], the
element is marked as "checked". After that, the neighbors of the element have to be
checked. The neighbors can be determined with the help of the list of the surrounding
elements. An order have to be defined among the neighbors. On ground of this order
the search goes on as a new step. The order can be arbitrary, but the process is faster
if a suitable order is chosen. A possible way is the following. Let R be a ray that
starts from the point Q (see Figure 2), and passes through the elements to the point
P . The ray crosses one of the edges of the starting element. The element next to

i*
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local:
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global:(r,z) local: (ξ,η)
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Figure 1. If element i and point (r, z) are known, the appropriate
element i∗ and local coordinate (ξ̃, η̃) are sought on the old mesh.

this edge will be the first in the order. If the ray passes through a node, an arbitrary
neighboring edge of this node can be considered. With this algorithm in hand the
element containing the point P can be rapidly found.
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Figure 2. Let R be a ray that starts from the point Q, and passes
through the elements to the point P . R crosses a side of the element
containing Q, and enters the neighboring element. This neighboring
element is the first in the further search process.
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6. Numerical examples

Let us consider an axisymmetrical body with inner radius Ri = 80 mm and outer
radius Ro = 120 mm. The height of the body can be considered infinite. In other
words this is an infinitely long tube. The heat flux on the inner and outer surface
equals zero, i.e., the body is thermally isolated. The initial temperature f(r) is
given. Because of its symmetry this problem can be treated with a one dimensional
mathematical model. The following differential equation has to be solved:

cρ
∂T (r, t)

∂t
= k

(
∂2T (r, t)

∂r2
+

1

r

∂T (r, t)

∂r

)
Ri ≤ r ≤ Ro , (6.1)

where the initial and boundary conditions are written as:

T (r, 0) = f(r) Ri ≤ r ≤ Ro (6.2)

−k∂T (r, t)

∂r

∣∣∣∣
r=Ri

= 0 t ≥ 0

−k∂T (r, t)

∂r

∣∣∣∣
r=Ro

= 0 t ≥ 0 .

The specific heat is c = 460 J/kg◦C, the material density is ρ = 7850kg/m3, and the
coefficient of heat conduction is k = 55 W/m◦C. The exact solution of the problem
is the following (see Appendix):

Tex(r, t) = Ts + 2

∞∑
n=1

Cn
U0(ωnr)

R2
o(U0(ωnRo))2 −R2

i (U0(ωnRi))2
e−κωnt , (6.3)

where
U0(ωnr) = J0(ωnr)Y1(ωnRi)− Y0(ωnr)J1(ωnRi),

Cn =

Ro∫
Ri

(f(ξ)− Ts)ξU0(ωnξ)dξ,

Ts =
2

R2
o −R2

i

Ro∫
Ri

ξf(ξ)dξ,

κ =
k

cρ
, ωn are the roots of the equation

U1(ωRo) = J1(ωRo)Y1(ωRi)− Y1(ωRo)N1(ωRi) = 0

and J0(ξ), J1(ξ), Y0(ξ), Y1(ξ) are the first and second order Bessel functions of the
first kind and the first and second order Bessel functions of the second kind, respec-
tively [16]. One can see that the temperature field will be equalized if the bodies
are thermally isolated. When the temperature gradient vanishes everywhere in the
bodies, the temperature field will change no more. Accordingly, when the time be-
comes infinitely high in (6.3), the solution of the heat conduction problem will be the
constant temperature.
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Due to the symmetry of the problem, it is enough to solve the heat conduction
problem between two parallel planes perpendicular to axis z. Let the two planes be

r
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Figure 3. The cross-section of the body between z1 = 0 mm and z2 = 20 mm

situated at z1 = 0 mm and at z2 = 20 mm. The cross-section of the body bounded by
the two planes is divided into finite elements – see Figure 3. The polynomial degree
of the shape functions is 8, the number of degrees of freedom is 2522. The initial
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Figure 4. The initial temperature distribution for the first and second example

temperature is T (r, 0) = f(r) = (2.5r − 200)◦C (see Figure 4) and the length of a
time step is ∆t = 0.01 s. To ensure the accuracy of six digits in the exact solution,
the first 100 terms of the series are considered in (6.3).

The mesh is modified in every time step, so that the node, whereto the mesh is
graded, moves from r = 90 mm to r = 110 mm. We will investigate the influence
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Figure 5. The difference between the exact solution and the finite
element approximation
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Figure 6. The difference between the finite element approximation on
fixed mesh and finite element approximation on continuously chang-
ing mesh

of this modification on the finite element solution. The difference between the exact
solution and the finite element approximation at t = 1 s can be seen in Figure 5.
The relative error is solved by e1 = ∆T1/|Tex|, where ∆T1 = |Tap − Tex|, Tap is
the approximated temperature and Tex is the exact temperature. The relative error
is less than 0.01% everywhere in the bodies. The modification of the mesh has no
significant influence on the accuracy of the finite element approximation. Now let
us compare two finite element approximations. In the first case the mesh is fixed,
and in the second case the mesh is modified in every time step, so that the node,
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whereto the mesh is graded, moves from r = 90 mm to r = 110 mm. The boundary
conditions are the same as in the first example. The time considered is t = 1 s, and
the length of a time step is ∆t = 0.01 s. One can see in Figure 6 that the difference
between the two fields is small. The relative error is defined as e2 = ∆T2/Tap, where
∆T2 = |Tam − Tap|, Tap is the approximated temperature in the fixed mesh and Tam
is the approximated temperature in the modified mesh. The relative error is less
than 1.2 · 10−7%, there is no significant difference between the two approximated
temperature fields. After these two examples we can suppose that this technique
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Figure 7. The finite element mesh of the cross-section of the bodies.
The contact surface is the z = 0 plane. The boundaries of the contact
region are the r = 80 mm edge and the point where the smallest
element is situated, i.e., r = 100 mm

provides a reliable solution of the heat conduction problem in a continuously changing
mesh. In the third example a possible application of this technique will be introduced.
Let us consider a coupled thermo-mechanical contact problem. The system consists
of two bodies, which slide on each other. The lower body is fixed, and the upper one
is rotated with angular velocity ω = 1/s. The inner and outer radii of the bodies are
Ri = 80 mm and Ro = 120 mm, respectively, and their height is h = 20 mm. The
contact surface is the rϕ plane – see Figure 7. The problem can be split into separately
solved mechanical and thermo-dynamical problems. In this paper we disregard the
computation of the contact problem. Instead a parabolic contact pressure distribution
is assumed. The thermal boundary conditions are the same as equation (2.2). Let
α1 = α2 = 44 W/m2 ◦C, c1 = c2 = 460 J/kg◦C, ρ1 = ρ2 = 7850 kg/m3, k1 = k2 =
55 W/m◦C, ϑ = 2/3, ∆t = 0.01 s, cD = 0.8. The applied polynomial degree is 8.
When the mesh is modified, the pressure distribution changes. The pressure can
be written as: p(r) = pmax

