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Abstract. In this work we examine some simple non-oscillatory boundary conditions that
can be applied to a typical class of modern finite-difference shock capturing schemes. In
particular we concentrate on a non-staggered source-term version of the Nessyahu-Tadmor
scheme [3] applied to some one-dimensional model equations admitting shocks that can
interact with the system boundaries.
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1. Introduction

Recently many schemes have been employed in numerical studies of hyperbolic sys-
tems. Such systems occur in a wide variety of problems, including shock propagation
in fluids [1]. New methods for the numerical solution of such systems fall into several
classes, of which the fully discrete schemes of Nessyahu and Tadmor [2] and their
extensions constitute one important class of Riemann-solver-free schemes for shock
propagation problems. Here we concentrate on a non-staggered variation [3] of [2]
and pay particular attention to what transpires on a wave structure at a boundary,
especially when it is to be fully absorbed and when it is to be reflected. To illustrate
the application of these two types of boundary conditions, we examine their effect on
shock structures modelled by such equations as the inviscid Burgers’ equation and the
equations for a Broadwell gas, which is a two-dimensional neutral gas model allowing
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for one-dimensional spatial variation. We formulate and test local boundary condi-
tions required to smoothly absorb and to smoothly reflect shocks at the boundaries.
Because of the spatial extent of the finite-difference grid stencils of modern high res-
olution schemes, it is required to employ "thick" boundary conditions, whereby, not
only a single end point is treated as a boundary point but so too are its immediate
neighbours. Tests conducted with this device in conjunction with the above [3] high
resolution scheme indicate that simple local conditions can indeed result in smooth
boundary interactions.

2. Model equations and the numerical scheme

The model equations studied are of the type,

Ou(z,t)  Of (u)
8 2w, (2.1)

a one-dimensional hyperbolic system [1] of partial differential equations. Here u(x,t)
is the unknown m-dimensional vector function, f(u) is the flux vector, g(u) is a
continuous source vector function, with x the single spatial coordinate and t the
temporal coordinate. For the numerical integration of (2.1) we consider uniform
spatial and temporal grids with the spacings, Az=xz;1 — z;; At=t"T! — " (with j
and n being suitable integer indices) and employ the non-staggered-grid version [3] of
[2]:

uptt = i (@) + 207 +af_y) — 6 (ufpjpr —uly 1) — % [uzjil% - uz;r_lé
P2 [ (1) + 20 () + 9 (7,)
AL ) + 20 () 4 g ()]
A )+ U - 1) 22)

where A = At/Az and the subscript  denotes differentiation with respect to x.
This scheme has been obtained by extending the scheme [2] based on a staggered
spatial grid to one based on a non-staggered grid, following the procedure outlined in
[4]. In addition, we have also incorporated a non-zero source term g(u) so that (2.1)
above can be applied to non-homogeneous systems. Full details are available from the
authors [3]. Consequently, of course, it is much easier to apply boundary conditions
on non-staggered grids. Further, in order to apply this scheme it is customary to
employ suitable non-oscillatory derivative approximations. In all our calculations we
used the "UNO" derivative approximation [2] for the derivative terms indicated by
the subscript « in (2.1). In particular we utilize the form,

1
umj = MM(’ZLJ — uj—l -+ iMM(uJ — 2Uj_1 -+ Uj_Q,Uj+1 — 27.Lj -+ Uj—l),

1
wjt = uj = g MM(uj1 = 2uj +ujor, uipe = 2041 ), (23)
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where the min-mod non-linear limiter M M is defined by
min{s;} if s, >0 Vj
MM(Sl,SQ,...): max{sj} Zf S; <0 V]
0 otherwise.

Many other derivative approximations are used in practice (see for example [5]).

3. Boundary conditions

3.1. Absorption. In this section we examine boundary conditions conditions for
absorbing shocks.

First for computation over z € |2, x| with corresponding j = L, L+1,..., R—1, R,
we note from (2.2) and (2.3) that the spatial index range must be L+2 < j < R—2.
Thus the u-values at the grid points corresponding to j = L, L+ 1and j = R—-1,R
need to be computed at the next time level. For complete absorption we employ
successive double quadratic extensions in the forms:

UL 41 Z’LLL+4—3UL+3+3UL+2, Uy, :UL+3—3UL+2+SUL+1, (31)

UR_1 =UR_4 — SUR_3 + 3UR_2, UR =UR_3— 3UR_2 + 3UR_1, (3.2)
which apply respectively to the left (j = L, L+1) and right (j = R—1, R) boundaries.
These expressions can be shown to be second order accurate in the grid spacing Az
and hence are consistent with the second-order numerical scheme (2.2). Issues relating
to the specific components on which they are to be applied are discussed in the next
section.

3.2. Reflection. For reflection of a shock we shall find that specifically the density
component should satisfy the homogeneous Neumann condition (0u/0x = 0), and
quadratic extensions for the other two components again on two successive points at
each end as above. We thus employ the successive Neumann conditions:

upt1 = (dupto —ury3)/3; ur = (dupy1 —urt2)/3 (3.3)
UR—-1 = (4'LLR,2 - UR,3)/3; UR = (4uR,1 - 'LLR,Q)/?). (34)

These are one-sided derivatives which can again be shown to be second-order ac-
curate and thus consistent with (2.2). An interpretation of these conditions is given
in the context of the applications below. In the following we present two test cases.

4. Test applications

4.1. Burgers’ equation. First, as a simple illustration we apply the scheme (2.2) to
the one-dimensional inviscid Burgers’ equation:

ou(z,t) n 13 (u2) B

ot 2 Or
u(z,0) = up(x), t>0. (4.1)
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A characteristic analysis [1] of this system admits waves that propagate with a
constant speed in one direction only. Hence we can only expect to study absorption
of a disturbance into a boundary and no reflection from it. Further, it is well known
[1] that any initial waveform will evolve into a shock or a rarefaction wave. We allow
for the smooth passage of such a shock by setting the outflow conditions (3.2). These
naturally allow free adjustment of the flow, thus catering for smooth absorption.
Figure 1 depicts a typical initial condition, which evolves into a shock. Frame (b)
depicts the situation when the shock has moved close to the boundary and illustrates
smooth oscillation-free absorption. Frame (c) depicts the situation when the shock
has been fully absorbed, resulting in a newer equilibrium level.

+ n=0 + n=3500 |+ np—400cC

0.0 +——"A—+—+—+ +—+—rF+—+—+—+ +—+—+—+—+
O 50 100 O 50 100 O 50 10

Figure 1. Absorption of a Burgers’ equation shock. The plots show u(x,t) as a
function of the z-coordinate at fixed times t = n x 0.01

4.2. Broadwell gas model. In this case we consider a multi-component problem
modelled by the Broadwell gas equations [6,7],

Op Om om 0z dz Om 1,, 9
Here ¢ is the mean free path and p(x,t), m(x,t), z(x, t) are the density, momentum and
flux, respectively. For illustration we compute the ’stiff’ case with € = 10~® on a fine
grid with At = 0.1 x ¢ and Az = 3 x At. An analysis [6,7] of the corresponding eigen-
system shows that both left and right moving waves are admissible, with characteristic
speeds of +1, -1, and 0. Thus we can propagate waves from the left and also obtain
waves that can be reflected back into the system from the boundaries.
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In order to achieve this for shocks, we choose a typical Riemann initial condition

to produce a right propagating shock, such as,
. Jop=2,m=12=1; =z <200
Riml : { p=1,m=0.13962,2=1;, z > 200

on 0 <z < 800.

Then in the first instance we choose for the boundary conditions the free flow
conditions (3.1)-(3.2) to study shock absorption. Figure 2 (a)-(b) depicts the situation
of smooth absorption of the shock after about ¢ = 2300 x € x 0.01.

momentum
1 1
flux

0+ : . . I 0+ ; . .

0 200 400 600 800 O 200 400 600
3 3

(c) n=1600 (d) n=2700
— —

2F\\ 2
14 S\ 1 \
0

: : , 0 : : :
0 200 400 600 800 O 200 400 600

Figure 2. Absorption: (a)-(b) and reflection: (c)-(d) of Broadwell gas shocks at
various time steps n. Plots of the density p(z,t), momentum m(x,t) and flux z(z,t)
are shown as functions of the xz-coordinate

In the second instance to study shock reflection, we employ the same initial con-
ditions but with the Neumann condition (3.4) on the density, together with the free
flow conditions (3.2) on the momentum and flux. Here again, Figure 2 (c¢)-(d) shows
that the shock is smoothly reflected with no spurious oscillations. The interpretation
of the boundary conditions in this case may be seen as follows: the Neumann con-
dition for the density forces the density profile at the boundary to level off, i.e. to
prohibit any density gradient from forming. The latter would be the case when for
example, free-flow density profiles are imposed. Thus since the momentum and flux
fields are allowed to freely adjust for this condition, the fluid near the right boundary
will be forced to dam-up due to the flow from the left, resulting in increasing density
at the right. This continues until the upstream shock level has completely reached
the boundary. Then the resulting compression in the vicinity of the right boundary
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will tend to propagate out back into the system. This propagating front develops into
a shock which travels to the left, with a higher upstream level. Use of such a homo-
geneous Neumann condition has also been made in other studies of shock reflection,
for example in a two-dimensional shock tube problem [8]. We find such a device to
be a good way to smoothly reflect the shock from the right boundary.

Whilst there are more sophisticated boundary conditions that have been reported in
the literature [1,9,10,11], we are not aware of studies of their applicability to shock
propagation. For example, in [9], apart from physical boundary conditions, soft or
numerical ones are formulated which are treated as additional compatibility relations.
These are obtained by considering the passage of inflowing and outflowing linear waves
corresponding to the characteristics of the problem. Their wave amplitudes are then
computed from the solution of additional local one-dimensional inviscid (LODI) rela-
tions which are compatible with the conservation laws and which have to be solved
at the boundaries. Then for outgoing waves the internal grid values determine the
boundary values, whilst for incoming (or reflected) waves and for other variables
required by the numerical scheme the LODI relations are used. To obtain some cor-
respondence between our simple approach for shock reflection and the corresponding
LODI relations of Poinsot and Lele [9] we proceed as follows: we note that their
LODI relations (which we extract for one-dimension ~ z; coordinate) and which they
determined by examining the corresponding inviscid flow corresponding to ideal gas
Navier-Stokes equations are

op 1
o + = {Az-i- (A5+A1)] =0,
5p 1
8t (A5 +A) =
8U1
W*‘ﬁ(!‘%—fh)—o

0 ou
Ay = (u1 — ¢ (851 - pc@xi)

w0
Ao =l to) <6p1 e aZi)

where p, p,u1,c, Ay, As are the pressure, density, flow velocity, speed of sound, incom-
ing (or reflected) wave amplitude and outgoing wave amplitude, respectively.

Now, for reflection at a solid boundary one can set the physical condition u; = 0

for all times. Then with
6u1 - aul

- =0 4.3
8t 81‘1 ( )
at the boundary, the above implies that
op
=0 4.4
B, (4.4)

there. We observe that this condition on the density coincides with our choice (ho-
mogeneous Neumann) employed in the Broadwell gas case above.
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Finally, we should mention that their particular LODI relations quoted here are
valid for the case of an ideal gas, and, to our understanding, for smooth wave propa-
gation and thus one cannot infer its validity for shock propagation. In [10] however,
their approach is extended for more realistic gases, but still without consideration of
shock propagation. Another point to make here is that the type of numerical scheme
employed also determines the extent or number of these further boundary or compat-
ibility relations. These are nevertheless interesting questions which are matters for
further investigation. In contrast here, we are formulating and testing simple local
conditions which are computationally inexpensive.

5. Conclusion

We have outlined and tested some simple boundary conditions that can be used with
a class of high resolution central difference schemes which are commonly employed
in studies of shock capturing and wave propagation. In particular, when we employ
these boundary conditions successively on a boundary point and its immediate neigh-
bour, a device which we designate as "thick" boundary conditions, our tests indicate
that smooth shock absorption and reflection can occur. These simple local boundary
conditions are thus expected to be useful for other similar difference schemes.
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Abstract. The recent efforts in development of efficient solution methods for non-
conforming finite element systems are inspired by their importance for various applications
in scientific computations and engineering. This study is focused on the implementation of
rotated bilinear elements. A locally modified approximation of the global stiffness matrix
is proposed allowing for: a) a stable MIC(0) factorization; and b) a scalable parallel im-
plementation. An optimal condition number estimate is derived for the constructed sparse
matrix approximation with respect to the original global stiffness matrix. The estimates of
the parallel speed-up and the parallel efficiency as well as the presented parallel numerical
tests demonstrate the potential of the PCG algorithm and the MPI code developed.
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Keywords: non-conforming FEM, preconditioning, parallel algorithms

1. Introduction

Consider the elliptic equation
-V - (a(z)Vu(z)) = f(z) in Q,
u = 0 on I'p, (L.1)
(a(x)Vu(z))-n = 0 on Ty.

Here Vu(z) denotes the gradient of u and V - ¢ denotes the divergence of the vector
q. Further, we assume that  is a convex polygonal domain in IR?, f (z) is a given
function in L*(Q), a(x) = [a;;(x)]7 j—; is a symmetric matrix, n is the outward unit
vector normal to the boundary I' = 92, and I' = Tp UT'y. We assume that a;;(z) are
piece-wise smooth functions on Q satisfying the uniform positive definiteness condition

of the matrix a(z).

Problem can be discretized in various ways. Among the most popular and
frequently used methods of approximation are the Galerkin finite element method, the
finite volume method and the mixed finite element method. Each of these methods has
its advantages and disadvantages when applied to particular engineering problems.
For example, for petroleum reservoir problems in geometrically simple domains and
heterogeneous media, the finite volume method is known to be reliable, accurate,
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and locally mass conservative. Many engineering problems, e.g. petroleum recovery,
ground-water contamination, seismic exploration, etc. need very accurate velocity
(flux) determination in the presence of heterogeneities, anisotropy and large jumps
in the coefficient matrix a(z). More accurate approximation of the velocity can be
achieved through the use of the mixed finite element method (see, e.g. [5]). However,
the technique of the mixed finite element method leads generally to an algebraic saddle
point problem that is more difficult and more expensive to solve.

An alternative approach can be taken by developing hybrid methods where the
continuity of the velocity vector normal to the boundary of each element is enforced
by Lagrange multipliers. The important discovery of Arnold and Brezzi [2] is that
the Schur system for the Lagrange multipliers can be obtained also as a discretization
of by Galerkin method using linear nonconforming elements. Namely in [2] it
is shown that the lowest-order Raviart-Thomas mixed element approximations are
equivalent to the usual Crouzeix-Raviart Pj-nonconforming finite element approxi-
mations when the classical Pj-nonconforming space is augmented with Ps-bubbles.
Further, such a relationship has been studied for a large variety of mixed finite element
spaces [11 [6].

Our study is focused on the implementation of rotated bilinear elements. These
elements are an attractive discretizing tool since they possess favorable stability prop-
erties for the Stokes and the Lamé equations. An additional important feature is the
regular sparsity of the stiffness matrices with no more than seven non-zero elements
per row even in the case of non-regular meshes.

Two algorithms are presented, where MP and MV stand for the variants of the
nodal basis functions corresponding to mid-point and integral mid-value interpolation
operators.

There are two general approaches to construct parallel preconditioners, based re-
spectively on: a) domain decomposition, or b) block incomplete/approximate fac-
torization. The second approach does not lead to an optimal preconditioner in
terms of problem size, but produces highly parallel and efficient algorithms (see,
[3, [, [7, [8L [©L [T0L [1T]).

Here we first locally modify the stiffness matrix, and then apply a pointwise in-
complete factorization. We get as a result a well parallelizable block structure of the
preconditioner, preserving the robustness with respect to the local properties of the
matrix.

2. Finite element discretization

The domain 2 is partitioned using quadrilaterals e € wy. Our analysis here is con-
centrated on the isotropic case, and we will assume from now that a(z) is a scalar
function. The partitioning wy, is aligned with the discontinuities of the coefficient a(x)
so that over each element e € wy, the function a(z) is smooth. Further, we assume
that the partitioning is quasi-uniform with a characteristic mesh-size h.
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The Galerkin variational formulation of the above problem reads: given f € L*(Q)
find a function u € H5(Q) = {v € HY () : v =0 on I'p}, satisfying
Awv) = (f,v) Yo e Hb(O), (2.1)
where

A(u,v) = /Qa(x)Vu(x) - Vo(z)dz-

The rotated bilinear non-conforming finite elements on quadrilaterals are implemented
for the numerical solution of . The finite element space V}, corresponds to wy,.
This study is concerned with a comparison analysis of two alternative constructions of
Vi, where algorithms MP and MV stand for the variants of the nodal basis functions
corresponding to mid-point and integral mid-value interpolation operators (see [12]).
In defining the isoparametric rotated bilinear element one uses the unit square (with
sides parallel to the coordinate axes) as a reference element é. For each e € wy, let
e : € — e be the corresponding bilinear transformation. The element nodal basis
functions are determined by the relations

{oitiy = {0}y

For algorithm M P, the reference element basis functions {(;Aﬁi}le are determined by
the standard nodal interpolation conditions

$i(b1.) = 645,
where {b%}?zl are the mid-points of the sides {Fé}?zl of é, and then

(St = {126+ -€,,) /4, j=1,2}.

Alternatively, for algorithm MV an integral mid-value interpolation operator is ap-

plied in the form
|F2|71/_ $i = 6ij,
rs

{ditics = {248 +3(¢] - §11)) /16, j = 1,2}
Then the finite element formulation is: find a function uy € V},, satisfying

Ap(un,vn) = (f,vn) Vo € Vi, (2.2)

and then

where
Ap(up,vp) = Z /a(e)Vuh - Vupdz,
eCwy, ¥ €

where a(e) is defined as the averaged value

ale) = |i|/ea(x)d;1:

over each e € wy. We note that we allow strong coefficient jumps through the interface
boundaries between the elements. Now, the standard computational procedure leads
to the linear system of equations

Au=f, (2.3)
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where A is the corresponding stiffness matrix. The matrix A is sparse, symmetric
and positive definite. For large scale problems, the preconditioned conjugate gradient
(PCG) method is known to be the best solution method of (2.3).

The goal of this study is to present a robust and parallelizable precondition-
ing algorithm for solving . The proposed method will be based on incomplete
factorization of sparse matrices. The construction of the preconditioner is based on
a MIC(0) factorization of a locally modified approximation of the original stiffness
matrix. We have shown in our model analysis that the condition number correspond-
ing to the applied local modification is independent of possible coefficient jumps (see
Section . The proposed construction is aimed to improve the parallel features of
the algorithm, which are discussed in Section[7} A set of numerical tests illustrating
the robustness of the method, and the efficiency of the parallel implementation are
shown in Sections [6] [8] respectively. Some concluding remarks are given in the last
section.

3. MIC(0) preconditioning

We present here some background remarks about the modified incomplete Cholesky
factorization MIC(0) preconditioner. Our presentation at this point follows those in
[3], see also [9]. Let us rewrite the real N x N matrix A = (a;;) in the form

A=D-L-1L", (3.1)

where D is the diagonal and (—L) is the strictly lower triangular part of A. Then we
consider the approximate factorization of A, which has the following form:

Carrc)(A) =Curcoy = (X — L)X ' (X - L)', (3.2)

where X = diag(xy,--- ,xy) is a diagonal matrix determined by the condition of
equal row sums:

CMIC(O)Q = Ae, e=(1,-- ,l)t e RN.
For the purpose of preconditioning, we are interested in the case when X > 0 and thus

Crrc(o) is positive definite. If this holds, we speak about stable M 1C(0) factorization.
Concerning stability of MIC(0) factorization, the following theorem holds.

Theorem 1. Let A = (a;;) be a symmetric real N x N matriz and let A= D—L—L*
be the splitting of A. Let us assume that

L > 0
Ae > 0
Ae+Lte > 0 e=(1,---,1)teRV,
i.e. that A is a weakly diagonally dominant matriz with nonpositive off-diagonal
entries and that A+ Lt = D — L is strictly diagonally dominant.