[
1− (r −Ri)2/(rb −Ri)2

]
, where pmax is the maximum

pressure, and rb is the r coordinate of the node whereto the mesh is graded – see
Figure 8. The initial temperature distribution is zero. It is supposed, that the
boundary of the contact region, its radius is rb, moves continuously from r = 90 mm
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Figure 9. The given heat flux (see equation (2.2)) and the heat flux
obtained from the approximated temperature field

to r = 110 mm during the process. One of the ways to verify the numerical solution
is to check whether the boundary conditions meet the heat flux obtained from the



A mapping technique for heat conduction problems on moving mesh 183

temperature field approximated: qeap = −k∂T
e(r, t)

∂r

∣∣∣∣
r∈Γe

c

. Figure 9 shows that the

derivative of the temperature field with respect to r gives accurately the boundary
condition. The temperature distributions for the upper body at t = 0 s, t = 0.25 s,
t = 0.5 s, t = 0.75 s and t = 1 s can be seen in Figures 10-14. Due to the fact, that
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Figure 10. The approximated temperature distribution of the upper
body at t = 0 s

z

[mm]

r
[mm]

[°C]

T

t=0.25s

 80
 85

 90
 95

 100
 105

 110
 115

 120−5

 0

 5

 10

 15

 20

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

Figure 11. The approximated temperature distribution of the upper
body at t = 0.25 s
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Figure 12. The approximated temperature distribution of the upper
body at t = 0.5 s
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Figure 13. The approximated temperature distribution of the upper
body at t = 0.75 s

the boundary conditions on the lower and upper bodies are the same, the temperature
distributions of the lower and upper bodies are mirror images of each other.
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Figure 14. The approximated temperature distribution of the upper
body at t = 1 s
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Figure 15. When the polynomial degree is increased, the error in
average temperature is decreased

The convergence of the solution was also investigated with different polynomial
degrees. At the end of the time interval the average temperature T̄ , which should be
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proportional to the thermal energy, was computed

T̄ =
1

Ω

∫
Ω

T (r, z)dΩ . (6.4)

This average temperature as a function of p is represented in Figure 15. When the
polynomial degree is increased, the error in average temperature is decreased and the
average temperature converges to a given value.

7. Conclusions

A special form of the hp-version of the finite element method has been presented for
the solution of the heat conduction problem for axially symmetric bodies. The mesh
was adjusted in every time step. The purpose was to simulate the thermal part of a
thermo-mechanical contact problem. When the contact problem is solved, the mesh
has to be adjusted so that the boundary of the contact zone is a nodal point. The
high polynomial degree and the employment of small elements around the border of
the contact region ensure high accuracy in the numerical solution. When the contact
region changes the mesh has to be modified. Using the mapping technique, the new
temperature field can be computed in the modified mesh with a great accuracy, and
the heat conduction problem can be solved accurately. Exact solutions and finite
element approximations were compared with each other to prove the reliability of the
computation.
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APPENDIX

Consider the following partial differential equation:
∂ϑ(r, t)

∂t
= κ

(
∂2ϑ(r, t)

∂r2
+

1

r

∂ϑ(r, t)

∂r

)
, r1 ≤ r ≤ r2

0 ≤ t ≤ tmax

(A.1)

ϑ(r, 0) = f(r) (A.2)

k
∂ϑ(r, t)

∂r

∣∣∣∣
r=r1

= 0 (A.3)

k
∂ϑ(r, t)

∂r

∣∣∣∣
r=r2

= 0 (A.4)

where κ =
k

ρc
, f(r) is a given function, r1 and r2 are the inner and outer radii,

respectively, and tmax is the length of the time interval considered. The solution is
searched for as the sum of the solution of a steady-state problem and a solution of a
transient problem: ϑ(r, t) = u(r) + v(r, t).
1. The steady-state problem:

κ

(
d2u(r)

dr2
+

1

r

du(r)

dr

)
= 0, r1 ≤ r ≤ r2 (A.5)

k
du(r)

dr

∣∣∣∣
r=r1

= 0 (A.6)

k
du(r)

dr

∣∣∣∣
r=r2

= 0 (A.7)

As is well known, the general solution of equation (A.5) is given by the formula:

u(r) = c1 ln r + c2 , (A.8)
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where c1 can be determined from the boundary conditions:

du(r)

dr

∣∣∣∣
r=r1

=
c1
r1

= 0

du(r)

dr

∣∣∣∣
r=r2

=
c1
r2

= 0

 ⇒ c1 = 0 (A.9)

c2 is determined later with the help of the solution of the transient problem. At this
moment the solution of equation (A.5) is

u(r) = c2(= const.) . (A.10)

2. The transient problem:

∂v(r, t)

∂r
= κ

(
∂2v(r, t)

∂r2
+

1

r

∂v(r, t)

∂r

)
, r1 ≤ r ≤ r2

0 ≤ t ≤ tmax

(A.11)

v(r, t)|t=0 = f(r)− u(r) , (A.12)

k
∂v(r, t)

∂r

∣∣∣∣
r=r1

= 0 , (A.13)

k
∂v(r, t)

∂r

∣∣∣∣
r=r2

= 0 . (A.14)

Let us try to find the solution of equations (A.11-A.14) as the product of two functions:

v(r, t) = ϕ(r)ψ(t) (A.15)

Substituting equation (A.15) into equation (A.11) and separating the variables r and
t we obtain

1

κ

1

ψ(t)

dψ(t)

dt
=

1

ϕ(r)

d2ϕ(r)

dr2
+

1

rϕ(r)

dϕ(r)

dr
= ±ω2. (A.16)

Because the left and right hand sides are independent, they must equal to the same
constant. It is worth giving this constant in the form: ±ω2. With this in hand two
ordinary differential equations have to be solved instead of a partially differential
equation.

a.
dψ(t)

dt
= ±κω2ψ(t) . (A.17)

The solution of equation (A.17) has the form

ψ(t) = c3e
±κω2t . (A.18)

If the exponent is greater than zero for t→∞ then the function ψ(t) is divergent.
That is reason why only the negative sign is acceptable:

ψ(t) = c3e
−κω2t (A.19)
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b.

r
d2ϕ(r)

dr2
+
dϕ(r)

dr
+ ω2rϕ(r) = 0 . (A.20)

The solution of equation (A.20) assumes the form

ϕ(r) = c4J0(ωr) + c5Y0(ωr) , (A.21)

where J0(r) and Y0(r) are the first order Bessel functions.

Let us substitute (A.19) and (A.21) into (A.15)

v(r, t) = e−κω
2t(c3c4︸︷︷︸

c6

J0(ωr) + c3c5︸︷︷︸
c7

Y0(ωr)) (A.22)

We can now substitute the solution (A.22) into the boundary condition (A.13)

− k ∂v(r, t)

∂r

∣∣∣∣
r=r1

= ke−κω
2t(c6ωJ1(ωr1) + c7ωY1(ωr)) = 0 , (A.23)

where J1(r) and Y1(r) are the second order Bessel functions. The boundary conditions
can be satisfied only if c6 = CY1(ωr) and c7 = CJ1(ωr), where C is a constant. The
following notations will be employed:

U0(ωr) := Y1(ωr1)J0(ωr)− J1(ωr1)Y0(ωr) (A.24)

and
U1(ωr) := Y1(ωr1)J1(ωr)− J1(ωr1)Y1(ωr) . (A.25)

It can be proved that
dU0(ωr)

dr
= −ωU1(ωr) . (A.26)

With the help of equation (A.24) the solution of equation (A.11) can be written in
the following form:

v(r, t) = Ce−κω
2tU0(ωr) . (A.27)

Let us substitute equation (A.27) into the boundary condition (A.14)

− k ∂v(r, t)

∂r

∣∣∣∣
r=r2

= ke−κω
2tωU1(ωr2) = 0 . (A.28)

This means that the roots of U1(ωr) = 0 have to be determined to satisfy equation
(A.14). Let us denote the roots by ωn (n = 1, 2, . . . ). The functions U0(ωnr) are
independent, hence the solution of (A.11) can be written as a series

v(r, t) =
∞∑
n=1

Cne
−κω2

ntU0(ωnr) . (A.29)

Making use of the orthogonality of the Bessel functions one can prove the orthogo-
nality condition

r2∫
r1

rU0(ωnr)U0(ωmr)dr =


1

2

[
r2
1U2

0(ωnr1)− r2
2U2

0(ωnr2)
]

if n = m

0 if n 6= m .

(A.30)
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Let us substitute series (A.29) into the boundary condition (A.12):

v(r, t)|t=0 =

∞∑
n=1

CnU0(ωnr) = f(r)− u(r) . (A.31)

Let us multiply equation (A.31) by rU0(ωmr) and integrate it on the [r1, r2] interval
r2∫
r1

(f(r)− u(r))U0(ωmr)rdr =

∞∑
n=1

Cn

r2∫
r1

U0(ωnr)U0(ωmr)r dr . (A.32)

The constant Cn can be determined with the aid of equation (A.30):

Cn =

r2∫
r1

(f(r)− u(r))U0(ωnr)rdr

1

2

[
r2
1U2

0(ωnr1)− r2
2U2

0(ωnr2)
] . (A.33)

The solution of equation (A.11) is of the form

v(r, t) =

∞∑
n=1

r2∫
r1

(f(r)− u(r))U0(ωnr)rdr

1

2

[
r2
1U2

0(ωnr1)− r2
2U2

0(ωnr2)
]e−κω2

ntU0(ωnr) (A.34)

Finally the constant c2 in equation (A.10) has to be determined. Let us multiply
(A.1) by r and integrate it over the interval [r1, r2]

r2∫
r1

∂ϑ(r, t)

∂t
rdr =

r2∫
r1

κ

[
∂2ϑ(r, t)

∂r2
+

1

r

∂ϑ(r, t)

∂r

]
rdr . (A.35)

It can be easily proved that[
∂2ϑ(r, t)

∂r2
+

1

r

∂ϑ(r, t)

∂r

]
r =

∂

∂r

(
r
∂ϑ(r, t)

∂r

)
. (A.36)

With the aid of (A.36), the boundary conditions (A.3) and (A.4) and the equation
κ = k/ρc we can calculate the right side of equation (A.35)

r2∫
r1

∂ϑ(r, t)

∂t
rdr = r κ

∂ϑ(r, t)

∂r

∣∣∣∣
r=r2︸ ︷︷ ︸

= 0

−r κ∂ϑ(r, t)

∂r

∣∣∣∣
r=r1︸ ︷︷ ︸

= 0

= 0 (A.37)

or

∂

∂t

r2∫
r1

ϑ(r, t)rdr = 0 ⇒
r2∫
r1

ϑ(r, t)rdr = constant . (A.38)
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The temperature distribution ϑ(r, t) is decomposed into a steady-state and a transient
temperature distributions

r2∫
r1

ϑ(r, 0)︸ ︷︷ ︸
f(r)

rdr =

r2∫
r1

ϑ(r,∞)rdr =

r2∫
r1

u(r)︸︷︷︸
c2

rdr +

r2∫
r1

v(r,∞)rdr

︸ ︷︷ ︸
= 0

= c2(r2
2 − r2

1) . (A.39)

The constant c2 follows from equation (A.39)

c2 =
1

r2
2 − r2

1

r2∫
r1

f(r)rdr (A.40)

Making use of the foregoing we can write

ϑ(r, t) =
1

r2
2 − r2

1

r2∫
r1

f(ζ)ζdζ+

+

∞∑
n=1

r2∫
r1

f(η)− 1

r2
2 − r2

1

r2∫
r1

f(ξ)ξdξ

U0(ωnη)ηdη

1

2

[
r2
1U2

0(ωnr1)− r2
2U2

0(ωnr2)
] e−κω

2
ntU0(ωnr)

which gives the temperature distribution we wanted to determine.
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in a rectangular region is constructed. This solution consisting of two parts satisfies both
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first part depends on the resultant vector and moment of the tractions and the second one
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1. Introduction

In our opinion, the problem of constructing solutions to the quasi-static boundary
value problems of elasticity and thermoelasticity in bounded regions with corner
points is well elucidated by Grinchenko [1] and Grinchenko and Ulitko [2]. Also a
method for solving such problems in a rectangular region has been proposed in [1, 2].
The method consists in superposing some solutions each of which is an exact one
for the corresponding infinite regions without corner points. It is obvious that seek-
ing solutions in such a form is complicated with regard to the requirement that the
boundary conditions should be satisfied at the corner points of the region.

In general, while constructing exact solutions to elasticity or thermoelasticity prob-
lems in regions having corner points, e.g. for a rectangle, a parallelepiped etc., one
encounters great diffi culties without a method for separating variables in the gov-
erning equations of elasticity —the Láme equations in terms of displacements or the
Beltrami equations in terms of stresses. However, Saint-Venant’s principle makes it
possible to represent solutions to the equations of elasticity in terms of stresses in the
form of a superposition of two parts: the first one depending on the resultant vector
and moment of the tractions, and the second one being the self-equilibrated part.
This gives the idea that eigenfunctions, which should be found for the stress tensor
components, could be helpful here. Unfortunately, separation of variables, e.g. in the
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biharmonic equation for the plane elasticity problem in a rectangle, is complicated
since there are two boundary conditions to be satisfied on each side of the rectangle.
That is the reason why the two boundary conditions are equivalently replaced by an
integral one in this paper when we integrate the equilibrium equations. This makes it
possible to separate variables in the governing fourth-order integro-differential equa-
tion and to construct a complete set of functions for the appropriate component of
the stress tensor, which consists of the eigenfunctions and the associated ones thus
corresponding to Saint-Venant’s principle, and, finally, to construct the exact solution
to the problem raised.