Then the relation
i—1

N
_ aik

ﬂﬁi—an‘—g - E A
Tk

k=1 7" j=k+1
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gives the positive values z; and the diagonal matriz X = diag(x1,--- ,xy) defines

stable MIC(0) factorization of A.

Remark 1. The numerical tests presented in this paper are performed using the
perturbed version of MIC(0) algorithm, where the incomplete factorization is applied
to the matrizc A = A+ D. The diagonal perturbation D = D(€) = diag(d,, . ..dy) is
defined as follows:

q = { Saii if  ai > 2w;

’ §Yaiu if  an < 2w
where
w; = — Z aij.
J>i

Here 0 < £ < 1 is a constant of the same order as the minimal eigenvalue of A. The
computations for the model problems considered are done with & = h?.

It is readily seen from that the computational cost of one MIC(0) PCG it-
eration is proportional to the size of the matrix A. More precisely, the complexity
N (C;flc(o)v) is almost the same as N(Av). This will be discussed in some more
details later. Unfortunately, the method is based on recursive computations, and
therefore is inherently sequential. The idea of our algorithm is to apply MIC(0) fac-
torization to a modified sparse matrix the special block structure of which allows for
a scalable parallel implementation.

4. The preconditioning algorithm

The studied preconditioner C is constructed by a proper local modification of the
stiffness matrix A. Following the standard FEM assembling procedure we write A in
the form
A= LTA.L,
ecwp

where A, is the element stiffness matrix, L. stands for the restriction mapping of the
global vector of unknowns to the local one corresponding to the current quadrilateral
element e. We now introduce the approximation B, of A, as follows

a1l a2 ai3 G4 b1 a2 0 14
A — @21 Q22 QA23 Q24 B — az1 baa  ass 0 41
e ) e — O b 9’ ( M )
a31 asz2 a3z G34 a32 33 (34
G41 Q42 Q43 Q44 41 0 a43 by

where
bi1 = a11 +ai3, b2 = ase +azs, b3z =asz3+asy, biy = ass + ags,
that is A. and B, have equal row sums.

Assembling the locally defined matrices B, we get the global one
B= Y L!B.L, (4.2)

ecwp
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Figure 1. (a) Node numbering of a rotated bilinear quadrilateral el-
ement e; (b) Connectivity pattern of B,.

\/

Figure 2. Skewed five point stencil

The definition of B, corresponds to the node numbering as shown in Figure [I} Here
the dash lines represent the connectivity pattern of (a) the dense element stiffness
matrix A, and (b) its locally modified sparse approximation B.. The structure of B
could be interpreted as a skewed five point stencil (see Figure [2)) whereas in a very
general setting A and B are spectrally equivalent.

At this point we introduce the preconditioner C for A which is defined as a MIC(0)
factorization of B, that is,
C =Curc(o)(B).
This needs naturally B to allow for a stable MIC(0) factorization, which in particular
will be discussed in the next section.
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5. Condition number model analysis

The model problem we analyze in this section is set on a uniform square mesh. Then
the element stiffness matrices corresponding to the square element e € wy, in the cases
MP and MV have the form:

[ 5 -1 -2 -2
mp_ale) | =1 5 -2 -2
A = 3 -2 -2 5 -1\’ (5.1)
-2 -2 -1 5 |
5 1 -3 =3
a(e) 1 5 -3 -3
ANV = =~ 3 3 s 4 (5.2)
| -3 -3 1 5 |
We consider now the local eigenvalue problem
AMPw = \BMPw. (5.3)

Obviously Ker(AMP) = Ker(BMP) = Span{e} where e' = (1,1,1,1), and it is
therefore enough to consider a reduced 3 x 3 eigenvalue problem instead of (5.3)).
Then the simplification using the substitution

p=1—=2A
leads to the following characteristic equation for p
1+4p -1 —2u
det -1 144 —2p =0. (5.4)
—2u —2p  1+4p

Further computation shows that p; = 0 and pg 3 = —1/2, and therefore
A =1, Aoz =3/2.
The global condition number estimate directly follows from the local analysis pre-
sented. Namely, we have
vIAMPy = N vILTAMPLv. <3/2 > vILIBMPLov. = 3/2v" BM vy
ecwp ecwp

and, similarly,
vIAMPy > T BMPy,.

The same approach is directly applied to the matrices AMY and BMY where p; = 0,
w23 =1/3, and therefore Ay =1, Ay 3 = 2/3.

The result of our local analysis is summarized in the next theorem.

Theorem 2. Let us consider the non-conforming FEM problem defined on a
square mesh. Then:
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(i) the sparse approximation B of the stiffness matriz A satisfies the conditions
of Theorem 1 for a stable MIC(0) factorization;

(ii) the matrices B and A are spectrally equivalent where the next relative con-
dition number estimate holds uniformly with respect to any possible jumps of
the diffusion coefficients.

k(B7'4) <2 (5.5)
The above result holds for both MP and MV cases.

6. Numerical tests I

The model problem —Aw = f in the unit square is considered, where homogeneous
Dirichlet boundary conditions are assumed at the bottom side. The presented nu-
merical tests illustrate the PCG convergence rate of the studied MIC(0) precondi-
tioners when the size of the discrete problem is varied. A relative stopping criterion
(C=Lpmie pri) /(C 170 1Y) < € is used in the PCG algorithm, where r’ stands for
the residual at the i-th iteration step, (-,-) is the standard Euclidean inner product,
and € = 107%. A uniform mesh is used, where h = 1/n, and the size of the discrete
problem is N = 2n(n + 1).

Table 1. PCG iterations: MIC(0) preconditioning in the cases MP
and MV

Meshsize nit niB

n N |MP | MV |MP|MV
63 8064 | 51 48 34 39
127 325121 82 | 70 50 56
255 | 130560 | 133 | 101 | 71 81
511 | 523264 | 214 | 144 | 104 | 114
1023 | 2095104 | 292 | 208 | 149 | 167

The obtained numbers of iterations are reported in Table[l] Here again, MP and MV
stand, respectively for the cases of mid-point and integral mid-value interpolation
operators used to construct the nodal basis of the related non-conforming FEM basis.
We denote here by nfi4 and n#}? the number of iterations obtained when MIC(0)
factorizations of A and B are used as preconditioners of A.

The following observations are derived from the presented numerical results:

e The number of iterations in all cases is O(y/n) = O(N/%).

e The PCG convergence rate is better for the case MV. This is one more advan-
tage of this variant of the rotated bilinear elements (see [I2] for more details
about the approximation properties).

e n4P < nfA. Note, that this is considerably better than what we have as a
prediction from the uniform estimate from Theorem 2.
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e A stable MIC(0) factorization of the matrix AMV for the considered model
problem has been obtained. It is important to note that the related conditions
from Theorem 1 are not satisfied in this case.

7. Parallel preconditioning algorithm

We study in this section the parallel properties of the proposed algorithm. Our
analysis is focused on the PCG solution of the linear algebraic system obtained. The
preconditioner was introduced as C = Cysr¢(0y(B). Each PCG iteration consists of
one solution of a system with the matrix C, one matrix vector multiplication with
the original matrix A, two inner products, and three linked vector triads of the form
v := av + u. Therefore the computational complexity of one PCG iteration is given
by
Nioo =~ N(C'v) + N(Av) + 10N ~ 34N.

In the general case, the solution of triangular systems with matrices (X — L) and
(X — L)t is typically recursive, see . This is the reason for considering MIC(0) an
inherently sequential algorithm. We will show now how this disadvantage has been
overcome by the sparse matrix B introduced.

To illustrate the basic idea, we will analyze in a more detailed form the model
problem where Q = (0,1)2, the square mesh wj corresponds to the mesh size h =
1/n. In this case the size of the discrete problem is N = 2n(n + 1). The structures
of the matrices A and B are illustrated in Figure |3] where each of the diagonal
blocks corresponds to one vertical line of the mesh if a column-wise numbering of the
unknowns has been used (see also [IT]). The important advantage of the matrix B is
that all of its diagonal blocks are diagonal. In this case, the implementation of the
PCG solution step C~'v is fully parallel within each of these blocks. One can see
at this point how the construction of B has been inspired by the properties of the
conforming linear FEM stiffness matrix corresponding to a skewed triangulation (see
[10] for some more details). Following [I3], we will assume that the computations and
communications are not overlapping, and therefore, the parallel execution time is the
sum of the computation and communication times. We will also assume that: a) the
execution of M arithmetic operations on one processor takes time T, = Mt,, where
to is the average unit time to perform one arithmetic operation on one processor (no
vectorization); and b) the communication time to transfer M data elements from one
processor to another can be approximated by Tiom = l(ts + Mt.), where ¢, is the
start-up time and t. is the incremental time necessary for each of the M elements to
be sent, and / is the graph distance between the processors.

Let us consider a distributed memory parallel algorithm where the number of pro-
cessors is p (p > 2), and let n = mp with some natural number m. The computational
domain is split in p equally sized strips. The processor Py is responsible for the local
computations corresponding to the k-th strip. Then, we get the following expressions
for the communication times related to C~'v and Av

Toom(C71v) = 8n(ts + t.),
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A B

Figure 3. Sparsity pattern of the matrices A and B, Q = (0,1)2.

Figure 4. Stripwise data distribution between the processors in par-
allel implementation

T(:om (AV) = 4ts + 2(3’ﬂ + 1)tc

Note that the above communications are completely local. The inner product needs
one broadcasting and one gathering global communication but they do not contribute
to the leading terms of the total parallel time and will not be considered in our
analysis. This setting leads to the following expression for the parallel time per one
PCG iteration

42n(n +1)

T,=T'~3 to + 8nts + ldnt... (7.1)
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What we conclude from is that the parallel algorithm is asymptotically optimal.
At the same time we should emphasize that the real speed-up is strongly dependent
on the relations between t; and ¢, which means that in the general case good parallel
efficiency could be achieved, if and only if, the size of the problem is large enough.
This is readily seen from the results reported in the next section.

8. Numerical tests 11

The parallel implementation of our C code is developed using the MPI (Message
Passing Interface) standard. A set of numerical tests have been performed on a
Beowulf type cluster. It consists of four dual processor Power Macintosh computers
connected with a Bay Stack 350 Switch. Each node has 512 MB RAM and two
processors Power PC G4/450MHz. The same model problem is used to illustrate the
properties of the proposed parallel PCG algorithm and the related code. The results
obtained are given in Table [2]in terms of the speed-up 5, and the efficiency £, where
Ty

Sp = T, »

and where T}, stands for the parallel time to perform the code on p processors. A well

Table 2. Parallel performance of PCG/MIC(0): S, = 1, E, = 5

MP MV
TZt P cpu | S, | By nﬂ; P cpu | Sy | Ep

1 6.02 1 6.82
128 | 2 3.32|1.81 091 | 128 |2 3.70 | 1.84 | 0.92
49 |4 391|154 1039 56 |4 4.29 | 1.59 | 0.40
8 3.67|1.64|0.21 8 4.18 | 1.63 | 0.20

1 35.44 1 40.40
256 | 2 19.52 | 1.82 | 0.91 || 256 |2 22.21 1 1.82 | 091
71 |4 15.8312.24 056 | 81 |4 18.11 | 2.23 | 0.56
8 11.96 | 2.96 | 0.37 8 13.60 | 2.97 | 0.37

1| 208.95 1] 238.94
512 | 2| 11447 | 1.83|0.92 || 512 |2 | 130.97 | 1.82 | 0.91
104 | 4 75.85 1 2.75 | 0.69 | 119 | 4 86.89 | 2.75 | 0.69
8 49.48 | 4.22 | 0.53 8 56.56 | 4.22 | 0.53

11198.45 1] 1335.60
1024 | 2| 654.51 | 1.83 | 0.92 || 1024 | 2| 762.31 | 1.75 | 0.88
148 | 4| 382.87 | 3.13 | 0.78 || 167 |4 | 432.61 | 3.09 | 0.77
8 | 227.52 | 5.27 | 0.66 8| 255.75 | 5.22 | 0.65

expressed asymptotic scalability of the algorithm is demonstrated by the test data
presented. The parallel efficiency FEg =~ 0.65 for n = 1024 can be evaluated as a good
achievement for the problem considered.
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Remark 2. The cluster we have performed the reported numerical tests on has in
fact a heterogeneous architecture, which is not the case for the best performance of a
standard MPI code. For such a case, a combination of Open MP (within each of the
shared memory two-processor node) and MPI could be recommended to improve total
parallel efficiency.

9. Concluding remarks

In this paper we have proposed a new MIC(0) preconditioner for the rotated linear
non-conforming finite element systems for second order elliptic equations. We have
proved that the introduced locally modified approximation of the original stiffness
matrix has a relative condition number that is bounded uniformly with respect to
both the problem size and the possible jumps of the coefficients. The algorithm has
been analyzed in the cases of coefficient and mesh isotropy. Further, the derived
estimates for the parallel time show that a good parallel scalability can be achieved
for large scale problems. The presented numerical results show that the proposed
scalable parallel preconditioner preserves and even improves the robustness and the
computational efficiency of the standard MIC(0) factorization algorithm.

Our further plans include generalizations to 3-D case including modifications al-
lowing for efficient treatment of coefficient and mesh anisotropy.

Acknowledgement. This work has been supported in part by MES Grant MM 801/89 and
by the Center of Excellence BIS-21 Grant ICA1-2000-70016.

References

1. ArRBOGAST, T. and CHEN, Z.: On the implementation of mixed methods as noncon-
forming methods for second order elliptic problems, Math. Comp., 64, (1995), 943-972.

2. ArNoLD, D.N. and BrEezz1, F.: Mized and nonconforming finite element methods: im-
plementation, postprocessing and error estimates, RAIRO, Model. Math. Anal. Numer-.,
19, (1985), 7-32.

3. BLAHETA, R.: Displacement decomposition - incomplete factorization preconditioning
techniques for linear elasticity problems, Numer. Lin. Alg. Appl., 1, (1994), 107-126.

4. BENCHEVA, G. and MARGENOV, S.: On a preconditioning strategy for rotated linear
FEM elliptic systems, Proceedings, PRISM’01, University of Nijmegen, 2001, 87-90.

5. BrEzz1 F. and FORTIN M.: Mized and Hybrid Finite Element Methods, Springer-Verlag,
New York, Berlin, Heidelberg, 1991.

6. CHEN Z.: Analysis of mized methods using conforming and nonconforming finite element
methods, RAIRO, Math. Model. Numer. Anal., 27, (1993), 9-34.

7. Cuow, E.: Parallel implementation and practical use of sparse approximate inverses
with a priori sparsity patterns, Int’l J. High Perf. Comput. Appl., 15, (2001), 56-74.
(http://www.1llnl.gov/CASC/linear_solvers/pubs.html)

8. Cuow, E.: A priori sparsity patterns for parallel sparse approximate inverse pre-
conditioners, SIAM Journal on Scientific Computing, 21(5), (2000), 1804-1822.
(http://www.1llnl.gov/CASC/linear_solvers/pubs.html)



Parallel incomplete factorization preconditioning 117

10.

11.

12.

13.

GUSTAFSSON, L.: Modified incomplete Cholesky (MIC) factorization, In Preconditioning
Methods; Theory and Applications, D.J. Evans, ed., Gordon and Breach, (1984), 265—
293.

GUSTAFSSON, I. and LINDSKOG, G.: On parallel solution of linear elasticity problems:
Part I Theory, Numer. Lin. Alg. Appl., 5, (1998), 123-1309.

Lazarov, R. and MARGENOV, S.: On a two-level parallel MIC(0) preconditioning of
Crouzeiz-Raviart non-conforming FEM systems, in: 1. Dimov, I. Lirkov, S. Margenov
and Z. Zlatev, eds., Numerical Methods and Applications, Springer LNCS, 2542, (2003)
191-200.

RANNACHER, R. and TUREK, S.: Simple nonconforming quadrilateral Stokes Element,
Numerical Methods for Partial Differential Equations, 8(2), (1992), 97-112.

SaAD, Y. and ScHULTZ, V.: Data Communication in Parallel Architectures, Parallel
Comput., 11, (1989), 131-150.






Journal of Computational and Applied Mechanics, Vol. 4., No. 2., (2003), pp. 119-127

ON SOME RELATIONSHIPS OF SPHERICAL KINEMATICS

ISTVAN ECSEDI
Department of Mechanics, University of Miskolc
3515 Miskolc-Egyetemvéros, Hungary
mechecs@uni-miskolc.hu

Dedicated to the memory of Professor Istvdin Sdlyi
(October 15, 1924 - October 17, 2001)

[Received: June 19, 2002]

Abstract. In this paper, some relations are developed for the spherical motion of a rigid
body. Results are formulated in four theorems which describe a few geometrical properties
of spherical motion using the geometrical data of the fixed and moving axode cones. An
example illustrates the application of the formulae derived.

Mathematical Subject Classification: 7T0B10
Keywords: rigid body, spherical motion, curvature, axode, fixed and moving cones

1. Introduction

The term spherical motion is used when the rigid body moves around a fixed point.
The spherical motion is equivalent to the moving axode cone C,, rolling without
slipping over the fixed axode cone Cf. The instanteneous axis of rotation is the line
of contact between these cones. The common apexes of the axode cones C,, and C
is the fix point O [2, 3, 6].

The intersection of the axode cones Cp, and C; with the sphere whose center is
point O and the radius is R are the moving polode c,, and the fixed polode cy,
respectively (2, 3, 6]. The common point of the curves ¢; and ¢, is denoted by P,
and the common tangent unit vector of curves c,, and ¢y at point P is indicated by t.
The angular velocity vector w = we describes the instantaneous motion of the rigid

body considered. Here, e = O?/R — see Figure 1.
The contact point P of the curves ¢,, and ¢y moves along the curve c¢ in the frame
of the fixed polod cone Cf. This motion has the velocity
up =up(sp)t(sy)  sp=s5(7), (1.1)
and acceleration

Wy :upt—kl“fuf)nf. (1.2)
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The contact point P of the curves ¢, and c; moves along the curve ¢, in the frame
of the rigid body considered. The moving polode cone C, is attached to the moving
rigid body. The motion of point P on the curve ¢, is characterized by its velocity
and acceleration, which are as follows

Uy, = Up (Sm) t (Sm) Sm = Sm (T), (1.3)
W, = upt + I‘muﬁnm . (1.4)
Here,

— 7 denotes the time;

— 8m, and sy are arc coordinates defined on the moving and fixed polode ¢, and
cf, respectively;

— I'y, and I'y are the curvatures at point P of curves c,, and cy, respectively;

— n,, and ny are the principal normal vectors at point P to the curves c,, and
cf, respectively;

— over dot denotes derivation with respect to time.

The consequence of pure rolling is that
Sj':ém:up, éf:ém:up. (15)
Starting from the equation

w
w:we:EO?

and using the definition of angular acceleration [1, 5]

- (i)
dr f7

where the symbol (%) f denotes the time derivative computed in the fixed frame we
get for the body angular acceleration the formula

. Wiy,
= —t. 1.6
€ =we+ 7 (1.6)

The fixed frame is attached to the base (fixed polode cone) and the moving frame is
attached to the moving rigid body (moving polode cone). Point A of the moving rigid
body instantaneously coincides with point P. Using the fundamental relationships of
relative motion in connection with point P we can write

uf =vy + Uy, (1.7)

Wi =as + 2w X Uy, + Wy, (1.8)

Here, v 4 is the velocity of point A and a4 is the acceleration of point A. uy, wy¢, a4, w
are taken in the fixed frame and u,,, w,, are regarded in the moving frame in equation
1.8]), the vectorial product of two vectors is denoted by cross.
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Figure 1. Moving and fixed axode cones

From pure rolling it follows that v4 = 0, u,, = uy. The latter statement was

mentioned in equation ([L.5). The combination of equations (1.2, (1.4), (L.5) with
equation (|1.8]) gives the result

ay=2u, X w+ UIQ)(Ffl’lf —Tny,), (1.9)
where u, = u,, = uy is the velocity of the instantaneous contact point P.