2. Formulation of the problem

Let us consider the quasi-static boundary value problem of plane elasticity in terms
of stresses for the rectangular region D = {(x, y) ∈ [−a, a]× [−b, b]} provided that the
material is isotropic and homogeneous and there are no body forces. This problem is
governed —see [3, 4] for details —by
the equilibrium equations:

∂σx
∂x

+
∂σxy
∂y

= 0,
∂σxy
∂x

+
∂σy
∂y

= 0, (x, y) ∈ D (2.1)

and the compatibility equation:

∆(σx + σy) = 0, ∆ = ∂2/∂x2 + ∂2/∂y2. (2.2)

We shall assume that the normal stresses

σx|x=a = −p1(y), σx|x=−a = −p2(y), σy|y=b = −p3(x), σy|y=−b = −p4(x)

(2.3)
and the shear stresses

σxy|x=a = q1(y), σxy|x=−a = q2(y), σxy|y=b = q3(x), σxy|y=−b = q4(x) (2.4)

are imposed on the boundary of the rectangle; the prescribed values are denoted by
p1, . . . , p4 and q1, . . . , q4.

To determine the stress tensor components from the set of equations (2.1) and
(2.2) under the boundary conditions (2.3) and (2.4), it is useful to replace boundary
conditions (2.4) for shear stress by the corresponding conditions for derivatives of
normal stresses

∂σx
∂x

∣∣∣∣
x=a

= −dq1
dy

,
∂σx
∂x

∣∣∣∣
x=−a

= −dq2
dy

,
∂σy
∂y

∣∣∣∣
y=b

= −dq3
dx

,
∂σy
∂y

∣∣∣∣
y=−b

= −dq4
dy

.

(2.5)
Such a replacement can be carried out with the help of equilibrium equations (2.1),
which should be fulfilled on the boundary.

Further on, both the boundary conditions for normal stresses (2.3) and (2.5) and
those for the shear stress (2.4) will be used to construct the solution of equations
(2.1)—(2.2).
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By means of direct integration of the equilibrium equations (2.1) and separating the
variables in the governing integro-differential equations [5, 6, 7, 8] formed separately
for the stress components σy and σx on the basis of equation (2.2), we can con-
struct complete sets of the orthogonal eigenfunctions and associated functions {1, x,
cos(γnx/a), sin(λnx/a)} and {1, y, cos(γny/b), sin(λny/b)} (n = 1, 2, ...) in order to
decompose the normal stresses

σx = X1
0 (x) + yX2

0 (x) +
∞∑
n=1

(
X1
n(x) cos γn

y
b +X2

n(x) sinλn
y
b

)
,

σy = Y 10 (y) + xY 20 (y) +
∞∑
n=1

(
Y 1n (y) cos γn

x
a + Y 2n (y) sinλn

x
a

) (2.6)

and the tractions

pi = ai0 + ybi0 +
∞∑
n=1

(
ain cos γn

y
b + bin sinλn

y
b

)
,

dqi
dy

= ci0 + ydi0 +
∞∑
n=1

(
cin cos γn

y
b + din sinλn

y
b

)
, i = 1, 2,

pj = aj0 + xbj0 +
∞∑
n=1

(
ajn cos γn

x
a + bjn sinλn

x
a

)
,

dqj
dx

= cj0 + xdj0 +
∞∑
n=1

(
cjn cos γn

x
a + djn sinλn

x
a

)
, j = 3, 4 .

(2.7)

Here γn = nπ, λn > 0 are the roots of equation tanλ = λ (n = 1, 2, ...).

The associated functions 1, y and 1, x define the so-called ”elementary” parts in
decompositions (2.6). They depend on the parts of the tractions in (2.7) which
are not self-equilibrated. The eigenfunctions cos(γny/b), sin(λny/b) and cos(γnx/a),
sin(λnx/a) (n = 1, 2, ...) satisfying the homogeneous integral equilibrium conditions

b∫
−b

σsxdy =

b∫
−b

yσsxdy = 0,

a∫
−a

σsydx =

a∫
−a

xσsydx = 0 (2.8)

respectively, determine in (2.7) the parts under the summation signs which correspond
to self-equilibrated parts of tractions (2.7). Therefore we can present the normal
stresses in the form

σx = σ0x + σsx , σy = σ0y + σsy . (2.9)

Here and in the sequel the superscripts "0", "s" denote the elementary (not self-
equilibrated) and self-equilibrated parts of solutions (2.6) or tractions, respectively.
The latter should also be presented in the form

pi = p0i + psi , qi = q0i + qsi , i = 1, 2, 3, 4. (2.10)

In what follows, when no confusion can arise, the indices introduced will be omitted
for the sake of brevity in writing.

Now we shall consider how to derive the elementary and self-equilibrated parts of
the normal stresses. Also the same parts of the shear stress will be constructed by
using the method of direct integration of the equilibrium equations [7].
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3. Elementary solutions

The elementary parts of the solution of the problem (2.1)—(2.3), (2.5) for the normal
stresses

σ0x = X1
0 (x) + yX2

0 (x), σ0y = Y 10 (y) + xY 20 (y) (3.1)

should be solutions of equations (2.1), (2.2), and should satisfy (as non-self-equilibrated
tractions (2.7)) both the boundary conditions (2.3), (2.5), i.e., equations

(
X1
0 + yX2

0

)∣∣
x=(−1)i+1a = − 1

2b

b∫
−b

pidy −
3y

2b3

b∫
−b

piydy ,

(
dX1

0

dx
+ y

dX2
0

dx

)∣∣∣∣
x=(−1)i+1a

= − 1

2b

b∫
−b

dqi
dy
dy − 3y

2b3

b∫
−b

dqi
dy
ydy , i = 1, 2,

(
Y 10 + xY 20

)∣∣
y=(−1)j+1b = − 1

2a

a∫
−a

pjdx−
3x

2a3

a∫
−a

pjxdx ,

(
dY 10
dy

+ x
dY 20
dy

)∣∣∣∣
y=(−1)j+1b

= − 1

2a

a∫
−a

dqj
dx

dx− 3x

2a3

a∫
−a

dqj
dx

xdx, j = 3, 4 ,

(3.2)

and the non-homogeneous integral equilibrium conditions [7]

2

a∫
−a

σydx = −
a∫
−a

(p3 + p4)dx+

b∫
−b

(q2 − q1) sign(y − ξ)dξ,

2

a∫
−a

xσydx = −
a∫
−a

(p3 + p4)xdx+

b∫
−b

(p1 − p2)|y − ξ|dξ+

+

a∫
−a

((y − b)q3 + (y + b)q4)dx− a
b∫
−b

(q1 + q2)sign(y − ξ)dξ,

2

b∫
−b

σxdy = −
b∫
−b

(p1 + p2)dy +

a∫
−a

(q4 − q3)sign(x− η)dη,

2

b∫
−b

yσxdy = −
b∫
−b

(p1 + p2)ydy +

a∫
−a

(p3 − p4)|x− η|dη+

+

b∫
−b

((x− a)q1 + (x+ a)q2)dy − b
a∫
−a

(q3 + q4)sign(x− η)dη .

(3.3)
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The latter have been obtained by integrating the equilibrium equations (2.1) and
taking the boundary conditions (2.3) and (2.4) into account.

Also the constituents Xi
0, Y

i
0 (i = 1, 2) of the solution (3.1) should satisfy the

coordination conditions

X1
0 =

1

2b

b∫
−b

σxdy, X2
0 =

3

2b3

b∫
−b

yσxdy, Y 10 =
1

2a

a∫
−a

σydx, Y 20 =
3

2a3

a∫
−a

xσydx

(3.4)
which follow directly from equations (3.1). It is obvious that the static equilibrium
conditions

b∫
−b

(p2 − p1)dy +
a∫
−a

(q3 − q4)dx =
a∫
−a

(p4 − p3)dx+
b∫
−b

(q1 − q2)dy = 0,

b∫
−b

(p2 − p1)ydy + b
a∫
−a

(q3 + q4)dx =
a∫
−a

(p4 − p3)xdx+ a
b∫
−b

(q1 + q2)dy

(3.5)

should also be satisfied by the tractions imposed on the boundary of the rectangle.

Since the governing equations (3.2)—(3.5) are overdetermined, one should expect
that for the existence of solutions (3.1) some necessary conditions should be laid upon
the tractions.

On the basis of equations (2.1), (2.2) the relations

∂2σ0x
∂x2

−
∂2σ0y
∂y2

= 0
∂2σ0x
∂x2

+
∂2σ0y
∂y2

= 0

follow for the solutions (3.1). Consequently

∂2σ0x
∂x2

=
∂2σ0y
∂y2

= 0 .

According to these equations, by means of (3.1), (3.3), (3.4) and (2.10), we arrive at
the following equations for the non-self-equilibrated part of the tractions:

d

dx
(q04 − q03) +

3y

b2
(
p03 − p04 − b ddx (q03 + q04)

)
= 0,

d

dy
(q02 − q01) +

3x

a2

(
p01 − p02 − a d

dy (q01 + q02)
)

= 0 .

They obviously lead to the evident conditions

d

dx
(q04 − q03) =

d

dy
(q02 − q01) = p03 − p04 − b

d

dx
(q03 + q04) =

= p01 − p02 − a
d

dy
(q01 + q02) = 0. (3.6)
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In accordance with decompositions (2.7), the necessary conditions

aq−43 =
a∫
−a

(q4 − q3)dx =
b∫
−b

(p2 − p1)dy, bq−21 =
b∫
−b

(q2 − q1)dy =
a∫
−a

(p4 − p3)dx,

abq+34 = b
a∫
−a

(q3 + q4)dx+
a∫
−a

(p3 − p4)xdx, abq+12 = a
b∫
−b

(q1 + q2)dy +
b∫
−b

(p1 − p2)ydy,

q3(a)− q3(−a) = q4(a)− q4(−a), q1(b)− q1(−b) = q2(b)− q2(−b),
(3.7)

to be satisfied by the tractions follow from equations (3.6). Here

q−21 = (q2 − q1)|y=b + (q2 − q1)|y=−b = 2(q3(−a)− q3(a)) ,

q−43 = (q4 − q3)|x=a + (q4 − q3)|x=−a = 2(q1(−b)− q1(b)) ,
q+12 = (q1 + q2)|y=b + (q1 + q2)|y=−b , q+34 = (q3 + q4)|x=a + (q3 + q4)|x=−a .

The equality q+12 = q+34, which reflects the duality of the shear stress at the corner
points of the rectangle, should also be fulfilled.

Consequently the elementary solutions (3.1), which satisfy equations (2.1), (2.2)
and conditions (3.2)—(3.5), take the form

σ0x =
1

4b

b∫
−b

(
(p2 − p1)

x

a
− p1 − p2

)
dy +

3y

4b3

b∫
−b

(
(p2 − p1)

x

a
− p1 − p2

)
ydy ,

σ0y =
1

4a

a∫
−a

(
(p4 − p3)

y

b
− p3 − p4

)
dx+

3x

4a3

a∫
−a

(
(p4 − p3)

y

b
− p3 − p4

)
xdx

(3.8)

if the necessary conditions (3.7) are fulfilled. The last formulae show that in the
presence of conditions (3.7) the elementary solutions to the normal stresses are linear
in their coordinates and depend only on pi (i = 1, 2) and pj (j = 3, 4), respectively.

Now we can apply the principle of superposition. By direct integration of the
equilibrium equations (2.1) and taking the boundary conditions (2.3) and (2.4) into
account, one can determine the elementary part of shear stresses — for the normal
stresses see (3.8) —as the sum of two constituents

σ0xy =
1

4

[
q+12 − q−21

x

a
− q−43

y

b

]
+

3(x2 − a2)
8a3

aq+34 − a∫
−a

(q3 + q4)dx

+

+
3(y2 − b2)

8b3

bq+12 − b∫
−b

(q1 + q2)dy

 . (3.9)

These constituents depend on the tractions qi (i = 1, 2) and qj (j = 3, 4), respectively
and are polynomial functions of the coordinates with a degree not higher than two.

It should be noted that {1, x, x2, sin(γnx/a), cosλn − cos(λnx/a)} (n = 1, 2, ...)
is the complete set of functions for separating variables in the problem (2.1)—(2.4) for
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σxy in respect of the variable x. Similarly, {1, y, y2, sin(γny/b), cosλn− cos(λny/b)}
(n = 1, 2, ...) is the complete set in the variable y. This means that the solution to
σxy can be presented in the form

σxy = Y 1xo(y) + Y 2xo(y)x+ Y 3xo(y)x2+

+

∞∑
n=1

[Y 1xn(y) sin γn
x

a
+ Y 2xn(y)(cosλn − cosλn

x

a
)] (3.10)

or

σxy = X1
yo(x) +X2

yo(x)y +X3
yo(x)y2+

+

∞∑
n=1

[X1
yn(x) sin γn

y

b
+X2

yn(x)(cosλn − cosλn
y

b
)] ,

where the functions sin(γnx/a), cosλn−cos(λnx/a) and sin(γny/b), cosλn−cos(λny/b)
(n = 1, 2, ...) are the eigenfunctions satisfying the homogeneous conditions

σsxy(a) = σsxy(−a) =

a∫
−a

σsxydx = 0, σsxy(b) = σsxy(−b) =

b∫
−b

σsxydy = 0,

respectively.

It can be checked with ease that the necessary conditions (3.7) are also suffi cient
for the boundary conditions (3.2) to be satisfied by the stresses (3.8).

The integral equilibrium conditions (3.7) set up for the tractions are special if
they are compared with the general equilibrium conditions (3.5) since the latter are
satisfied identically if conditions (3.7) are fulfilled. However, conditions (3.7) ensure
the fulfillment of the principle of superposition for problem (2.1)—(2.5) in the sense
that the solution can be considered as a sum of two other solutions —one for pi, qi 6= 0
(i = 1, 2) the other for pj = qj = 0 (j = 3, 4), and vice versa: pi = qi = 0 and
pj , qj 6= 0.