The common tangential unit vector t of curves c,, and cy is attached to point P.
We know that its time derivative in a fixed frame can be expressed as [1, 3]

dt dt
<d7')f = <d7'>m +w X t, (110)

where the symbol (d%)m denotes the time derivative computed in the moving frame.
A simple calculation shows that

dt dt .
dt dt .
<d7‘> - ds Sm = upl_‘mnm- (112)

Inserting these results into equation ([1.10) we obtain
t X w=up(I'nn, —Tyng). (1.13)
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Using the trivial identity
Upt X w =1, X w = u>(Cppny, — Cyny)

and equations ([1.9) and ((1.13) we get
ag=u, Xw. (1.14)

Equation (1.14) is in harmony with the result of example 4.8 of the the book [5] by
Ginsberg.

2. Some useful relations

Theorem 1. The angular velocity of the moving rigid body is determined by the
geometry of the polode curves and the speed of the contact point according to the
equation

w = Up (Ffbf — Fmbm) y (21)
where by and b,,, are the binormal unit vectors at point P to the curves ¢ and c,,.

Proof. The proof of equation follows from the equations
w dR  w d [(R?
ov=gR- =5 (T) -0
tx (wxt)=wt? —tlw- t)=uw,
and the definition of the binormal vector
by =t x ny, b,, =t xn,,

and the validity of equation . Here, the dot between two vectors denotes their
scalar product.

Theorem 2. The angular acceleration of the moving rigid body is determined by
the geometry of the polode curves, the speed of the contact point and the rate of
change of the speed of the contact point according to the equation

) dr dl’ wu
€=1Up (Ffbf o Fmbm) + u12) (ds;bf - ﬁbm - FfoIlf + Fmenm> + ?pt
(2.2)
Here, Ty and T;, are the torsions of curves ¢y and ¢, at point P, respectively.

Proof. Starting from the expression of w given by equation (2.1) we obtain
dw : dr db dr db
= (=) =u,(Tsbs—Tpby)+u ( —Lb;+T;==L - = "b, |~ [ —=) .
© (d7>f up (Cybs =L m)+“p(dsf P sy " s ) T\ )
(2.3)
Making use of the fundamental equation of relative motion [1, 5]

db,, db,
= 2.4
(dT )f (dT )m,—i_"‘)Xan7 ( )

Zm) = m= 2.
( dT )m < dSTﬂ > i d87n up ( 5)

and the equations
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dby db,
LF_ = T, 2.6
dsy e ds n (26)
w
upl'mw X by, = — R (2.7)
we get the proof of formula (2.3). The validity of equation ([2.7) can be proved as
d dR dt
dsm (B-t) dsm, - dsm 28)
1
=1 Le-ny, that i Ny, = ————
+ Rl,,e-n at is e-n RL.
and, on the other hand, we have
Uplw X by, = uplwe x (t x ny,) = wplpw(t (e n,,) —n, (e-t)] = (2.9)

=uwlwie n,).

The combination of equation (2.8) with equation (2.9) yields equation ([2.7)).
Consider point H of the moving rigid body. Let the position vector of point H be

ﬁ}:Rcos©e+Rsin<I>cos1/Ji+Rsin<I>sin¢t, i=txe. (2.10)

The path of point H in the fixed reference frame lies on a sphere whose radius is R
and whose center is point O — Figure 1. In , ® is the angle between the lines OP
and OH. Let [t; OP] be the plane whose normal vector is t and which contains the
line OP. The plane [OPH] is determined by points O, P and H. The angle formed
by the planes [t; OP] and [OPH] was denoted by % in equation .

The following theorems describe the relations of the geometrical properties of the
path of point H with the moving and fixed polodes ¢, and cy.

Theorem 3. Let cy be the path curve of point H. Assuming that the instantaneous
axis is the line OP, then the following equations hold

tg = —isiny + tcos, (2.11)
. R . R
Ny =-e+ilcotPcost) — — | +t|cotPsiny — — tanv |, (2.12)
dp dp
By =—e cot(I>—E ! —icosy —tsiny (2.13)
m d, cosp ’ ’
cos ) d, 2 9
— —cot® 1= (Rl 2.14
(S50 - core) 41— (RUw)”, (214

where tr;, Ny and By are the tangential, principal and binormal vectors to the
curve cy at point H, respectively. ty is a unit vector, Ny and By are not unit
vectors. Furthermore, d,, is defined as

1

- Lpcosay — Ty cosan,’

d, (2.15)

cosay = by -e, COS Qtyy, = by - € (2.16)

and I'y denotes the curvature of cy at point H.
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Proof. The proof of equations (2.11)), (2.12)), (2.13)), (2.14) is based on the definition
of By, which is

BHZtH XNH,

and the following kinematical equations of a particle and a rigid body [1, 5]

VH WXO?

ty = Vil = ‘wa?‘7

aH:waH—i—exO?,

ag = aHV%:fHVH + Ty Ving,
ng = m»
and the equation
d, = %” (2.17)

The validity of equation (2.17)) follows from equation ([2.1)).

Theorem 4. Let Ty be the torsion of curve cy at point H, and let s be an arc
coordinate defined on curve cg. We have

i) s, @

d
sost %2 — cot @)

Th| =

Here, I' =T'(s) is the curvature at an arbitrary point of ¢y and the position of point
H on cp is given by sp.

Proof. Using the concept of the osculating sphere in connection with the spherical
curve cy we can write [4, 7, 8]

5 2
1 d (1 1
- Z (= — | =R~ 2.19
<FH> + (ds <F)S_SH TH> ( )
The combination of formula (2.14) with equation (2.19) leads to formula (2.18]).

3. Remark on the computation of d,

This section concentrates on the computation of cos oy and cos a;,, which appear in
formula ([2.15)).

Let us consider an arbitrary curve c on the sphere whose radius and center are R
and O, respectively. Let OQ = ¢ = o(s) be the equation of curve ¢, where @ is an
arbitrary point of ¢ and s is an arc coordinate defined on ¢. A repeated differentiation
of the equation

0? = R? = constant (3.1)
with respect to s gives
l'oon+1=0, (3.2)
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where I' is the curvature of ¢ at point ) and n is the principal normal vector of ¢ at
point P. Equation (3.2)) can be obtained from Meusnier’s theorem as well [4, 7, 8].
The application of equation (3.2) to curve ¢y at point P yields
1
ny-e=———. 3.3
! AT, (3.3)

The angle formed by the vectors e and ny is denoted by 3¢. It is obvious that the
angle between the vectors e and by is

afzﬂfig. (3.4)
From equations and we get
cosay =sgn (by - i) 1—m‘1f)2. (3.5)
A similar formula can be derived to obtain the value of cos a,,:
cos , = sgn (by, 1) (/1 — % (3.6)
(BTm)

Here, we remark that the analogue pair of equation (3.6) for the curve ¢, was
derived in Section 2 (equation (2.8)).

4. Example

Figure 2 illustrates a rigid body’s circular cone OPH. The point O is fixed and the
cone rolls without slipping on the horizontal plane [i; OP] whose normal vector is i.
The fixed axode cone is the "plane [i; OP]” (degenerate cone) and the moving axode
cone is the circular cone OPH. () is the center point of the base circle of the cone
OPH. This base circle can be considered as a moving polode curve ¢,,. The fixed
polode curve c; is a circle in the plane [i; OP| whose radius is R = OP and its center
is point O. Our aim is to determine the local geometrical property of the path of
point H at the instant shown in Figure 2.

Using the data given in Figure 2 we can write

1
nf:—e’ bf:—i, Ff:E’
n,, =icosv — esind,

b,, = —isinY — ecos 1,

1
I,=——, =2 =0.
™ Rsind’ > ¥

bs-e=0, by, -e= —cos,
dp, = Rtan?.
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Figure 2. Rolling circular cone

The application of Theorem & to this problem gives

1 i
ty =t, nHz—(e+.>,
(cot219)2+1 sin 20
1
bis = (25—
(cot209) +1 ™M
[/t +a2-1\?
Ty =4 (’L4A> +1], A= tan?.

The path of point H is a spherical cycloid and the motion analyzed can be considered
a spherical cycloidal motion [2].
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5. Conclusion

Some relations are derived for the spherical motion of a rigid body. The geometrical
properties of spherical motion are expressed in the geometrical data of the fixed and
moving axode cones. The approach applied does not use the tools of instantaneous
spherical kinematics [2, 3]. The method presented is based on a vectorial approach
that one can meet in [1, 5].

Curvature type relations such as , can be considered as a form of Euler-
Savary equation for spherical motion. Different forms of the Euler-Savary equation
using the terminology and the concept of instantaneous invariants introduced by Bot-
tema are given in [2, 3| for spherical and plane motions.

One example shows how we can use the derived formulas to determine the tangent,
principal normal and binormal vectors together with the curvature at a point of path
curve in the case of spherical motion.
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Abstract. In this paper we investigate the air flow characteristics of the intake port of
a Diesel engine by numerical simulation, which is based on a self developed code. Sev-
eral possibilities of the mathematical model of the engineering problem and their numerical
solutions are implemented, discussed and some of them developed further and compared
with actual physical measurements. As a conclusion we find that a first order finite volume
method, the Vijayasundaram flux vector split method with local time-stepping is suitable
for computing the flow characteristics, namely the flow and swirl coefficients, accurately.
By accuracy we mean that the computed and the measured quantities differ in 0-0.5% and
0.5-10%, respectively, validating our numerical model. Applying subsequently this code and
a domain deformation we are able to increase in 1% the flow coefficient under the constraint
of a constant swirl number, which is significant since only small modifications were allowed.

Mathematical Subject Classification: T6M12, T6N25, 65M99
Keywords: compressible fluid flow, numerical solution of Euler equations, Diesel engine flow
problems, geometric parameter optimization

1. Introduction

1.1. The engineering problem. The value of a Diesel engine is described by a
great many variables, e.g. power, efficiency, emission of pollution. They depend on
numerous parameters of the engine, e.g. geometrical structure (intake port, cylinder,
combustion chamber), injection parameters etc., in a very complex way.

Hence the engineering process of developing a Diesel engine consists of several con-
secutive steps. At one of the first stages a suitable intake geometry is determined
and then, proceeding further, the geometry of the combustion chamber and the pa-
rameters of the injection etc. are adjusted so that the resulting engine satisfies the
prescribed power, air pollution, etc. values.
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An opaque model Surface grid

Figure 1. Overview of an intake geometry

In this paper we focus on the design of the intake geometry (for a typical example
see Figure , which is of crucial importance for the engine efficiency. Namely, this
determines largely the amount of fresh air intaken during an engine cycle and the
rotation of the fluid in the cylinder and combustion chamber, which have a close
influence on the efficiency of the combustion. The features of the intake geometry
are characterized by two non-dimensional numbers computed from measurements of
a quasi-stationary flow, the flux-coefficient and the swirl-coefficient, denoted by C
and C; respectively; for a more detailed definition see Section [3.1

Now the engineering problem we are dealing with in this paper is formulated as
follows. We have to modify a certain given intake geometry by small deformations so
that the resulting intake geometry will be “optimal™ the larger Cy the better while
Cs belongs to a certain given interval (determined a priori from the existing model)
and the volume of intake port will be smaller, if possible. We would like to emphasize
that due to technical restrictions only small deformations are allowed.

An “optimal” intake geometry is sought traditionally by a sequence of consecutive
measurements of these numbers and test-piece modifications; then the best model is
chosen “optimal”. It is clear that this process is rather expensive and time consuming.

Our task is to substitute a reliable numerical simulation for this process.

1.2. The numerical simulation. As part of an industrial project, our task was
to simulate the step of optimal intake port design by numerical simulation. For
this we had to compute C; and Cy from a geometry given by a CAD-model and
mechanical parameters, by simulation. Moreover, using these coefficients and other
flow parameters such as graphs of pressure distribution we had to suggest an “optimal”
intake geometry. For similar problems investigated in the literature consult e.g. [5],
[7] and references therein.
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For solving our complex problem we had to face — among others — the following
subproblems:

selecting an appropriate mathematical model for the gas flow;
finding a fast numerical solution of the mathematical model;
implementing the resulting algorithm efficiently;

validating the numerical model with experiments;

finding small deformations to improve the geometry

such that the resulting simulation be robust and give sufficiently accurate result com-
pared with actual measurements.

In the literature there exist a great number of suggestions for solving the math-
ematical subproblems, see e.g. [2], [], [6], [8], [I1]. However, it seems there exist
only few papers dealing with the engineering subproblems such as verification with
measurements as well; for an example see [5] and [7].

For solving the complex problem, we found a simple and yet adequate approach,
which will be presented and discussed in the paper. Its main features are the following;:

e compressible Euler equations for gas flow;

e Vijayasundaram’s flux vector split finite volume method on a fixed (i.e. non-
adaptive) unstructured tetrahedral mesh; here we applied for time stepping a
local time-stepping strategy enabling approximation even of the non-steady
flow;

e ANSI C programming language for the code, which was optimized by the
computer algebra program Maple;

e visualization and mesh deformation modules.

We shall see in this paper below that our computational results were verified by
many actual measurements with a relative error 0-0.5% for Cy and 0.5%-10% for Cs,
see Section [3] Then from several experiments we could suggest an actual new model
intake port; by test-piece measurements our prediction was proven to be of 1% larger
Cy, same C,; and remarkably less intake port volume than the corresponding values
of an initial, a priori given intake port.

2. Components of the numerical simulation

2.1. The mathematical model. The mathematical model consists of the well-
known formalization of conservation laws of mass, momenta and energy by the Euler
equations and a thermodynamical formula, and the equation of states (EOS), which
is specific to the material of the gas. We emphasize that we did not need to use any
turbulence models because numerical simulations based on our mathematical model
happened to be satisfactory, see Section [3

To formulate the model we need some notations. Let us denote the density, the
velocity, the total energy density (i.e. total energy per unit volume) and pressure of
the flowing air by p, v = (v1,ve,v3)7, e, p respectively, the time by ¢ € [0, #,,42], the
points in IR® by (71, 22,23)T, the low domain by Q C R,
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Let us introduce further the notations

u = (p,pvl,e)T: Qx[0,tmae] — IR,
f = (f17f27f3)T7 fi:IR5_>]R157
fitw) = (pvi, (poiv +pe) T vile+p) . i€ {1,2,3},
3
divf(u) = Z%ﬁ‘)

i=1

Here u is called conservative variable, v = ¢,/c,, i.e. the ratio of heat capacity at
constant pressure and volume (for air v = 1.4).

Then our mathematical model reads (see e.g. [6], [3])

%u +divf(u) = 0 on Q x [0, tmaaz) (2.1)
1 v?

= — e —— 2.2

p Pr=2)le=75) (2.2)

’LL(., 0) = U (23)

+ boundary conditions (2.4)

In order to apply adequate boundary conditions in we described the circum-
stances of physical measurements (c.f. Section . Thus, denoting by I' = 99 the
boundary of €, which is divided into three disjoint parts I' = I';,, U Ty U Ty with
T';,, the inlet (beginning plane section of the intake tube), T'y,: the outlet (the cylinder
bottom plane section) and T4 the wall (the rest of T'), we arrive at the following
boundary conditions for (2.4):

e v is parallel to ',y
® D= Din, p= po are given at I';, and v L T';p;
® D = Doy is given at I'pyy.

2.2. The numerical algorithm. For the numerical solution method of the mathe-
matical model which consists of 7 we chose some flux vector splitting finite
volume methods to maintain conservativity of mass, momenta and energy and keeping
implementation simple. For a detailed introduction and investigation of such methods
consult [6], see also [2], [3], [4] and [8]. Here we show only the most important features
of our method with a more detailed description of our time-stepping scheme.

Suppose that €2 is discretized by a conform tetrahedral mesh consisting of tetrahe-
dra T} and the time span is divided (adaptively) by 0 =t <t < ... <t < ... <
tm = tmaz; We shall denote the sides of T} by S; (I € {1,...,4}), which induces a
local labeling of tetrahedra and variables assigned to tetrahedra (for example, Tj; is
the tetrahedron of the mesh with T; N Ty = Sj;).

We shall approximate the flow variables constant on each tetrahedron and each

time level via uf ~uonTjatt= t*. In order to derive a time-stepping scheme for
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the u;“ values, we integrate l over Tj; by application of Gauss’ theorem on volume
integrals we get

% /udV +Z/f(u)~njldS:0 (2.5)

where nj; is the outer unit normal vector of T} on its faces S and we use the notation

nJl*Zfz n_]ll'

To approximate the terms of (2.5 observe first that f(u) - nj; = Cj(uw)u with
a 5-by-5 matrix valued function Cj; the flux over Sj;, hence [ f(u)-nj;dS can be

approximated by the numerical flux g;; = g;;(u;,u;;) of form >
gji(u; 0) =[Sl (Cjra (w, v)u + Cjia(u, v)v)
with
Cp:=C%(u), Cy:=C (v) : for the Steger-Warming method,

=Y o C*(“;’”

We remark that the positive and negative part of the matrices are computed after
diagonalization: if C = Q D Q™' then C* = Q DT QL.

Applying a simple first order approximation of the first term of (2.5)) and employing
the material of this section, we get

) : for the Vijayasundaram method.

uk Tt = ok |T‘Zgﬂu]7uﬂ Vj=1,...,N, k. (2.6)

In the formulas above, |Sj;| is the area of Sj and |7}| is the volume of T, further
vit = |Sji|nji.

2.2.1. The time-stepping. The usual way of time-stepping with the explicit Euler
method applied to the Euler equations reads

1
0 0
) = dv
uj 1751 /u ’
T;

r
U;}H = U? - m Zgjz(u}%u;‘z)
l

under the CFL-condition:
ma . xSt Ajtmas () < CFL(< 1)
J

Here C'FL is the so-called “Courant number”, which is chosen due to stability restric-
tions; in our performances we equate it with 0.4.
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Application of an CFL criterion implies that even if there is only one side with
large A;;/|T;|, the time-step gets a very low value and the number of steps and CPU
time grow significantly, although the majority of tetrahedra would allow perhaps a
much higher value for 7. In our case this phenomenon arises because the ratio of
maximal and minimal volume of tetrahedra in our mesh is approximately 3000.

In order to avoid this decrease of efficiency, we used the concept of “life-time of
side-fluxes”, 7;;. The main idea is that we reuse the calculated g;; value on the side
Sji as long as the time-step taken in the step due to the CFL condition does not
exceed T;;; naturaly, after each use we subtract the time-step taken from 7;;.

The skeleton of the time-stepping with this kind of life-spans is the following: ¢ := 0;

n_ steps :=0
For all j do uj := ug
For all j,1 do
51 == gju(uj, uji)
L |T;| CFL
b |Sjtl Ajtmaa (us)
While t < tyqe do
T = min{miln Tjls tmaz — t}

Tj

t:=t+7;n_steps =n_steps+1
For all j,1 do
Uj = Uuj— ﬁqﬂ
Tj1 = Tj1 — T
if 71 < 71 %0.05 or mod(n_ steps, 10)=0 then
aj1 = gji(uy, uj)
T m|CFL
e 1Sl Ajtmaa (us)

With this adaptive time-step control the total average CPU-cost of one iteration
reduced by a factor of 1.8-2.5 in different cases, but the code used 40% more RAM,
because we had to store values of g;; and 7;;.

We remark further that using our time stepping method we get numerical solutions
approximating even the non-steady flow, in contrast with usual local time-stepping
methods, which approximate only the steady-state solution in limit and the internal

uf vectors do not approximate the solution at all (c.f. [3], p. 476).

2.3. Implementation of the numerical algorithm. We implemented the numer-
ical algorithms described above in ANSI C. Linux operating system was used as
developing and running environment. The main reason for this choice was the sta-
bility of the system, which is an important property if the typical CPU time of one
calculation is 14-18 hours.
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Our software reads its input from files and writes its output to files which makes
it easy to run on a remote host and/or with timing. A separate self developed pro-
gram was used to visualize the results. With this software, we could examine the
intermediate results during run-time.