The necessary equilibrium conditions (3.7) mean that in the absence of shear
stresses at the corner points of the rectangle, i.e., when q−21 = q−43 = q+12 = q+34 = 0,
for the existence of the solution of problem (2.1)—(2.5) in the form (2.6) satisfying the
superposition and Saint-Venant’s principles, the tractions imposed on the boundary
of the region should be equilibrated separately for pi, qi (i = 1, 2) and for pj , qj
(j = 3, 4). This is so because within the general equilibrium conditions (3.5) only,
superposition of the solution would be impossible.

It should be finally emphasized that within the framework of the theory of elasticity,
i.e., when σxy = Gexy (G is the shear modulus) due to the duality of the shear stresses
at the corner points of the region D, fulfillment of conditions (3.7)5,6 is necessary for
the total shear strains to be equal to zero at the corner points of the rectangle.
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4. Solutions to self-equilibrated tractions

The self-equilibrated normal stresses (2.6)

σsx =
∞∑
n=1

(
X1
n(x) cos γn

y
b +X2

n(x) sinλn
y
b

)
,

σsy =
∞∑
n=1

(
Y 1n (y) cos γn

x
a + Y 2n (y) sinλn

x
a

) (4.1)

should satisfy equations (2.1), (2.5) and the homogeneous integral equilibrium con-
ditions (2.8). We shall construct both the normal stresses and the self-equilibrated
shear stresses (3.10), the latter being presented in the form of the sum of two solutions

σsxy =

∞∑
n=1

[
Y 1xn(y) sin γn

x

a
+ Y 2xn(y)(cosλn − cosλn

x

a
)
]

+

+

∞∑
n=1

[
X1
yn(x) sin γn

y

b
+X2

yn(x)(cosλn − cosλn
y

b
)
]
, (4.2)

if we make use of the method proposed in [8] for constructing similar functions for
the plane boundary value problem of thermoelasticity in a rectangle. Therefore

σsx =

∞∑
i=1

σ(i)x , σsy =

∞∑
i=1

σ(i)y , σsxy =

∞∑
i=1

σ(i)xy , (4.3)

where

σ
(2i−1)
x =

1

2

∂2

∂y2

∫ a

−a
σ(2i−1)y |x− η|dη, σ(2i−1)xy = −1

2

∂

∂y

∫ a

−a
σ(2i−1)y sign(x− η)dη,

σ
(2i)
y =

1

2

∂2

∂x2

∫ b

−b
σ(2i)x |y − ξ|dξ, σ(2i)xy = −1

2

∂

∂x

∫ b

−b
σ(2i)x sign(y − ξ)dξ.

(4.4)
Here and further on i = 1, 2, ....

The constituents of normal stresses

σ
(2i)
x =

∞∑
m=1

(
X
(2i)
1m (x) cos γm

y
b +X

(2i)
2m (x) sinλm

y
b

)
,

σ
(2i−1)
y =

∞∑
n=1

(
Y
(2i−1)
1n (y) cos γn

x
a + Y

(2i−1)
2n (y) sinλn

x
a

) (4.5)

will be sought as the solutions of the integro-differential equations

∂2σ
(2i−1)
y

∂x2
+ 2

∂2σ
(2i−1)
y

∂y2
+

1

2

∂4

∂y4

∫ a

−a
σ(2i−1)y |x− η|dη =

∂2l(2i−1)

∂y2
− ∂2l(2i−2)

∂x2

∂2σ
(2i)
x

∂y2
+ 2

∂2σ
(2i)
x

∂x2
+ 1

2
∂4

∂x4

∫ b

−b
σ(2i)x |y − ξ|dξ =

∂2l(2i)

∂x2
− ∂2l(2i−1)

∂y2
,

(4.6)
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when the boundary conditions

σ
(2i)
x

∣∣∣
x=±a

=

{
−ps1δi,1,
−ps2δi,1,

σ
(2i−1)
y

∣∣∣
y=±b

=

{
−ps3δi,1,
−ps4δi,1,

∂σ
(2i)
x

∂x

∣∣∣∣∣
x=±a

=

{
−dqs1/dyδi,1,
−dqs2/dyδi,1,

∂σ
(2i−1)
y

∂y

∣∣∣∣∣
y=±b

=

{
−dqs3/dxδi,1,
−dqs4/dxδi,1,

(4.7)

which follow from (2.3) and (2.5) due to equations (2.7), are satisfied. Here δi,j is the
Kronecker delta; l(0) ≡ 0;

l(2i−1) = a

∞∑
n=1

[
d2Y

(2i−1)
1n

dy2
a cos γn
γ2n

+ x
d2Y

(2i−1)
2n

dy2
cosλn
λn

]
=

=

∞∑
m=1

{
(α̃
(2i−1)
1m + xβ̃

(2i−1)
1m ) cos γm

y

b
+ (α̃

(2i−1)
2m + xβ̃

(2i−1)
2m ) sinλm

y

b

}
;

l(2i) = b

∞∑
m=1

[
d2X

(2i)
1m

dx2
b cos γm
γ2m

+ +y
d2X

(2i)
2m

dx2
cosλm
λm

]
=

=

∞∑
n=1

{
α
(2i)
1n + yβ

(2i)
1n cos γn

x

a
+ (α

(2i)
2n + yβ

(2i)
2n ) sinλn

x

a

}
.

(4.8)

Thus, the possibility of separating variables in equations (4.6) has been established
for representations (4.5) taking expressions (4.8) into account. For the functions in
question, Y (2i−1)jn , X(2i)

jm (j = 1, 2), we arrive at the problem of solving the ordinary
fourth-order differential equations[

d4

dy4
− 2

(zjn
a

)2
d2

dy2 +
( zjn
a

)4]
Y
(2i−1)
jn = −

(zjn
a

)4 (
α
(2i−2)
jn + yβ

(2i−2)
jn

)
,[

d4

dx4
− 2

(zjm
b

)2
d2

dx2 +
(zjm
b

)4]
X
(2i)
jm = −

(zjm
b

)4 (
α̃
(2i−1)
jm + xβ̃

(2i−1)
jm

) (4.9)

with boundary conditions

X
(2i)
jm

∣∣∣
x=±a

=

{
P
1(i)
jm ,

P
2(i)
jm ,

Y
(2i−1)
jn

∣∣∣
y=±b

=

{
S
1(i)
jn ,

S
2(i)
jn ,

dX
(2i)
jm

dx

∣∣∣∣∣
x=±a

=

{
P
3(i)
jm ,

P
4(i)
jm ,

dY
(2i−1)
jn

dy

∣∣∣∣∣
y=±b

=

{
S
3(i)
jn ,

S
4(i)
jn ,

(4.10)

where

P
j(i)
1m = −δi,1

b

b∫
−b

pj cos γm
y

b
dy, P

j(i)
2m = − δi,1

b sin2 λm

b∫
−b

pj sinλm
y

b
dy,

S
j(i)
1n = −δi,1

a

a∫
−a

pj+2 cos γn
x

a
dx, S

j(i)
2n = − δi,1

a sin2 λn

a∫
−a

pj+2 sinλn
x

a
dx,
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P
j+2(i)
1m = −δi,1

b

∫ b

−b

dqj
dy

cos γm
y

b
dy , P

j+2(i)
2m = − δi,1

b sin2 λm

∫ b

−b

dqj
dy

sinλm
y

b
dy ,

S
j+2(i)
1n =

δi,1
a

∫ a

−a

dqj+2
dx

cos γn
x

a
dx , S

j+2(i)
2n = − δi,1

a sin2 λn

∫ a

−a

dqj+2
dx

sinλn
x

a
dx,

zjk = (2− j)γk + (j − 1)λk, j = 1, 2; k = {n,m}.

The solution of problem (4.9), (4.10) can be given in the following form

X
(2i)
jm =

4∑
k=1

∆k(
zjm
b , a, x)P

k(i)
jm + α̃

(2i−1)
jm f1(

zjm
b , a, x) + β̃

(2i−1)
jm f2(

zjm
b , a, x),

Y
(2i−1)
jn =

4∑
k=1

∆k(
zjn
a , b, y)S

k(i)
jn + α

(2i−2)
jn f1(

zjn
a , b, y) + β

(2i−2)
jn f2(

zjn
a , b, y),

(4.11)

where

α̃
(2i−1)
1m =

(−1)m

b

∞∑
n=1

K(
γn
a
,
γm
b
, a)
[
K1(

γn
a
,
γm
b
, b)(S

3(i)
1n − S

4(i)
1n )+

+K2(
γn
a
,
γm
b
, b)(S

1(i)
1n + S

2(i)
1n + 2α

(2i−2)
1n )

]
,

β̃
(2i−1)
1m =

(−1)m

ab

∞∑
n=1

λnK(
λn
a
,
γm
b
, a)

[
K1(

λn
a
,
γm
b
, b)(S

3(i)
2n − S

4(i)
2n )+

+K2(
λn
a
,
γm
b
, b)(S

1(i)
2n + S

2(i)
2n + 2α

(2i−2)
2n )

]
,

α̃
(2i−1)
2m =

1

b2 sinλm

∞∑
n=1

K(
γn
a
,
λm
b
, a)

[
K3(

γn
a
,
λm
b
, b)(S

1(i)
1n − S

2(i)
1n )+

+K4(
γn
a
,
λm
b
, b)(S

3(i)
1n + S

4(i)
1n ) +K5(

γn
a
,
λm
b
, b)β

(2i−2)
1n )

]
,

β̃
(2i−1)
2m =

1

b2a sinλm

∞∑
n=1

λnK(
λn
a
,
λm
b
, a)

[
K3(

λn
a
,
λm
b
, b)(S

1(i)
2n − S

2(i)
2n )+

+K4(
λn
a
,
λm
b
, b)(S

3(i)
2n + S

4(i)
2n ) +K5(

λn
a
,
λm
b
, b)β

(2i−2)
2n )

]
,

α
(2i)
1n =

(−1)n

a

∞∑
m=1

K(
γm
b
,
γn
a
, b)
[
K1(

γm
b
,
γn
a
, a)(P

3(i)
1m − P

4(i)
1m )+

+K2(
γm
b
,
γn
a
, a)(P

1(i)
1m + P

2(i)
1m + 2α̃

(2i−1)
1m )

]
,

β
(2i)
1n =

(−1)n

ab

∞∑
m=1

λmK(
λm
b
,
γn
a
, b)

[
K1(

λm
b
,
γn
a
, a)(P

3(i)
2m − P

4(i)
2m )+

+K2(
λm
b
,
γn
a
, a)(P

1(i)
2m + P

2(i)
2m + 2α̃

(2i−1)
2m )

]
,
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α
(2i)
2n =

1

a2 sinλn

∞∑
m=1

K(
γm
b
,
λn
a
, b)

[
K3(

γm
b
,
λn
a
, a)(P

1(i)
1m − P

2(i)
1m )+

+K4(
γm
b
,
λn
a
, a)(P

3(i)
1m + P

4(i)
1m ) +K5(

γm
b
,
λn
a
, a)β̃

(2i−1)
1m )

]
,

β
(2i)
2n =

1

a2b sinλn

∞∑
m=1

λmK(
λm
b
,
λn
a
, b)

[
K3(

λm
b
,
λn
a
, a)(P

1(i)
2m − P

2(i)
2m )+

+K4(
λm
b
,
λn
a
, a)(P

3(i)
2m + P

4(i)
2m ) +K5(

λm
b
,
λn
a
, a)β̃

(2i−1)
2m )

]
;

f1(p, h, t) = 2
(sinh(ph) + ph cosh(ph)) cosh(pt)− pt sinh(ph) sinh(pt)

sinh(2ph) + 2ph
− 1 ,

f2(p, h, t) = 2
h2p sinh(ph) sinh(pt) + (sinh(ph)− ph cosh(ph))t cosh(pt)

sinh(2ph)− 2ph
− t ;

∆j(p, h, t) = [(sinh(ph) + ph cosh(ph)) cosh(pt)− pt sinh(ph) sinh(pt)] / [sinh(2ph) + 2ph]−
− (−1)j [(cosh(ph) + ph sinh(ph)) sinh(pt)− pt cosh(ph) cosh(pt)] / [sinh(2ph)− 2ph] ,

∆j+2(p, h, t) = [t sinh(ph) cosh(pt)− h cosh(ph) sinh(pt)] / [sinh(2ph)− 2ph]−
− (−1)j [t cosh(ph) sinh(pt)− h sinh(ph) cosh(pt)] / [sinh(2ph) + 2ph] , j = 1, 2;

K(p, q, h) =
cos(ph)

(p2 + q2)2
, K1(p, q, h) =

(p2 + 3q2) sinh(2ph) + 2ph(p2 + q2)

sinh(2ph) + 2ph
,

K2(p, q, h) = − 4pq2 sinh2(ph)

sinh(2ph) + 2ph
, K5(p, q, h) = −8q2

p

(sinh(ph)− ph cosh(ph))2

sinh(2ph)− 2ph
,

K3(p, q, h) =
(q2 − p2) sinh(2ph) + 2(p2 + q2)ph− 4pq2h cosh2(ph)

sinh(2ph)− 2ph
,

K4(p, q, h) =
h(p2 + 3q2) sinh(2ph)− 2(p2 + q2)ph2 − 4q2 sinh2(ph)/p

sinh(2ph)− 2ph
.