Calculation of the 5x5 matrices above (C, their diagonalization matrices) is the
most CPU consuming part of the program. We imported these formulas (see [6],
[11]) into the Maple computer algebra system and generated an optimized C code
with this software (see [9]). Maple found a lot of common subexpressions that were
unrecognizable by humans. This C code was optimized further by hand. With these
optimization steps we managed to reduce the CPU cost of C* calculations to 50-60%.

Besides applying the symmetry properties in both Steger-Warming’s and Vijaya-
sundaram’s method (for example C;r = C,,, if the ith side of T} is the same as the
mth side of T; (see [6] and [4]), we used an another trick in Vijayasundaram’s method:
we have to calculate two matrix-vector products where the matrices are positive and
negative parts of the same matrix. In this way we have to calculate eigenvalues and

diagonalization matrices only once.

3. Experimental verification

3.1. Characteristics of the experiments. In order to validate our numerical sim-
ulation software described in Section [2] we considered the following experiments which
were tried by Autokut Budapest. We took a particular intake geometry (intake tube,
port, valves with a fixed lift and cylinder without piston), made from a certain CAD
model, see Figure[l] The air is drawn from the inlet (beginning of intake tube) to the
outlet (bottom of cylinder) due to a constant pressure drop, namely constant inlet
and outlet pressure, p;, and p,,; were set. Then, after reaching the steady state flow,
the total mass flux and the torque (flux of angular momentum) of air were measured
(at the outlet). The flow and swirl coefficients, Cy and Cj are calculated from these
measurements in the standard way:

AUO 7 ’ ’ﬂ"lB’UO

where m = the measured total mass flow rate [kg/s|, po = air density at the inlet

[kg/m3|, A = 2-valve inner seat area [m?|, vo = \/2(pin — Pout)/po = characteristic

velocity based on pressure drop [m/s], T = measured torque [Nm], B = cylinder bore
[m].
In the actual physical experiments m and T are measured by standard devices.
In the mathematical model we can calculate them from the density and velocity

distributions:
m= / pvds, T = / p(v x (r —rg))dS
s, S,

out out
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where Sy, is the outlet surface (the bottom of the cylinder), rg is the position vector
of a point in the symmetry axis of the cylinder. In the numerical model these integrals
are approximated simply by sums on outlet faces of cells.

From an engineering point of view Cy and Cs are the interesting parameters, be-
cause C'y describes the total mass of fresh air flowing through the intake port into the
cylinder (which feeds the combustion) and C; is a measure of mixture formation.

The history of the intake port geometry in our work is the following. With a
classical engineering development process (small deformations using rasp and putty)
an initial shape was formed. We shall call it Shape 1. In the next step a CAD-model
of Shape 1 was constructed based on geometrical measurements. This CAD-model
was used in our calculations, namely a new shape called Shape 2 was realized using
CNC-machines from this CAD-model. Shape 1 and Shape 2 are almost the same,
but due to the measuring errors of CAD-model building there are small differences
between them. Both Shape 1 and Shape 2 were examined experimentally. From
an engineering point of view Shape 1 and Shape 2 appeared to be equivalent with
acceptable differences (see [1]).

We shall present both results in comparison because the differences between the
measured characteristics of Shape 1 and Shape 2 show the acceptable difference be-
tween the calculated and measured values.

Our simulation is based on the CAD-model, therefore our first goal was to get
back the measured Cy and Cy values for Shape 2 at different pressures. We used
experimental data for Shape 1 as a reference: if the difference between the simulated
values and Shape 2 is less than the difference between Shape 1 and 2, we say that the
numerical model is accurate enough for our purposes.

Din Was the same in all experiments: p;, = 105.0kPa, the temperature of steady
air was 18 degree Celsius. The experiments were performed for 4 different pressures
at the outflow. We shall label these cases “A”, “B”, “C” and “D”. Table [I] shows the
values of pressure at the outflow part. The measured values of C; and C can be

Case A B C D
Pout [kPa] || 87.2 | 89.9 | 91.2 | 92.5

Table 1. Different values of pyy;

found below in Table [] together with the results of simulation.

3.2. Discretization of the initial geometry. Using a CAD model of the intake
port, the intake tube and the top of cylinder, the flow domain was divided into
tetrahedra. Two different grids were constructed, which are referred to as Grid 1 and
Grid 2. The main properties are shown in Table To demonstrate the difference
between the resolution of Grid 1 and Grid 2 we present a cut of tetrahedral meshes in
the plane of valves on Figure 2] One can observe that Grid 1 uses only 2 tetrahedra
in the small gap between valve and the top of cylinder, while Grid 2 uses at least 4.
This property can affect the accuracy significantly.
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Grid 1 | Grid 2
Number of gridpoints || 9685 | 31830
Number of tetrahedra || 43371 | 147775

Table 2. Main properties of two tetrahedral grids

ISR ol
N
NG

124

%
NN

Figure 2. Comparison of Grid 1 and Grid 2 with a cut of tetrahedral mesh.

The list and coordinates of gridpoints (vertices of tetrahedra) and the list of tetra-
hedra were exported from CAD software and a simple Perl script was used to convert
these files into the input form of our program.

As shown below in Table [4] resolution of Grid 2 is needed and is enough to get
accurate results.

3.3. Verification of the numerical simulation.

3.3.1. Typical characteristics of the numerical simulation. A numerical simulation on
Grid 2 needs 120 000-150 000 iterations (being equivalent to 0.02-0.05 s physical time)
to reach the quasy-steady state flow. The CPU time on a 466 MHz Pentium III. based
workstation was 14-18 hours and the program used 48 megabytes of RAM, when the
Vijayasundaram method was applied to the Euler equations.

Figure [3| shows how the C; and C values are converging to the stationary values.
(The initial state was homogeneous density with zero velocities. Moreover, in fact the
graph of mass flow rate and torque are displayed, which are a constant multiple of the
corresponding coeflicients.) It is an interesting fact that the frequency of oscillations
in mass flux corresponds to the frequency of sound wave with wavelength 0.3-0.4 m
which is the linear size of the whole system.
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SW | Vijaya || Measured
Cy || 0.281 | 0.509 0.509
Cs || 0.034 | 0.260 0.261

Table 3. Results of computations and measurements for verification

During the calculations it was possible to visualize the partial results, because some
global parameters as well as the state of flow was written to hard disk periodically.
The stability of the operation system was very important: Linux made no errors even
if the simulation and the visualization software were running simultaneously on a
machine where 2-3 users were doing their daily tasks.

Total mass fluxes flux of angular momenta

§

0 0.005 0.01 0015 002 0.025 003 0035 0.04 0 0.005 0.01 0015 0.02 0.025 003 0.035 0.04

Figure 3. Fluxes as a function of time in a typical case. (Grid 2,
pressure B.)

3.3.2. Comparison with experimental data. First we want to compare numerical sim-
ulation results with measurements; we want in this way to verify our mathematical
model and the numerical methods we applied as well. Moreover, we saw in the pre-
vious subsection that there was a great difference between CPU-times when turning
from the Steger-Warming method to the Vijayasundaram method (the CPU-time was
doubled).

In connection with this we want to reply to the question: Is there a significant dif-
ference between the accuracy of the Steger-Warming method and the Vijayasundaram
method?

In Table |3| we display both the numerical results and measurements w.r.t. the
setting with parameters Shape 2, B and Grid 2. In the table SW and Vijaya refer
to the Steger-Warming and Vijayasundaram methods, respectively. In the table we
show the measurements (see [1]) of the corresponding experiments as well to have a
base point.

The conclusion of these calculations is clear: the Steger-Warming method gives
inaccurate results while the results with the Vijayasundaram method fit very well to
the experimental data. Moreover, these results show also that neglecting viscosity
from our mathematical model is acceptable in our case: although the flow near to the
valves must be turbulent, the global C'y and C, parameters seem not to be sensitive
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to this effect: the computational results with the non-viscous model and the more
accurate numerical method give back the C'y and Cy values.

[ [ [[Grid 1] Grid 2 | Shape 2 [ Shape 1 |
A[Cs] 0478] 0517 0.517] 0513
C, || 0209 0260 0258] 0.212
B[Cy[ 0472] 0.509 [ 0.509 [ 0.499
C, || 0197 0259 0261] 0.211
ClCs] 0464] 0504 0.501] 0.496
Cs || 0202] 0256 0.267[ 0.211
D[C;] 0455] 0494 0.494] 0.488
C, || 0199 0249 0276 0.206

Table 4. Comparing experimental data with simulations.

Both conclusions are plausible. In other calculations described in the literature
the Vijayasundaram method proved to be much more accurate in a wide range of
problems than the Steger-Warming method, see e.g. [I0]. The viscosity of air is quite
small and in our case the smallest gap was approximately 9 mm wide. In such cases
simulations of other air-flow problems turned out to be well approximated neglecting
the viscosity.

Although our simulation software was tested in classical test problems, we had to
compare the results of simulation with experimental data. Therefore we performed
test calculations for all 4 values of p,,+ on both grids with the Vijayasundaram method;
Table 4 shows the result.

We can conclude that the results on the coarse Grid 1 are approximately good, while
on fine Grid 2 all the results are perfect. More precisely the values in the columns
Grid 2 and Shape 2 differs less than 5% in all cases but one, and this difference is
significantly less than the difference between “Shape 17 and Shape 2. (See above in

Section .

Note that the relative deviation of computed Cy values to measured one are higher
than that for Cy, in agreement with the literature (see e.g. [7]).

As a final conclusion we may state that simulations with the Euler equations on
Grid 2 with the Vijayasundaram method give reliable results.

4. Finding an optimal modification

4.1. Modification of the original shape. As a result of the previous section we
are provided with a good numerical simulation method for reliably computing air-flow
in an arbitrary intake geometry. Hence we are in the position to solve our problem
posed in Section i.e., the numerical simulation can serve as a substitute for the
test-piece modification and measurements.

In order to have an idea where to deform the actual geometry we visualized the
flow to find the most sensitive parts of the intake model, see Section Using these
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sensitive points we examined some simple deformations and based on these results we
could combine some of them to achieve our goal, see Section [£.3]

4.2. Study of the calculated flow. Visualization of flow gives us a great possibility
to understand what happens in the intake port. Although the real strength of this
tool is available only in interactive work, where the developer can move the cutting
plane or rotate the model as he or she wants to, we present some figures about the
stationary flow. All of our figures were made using a simulation on Grid 2 in case
B of pressure. (Note that other values of pressure make the flow very similar to this
one.)

In Figure [d] we present the velocity distribution in 3 cutting planes. Since the head
of vectors makes the figures less usable, we neglected them. The direction of velocity
can be figured out simply.

Figure [5] shows the velocities in the cylinder at different heights.

Besides getting an overall view of flow we can perform special searching tasks. For
example we can visualize the distribution of pressure and search for places with high
pressure gradients. This is very important information, because in such places the
air has substantial acceleration, and it usually means strong resistance against the
mass flux. In figure [6] we present two pictures about pressure distribution. One can
easily detect the places where the gradients have high values, i.e. the places with high
contrast in the Figures. This information led us to try a small deformation at the
neck. (Deformation a; see in the next section.)

Similar investigations were performed e.g. to find the places with small kinetic
energy density. This kind of places may be superfluous and possibly can be cut
out from the volume of intake port. On the other hand large kinetic energy density
indicates important parts, where the shape distorsions can affect the flow significantly.
In Figurewe present two pictures representing the density of kinetic energy (pv?/2).
We marked the low kinetic energy density regions on the left, the high kinetic energy
density regions on the right picture.

4.3. Small deformations. The deformations we used were local modifications on
vertex coordinates. A simple algorithm was applied to perform this displacement.
Here we discuss it briefly.

We found the following way of deformations very useful. For the definition of such
an elementary deformation we have to give the following parameters:

e The center of deformation. Because our grid is fine enough at the surface, the
center was defined by the index number of a vertex point of grid.

e The radius of deformation.

e The deepth of deformation. Let us imagine a cylinder with an axis perpen-
dicular to the original surface and its center be the center of deformation.
Let the radius of this cylinder be equal to the radius of deformation and its
height be the double of the deepth. We shall displace only the vertices inside
this cylinder.
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Plane A

Plane B

Figure 5. Velocity distribution in the cylinder. (Plane A contains the
bottom of the valves, B is at 5mm distance from A downwards)
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Figure 6. Pressure distribution in the intake port

Figure 7. Low (left) and high (right) kinetic energy density regions
in the intake port

e The amount of deformation. It gives the displacement at the center. The
amount of displacement vanishes at the surface of the cylinder to protect us
from badly deformed tetrahedra.

Study of the effect of small deformations was performed on Grid 2, in case B for
15 deformations. Here we present only 3 of them in Figure

In Table [5] we present the flow and swirl coefficients of the deformed shapes and
the difference between deformed and original volumes of intake port. Considering the
basic deformations (a, b, ¢) one can observe approximately 1% differences in Cy and
5% differences in Cj.
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Figure 8. Three selected deformations

’ Deformation \ Cy \ Cs \ AV [em?] ‘

[ Original ] 0.509 | 0.259 | 0.0 |
a) 0.514 [ 0.271 1.1
b) 0.513 | 0.246 -18.1
c) 0.516 | 0.250 8.4
C1) 0.515 | 0.254 -15.6
C2) 0.514 | 0.257 -19.3

Table 5. Stationary properties of deformed ports
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As mentioned above a great number of deformations were tested numerically and
we used their combination to keep C, at the original value while increasing C'y. The
best combined deformations (see C1 and C2 in the Table) could gain more than 1%
improvement in C; at the same C, while the volume of the intake port decreased
significantly, see Table

After numerical simulations, the most promising versions among our suggestions
were tested experimentally at Autokut RT. The experiments showed that the results
of our numerical simulation are reliable and suitable for improving the engine.

5. Conclusions

In our paper we presented the results of a software development for compressible fluid
dynamics applied to an engineering problem.

As a general conclusion we can state that the Vijayasundaram method is suitable
for a sufficiently accurate compressible flow simulation in existing engineering prob-
lems, even on a non-adaptive mesh. For the simulation the capacity of an average
workstation is enough to achieve accurate results for such problems.

Our numerical results were compared to experimental results and found to be
valid. Using the numerical simulation we could investigate the flow in the intake port
in details, which is impossible with a usual experimental method. With numerical
simulation we could examine the effects of many deformations and could find small
deformations that satisfy the demands of engine designers and improve the intake
port.

Finally we note that our study of numerical simulation of Diesel engines has gone
further, e.g. at present our software can handle the moving piston, the motion and
evaporation of fuel droplets. The core of these simulations, the results of which will
be presented in the future, is the code reported in this paper.

Acknowledgement. The authors would like to express their grateful thanks to A. Csikos
(Autokut RT.) for putting his raw measurements at their disposal and to A. Csiszar for some
initial tetrahedral grids.
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Abstract. The application of a new stochastic turbulence model for curved channel flow
is presented. The numerical computation was performed using the finite volume method on
colocated variable arrangements and SIMPLE based pressure-correction method was used to
treat the velocity-pressure coupling. The widely used approach for computation of laminar
flow was extended by the discretization of the turbulent Reynolds stress tensor modelled
by the new stochastic turbulence model of Czibere [I]. In this paper an application of
this turbulence model is shown for curved channel flow. The computed velocity field was
compared with the experimental data measured by LDV.
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1. Introduction

Many engineering turbulence models use the Boussinesq-hypothesis to close the sys-
tem of governing equations, but in some situations some of them fail to produce
acceptable results [2 [BL 4]. A new stochastic turbulence model and related numerical
computations are presented in this paper. The discretization methods are also shown
after having introduced the governing equations.

Computations were performed in an S-shaped confuser and comparison was made
with experimental data measured by LDV. Similar geometry can be found in Leoffler
[5], but he made computations in an S-shaped diffuser. In this paper two-dimensional,
incompressible flow is assumed.

In a statistically steady turbulent flow the Reynolds-averaged Navier-Stokes (RANS)
equations read:

0
E?ptV) +Div(pvov)=fp—Vp+Divr +DivFpg, (L.1)
where Fp = —p (v’ ov’ ) is the Reynolds stress tensor. This tensor introduces new

unknown variables so the system of equations is not closed, and we have to use a
turbulence model to close the system.
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2. Application of the stochastic turbulence model

2.1. Description of the stochastic turbulence model. This model is the three-
dimensional extension of the well-known Karmén similarity hypothesis for two-dimen-
sional turbulent flow. The turbulent stress tensor F g is defined in the so-called natural
coordinate system according to the model of Czibere [1]:

Fr = pr?l’H|02| 2,

where k£ = 0.41 is the Karmén constant, [ is the length scale and H is the similarity
tensor:

L p
B v
povoy

H =

where «, 3, v, u and ¢ are the constants of the model [I]. The basis vectors of the
natural coordinate system are defined with the time-mean velocity v and the vorticity
vector V X v:

_va
|V x v|’

v x (Vxv)

/: /X /'
vx (Vxv) ST %R27

e/3: e/2:

The advantage of this definition is that two components of the vorticity vector are
zero in this system.

Let us introduce the following notation:
O (41, a2, a3: 1) = pr*1* |2/ 2, (2.1)

where © is the dominant turbulent stress in turbulent shear flow.

The directions of the coordinate axes change from point to point, as the velocity
and the curl of the velocity change. In order to perform the numerical computation
it is easier to use the physical coordinate system, since in this way transformation
from the natural coordinate system ¢1, ¢4, ¢4 can be performed. The Reynolds stress
tensor Fr in the physical coordinate system reads:

FR =06 (Q1>Q2aQ37t) G ) (22)

where tensor G is the transformation of the tensor H defined in the natural coordinate
system:

G=EHE". (2.3)
ET is the transpose tensor of the tensor E. The scalar elements of the tensor E

are defined by the time-mean velocity v and the vorticity vector V x v. For numer-
ical computation the Cartesian coordinate system x, y, z was used instead of the
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X

Figure 1. Definition of the scale function along a trajectory

curvilinear orthogonal coordinate system ¢1, gz, g3:

1 Vg 02, 1 vy 82, — v, {2, 02,
Ewwzi = = A ) Eac = = =t y Ezz:_i
VI— 2 <v| |ﬂ|> Tovi=ar o ve €2

1 Q 1 z»Q:p - zQz “Q
Ey, = <Uy - )‘y) o By = e ’ s By = —
VI=XZ\lv[ |9 ToVI=X v €2

1 v 9 1 Vg 82y — 0y §2 9
szzi 72_)\72 5 Ez = =Y y= 5 Ezz:_iz
V1= )2 (VI |Q|> V1T v €2

where A = (vQ) / (]v]|9]).

The (1.1)) momentum equation can be reshaped according to the stochastic turbu-
lence model:

9 (pv)
ot

+ Div(pvov)=fp— Vp+ Divr + Div(OG) . (2.4)

The length scale [ is always zero on the wall. According to the Karman-Prandtl sim-
ilarity hypothesis, the mixing length I,,,;,, = k[ is a linear function when approaching
the wall. In the numerical computation the length scale [ appearing in the definition
of Reynolds stress tensor is approximated by a fourth-order polynomial:

L(€) =48 <1 us -1 < £ & )) (€—€4) (65 -9

S §B —&a (€ —&a) ’

=£A+£B and S, T>0.

where 4 <E<¢&p , &

The ({5 — £4) means the distance between the two points, and ¢ is the parameter of
a trajectory (see Figure [1]).



150 G. Janiga

According to the transformation from the natural coordinate system ¢}, ¢5, g4 to
the Cartesian coordinate system z, y, z, every (q1,q5,q4) triad corresponds to triad
(z,y, z) according to the following equations:

v=2(q1,0205), ¥y=y(0,0a4), z=2(q,400%) -
2.2. Transformation to the computational coordinate system. An arbitrary
scalar value (such as the function @) is not changed during the transformation:

O (z,y,2,t) = 0" (q1,¢5, g3, 1) -

A vector (for example the velocity vector v) can be transformed from the ¢}, ¢5,
¢4 natural coordinate system to the z, y, z Cartesian coordinate system with the
following equation:

Vg Erx Exy Exz (%t
v | =| Epe By Ep. || v | . (2.5)
Uz E.. Ezy E.. V3

The G tensor in the z, y, z Cartesian coordinate system can be calculated using
the similarity tensor H defined in the ¢, ¢5, g5 natural coordinate system:

Gmm Gzy sz Ezm Emy Emz « 1 H Ezm Eym Ez:c
Gym ny Gyz = Eyr Eyy Eyz ’ 1 ﬁ v ’ Exy Eyy EZy
sz Gzy Gzz Eza: Ezy Ezz H 19 0 Emz Eyz Ezz

This tensor equation can be written by the following six scalar equations:

Gox = aE., +BE;, +7E2, +2(EpoEoy + pE2p Ep: + VEw B,z
Gy = aEZac + ﬂE;y + 'YEgz +2(EyaEyy + pEy Ey. + VEy Ey.)
G.. = QB2 +BEZ +7E2, +2(EwEey + pEE.. + VB E..),
Guy = Gyo=aFE By + BEyEyy +7E: By, +
+ (EmEyy + Enyyz) +u (EmEyz + Eszyr) + 7 (EryEyz + szEyy) )
Go: = Gio = aEwB.y + fEE.y +vE..E.. +
+ (BewBoy+ EoyEow) + 0 (ByaEo + By Eoy) + 0 (EyyE. + B E.y),

+ (BpE.y+EyE.;)+u(EyeE.. + Ey.Ep)+ 0 (EyE.. + B E.,) .

3. Governing equations for two-dimensional flow

The RANS equations for steady flow can be written in the following way, as the
continuity equation:

+ =0, (3.1)
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and as the momentum equations for viscous fluid according to the model of Czibere:

Opun) | d(pvu) _ dp, 9 <8u> ) <au>

ox dy N or "oz \ oz 7787y aT/
0(OG,) 0(OGy4y)
2
* Oz + oy (32)
dpwo)  Opw) _ dp 9 (), 0 (0v
Ox + oy N 3y+n8x Or +778y Jy
9(0G,.)  0(6Gy,)
L e e (3.3)

Here p is the density, u, v and z, y are the Cartesian velocity components and coor-
dinate directions, respectively, and 7 is the dynamic viscosity.

In two-dimensional problems the vorticity vector €2 is perpendicular to the flow
plane, so the x and y components of this vector are cancelled in the transformed
tensor. For two-dimensional flow the scalar elements of the transformation tensor E
can be simplified:

u v
Bow = —7—  Eoy=——F5— , Euz=0 ,
/uZ + 02 Y VuZ + v2
v U
EByp=—"—— » Ly=—F5—  Ep-=0,
Yy ’LL2 +'U2 yy 'LL2 + ’U2 Yy
E..=0 , E.,=0 , E..=1.
The elements of the tensor G can be calculated from transformation (2.3
2 v? uv
Gyz = - ) 3.4
au2+v2+'6u2+02 w2 1 02 (34)
v? u? uv
ny:au2+v2 +Bu2+v2 +2u2+02 ) (3.5)
uv u? v?
Gwy:Gyw:<a_B)u2+’U2+<u2+1}2_U2+’U2) . (36)

According to the stochastic model of Czibere [I] and the measured values of Laufer
[6] the constant elements of the tensor H are: o = 3.9714 and 5 = 1.5734 .

The turbulent dominant shear stress @ can be written in the physical coordinate
system using the relations {2, = 0, £2, = 0 and {2, = {23,. The vorticity vector for
two-dimensional flow (where the velocity vector contains only two components in the
directions i and j):

ov Ou

Qvasz(axay>k, (3.7)

and the function @ can be obtained from (2.1)) as:
&) (il?, Y, t) = P“QZQ |Qz| Qz . (38)
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The turbulent terms contain the velocity components and the coefficients of the
turbulence model. Using the length scale [, the system of the algebraic equations
is closed. We have four equations: the continuity equation (3.1]), the two momen-
tum equations — and the definition of function © nd four unknowns:
velocities u and v, the pressure and the turbulent dominant shear stress ©.

4. Discretization method

4.1. Basic equations. The conservation equations for mass and momentum in inte-
gral form serve as the starting point for finite-volume solution methods:

/ div (pv)dV = / pv-dA =0, (4.1)
AV (54)

the momentum equation using the turbulence model of Czibere:

/ Div (pvov)dV = — VpdV+/
AV

Divr dV —|—/ Div (6G)dV
AV AV

AV
and applying the Gauss divergence theorem the volume integrals can be transformed
into surface integrals:

/ v(pv-dA) = — VpdV+/ T -dA + oG -dA . (4.2)
(5A) AV (5A) (54)

Here, AV is the volume and (6 A) is the surface of an arbitrary rectangular control
volume. Steady flow, Newtonian fluid, constant density p and dynamic viscosity 7
are assumed here; also, gravitational body force is included in the pressure p. The
computation was performed using the finite volume method on a curvilinear orthog-
onal rectangular coordinate system (Figure [2)) with collocated variable arrangement,
and Cartesian velocity components were used.

The solution domain is subdivided into a finite number of control volumes (CV),
and a computational node is placed at the center of each CV. The integral expressions
are applied to each CV, and the integrals are numerically evaluated.

4.2. Turbulent terms. Only the turbulent terms are considered here; for a more
detailed description of the discretization methods for laminar flow, see e. g. [7].

The function © contains the length scale [, which only depends on the geometry of
the computational domain. In the case of non-moving boundaries this function has
constant values, but the vorticity vectors must be updated in every iteration step.

The turbulent terms according to the turbulence model of Czibere can be written
by surface integrals in the u-momentum equation:

Pt — / (0G.s) dA, — / (0G..) dAy + / (0G.,) dA, — / (0G,,)dA, |
(Ae) (Aw) (An) (As)
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where e, w, n, s denote the east, west, north and south boundary of the control
volume, respectively. In the v-momentum equation:

Fgf(A)(eGyz)dAe/(A )(@Gym)dAer/(A )(Qny)dAn/(A)(@ny)dAs.

The elements of the tensor G are defined with the relations —. In the dis-
cretization these elements can be divided into two parts, where the coefficients of
u™! and v™*! in G,, and G, are identical as are those of u™ ! and v in G,
and Gyt

GmumH(a v© Y )m+vm(5 vt >m, (4.3)

u?2 +ov2 w2402 u?2 +v2 w2402

o1 U v m m v U m
Gy =u <u2+v2+au2+v2) —v <u2+v2+6u2+v2> , (4.4)

nyzva(a “ )m—um<ﬁ vt )m, (4.5)

w2 +0v2  u2 402 w2 +ov2 w2402

m m
ol u v m v u
Gyy =v <u2+v2+au2+v2) +u (u2+v2+6u2+v2> . (4.6)

m+1 m—+1

Terms Gy, Ggy, Gy and Gy, are linearized in a way that u and v are
considered unknown velocity variables, while v and v™ are known from the previous
iteration. Due to this division of the turbulent terms, the coefficients of the two
momentum equations are equal for the colocated variable arrangement.

From the previous iteration step the following can be written using the second term
on the right-hand side (RHS) in equations (4.3)-(4.6):
v U

t v u
Qu = 1eBcAe (Bu2 +02 2 +v2)e ~ owOwdy (Buz +02 w2 +U2)W

_Un@nAn < ! + 5 “ 2) + Us@sAs ( ! + ﬁ “ ) )

u? + v2 uZ v u? 4 v? u? 4 v?

and the implicit terms can be derived from equations (4.3))-(4.6|) using the first term
on the RHS:

v

¢ U U v
F, = —u.0.A, (au2 T W +U2)e + Uy O Ay (auQ iy "‘UQ)W

U v u v
—un,©, A, <u2 2 + au2 +U2>n + ugOgAg (u2 T —l—au2 +v2)s

The convective and diffusive terms were discretized with the first-order upwind
difference scheme (UDS) and the second-order central difference scheme (CDS) and
deferred correction was used to connect them. The discretized algebraic equations
were solved with Stone’s strongly-implicit procedure (SIP) [8]. The solution of the
coupled set of equations for u, v and p is based on the SIMPLE algorithm [9]. The
coeflicients of the discretized equations are updated and solved in turn and the process
is repeated until convergence.
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5. Results of computations

In order to show how to apply the stochastic turbulence model, turbulent flow was in-
vestigated in a curved-channel. Measurements were also performed with laser doppler
velocimetry (LDV) at the University of Magdeburg [I0]. The present computations
requires a few minutes on today’s personal computers. Using the present model we
do not need any additional differential equation apart from the continuity and mo-
mentum equations, in contrast with many other engineering turbulence models, so
the computational time per iteration can be reduced.

Figure 2. Computational grid

The contour plots of the computed and measured values are shown in dimension
m/s in Figures The colors and the scales of these figures mean the same values in
pairs. Figures [7] and [§ represent the contour plots of the differences of the calculated
and measured velocity components. As can be seen the agreement is quite good.

The extension of the present numerical methods for three-dimensional problems is
planned in the near future.

6. Conclusions

Based on the results of computations presented above, the following conclusions can
be drawn.

Using the stochastic turbulence model of Czibere the system of governing equa-
tions is closed, and the two unknown velocity components and the pressure can be
determined from the two momentum equations and the continuity equation.
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Figure 3. Calculated velocity components in x direction
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Contour plots of velocity \A [m/s], Model

220

0 20 40 60 80 100 120 140 160
X [mm]

180 200 220

Figure 5. Calculated velocity components in y direction
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Figure 6. Measured velocity components in y direction



Computation of turbulent flow in an S-shaped channel

157

Contour plots of velocity v, [m/s], Model-LDV

0 ! . . . . . . . .
0 20 40 60 80 100 120 140 160 180 200 220
X [mm]

Figure 7. Differences of the calculated and measured velocity com-
ponents in z direction
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The application of this model does not require the solution of any additional differ-
ential equation apart from the continuity and momentum equations, in contrast with
many other engineering turbulence models. Using this model the computational time
per iteration step is less than that of most engineering models.

Computational results compare well with experimental results.
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Abstract. A semicircular planar prismatic beam is subjected to bending moments resulting
from piezoelectric actuator devices bonded to the parallel surfaces of the beam. The bending
and torsional deformations are investigated with the Finite Element Method (FEM) and the
closed-form solution of the linear theory of 3D curved beams, respectively. The geometry of
curved element segments is mapped exactly by using the blending function method and with
the Legendre polynomials (isoparametric functions). The aim of the study is to demonstrate
that a planar curved beam under piezoelectric load deflects and twists additionally.

Mathematical Subject Classification: T4E30,74F99,74K10
Keywords: piezoelectric actuator, blending functions, bending rigidity, FEM

1. Introduction

This study presents an investigation of a semicircular prismatic cantilever beam, the
centerline of which is a planar curvilinear arc. Its parallel surfaces are covered by

PIC151 piezoelectric patches (Figure 1).

\ N j =180°
P >~ hy
//// PIC151 X
. Aluminium R =60 _
PIC151 s=3x1 z\
8 -

Figure 1. Composite semiring
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Particularly, the linear theory of space curved beams is used and the results are com-
pared to those obtained by the FEM. The inverse piezoelectric effect is realised by
generating an electric potential difference between the piezoelectric surfaces perpen-
dicular to the n-direction, which is the direction of its natural polarization. The
longitudinal stresses in the actuators result in the contraction and the expansion of
the external fibres of the basic aluminium beam, respectively. The effect generates
a bending moment along the beam, which causes the deflection along the centerline
and the angular rotations of the cross-sections. The aim of the study is to determine
these deformations by using the closed form solution and to compare them to the ap-
proximate solution. The procedure is assumed to be quasi-static, the displacements
and strains are considered to be small. The layers are bonded to each other through
a glue layer with zero thickness. The aluminium beam is assumed to be isotropic, the
piezoelectric material based on PIC151 is orthotropic with its polarizing axis. Both
materials are homogenous.

2. Formulation of the problem by using the theory of space curved beams

The investigation follows the way as shown in [1]. Here, we simplify those equations,
due to the fact that our structure has an initial planar form with constant initial
radius of curvature. Furthermore, initially the cross-sections are not twisted. The ge-
ometrical arrangement is such that the so-called laminar piezoelectric effect dominates
in the design, so the electric field in the 7-direction causes expansion or contraction in
the (-direction, which results in bending around the &-direction. Let us consider an
arbitrary part of the beam with a width b and a thickness 2d 4 ¢ as shown in Figure
2.

Voltage

Voltage
Figure 2. Tensile stresses in piezoelectric layers
The internal stress in a piezoelectric layer can be written as [2]
Ocpi = Epison — ens Ey, (2.1)

where e, is the corresponding piezoelectric coefficient. The electric field F;, is known
as the negativ gradient of the electric potential and is determined here as the difference
ratio —%. E,; is the Young’s modulus of the piezoelectric material. The strain
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€¢, on the centerline can be written in the form

1 d*v 1
€ = _ﬁdigpg - E’Y (2.2)
which is a basic relation for the prismatic planar curvilinear beams with a constant
radius of curvature R. Here, ¢ denotes the angle at center of the beam measured
from the clamped end and is used as an independent variable. The variables v and
~ represent the deflection of the beam in the n-direction and the twist of the beam,

respectively.
There is a stress in the midlayer which can be calculated in the knowledge of the
strain. By denoting the Young modulus of that layer by E4;, we can write
OcAl = EAlgcon- (2.3)

Integrating o¢,; and oca; over the corresponding surfaces A,; = bd and A,; = be,
respectively, we determine the global bending moment in the £-direction

Mgz /ngindA“F /O'gAl’I]dA. (24)

pi Al

Performing the integrations in (2.4]) and substituting (2.2), the moment can be ex-
pressed as

1 d*v 1 d c
where I¢g is the bending rigidity of the cross-section. In a later section we wish to

bring I¢g into sharper focus. Similarly, the torsional mode is also taken into account
and the torsional moment can be formulated as

1 dv 1 dv
Me=Ic|55— )
¢ (Rdso R? dso)

where . is the torsional rigidity of the-cross section.

(2.6)

3. Solution of the differential equation system

Since there are no external mechanical loads in our study, M and M, are zero. Hence,

(2.5) and (2.6) can be rearranged

1 d%v 1 d c
ter (e e+ 7) = 2ot (55 )
1 dvy 1 dv
Lol —-=—=""2)=0. .1b
¢ (R dp  R2 d¢> 0 (3.1b)

Equations (3.1a)) and (3.1b)) are coupled with the variables v and . We can eliminate
the torsional rigidity in (3.1b|) and by solving the differential equation

92— (3.2)
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with the boundary conditions v |,—=0 =0, v|,=0 = 0, we get the relation between the
twist and the deflection of the beam as

v

= —. 3.3

T=g (3.3)

Substituting (3.3) into (3.1al), an inhomogenous second order differential equation is

obtained

d?v R? d ¢

— =-2—e,Eb|=+=). 3.4

dg2 VT TRt <2+2> (34)

The solution is looked for in the form v = Acos¢ + Bsing — 2%en<Enb (% + g),

which is a sum of the general solution of the homogenous equation and of a particular
solution. Here A and B are constants. The related boundary conditions are v |,—¢ =
0, j—; |o=0 = 0. The solution of the boundary value problem can be written in the

form
2

o(g) =25 e, Eb (d + C) (cosp— 1), (3.5)
Ien 272

which is a trigonometric function of ¢.

4. Determining the bending rigidity of a composite beam

Let us consider the symmetrical cross-section of the beam (Figure 3). The inertia of
the extreme layers has the form

d® d%c dc?
I‘femtv‘ - b (3 + 7 + 4> 9 (4.1)

where b is the width of the cross-section, ¢ means the thickness of the midlayer, d is
the thickness of each extreme layer. The inertia of the midlayer can be written as

be?
Iﬁmid BT (4'2)
To obtain the bending rigidity of the cross-section, and are coupled to each
other through the Young’s moduli of the midlayer E 4; and of the extreme layers E;,
respectively

Iep = 2l Epi + Ie, . Bar- (4.3)
ha

O ..

o
-l
e T

-t |

Figure 3. Cross section of a 3-layered beam
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If each layer has the same size, ie., their thicknesses are the same (c =d= %) (Figure
1), then the expression of rigidity is reducible and has the form

b 26 1
Iep = E —F 4.4
¢B (27 vit o Al> (4.4)
With the same consideration needs alteration. Substituting (4.4) into and
considering that (% + %) =3, we obtam the deflection of the neutral elastic ﬁbre in
the form
72R%e, E,
v(p) = ———=————(cosp — 1). 4.5
)= Smop e D (45)
The twist of the beam obtained by substituting (4.5) into (3.3) has the form
72Re, F
V(p) = o

m(coscp —1). (4.6)

Let us notice that the width of the beam b plays no role in the solution.

5. Solution of the problem by the FEM

The general form of the functional related to the problem is presented in [3]. In what
follows we simplify it with respect to the quasi-static motion, hence D’Alambert’s
term is missing. Further no external mechanical loads are applied to the beam. All
the electromechanical devices work as actuators, hence the electric potential is not
varied, and the electric charge sources are omitted. The simplified functional can be
expressed as

/(5uTa§) C (Oyu) dV + / (6u”9%) e (0p®)dV =0, (5.1)
14 \%4

where C is the elasticity matrix, e is the piezoelectric matrix, u is the vector of
the mechanical displacements and is chosen as the primary variable, ® is the electric
potential applied on the piezoelectric surfaces. The differential operators 0., Op gene-
rate the mechanical strains and electric fields, respectively. Superscript T denotes the
transpose of objects. The mechanical displacements in an arbitrary element e are
written in the form

(x,y, 2z ZN‘” &m0 q , (5.2)

where N is the approximation fuction of the n-th node and qf, denotes the nodal
displacement vector. The mapping between the local system {E, 7, Z} and the global
system {z,y, z} is performed by using the blending functions [4] or the approximation
functions. No confusion should arise if we define the local system by the coordinates
£,7,C, because those are not identical with &,7, ¢ presented in the previous sections.
Although we can exactly describe the geometry of the elements in a parametric form,
since their curvatures are given circular segments, or given straight line segments
(Figure 4), the isoparametric mapping is also applied to control this technique.
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4 o5
ITI
z
IV Il X
1 L

Figure 4. Mapping of an arbitrary circle-sided quadrilateral element

The coordinates x and y are obtained by

1-7 - 1+7m —
r = Tn$] (f)Jr 2”%]11 (f) , (5.3a)
1-n - 1+7n —
y=— nyl &)+ 5 77ylu 3] (5.3b)
with the functions associated with the edges I and I11] as
?) —* Rs a o
zr (€) = Rbln(@+2 +§2) , (5.4a)
— . a -«
Xrrr (6) = R"sin (@+§+£§) y (54b)

where *R and R* are the radii of the inner and outer boundary curves, a is the
angle at centre, © is the preangle, which is measured from zero to the IV*" edge.
Taking the same geometry for each element () we write for the e-th element (as
e=0,1,2,...,m), © = ea. From Figure 4 it is seen that the radius of the centerline
R and the width of the element b are determined by the inner and outer radii as

R= # , (5.5a)
po R (5.5b)
2
Substituting (5.4al) and (5.4b)) into (5.3a) and using (5.5a) and (5.5b) we get
b _
z = <R+n2> sin [% (2e+1+§)]. (5.6)

Similarly, the coordinate y can also be determined in the same manner, by using the
corresponding blending functions belonging to the edges I and I11 as

yr (§) =" Rcos (@ + % +E%) , (5.7a)

yir1 (§) = R* cos (@ + % + E%) (5.7b)
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while y is obtained by substituting (5.7a)) and (| into ) and has the form
b _
= (R +n2> cos {% (2e+1+ 5)} . (5.8)

Since coordinates ¢ and z are independent of all £, 7, z, y coordinates, the mapping
between them is written as z = £(. The derivatives of approximation functions are
said to be in the global system {z,y, 2}, although N¢ (£,7,() can be derived in the
local {E, ﬁ,f} system. Hence, the Jacobian matrix is introduced as

ox dy 9z €

96 0 o¢ 2 (R+7m%)cosa. —% (R+7%)sina. 0
a .
Je — %% 67% %% _ gsm Qe % COS Qle U (5.9)
o2 Oy oz 0 0 s
ac  oaC ac 6

where o, = 5 (2@ +1 —i—E) . The mapping is not degenerate if the inverse mapping
exists. A necessary condition for this is that the determinant of the Jacobian matrix
is positive. This criterium is satisfied if R > %

In this paper the well known polynomial approximation of the geometry is also
applied. The curved sides (I and III) of the element are written with the same
Legendre polynomials which are used to approximate the mechanical displacement.
This is the technique of the isoparametric mapping and detailed in the literature [5].