Having determined the constituents (4.11) of the decompositions (4.5), in accordance
with formulae (4.3), (4.4) we get the self-equilibrated parts of the solution (4.1), (4.2):

σsx =
∞∑
m=1

(
X1m(x) cos γm

y
b +X2m(x) sinλm

y
b

)
+

+a2
∞∑
n=1

[
d2Y1n
dy2

cos γn−cos(γnx/a)
γ2n

+
d2Y2n
dy2

λn(x/a) cosλn−sin(λnx/a)
λ2n

]
,

σsy =
∞∑
n=1

(
Y1n(y) cos γn

x
a + Y2n(y) sinλn

x
a

)
+

+b2
∞∑
m=1

[
d2X1m

dx2
cos γm−cos(γmy/b)

γ2m
+

d2X2m

dx2
λm(y/b) cosλm−sin(λmy/b)

λ2m

]
,

σsxy = −a
∞∑
n=1

[
dY1n
dy

sin(γnx/a)
γn

+
dY2n
dy

cosλn−cos(λnx/a)
λn

]
−

−b
∞∑
m=1

[
dX1m

dx
sin(γmy/b)

γm
+

dX2m

dx
cosλm−cos(λmy/b)

λm

]
.

(4.12)

Here Yjn =
∞∑
i=1

Y
(2i−1)
jn , Xjm =

∞∑
i=1

X
(2i)
jm (j = 1, 2).
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Equivalence of representations (4.1), (4.2) to representations (4.12) is rigorously
ensured by the completeness of the corresponding sets of functions.

Finally solution to the problem (2.1)—(2.5) is written for normal stresses in the
form (2.9), where the elementary and self-equilibrated parts are given by formulae
(3.8), (4.12)1,2. The solution to the shear stress is given by formulae (3.9), (3.10),
and (4.12)3.

The solutions constructed correspond to Saint-Venant’s principle. Moreover, they
correspond to it strictly, as it was Saint-Venant who pointed out the existence of the
associated functions 1, y and 1, x for normal stresses σx, σy, which correspond to the
tension and bending of a body with a rectangular cross-section. The eigenfunctions,
which determine the parts of the solutions which depend on self-equilibrated tractions
imposed on the boundary, have essential influence only not far from the ends x = ±a
and y = ±b of the rectangular region.

5. Numerical results

Let us consider some computational results providing a plane stress state if the rec-
tangle is subjected to the loads

p1 = p2 = p(b2 − y2), pj = qk = 0, j = 3, 4; k = 1, 2, 3, 4; p = const.

Figure 1 shows how the normal stress σx divided by the traction p depends on the
x-coordinate for the regions having constant width 2b = 2 while the lengths are

Figure 1. x—distribution of the stress σx/p for a = 10; 5; 3 and b = 1

2a = 6, 10, 20. It is clear from the graph that the stresses satisfy the boundary condi-
tions even at the approximate distance (2 − 2, 5)b from the boundary, and tend to
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Figure 2. Influence of the self-equilibrated tractions on distribution of the stress
σx/p under x—shortening of the rectangle

Figure 3. Behavior of the stresses σy/p and σxy/p for a = 5 and b = 1

a constant compressive stress along the region’s width, which is equal to σ0x/p = −2/3
according to the elementary solution.

Figure 2 presents the behavior of σx/p both in a square (a = b = 1) and in a
rectangle with sides a = 0.5, b = 1 and for four different cross-sections y = 0; 0.3; 0.9; 1.
So, if the regions have a short x-dimension compared to the width, the area of the
disturbed stress caused by the boundary conditions captures the whole region. If
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a = 0.5 and y tends to zero, the normal stress has a constant distribution in accordance
with the boundary conditions, i.e., it is independent of x.

The x-distribution of the stresses depicted in Figure 3 shows that the stresses are
self-equilibrated. Self-equilibration of shear stress is caused by the fact that σxy is an
odd function of x and y.

6. Conclusions

By making use of the proposed method of direct integration, the exact solution of the
boundary value problem of plane elasticity in a rectangle is constructed. This solution
is the sum of the self-equilibrated and elementary parts. The last ones (3.8) deter-
mined by the associated functions 1, y and 1, x in the equations for the normal stresses
σx, σy, respectively, correspond to the tension and bending. Naturally, they depend
on non self-equilibrated tractions imposed on the boundary. The self-equilibrated
parts (4.12) determined by the eigenfunctions, expressing the stresses caused by the
self-equilibrated tractions, have an essential influence only not far from the bound-
ary, tending to zero when moving away from it. Therefore, the decompositions (2.6)
correspond to Saint-Venant’s principle.

The elementary solutions (3.8), (3.9) of the problem (2.1)—(2.4) are either linear
functions of the coordinates for normal stresses or parabolic ones for shear stresses.

For the solutions to exist, the non self-equilibrated parts of the tractions should
satisfy the equilibrium conditions (3.7).
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A Short History of the Publications of the University of Miskolc

The University of Miskolc (Hungary) is an important center of research in Central Eu-
rope. Its parent university was founded by the Empress Maria Teresia in Selmecbánya
(today Banska Štiavnica, Slovakia) in 1735. After the first World War the legal pre-
decessor of the University of Miskolc moved to Sopron (Hungary) where, in 1929, it
started the series of university publications with the title Publications of the Mining
and Metallurgical Division of the Hungarian Academy of Mining and Forestry Engi-
neering (Volumes I.-VI.). From 1934 to 1947 the Institution had the name Faculty
of Mining, Metallurgical and Forestry Engineering of the József Nádor University of
Technology and Economic Sciences at Sopron. Accordingly, the publications were
given the title Publications of the Mining and Metallurgical Engineering Division
(Volumes VII.-XVI.). For the last volume before 1950 – due to a further change in
the name of the Institution – Technical University, Faculties of Mining, Metallurgical
and Forestry Engineering, Publications of the Mining and Metallurgical Divisions was
the title.

For some years after 1950 the Publications were temporarily suspended.

After the foundation of the Mechanical Engineering Faculty in Miskolc in 1949 and
the movement of the Sopron Mining and Metallurgical Faculties to Miskolc, the Pub-
lications restarted with the general title Publications of the Technical University of
Heavy Industry in 1955. Four new series - Series A (Mining), Series B (Metallurgy),
Series C (Machinery) and Series D (Natural Sciences) - were founded in 1976. These
came out both in foreign languages (English, German and Russian) and in Hungarian.

In 1990, right after the foundation of some new faculties, the university was renamed
to University of Miskolc. At the same time the structure of the Publications was
reorganized so that it could follow the faculty structure. Accordingly three new se-
ries were established: Series E (Legal Sciences), Series F (Economic Sciences) and
Series G (Humanities and Social Sciences). The latest series, i.e., the series H (Euro-
pean Integration Studies) was founded in 2001. The eight series are formed by some
periodicals and such publications which come out with various frequencies.

Papers on computational and applied mechanics were published in the

Publications of the University of Miskolc, Series D, Natural Sciences.

This series was given the name Natural Sciences, Mathematics in 1995. The name
change reflects the fact that most of the papers published in the journal are of math-
ematical nature though papers on mechanics also come out.

The series

Publications of the University of Miskolc, Series C, Fundamental
Engineering Sciences

founded in 1995 also published papers on mechanical issues. The present journal,
which is published with the support of the Faculty of Mechanical Engineering as a
member of the Series C (Machinery), is the legal successor of the above journal.
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