A p-extensional computational technique allows us to estimate the exact elasticity

solution and the relative error [5]. The error ||e||(,) is estimated on a nonrefined mesh
as

lelly < BN,

where p is the order of the approximation, N, is the number of unknowns, k and

B are positive constants. By defining the estimated error difference at (p), (p — 1),
(p — 2), B can be eliminated

lgllellp) —1gllellp-1) = —Ag Ny —1g Nip-1)); (5.11a)

lgllellp-1) =g llellp-2) = —B(g Np-1) —1g Np—2))- (5.11b)

By introducing the exponent

(5.10)

Nep-1
lg( Np) )
L (5.12)
lg( [ z>)

Np-1)
we rewrite (5.11a)) and ((5.11b) in the form

Q
lg< llell p) > _lg(||e||(p—1)> . (5.13)
lellp—1) lell(p—2)

By using the relationship between the energy norms of the exact elasticity solution
lu| and of the FEM-approximated solution at a given polynomial degree |[urgn||(p)

Q_
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the error can be expressed as
lellts) = llull® = llursarlfy,).- (5.14)
Introducing (5.14) into (5.13) we get

Q
lull? = llureamf, <||U2 - ||UFEM?p1)>

(5.15)

lull? = llurpalf, ) \Null® = luremll, s

which makes it possible to determine the norm of the exact elasticity solution ||ull
and of the real error |le||(,y by using (5.14) again.

6. Numerical example

Figure 1 illustrates the structure under investigation. Each layer has the thickness
of £ =1 mm, the radius of the curvature of the beam is R = 60 mm, the width of
the beam is b = 8 mm. The angle at the center of the whole domain is 180°. The
structure is built up by using 3D higher-order solid elements. Figure 5 shows the table
with the unknown parameters as a functions of the polynomial order and the angle
at the center of the element. The number of elements is 18 (« = 30°), 27 (a = 20°)
and 54 (a = 10°).

a = 30deg| a = 20deg| a = 10deg
522 756 1458
876 1272 2460

1473 2148 4173
2313 3384 6597
3450 5061 9894
4938 7260 14226
8 6831 10062 19755

Figure 5. Table of the number of the unknown parameters in each case of meshing

N[O~ WIN[T

For approximation Legendre polynomials are used from the classical truncated
space, for numerical integration 10 Gaussian points are chosen in all directions of
the 3D space. Besides the blending function method the traditional isoparametric
mapping is performed with the same number of approximation functions as used in
the displacement approximation and the results are compared in this regard also.
Both piezoelectric actuators are supplied with the constant electric potential of DC
100 Voltage and the deformation of the beam consists of two forms. First, it deflects,
second, its cross-sections rotate. Figure 6 shows the displacements in a direction
perpendicular to the {£,(} plane vs. ¢. In Figure 7 the twist of the beam is plotted
vs. . Solid lines belong to linear beam theory, dashed lines to FEM result at p=8.
(a = 10°). The results agree well. Relative discrepancies between analytical and
FEM results at ¢ = 180° are less than 0.1 %.
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Figure 6. Bending of the beam along the centerline
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Figure 7. Rotation of the cross sections along the centerline
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Figure 8a. Displacement of the last cross section vs. polynomial degree at o = 30°

Displacement in the 7-direction of the last cross-section is computed for different mesh
and mapping. Figures 8a,b and c¢ depict the results. Dotted lines show the beam-
theory result. Dashed lines belong to the FEM isoparametric mapping, solid lines

stand for the FEM blending function mapping.
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Figure 8b. Displacement of the last cross section vs. polynomial degree at o = 20°
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Figure 8c. Displacement of the last cross section vs. polynomial degree at o = 10°

Figure 9 illustrates the convergence of the solution. The strain energy norm vs. order
of the polynomial approximation at a = 30°, 20° and 10° and with two different
geometry mapping is drawn with dotted, dashed and solid lines, respectively. The
strain energy norm of the exact elasticity solution is drawn with dashdot line.
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Figure 9. Strain energy norm at o = 30°, 20°, 10°
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It can be clearly seen that the difference between the results of the blending function
method and isoparametric mapping is not significant at a higher polynomial degree.
The sharp discrepancy in the displacement values arises only at p = 2. The relative
error in energy norm is also presented for uniform p = 2,3,4,5,6,7,8 distribution.
Since there is no significant difference in energy norm at p = 6,7, 8 between the two
types of mapping, the error estimation is performed by using the values computed
with the isoparametric mapping. In Figure 10a, b, ¢ in semilog scale the error de-
creases in each case (o = 30°, 20°, 10°), from which it follows that the convergence
is exponential.

26 T T T T T T

27

29r

3

S32F

lag error in energy narm

S33r

a4}

_35 1 1 1 1 1 1
2B 28 3 32 3.4 3B 38 4

lag number of unknowns

Figure 10a. Error of uniform p-distribution on nonrefined mesh (o = 30°)

27 T T T T T T
1.95%

3

S32F

lag errar in energy narm

S33r

34

35 I I I I
28 3 32 3.4 36 38 4 42

lag number of unknowns
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Figure 10b. Error of uniform p-distribution on nonrefined mesh (« = 20°)
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Figure 10c. Error of uniform p-distribution on nonrefined mesh (a = 10°)
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Figure 11a. Dynamical boundary condition (n-force of the last cross section)

p=4 p=5 p=6 p=7 p=8
polynomial degree

computed with the blending function method

The satisfaction of the dynamic boundary condition is also investigated. The force
on the last cross-section in the 7-direction is the most important variable here. This
is computed for uniform p = 2,3,4,5,6,7,8 distribution in three different meshes
(a = 30°, 20°, 10°) and with two mapping techniques. Figure 1la illustrates the
force for blending function mapping and Figure 11b for isoparametric mapping.
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Figure 11b. Dynamical boundary condition (n-force of the last cross section)
computed with isoparametric mapping

In both diagrams the dotted line belongs to a = 30°, the dashed line to @ = 20°,
and the solid line to @ = 10°. The diagram shows that at p = 2,3 values the results
oscillate. If p = 4,5,6 the force gets a little value, which is about 0.1V, although at
higher p values the results decrease and tend to zero. The procedure is fast if the
mesh is smooth and slow with large elements. For example at p = 8 if @ = 30° the
force tends to its maximum, if o = 20°, it has already reached the maximum, and if

a = 10°, the descent can be clearly seen.

7. Conclusions and remarks

In this paper the deformation of a multilayered piezoelectric semiring was presented.
An electric field was applied in PZT patches bonded to the semicircular planar pris-
matic beam, which resulted in the deflection of the beam as it was expected and
additionally in the rotation of its cross-sections. These deformations were determined
analytically by using the linear theory of 3D curved beams and compared to the ap-
proximate solution obtained by the use of FEM. Solid p-extensional elements were
used, due to the fact that the problem was non-symmetrical 3D. At 2, 3, 4, 5, 6,
7, 8 polynomial degrees of approximations the relative error was computed, which
justifies the convergence of the numerical solution. It was presented that both the
deflection and the twist of the beam were cosine functions of the angle of the arc of
the centerline. It was also shown that the radius of curvature plays an important role,
since it creates a proportional relationship between the deflection and the twist of the
beam, but the width of the beam does not influence the result. Following this train of
thought further conclusions can be drawn. Comparing the theoretical solution, which
was a simple 1D case (ie. ey, Ep;), with the 3D FEM solution the bending around
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direction 7 is not significant, since it was neglected in the analytical solution but FEM
added the energy of this mode to the other ones. It is remarkable that the change of
thickness of piezoelectric layers can be also negligible in thin patches. These discrep-
ancies cause the differences between theoretical and FEM solutions. Comparing the
two mapping techniques, it is clearly seen that in lower p-distribution the blending
function method gave less adequate results than the isoparametric mapping but in
higher modes both techniques are equally applied, because the rigid-body rotations
tend to zero [4].
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APPENDIX

3D piezoelectric matrix (PIC151):

0 0 0 0 0 12
el = 0 0 0 0 12 0 |Cm™2.
—96 -96 151 0 0 0

The 1D e, piezoelectric coeflicient is —12.75 Cm™2. The 3D piezoelectric elasticity
matrix:

10.76  6.312 6.385 0 0 0
6.312 10.76 6.385 0 0 0

| 6385 6385 1004 0 0 0 O o

Coi=1 "9 0 0 1962 0 o | XW0TANm
0 0 0 0 1962 0
0 0 0 0 0 2224

The Young modulus in 1D is E,; = 5.943 x 10 Nm~2. The isotropic aluminium
material has a Young’s modulus E4; = 6.865 x 10'° Nm~2 and Poisson’s ratio: v =
0.34.
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Abstract. The so-called penalty method in FE-calculation regularises the strong contact
conditions by introducing contact stiffnesses and damping in order to reduce the mathemati-
cal effort. The problem, however, lies in an appropriate choice of the values of parameters for
these artificially introduced springs and dampers. The principal problem of regularisation,
however, can be studied for simple rigid body systems. As an example, two neighbouring
physical pendulums with different natural frequencies are treated. During the motion sudden
impacts and states of permanent contact interchange with states of separated motions of the
two pendulums.

The first step in the consideration comprises the calculation of a semi-analytical reference
to classify the properties of the motion with regard to the main features of the non-linear
system’s response. The results are verified by experimental investigations in the next step.
Finally, the system is regularised by the penalty method and integrated by NEWMARK’s
method. This procedure needs three unknown numbers, two regularisation parameters and
a time step. Their correct choice depends on detailed information from the experimental
results for each type of motion.

Keywords: impact, penalty method, non-linear oscillation

1. Introduction

The presence of damage in sandwich materials, in particular delaminations between
adjacent laminae, degrade severely the mechanical behaviour of a structure. A vibration-
based non-destructive damage identification needs a suitable model to capture the
non-linear phenomena of the oscillation [3]. Experimental investigations show that
oscillations of delaminated structures are dominated by impacts [4]. They occur when
separated parts of the structure come into contact during the motion. Each contact
gives rise to an impact, which leads to energy dissipation. The actual available me-
chanical model with minimal DOF is based on an elastic beam with lumped masses
and a simple law of impact [3]. The integration of this non-smooth dynamic system
leads to a sequence of smooth systems, whose analytical solutions are known. They
must be patched together at those times when irregularities due to contact occur [6].
This simple model captures the main oscillation phenomena and allows a discussion
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in principle of the influence of the internal dissipation due to the impacts on the
non-linear system’s response and the evolution of the impacts near resonance.

An improvement of the mechanical description can be expected by the utilisation of
the finite element method. In order to reduce the numerical effort the regularisation
of the strong contact conditions is required. The penalty method introduces contact
stiffnesses and damping for regularisation [I]. Despite the fact that FE-calculations
lead to oscillations with multi-degrees of freedom, the fundamental problem of an
appropriate choice of the values for these artificially introduced springs and dampers
can be discussed for simple rigid body systems.

As an example the forced vibrations of two neighbouring pendulums will be con-
sidered. The first step comprises the consideration of a semi-analytical reference to
classify the properties of the oscillations with regard to the main features of the non-
linear system’s response. These results will be verified by experimental investigations
in the next step. Finally, the validity of two different mechanical models for the
contact, namely the classical theory of impact and the regularisation-technique for
impacts, is compared.

2. The investigated system and its semi-analytical description

As an example, let us consider two neighbouring physical pendulums with different
natural frequencies and different damping. The pendulums touch each other with a
vanishing contact force in the equilibrium state. Vibrations are induced by a harmonic
base excitation. This non-smooth dynamic system gives a first approximation for a
delaminated sandwich beam [4]. The mechanical description is based on the model

harmonic base
excitation
[ e

different spring T/z

and damping
constants

equal length,
different masses

Figure 1. Mechanical model

shown in Figure 1. It consists of two rigid bodies with different masses and different
elastic suspensions and dampers at the top.
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Firstly the semi-analytical procedure for integration of the non-smooth dynamic
system is considered. In this case, only the coefficient of restitution e has to be de-
termined from experiments. Exciting the system, discontinuities of the motion due
to impacts occur. This leads to sudden changes in the system’s behavior at unknown
separation times. The only numerical task is to find these separation times. Between
two successive separation times the system is a linear one and the solutions of the
equations of motion are known explicitly. Three different states must be considered

¥/

separated motion impact motion in contact
©y, Oy dw! dz € ®3, d3

Figure 2. Possible states of motion

(see Figure 2). In the case of a separated motion, both pendulums move indepen-
dently of each other, characterised by the natural frequencies wy, wo and the damping
constants dy, do, respectively. When the two pendulums come into contact, an impact
occurs. In this second state the sudden impact is modelled by NEWTON’s assump-
tion with a coefficient of restitution e = 0.5. A third possible state is a motion in
permanent contact, where the two pendulums behave as a single one with a frequency
w3 and a damping constant ds. All constants can be found in Table 1. They came
from the real physical system under experimental investigation, considered later on.
The calculation procedure is described in [4]. A detailed discussion is therefore omit-
ted. For a better understanding only some hints are needed. All results are given
in a non-dimensional representation. The non-dimensional time 7 = w% is refers the
lowest natural frequency. The values £; and & are non-dimensional displacements of
the end masses of the pendulums (a motion in permanent contact gives &; = £3). The
corresponding velocities are &’ and &’. A transition from a separated motion to a
motion in permanent contact theoretically leads to a sequence of infinite numbers of
impacts with time intervals tending to zero. The beginning of a motion in permanent
contact is therefore defined by a small threshold &’ — &;” < 0.002 to avoid numeri-
cal problems. The frequency ratio n = U% indicates the frequency of excitation. In
the following only stationary system’s responses are considered. Depending on the
frequency of excitation n the system’s response shows a broad variety of bifurcated
motions. The POINCARE-section method is used to collect samples of stationary
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Natural frequency w; [1/s]

Damping d; [-]

Pendulum 1 (separate)
Pendulum 2 (separate)
Two pendulums

(fixed connection)

wi = 1.00
wy =241
W3 = 1.80

di = 0.0033
d2 = 0.0120
ds = 0.0330

1. Parameters for natural frequencies and viscous damping

Table

responses of the displacements &;, which can be assembled into a bifurcation diagram
(Figure 3). The typical feature of the bifurcation diagram is an alternation of regions

4 i

B pendulum 1
@ pendulum 2

displacement &,, &,

-10 !

0.5 1.0

frequency ratio n [-]

Figure 3. Bifurcation diagram

of irregularity and windows of periodic responses. As an example, only four typical
kinds of motion will be considered (Figure 3, sections [A] - [D]) by their phase plots
in Figure 4. In the vicinity of the frequency n = 1.08 (case [A]) the oscillation is
non-bifurcated. As can be seen in Figure 4 [A], this type of motion contains multiple
impacts in one period and a phase of permanent contact. Section [B| (Figure 3 [B]),
taken at a frequency of excitation n = 1.70, shows a quasi-periodic motion. The case
of quasi-periodic motions can be seen in the bifurcation diagram (Figure 3, section
[B]) as widening of the lines to stripes of different widths. Increasing 7 to the range of
7 = 2.76, the system’s response changes to a non-bifurcated one (Figure 3 [C]). The
corresponding phase plot (Figure 4 [C|) shows one impact in one period. Finally, in
the region of n = 3.25 (Figure 3, [D]) a period-doubling exists.



Penalty-regularisation of a dissipative vibro-impacting system 179

.

&

velocity &/, &,
velocity &/, &’

— pendulum 1 -6 | — pendulum 1
--- pendulum 2 --- pendulum 2

3 R 1 2 5 s 4 2 0 2 4
[A] displacement &,, &, [B] displacement &, &,

=)

Y

velocity &, &’
velocity £/, &,

A

-8t [— pendulum 1 = b 61 [— pendulum 1
- pendulum 2 b — pendulum 2

7 6 5 4 3 2 1 0 1 2 3 4 3 2 1 0 1 2 3
[C] displacement &, &, [D] displacement ¢, ¢,

Figure 4. Phase plots of four typical kinds of oscillations

Despite this broad variety of motions, the following treatment will be restricted from
now on to two typical kinds of oscillations, which are of major interest in the investi-
gation of a delaminated beam. These are a motion caused by an excitation n = 1.08
leading to multiple impacts and permanent contact (Figure 4 [A]) and a motion caused
by n = 2.76 leading to one sudden impact in one response period (Figure 4 [C]).

3. Experimental confirmation of the semi-analytical results

The experimental equipment is shown in Figure 5. It consists of two physical pendu-
lums of length 618 mm with the vibrational parameters given in Table 1. A shaker
induces vibrations as an adjustable harmonic base excitation. The amplitude of exci-
tation is kept constant at 1.07mm. The above mentioned excitations {2 = 1.08% and
Q = 2.761 (Figure 4, [A] and [C]) are chosen for an experimental verification of the
semi-analytical results. Opto-electronical displacement sensors give the absolute posi-
tions x; characterising the response of the system. The frequency of excitation §2 can
be monitored. A contact sensor controls the opening and closing of an electric circuit
and gives information about contact or no contact. Considering the stationary sys-
tem’s response in form of time-displacement plots of about two excitation periods, the
chosen cases of the frequency of harmonic base excitation (7 = 1.08 and n = 2.76) show
an excellent agreement between experimental and numerical results (Figure 6, upper
pictures). It must be noticed, however, that the experimental time-displacement
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shaker

elastic
suspension

of shaker

pendulum 1

optoelectr.
l / displacem.

sensor

sensor
optoelectronical /
displacement

sensor

Figure 5. Experimental equipment

EXPERIMENT CALCULATION

— pendulum 1
--- pendulum 2
T
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b --- pendulum 2 | { endulum 2

displacement x,, x,
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time t time ©
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[ A 1] contact contact contact [ A 2] contact force
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time t time ©
0 ]

no contact V

[Bl] X ,_contact X X X contact | X [BQ] X X X , contagt force | X X X

Figure 6. Comparison of stationary displacement and contact force versus time from
experiment [Al], [B1] and calculation [A2], [B2]
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he numerical results in a non-dimensional form. In addition, the change of the contact
force in the same time domain (Figure 6, lower pictures) confirms the correctness of
all calculations. Here, the experiments only give information about contact and no
contact, whereas the numerical result shows the course of the contact force. The case
n = 1.08 clearly shows multiple impacts with decreasing time intervals leading to a
motion with permanent contact.

4. Penalty regularisation

Regularisation of the strong contact conditions leads to a smoothing of the points of
discontinuity. In contrast to the semi-analytical procedure the number of DOF does
not change in the regularized system in all partial states. This allows a fast numerical

1/ P

Il; } penalty

no contact contact
,, ®,, d;, d, [A] w,, ®,, d,, d,, K, D [B]
Figure 7. Mechanical systems of the different partial states
[A] no contact, [B] contact

As illustrated in Figure 7, only two states exist, namely a motion with or without
contact. The state of motion without contact (Figure 7 [A]) is kept unaltered (cp.
Figure 1) compared to the preceding system. In the case of contact, which means a
vanishing or negative relative displacement £ — &1, a contact spring with stiffness K is
added to the basic system (Figure 7 [B]). An additionally introduced viscous damper
D captures the dissipation of impact, comparable to the coefficient of restitution e.
Introducing the ratio Kk = z—f, a non-dimensional representation of the equations of
motion for both states is given in Figure 8. Starting at the state without contact the
mathematical description consists of two non-coupled equations. If contact occurs,
the equations are linked by penalty stiffness K and damping D. It is obvious that
the non-linearity of the regularized system only consists on the mutual change of the
system from a free motion of both pendulums to a common motion in contact and
vice versa. In addition to the fact that the number of DOF is constant in time, the
second advantage is the simplification of the switching conditions. Only a control of
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the relative displacement decides about a transition from one state to the next. The
semi-analytical procedure controls the contact force in a state of common motion.

start

»la
L ]

v

numerical integration of

B s A B S R

numerical integration of

1 0][¢; d+D -D & ] [1+K -K &, 1
o Ye " ol 2l UK S0

Figure 8. Scheme for switching from one state to the other

The fundamental disadvantage, however, lies in an appropriate choice of the artificially
introduced constants K and D for a certain type of motion, because these values
do not represent real physical or mechanical parameters. As will be shown in the
following, a correct choice of K and D needs a reference. This can be achieved by
matching the input data with experimental information. In the present case, the
solutions of the semi-analytical procedure can be taken. In general, low values of
K give wrong results caused by the poorly satisfied contact condition, followed by a
strong penetration of the subsystems. The opposite case of a large contact stiffness K
gives rise to a stiff set of equations leading to problems of integration. Furthermore,
the choice of the parameters K and D depends on each other and requires a correct
adjustment.

The numerical integration needs a time step A7. NEWMARK’s method, commonly
used in FE-method, is applied taking o = % and 8 = i. Therefore, the time step
is constant. This fact can lead to severe errors and even totally wrong responses [5].
The reason lies in the inaccurate determination of the transition points. Therefore,
the time step should be as small as possible. In the following, two kinds of motions
with excitation = 1.08 and n = 2.76 (Figure 6) will be investigated to show the

problems in choosing the three numbers K, D and Ar.
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4.1. Motion with a state of permanent contact: n = 1.08. The time step At
refers the non-dimensional periodical time 7' = 2%. A time step AT = WToo is taken
and kept constant. Now, only contact stiffness K and damping D can be chosen
freely. Figure 9 compares the phase plots, which are obtained by regularization using
the sets of parameters ([A] K = 2500, D = 8 and [B] K = 100 ,D = 50), with the
semi-analytical result [C]. As evident from Figure 9, the set of penalty parameters
in case [A] captures the phenomena of oscillation given by the exact solution (case
[C]). The choice of K = 100, D = 50 (case [B]) yields a completely different system
behavior, which is far from reality.

n=1.08
K =2500
2-| D=8
At = T/2000

n=1.08 T RS
K =100 = N
2t b=s0

At =T/2000

velocity &, &,

— pendulum 1
-~~~ pendulum 2

-3 -2 -1 0 1 2 - -
[A] displacement &,, &, [B] displacement &, &,

velocity &/, &,

— pendulum 1
--- pendulum 2

~3 2

] 0 1 2
displacement &,, &,

€I

Figure 9. Comparison of numerical results gained by using different penalty
parameters [A], [B] and the correct (semi-analytical) result [C]

As a conclusion it is evident that detailed information is needed with regard to the
expected type of motion to determine the parameters K, D and A7r. The basic
conditions are the properties of the response (bifurcated / non-bifurcated, periodic
motion / quasiperiodic motion), number of impacts and instants of impacts in a
response period. Remembering the broad variety of different kinds of oscillations
shown in the bifurcation diagram (Figure 3), it must be emphasized here that the
solution in Figure 9 [B] could be considered the correct one, if no information existed.

4.2. Separated motion with one impact: n = 2.76. At the beginning of the in-
vestigation the same time step A7 = WTOO as before is taken. The simplest information

which is needed to determine K and D is the non-existence of bifurcations. The
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K
D =50
At =T/2000
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A
&

velocity &/, &,’
velocity &’

D=75
At =T/2000

— pendulum 1 <3
--- pendulum 2

-4 -3 -2 -1 0 1 2 3 4
[C] displacement &, &,

Figure 10. Examples of phase plots for bifurcated and non-bifurcated motions
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Figure 11. Parametric plane for sets K and D showing regions of bifurcated and
non-bifurcated oscillations

responses for three different sets of parameters are shown in Figure 10. Two of them
(Figure 10, [A] and [C]) exhibit a bifurcated motion. A systematical variation of
K and D excludes the sets of K and D leading to bifurcations. This allows us to
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construct a parametric plane, as can be seen in Figure 11. The dashed regions in
Figure 11 are out of interest. The examples of Figure 10 give three points [A], [B]
and [C].

12000

n=2.76
At=T/2000 =

8000 @]

penalty stiffness K [-]

4000

penalty damping D [-]

Figure 12. Updated parametric plane for sets K and D

Two examples are given in Figure 13. They correspond to the points [A] and [B] in
Figure 12.

4 . . 4 — —
3l n=2.76 [l n=2.76
K = 8000 3r K=24000 | 1
2| D=25 | | D =50
At = T/2000 2t/ \ \ [Ar=T/2000 | A
1+ 4 / A i \
3ol 5 / \ / | i
i i
g1 g0
£ £
g ol 8/
s 8T
o a |/
@-3F @
o 320
4L
3
-5 1
-6l — pendulum 1| | -4 — pendulum 1|
--- pendulum 2 --- pendulum 2
7 . . . " : 5 . . . . . . " :
[A] time © [B] time t

Figure 13. Time-displacement plots for responses with a [A] “sudden” impact and a
[B] state of permanent contact

More detailed information is the knowledge about the number of impacts and the
states of permanent contact in a period. In the present example (n = 2.76) one sudden
impact occurs in one response period. The regularisation by the penalty method does
not allow the reproduction of sudden impacts. That means that sudden impacts are
modelled by a short interval of permanent contact. As an example, less than 30
time steps AT = ﬁ are assumed to describe a “sudden” impact. This assumption
diminishes the region of possible values K and D in an updated parametric plane
(Figure 12).
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Figure 14. Stationary phase plots for various time steps A7 [A]-[D] compared to the
semi-analytical result [E]

A further improvement of the values for K and D can be achieved by considera-
tion of the instant of impact during a response period. This procedure demands a
comparative work and is not executed here.

Finally, the problem of the choice of a sufficiently small step A7 for an orbital stable
solution [6] must be considered. Assuming now K = 12000.0 and D = 18.0 according
to the previous investigations, stationary phase plots are computed with different
time steps A7. Figure 14 contains the results for time steps A7 = WTOO’ AT = ﬁ,
AT = GSWW and AT = W:f)o. In all cases 2050 excitation periods are calculated, but
only the last 50 are plotted. As predicted, the larger values of A7 cannot capture

the transition times with sufficient accuracy. Permanent numerical disturbances due
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to this systematic error give rise to quasi-periodic responses. As already mentioned,
such kinds of motion are possible when remembering the bifurcation diagram (Figure
3). Only the known reference solution qualify them to be wrong.

Summarizing the facts, the required three numbers for the regularization are given
by a penalty stiffness K = 12000.0, a penalty damping D = 18.0 and time steps

T
AT = g5

5. Conclusions

The semi-analytical procedure for integration of non-smooth dynamic contact prob-
lems leads to a sequence of smooth systems, whose solutions must be patched together
at times when irregularities due to contact occur. In order to reduce the extensive
mathematical effort, the penalty method regularizes the strong contact conditions by
introducing contact stiffness and contact damping.

The regularized system keeps a constant number of DOF’s in all partial states and
allows a fast numerical integration by the usual methods. A smoothing of the points
of discontinuity is obtained. Additionally, the regularization by the penalty method
leads to a simplification of switching conditions for the transition to another state of
motion.

The problem, however, lies in the appropriate choice of the values for penalty pa-
rameters K and D for each type of motion. For a correct determination of K and D a
reference is required, which is given in experimental investigations or semi-analytical
results. Without information about the expected motion, a decision is not possible,
whether the chosen numbers for K and D are right or wrong. The reference results
contain the information needed for the choice of the penalty parameters, which can be
obtained by consideration of the motion properties - bifurcated or non-bifurcated mo-
tion, number and instant of impacts. Treating a new type of motion, a new validation
of the values K and D by the reference is required.

Recapitulating the results of the influence of time steps A7 shows that the choice
of K and D is not independent of steps A7. A high precision of the results needs an
immense numerical effort.
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Abstract. A domain decomposition (DD) formulation for solving sparse linear systems of
equations resulting from finite element analysis is presented. The formulation incorporates
mixed direct and iterative equation solving strategies and other novel algorithmic ideas that
are optimized to take advantage of sparsity and exploit modern computer architecture, such
as memory and parallel computing. The most time consuming part of the formulation is
identified and the critical roles of direct sparse and iterative solvers within the framework
of the formulation are discussed. Experiments on several computer platforms using real
and complex test matrices are conducted using software based on the formulation. Small-
scale structural examples are used to validate the steps in the formulation and large-scale
(1,000,000+ unknowns) duct acoustic examples are used to evaluate the parallel performance
of the formulation. Results are presented using 64 SUN 10000, 8 SGI ORIGIN 2000 proces-
sors, and a cluster of 6 PCs (running under the Windows environment). Statistics show that
the formulation is efficient in both sequential and parallel computing environments and that
the formulation is significantly faster and consumes less memory than that based on one of
the best available commercialized parallel sparse solvers.
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1. Domain decomposition (DD) formulation for finite element analyses

Application of finite element analysis to engineering problems leads to the discrete
equation system [, 2]

[K{Z} = {5}, (1.1)
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where S, Z are vectors of length N that contains the known nodal loads and un-
known nodal quantities, respectively. Here K is a complex, nonsingular, symmet-
ric/unsymmetric, NxN sparse matrix. Although assumes a single loading con-
dition (i.e., right hand side), multiple loading conditions may be treated by taking S
and Z as dense matrices, so that the j*"* column of Z corresponds to the N unknown
nodal quantities associated with the loadings in the j*"* column of S.

Using the domain decomposition concept, (L.1)) is written in partitioned form

LS .

where submatrices K;p, Kpr, K;; and Kpp have dimension mxn, nxm, mxm and
nxn, respectively. The interior and boundary unknowns (i.e., Z; and Zg) have di-
mensions compatible with the columns in K;; and Kpgp, respectively.

Eliminating the interior unknowns from (1.2} gives

KpZp=Fp, (1.3)
where
Kp=Kpp+ Kp1Q, (1.4)
Q=-K;/'Kip, (1.5)
Fp=Sp+Q, (1.6)
Q=-Kp;Sr, (1.7)
Sr=K;'Sr. (1.8)
Here K g is the boundary stiffness matrix for the domain, F'z is the vector of boundary
forces, and the superscript (i.e., —1) denotes the matrix inverse. Efficient sparse

algorithm [3]-[11] may be used to decompose sparse matrix K; and solve for matrix
Q in (1.5) and the vector S; in (1.8).

In the current DD formulation [12] [13] the computational domain is decomposed
into L subdomains and K g and Fp are synthesized by considering contributions from

all subdomains. For this purpose, the discrete equation system for a subdomain
(which is considered an isolated free-body) is expressed in the form (|1.2))

(r) (r) (r) (r)
Kpp Kpr Zp _J 5B ., r=123---L (1.9)
Z(T) S(T)
I I

Kiy KiY
where 7 refers to the r*" subdomain. Let n() and m() represent the number of
boundary and interior unknowns of the r** subdomain, respectively. The solution

ofis

K9 Z0) — FY) (1.10)
77 = (K[~ 8 - Kz 1.11)

—~

where
Ky = Kip+ KglQ®, (1.12)

Q" = (K KL (1.13)
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FY) =85 +Q0 (1.14)
QW =Ky S, (1.15)
i = (&) sy (1.16)

Finally, Ky and Fg may be obtained explicitly from the equations

L L
Kp =Y (")TKS8",  Fp=Sp+Y (B")TQMTs",  (117)

r=1 r=1

where (") is a Boolean transformation matrix of dimension n(")xn(").

The sequence of steps constituting the DD formulation proposed in this paper is
as follows:

(1) Decompose the large-scale finite element domain into L smaller subdomains.
Algorithms and software given in [12] [I3] are used for this purpose.

(2) Compute K}g, Kgl), K}’}), ng)g, S’g), and Sg) using efficient sparse assembly
algorithms [3] [TT].

(3) Factorize the sparse matrix Kg) and compute S}T) using and Q")
using . Algorithms and software for sparse symbolic and numerical
factorization, loop unrolling techniques, equation reordering, and forward-
backward solution phases ([3]-[I1]) are utilized at this step.

(4) Compute Kg) and F g) for each subdomain.

(5) Compute Kp and Fp from (1.17)).

(6) Solve using a direct or iterative solver to obtain the boundary unknowns,
ZB.

a): Efficient parallel direct dense solvers given in [14]-[16] may be utilized
at this step provided that Kpg is formed explicitly.

b): However, explicit computation of Kp is an expensive operation due to
the need to perform the inner produce K)Q in .

c): Iterative solvers (such as the preconditioned conjugate gradient algo-
rithm) [I7] are therefore recommended for this step in the formulation.
The use of an iterative solver eliminates the need to form Kpg explicitly
because each stage of the iterative solution typically requires only the
product a matrix (Kgp + K g})Q(’“) with a known vector.

(7) Finally, the solution for the interior unknowns are obtained from by

using the factorized sparse matrix K}? during the forward and backward
substitution phases.

The solution vectors obtained from the formulation are post-processed to obtain other
quantities of interest such as stresses, strains, acoustic energy, etc. The remaining sec-
tions of this paper will focus on issues related to efficient sparse assembly procedures.
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2. Simple finite element model

To facilitate the discussion a simple finite element model which consists of 4 rectan-
gular elements with 1 degree of freedom (dof) per node and its loading condition

R, = - 40
R, = 42¢ — R, =4k
5 6 1
S RO
R, = 44k —_— Rg = 28%
2 3 8
R, = - 20k R, = 48*
4 7 o
R, = 84k

Figure 1. A simple unconstrained finite element model

(R;) is shown in Figure 1. The global dof associated with each of the e*" rectangular
element in Figure 1 are given by the following “element-dof” connectivity matrix, F

1 2 3 4 5 6 7 8 9
T T T 1
[E] = z|x|x x 2 (2.1)
T |x T |z 3
T r|x|x|4

The number of rows and columns in E correspond to the total number of finite ele-
ments (4 finite elements) and degrees of freedom (9 dof), in the model. The following
2 integer arrays describe the nonzero structure of £ in a row oriented format

{IE}" ={1,5,9,13,17} , (2.2)

{JE}T ={3,8,1,6,7,3,2,4,5,2,3,6,7,9,8,3} . (2.3)

The array I E contains the starting location of the first nonzero terms for each row of
matrix F while JE contains the global dof number associated with each e (=1,2,3,4)
rectangular element. This format is called compress row format. Similarly, the trans-
pose of the matrix E can be described by two integer arrays, IET and JET.

The “exact” numerical values for the 4x4 element stiffness matrix K(¢) is “unim-
portant” at this stage of the discussions and are assumed to be given by the following
formulas:
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38 1 6 T3 2 4
2] 3] 453 4] 6] 8J10]7
[KW)=[=3T 4| 5[6]|8 (K@) =] =6 8] 10[12]3 (2.4)
—4[ 5] 6|7|1 —8[—10| 12[14]2
—5|—6|-7|8]|6 —10 [ —12 [ -14[16 | 4
5 2 3 6 79 8 3
6] 9] 12]15 8] 12] 16]20
(K& =["=9] 12| 15|18 [KW]=[=12] 16| 20|24 (2.5)

—16 | =20 24 | 28
—20 | —24 | —28 | 32

—12 | —15 18| 21
—15| —18 | =21 | 24

W oo ©

D W N Ot

Note that the global row and column numbers for the e'” rectangular element are

easily obtained from JFE. For example, the global row and column numbers 7,3,2,
and 4 for rectangular element 2, are contained in the 5,6,7, and 8" element of JE.
Further, the “simulated” element stiffness matrices, K(¢), are unsymmetrical in value
but symmetrical in locations. For example, K (?) has a nonzero term of 14 at location
(3,4), and there is also a nonzero term of -14 at location (4,3). Following the usual
finite element procedures, the system of linear unsymmetrical equations for the finite
element model shown in Figure 1 can be assembled as:

[K[{z} ={S}, (2.6)

where .y
(K] =Y [K]). (2.7)

e=1

For example, K33 = K{'J + Kyg + K% + K{') =2+ 8+ 18 + 32 = 60 as indicated

in (23

1 2 3 4 5 6 7 8 9

6 1 7 -5 1
24| 5[14| —9|18] -8 2
1| —5| 60|12 —12|26| 26| —25| —24]3
—14|-12|16| F|F|-10] F| F |4
K] = 9 12 6|15] F| F| F|5 (2:8)
7 =18 =26 1532 F| 6| F|6
8] 2610 2] 16| 127
5 25 6| —16| 28] —20]8
24 —12] 20| 169
{S}T = {4,44,10, —20, 42, —40, 84, 28, 48} , (2.9)

where F' represents fill-in terms (shown in the upper triangular portion of matrix K
only) that occur during factorization of K.
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The solution to equation ([2.6) is:
{(Z}" ={L, L, 1,1,1,1,1} (2.10)

which has been independently confirmed by the results of the computer program
developed. In the upper triangular portion of K, there are 9 fill-in terms. In order to
minimize the number of fill-in terms during the symbolic and numerical factorization
phases, reordering algorithms [I0, 3] such as multiple minimum degree (MMD),
Nested-dissection (ND), and METIS are used in the DD formulation.

3. Symbolic sparse assembly for symmetrical and unsymmetrical matrices

It is useful to understand the symbolic sparse assembly for “symmetrical” matrices
[3, I1] before proceeding to the unsymmetrical case. Figure 2 gives a “pseudo"

JP=1

— 5 D030I=1NMI (=N-1) for each I' row of [A]
JPI=1TP
If (I'" row correspond to b.c.) Goto 30

—* Do 201IP = consider all elements attached to I'* row (or dof) belong to several elements
el g 1ol

® Do 10 KP = consider all nodes (or dof) XXX E % % | 1= 3hrow
Which belong to a particular
K =1,(KP) = dof# element (in loop 20)

T osvm.
L*Sl{i}; assembling Lower Triangle of [A]. due to SYM.

*Do NOT want to include the dof which already accounted
for (from other elements) - IA (K)=1

*Record the column #K (on the T row) which has
non-zero term = JA(JP) =K

*Increase the counter JP by 1 (for computing NCOEF1)
JP=1P+1

— 10 Continue

L—— 20 Continue

—
NCOEF1 = IP
IA(N) = JP
IAN + 1)=JP

Figure 2. Pseudo Fortran codes for symmetrical symbolic sparse assembly

Fortran coding of the symmetrical sparse assembly procedure. Only minor changes
in this symmetrical assembly procedure are required to extend it to unsymmetrical
matrices.

In a symmetric matrix the “lower triangular” portion of K is identical with the
“upper triangular portion." Thus, the upper triangular portion of K (neglecting fill-in
terms (2.8)) can be represented in compressed row format by the following 2 integer
arrays:

{1A}T ={1,4,9,15,16,17,18,20,21,21} , (3.1)
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{JA)T = {3,6,8,3,4,5,6,7,4,5,6,7,8,9,7,6,8,8,9,9} , (3.2)

where the array I A contain the starting location of the first non-zero, off-diagonal
term for each row of the upper triangular portion of K. The difference between any 2
consecutive integers on the right-hand-side of will give the number of non-zero
(off-diagonal) terms in a particular row of the upper triangular portion of K. For
example, TA(3)-TIA(2) = 9-4 = 5. Hence, there are 5 non-zero terms (excluding the
diagonal)) in row 2 of the upper triangular portion of matrix K. Additionally, JA
contains the column numbers, associated with each non-zero, off-diagonal term for
each row of the upper triangular portion of matrix K. Note that IA and JA arrays
can also be obtained from the “pseudo” Fortran coding shown in Figure 2.

The following minor changes in the coding of Figure 2 are required to perform
unsymmetrical assembly.

a): DO 30 I= 1, N (the last row will NOT be skipped)

b): Introduce a new integer array IAKEEP(N-+1) which plays the role of array
TA(-), for example: IAKEEP(I)= JPI .

c): Remove the IF statement in Figure 2 that skips the lower triangular portion.
As a consequence of this, the original array TA (-) will contain some additional,
unwanted terms.

d): The output from the “unsymmetrical” sparse assembly will be stored by
TAKEEP(-) and JA(-), instead of IA(-) and JA(-) as in the symmetrical case.

4. Applications

4.1. Software. The software that is based on the parallel DD formulation presented
in this paper has been developed. The parallel algorithm uses the message passing
interface (MPI) for interprocess communication and is therefore highly portable. The
software developed is referred to as the direct iterative parallel sparse solver (DIPSS).
DIPSS (in FORTRAN) incorporates a number of lower level routines and provides op-
tions for both real and complex matrices in double precision (i.e., 64-bit arithmetic).
Results are presented for symmetric matrices only. We use sparse factorization tech-
niques presented in [3] and implement the preconditioned conjugate gradient iterative
solver [I7] to solve the dense system . The following three examples are used to
evaluate the proposed parallel DD formulation. Performance gains are particularly
evident for large problems.

4.2. Example 1- Mixed finite element types. This is a structural example
for which the equation system is real and symmetric and has more than 1 finite
element type. The entire finite element model is shown in Figure 3 and consists of 2-
node “line” elements, 3-node “triangular” elements, and 4-node “rectangular” elements.
Interior and boundary nodes are denoted by open and filled circles, respectively. This
small-scale, finite element model is decomposed into 3 subdomains as indicated in
Figure 4. The primary purpose of this example is to validate all intermediate and
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Figure 3. Finite element model with mixed elements

Substructure 3

N

S5

e TP N

Substructure 2

Substructure 1
Figure 4. Decomposition of mixed model into three subdomains

final numerical results using the DIPSS software. This small-scale example was also
solved in Matlab using separate software packages. Although numerical results are
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not presented for the sake of brevity, excellent comparison between DIPSS and the
Matlab solution was obtained for this small-scale example problem.

4.3. Example 2 — Three dimensional structural bracket finite element
model. The DD formulation has also been applied to solve the 3-D structural bracket
problem shown in Figure 5. The finite element model contains 194,925 degrees of
freedom (N=194,925) and the elements in the matrix, K, are real. Results were
computed on a cluster of 1-6 personal computers (PCs) running under the Windows
environment with Intel Pentium IV processors. It should be noted that the DIPSS
software was not ported to the PC cluster, but the DD formulation was programmed
(from scratch, in C*1) on the cluster.

o
)
R
NERRCOO0,
Ry S
faag %{‘{*ﬁ{i“‘v“
ShERRERR

i

SR
Rk v
AN
Wive AR
B AT
S oy
T‘u‘.\gﬂ" e"’
¥

A
s

i

£

T
i
2
o
ath
el
A

Cary
DR R
]

iy

i
i

&
o
Ly
i

W

b

FAYLLY)
LAY
EWATAN

A‘!&%

ﬂ.#vﬂ'ﬁ

=

Aﬂﬂ‘f}
AL
TR ey
AT

B i

v
e
oY
L
-—%{
)
S5
A

i
bt

Figure 5. Finite element model for a three-dimensional structural bracket
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The wallclock time (in seconds) to solve this example is documented in Table 1. A
superlinear speedup factor of 10.35 has been achieved when 6 processors were used.

# of PC processors 1 2 3 4 5 6
Wallclock time (sec) | 2,670 | 700 | 435 | 405 | 306 | 258
Speedup factor 1.00 | 3.81 | 6.14 | 6.59 | 8.73 | 10.35

Table 1: 3-D Structural bracket model (194,925 dofs, K real)

4.3. Example 3 — Three dimensional acoustic finite element model. In this
final example, DIPSS is exercised to study the propagation of plane acoustic pressure
waves in a 3-D hard wall duct without end reflection and airflow.

Figure 6. Finite element model for a three-dimensional hard wall duct

The duct is shown in Figure 6 and is modelled with brick elements. The source
and exit planes are located at the left and right boundary, respectively. The ma-
trix, K, contains complex coefficients and the dimension of K is determined by the
product of NN, MM, and QQ (N=MMxNNxQQ). Results are presented for two
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grids (N=751,513 and N=1,004,400) and the finite element analysis procedure for
generation of the complex stiffness matrix, K, was presented in another paper [18].

DIPSS memory and wallclock statistics were also compared to those obtained using
the platform specific SGI parallel sparse solver (i.e., ZPSLDLT). These statistics were
computed on an SGI ORIGIN 2000 computer platform that was located at the NASA
Langley Research Center. The SGI platform contained 10 gigabytes of memory and
eight ORIGIN 2000 processors were used. It should be noted that ZPSLDLT is part of
the SCSL library (version 1.4 or higher) and is considered to be one of the most efficient
commercialized direct sparse solvers that is capable of performing complex arithmetic.
Due to the 3-D nature of hard wall duct example problem, K encounters many fill-
in elements during the factorization phase. Thus, only the small grid (N=751,513)
could fit within the allocated memory on the ORIGIN 2000. ZPSLDLT required 6.5
wallclock hours to obtain the solution on the small grid whereas DIPSS wallclock was
only 2.44 hours. DIPSS also required nearly 1 gigabyte less memory than ZPSLDLT,
and the DIPSS and ZPSLDLT solution vector (Z) were in excellent agreement.

Because DIPSS uses MPI for interprocess communications, it can be ported to
other computer platforms. To illustrate this point the DIPSS software was ported to
the SUN 10000 platform at Old Dominion University and used to solve the large grid
duct acoustic problem (N =1,004,400). Wallclock statistics and speedup factors were
obtained using as many as 64 SUN 10000 processors. Results are presented in Table
2. Tt should be noted that a superlinear speedup factor of 85.95 has been achieved

# of SUN processors 1 2 4 8 16 32 64
Assembly time (sec) 19.38 | 10.00 5.08 249 | 1.26 | 0.70 | 0.27
Factor time (sec) 131,229 | 58,976 | 26,174 | 10,273 | 3,260 | 909 | 56
Wallclock time (sec) | 131,846 | 61,744 | 27,897 | 11,751 | 3,817 | 1,967 | 1,534
Speedup factor 1.00 2.14 4.73 | 11.22 | 34.54 | 67.03 | 85.95

Table 2: Statistics for 3-D Hard wall duct (N=1,004,400, K complex)

when 64 SUN 10000 processors are used. This super-linear speedup factor is due to
two primary reasons:

(1) The large finite element model has been divided into 64 subdomains. Since
each processor is assigned to a smaller subdomain, the number of operations
performed by each processor has been greatly reduced. Note that the number
of operations are proportional to (n(T))?’ for the dense matrix, or n(").-BW?
for the banded, sparse matrix, where BW represent the half Band Width of
the coefficient stiffness matrix.

(2) When the entire finite element model is analyzed by a direct conventional
sparse solver, more computer “paging” is required due to a larger problem
size.
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5. Conclusions

A domain decomposition (DD) formulation for solving sparse linear systems of equa-
tions has been presented. The formulation incorporates lower level novel algorithmic
ideas such as mixed direct /iterative sparse solvers, equation reordering, loop unrolling,
efficient sparse assembly, and foward /backward solution phases that are optimized to
take full advantage of sparsity and exploit modern computer architecture. Medium to
large-scale examples considered in this paper show that the developed MPI parallel
DD code is efficient in both sequential and parallel computing environments. Statis-
tics show that software based on the formulation is significantly more efficient than
that based on one of the best available commercialized, parallel, direct sparse solver.

Acknowledgement. The authors would like to acknowledge the many helpful comments
suggested by the reviewers of this paper and the NASA Langley Research Center for providing
financial support.
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Abstract. Stability of linear time periodic delay-differential equations is investigated. An
analytical approximation, the so-called Fargue-type method, and a numerical approximation,
the so-called semi-discretization method are compared for the damped and delayed Mathieu
equation. It is shown that the convergence of the semi-discretization is better than that of
the Fargue-type method.
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1. Introduction

Time delay often occurs in different fields of science and engineering. In the modelling
of cutting process dynamics, the so-called regenerative effect causes time delay [I]-[3].
In robotics applications, information delay of the control loop plays an important role
[4]-[6]. Time delay also arises in neural network models, where the interactions of the
neurons are delayed [7].

The delay effect is often subjected to parametric excitation. For example, in milling
processes, the regenerative effect of cutting is accompanied by the tooth pass exci-
tation [8]. While autonomous delayed systems are a well explored field of research
[9], the behaviour of time periodic delayed systems is not predictable even for the
simplest linear cases.

The Floquet theory of ordinary differential equations (ODEs) is extended to delay-
differential equations (DDEs) [10], [I1]. A so-called monodromy operator is defined
that corresponds to the principal matrix of ODEs. The stability properties of time
periodic DDEs are determined by the eigenvalues of the monodromy operator, via
the so-called characteristic multipliers. If all these multipliers are in modulus less
than 1, then the DDE is asymptotically stable. The monodromy operator, and conse-
quently, the characteristic eigenvalues usually do not have a closed form, so no exact
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stability criteria can be expected. Generally, time-domain simulations and special
approximation techniques are used to predict stability properties.

In this paper, two basically different approximation methods are compared: the
Fargue-type approximation and the semi-discretization method. The Fargue-type
method is a kind of analytical approximation method, while the semi-discretization
method - as follows from its name - is a numerical method. The comparison of the
two methods is made for the second order linear periodic DDE

#(t) + boi(t) + co(D)a(t) = crz(t — 1), co(t +T) = co(t). (1.1)

If co(t) = cos + coecos(t) and 7 = 2w, then this equation gives the damped and
delayed Mathieu equation. Three special cases can be defined: ¢; = 0, ¢y = 0 and
by = 0. For these three cases, the stability charts in the parameter space (cos, ¢1, bo)
were determined by van der Pol and Strutt [I2], Hsu and Bhatt [I3] and Insperger and
Stépan [14], respectively. These cases serve as references for checking the accuracy of
the approximation methods.

2. The Fargue-type approximation

2.1. The type of approximation. The Fargue-type approximation is described in
two steps: first, the structure of the approximation is presented, then a time scale
transformation is applied.

2.2. The structure of the approximation. The main step of this method is the
approximation of the discrete time delay with a distributed one as follows

x(t—71) = /0 wp (P (t + 9)dd, (2.1)

— 0o
where w, () is a special weight function series coming from the product of a polyno-
mial and an exponential expression

n7z+1

_(_ 9T
wp () = ( 1>n7”+1n! 9" e (2.2)
The function w,, () satisfies the following properties
0
/ wa (D)) =1, Tim w,(9) = fs(0+ 7). (2.3)

where fs is the Dirac distribution. Figure[l|shows the weight functions for parameters
n = 2,10,50,100 and 7 = 1. It can be seen that the greater n is, the more correct
the approximation is. Fargue [I5] proved that equation converges to x(t — 7) as
n tends to infinity, i.e.

lim ’ wp(Nz(t +9)dY = z(t — 7). (2.4)

n—oo | _

Consequently, n can be called as approximation parameter.
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Figure 1. The Fargue-type weight function for 7 =1

Application of approximation (2.1) with a fixed finite n in equation (1.1]) results in
the periodic DDE

0

#(8) + bod(t) + co(t)a(t) = 1 / wn (Dt +0)d0, colt+T) = co().  (2.5)
Now, introduce the new variables y1,ya, . . ., Yn+3 in several steps in the following way:
n(t) = z(t), (2.6)
p(t) = (), (2.7)
0
ys(t) = / wp (Nt +9)dd = z(t — 7). (2.8)
Since

Lotr9) = La+0) =it +0) (2.9)

el =9 = , .

the derivative of y3(t) with respect to the time ¢ can be calculated via integration by
parts as follows

. 0 n nt n nd/T; n n n Gnd/T "
yS(t):ﬁw(_l) Tn+1n!0 € L(t+d)dd = {(_1) 7_n+1n!19 € z(t +9) .
0
d nn+1 9
_ et _\n Y gn . nd/T _
/_Oox(t+19)d19 (( 1) T”‘Hn!ﬁ e )dﬁ_
0 n+1
n n 1 n nd/T

B 0 m(t n 0)(_1)"Lﬁ”_1 enﬂ/Tdﬁ —
7+ (n —1)!

0 nn+1 1 9
__ _ Q" gn—1 nd/T
us (t) / (V" g e e+ )0 (210)

— 0o
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This time, the second term in equation (2.10]) is defined as the subsequent new variable

0 nnJrl 1 9
A similar calculation results in equation
. n 0 n nn+1 n—2 nd/T
Ya(t) = —;y4(t) - (1) mﬁ ™ a(t + 9)dd, (2.12)

where the second term defines a new variable again:

0 nn-{—l 9 2
— _1\n n—2 nd/T
ys (1) / (1" gy e el 0)0. (2.13)

—o00
After the introduction of all the new variables in the same way, and calculating their
time derivatives via integration by parts, the degree of ¥ decreases each time by 1.
The (n + 2)*? new variable and its derivative read

0 nnJrl 9
yn+2(t) = / (71)n7n+11!ﬂen /Tx(t+19)d19, (2'14)
. n 0 nntto
hislt) = Ty~ [ UM e et o), (215)
where the last new variable is defined as
0 nn—l—l 9
Yrs(t) = / (g e (e 4 )0 (2.16)

The derivative of y,3(t) reads

. n 0 nntto
Unt3(t) = —;yms(t) —/ ()" " ITa(t +0)dv

oo T
n nn-{—l
= —;yms(t) - (—1)nm$(t) .

Equations (2.10)-(2.16|) define the recursion
. n .
yj(t):—;yj(t)—yjqu(t), j:3,4,...7n+2, (218)

while equation (2.17)) forms a connection with y; (t) = z(t). Together with equations
(2.5)-(2.8), a finite (n + 3) dimensional system of ODEs with a 7-periodic coefficient
matrix can be defined:

(2.17)

y(t) =A(t)y(t), (2.19)
where y =col(y1 y2 ... Ynts3) and
0 1 0 0 e 0
—C()(t) —bo C1 0 s 0
0 0 -n/T -1 .- 0
A(t) = : : : . . : . (2.20)
0 0 0 s —nft 0 —1

(=1)" (=n/7)" "0 0 - 0 -—n/r
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As it was shown by Fargue [I5], equation is equivalent to equation . Thus,
the stability of equation @ gives the stability of equation , i.e., if equation
is stable, then equation ED is also stable, and vice versa.

System is asymptotically stable, if and only if all the characteristic multipliers
denoted by pj;, 7 =1,2,...,n+3, are in modulus less than one. There are no general
methods to calculate the characteristic multipliers of system in an algebraic
form, but there are various types of approximation methods. Here, we will use the
piecewise constant approximation of the coefficient matrix A(¢).

Construct the time intervals [t;_1, t;] of length At;, i =1,2,...,k, so that the prin-
cipal period can be expressed as T' = Zle At,;. The function ¢y(t) is approximated
with constant (say average) values

I
Co; = AL / Co(t)dt%CO(ti—Ati/Q), i=1,2,...,k‘, (221)

ti—1

in each time interval. Correspondingly, the piecewise constant approximation of the
coefficient matrix is

0 1 0 0o - 0
—Co —bo C1 0 0
0 0 -n/T -1 ... 0
A; = . . . . ) : , (2.22)
0 0 0 - —n/r -1
(=)™ (=n/7)"t 0 0o - 0 —n/r

for ¢ € [tifl,ti], 1= 1,2,...,]{).

The Floquet transition matrix of the system can be given by coupling the solutions
for each interval:

P = exp(ApAty) exp(Ag_1Atg_1) - exp(A1At). (2.23)

This matrix is a finite dimensional approximation of the monodromy operator of
system (1.1]). At this point, several numerical methods can be used to determine the
critical eigenvalue having the greatest modulus.

2.3. Time scale transformation. A numerical problem arises in the Fargue-type
approximation. The bottom left element of the piecewise constant matrix (2.22))
increases in modulus exponentially with the approximation parameter. It means that
for large n, the matrix is not well conditioned, and the computation of the
matrix exponential in equation needs high CPU capacity and may still result
in numerical errors.

For example, if n = 20 and 7 = 1, then (—1)" (—n/7)""" ~ 2.0972 x 10?7, i.e.
the norm of the matrix is at least 2.0972 x 1027, Thus, the norm of the exponential

matrix is about 10%-198%10°° " Thig order of magnitude of numbers leads to numerical
difficulties during the evaluation of the Floquet transition matrix ®.
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A solution for this problem is to introduce the new dimensionless time ¢ = (n/7)t.
The derivatives w.r.t. ¢t are denoted by comma, and defined by

d n d
—_=——. 2.24
dt  7dt ( )

For this time scale, the equation has the form
2 2 -
2 () + (Z)boa' () + (Z) eo (D (B) = (5) cra(i—n) . (2.25)
Co (1?4’ <§) T) = Cp (i) .

The point is that in equation (2.25) the time delay is just equal to the approximation
parameter, and the approximated coefficient matrix resulting from the Fargue-type
approximation is well conditioned now:

0 1 0 0 0
~(2)%c0i —(Z)bo (£)’cr 0 0
0 0 —1 -1 ... 0

A= . . R (2.26)
0 0 0 ... 1 1
(—-1)" 0 0 e 0 -1

The norm of this matrix is about 2 (it also depends on the parameters by, co;, 1, 1, T,
naturally), and the numerical problems mentioned before do not arise. Approximation
parameter n = 100 can be used with a reasonable CPU capacity to determine the
Floquet transition matrix

P = exp (A;€ gAtk) exp (Ak,l gAtk,1> o exp <A1 gAh) . (2.27)

The comparison of the CPU times for evaluating characteristic multipliers of Flo-
quet transition matrices with and without time scale transformation can be seen in
Figure[2| The figure shows the CPU time for evaluating eigenvalues of matrices (2.23))
and , respectively, for various approximation parameters n and for interval num-
ber k = 10. It can be seen that the CPU time is higher for computations without time
scale transformation. For a higher approximation parameter, the difference between
the two methods increases exponentially. Furthermore, for n > 25, the accumulated
numerical errors become too large during the calculation without time scale trans-
formation. That is, without time scale transformation, the method can only be used
for n < 25. With time scale transformation, the method can be used for higher
approximation parameters, as well.

3. Numerical investigation by semi-discretization

In this section, the semi-discretization method [16] is used to construct the stability

chart of equation (|1.1)).
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Figure 2. Comparison of Fargue-type approximations with and with-
out time scale transformation
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Figure 3. Approximation of the time delay for m = 4

The first step of semi-discretization is the construction of time interval division
[ti,ti+1) of length At, ¢ = 0,1,... so that 7 = (m 4 1/2)At, where m is called
approximation parameter. In the i*" interval, equation (1.1)) can be approximated as

E(t) + boi(t) + coiz(t) = c1Ti—m , (3.1)
where
1 tit1
Co; = E /tl Co(t)dt, (32)
and

Tiem = 2(ti—m) = x(t; — mAE). (3.3)

That is, the time periodic coefficient is approximated by a piecewise constant one, and
the time delayed term is approximated by a piecewise discrete value. This corresponds
to a saw-like approximation of the continuous time delay shown in Figure

For the initial conditions x(t;) = x;, ©(t;) = &; , the solution and its derivative at
each time instant ¢;11 can be determined:

Tip1 = x(tiv1) = aooi + ao1L; + bomTi—m , (3.4)
Eiv1 = E(tiv1) = @102 + a11%; + b1 mTiem (3.5)
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where
ago = K10 e€xp(A1AL) + koo exp(A2At),
ag1 = k11 exp(A1AL) + ka1 exp(A2At),
aijp = k1 0)\1 exp()\lAt) —+ ) 0)\2 exp()\gAt) s
a11 = K111 exp()\lAt) + Ko 12 exp()\gAt) R
bom = 01 exp(AMAL) + ogexp(AaAt) + b/ (5 +e¢;),
bim = g1A1 exp(A1AL) + 02 exp(A2At) ,
and
-kt /K2 —4(0+tee)
A2 = 5 ,
. Ao . -1 —Ag b
= = o1 =
10 )\27>\17 11 AQ*)\l’ 1 )\27A15+€C117
o —)\1 K 1 )\1 b
— = g9 = .
20 Ao — A1’ 2t Ao — A’ 2 A — A d+eg
Equations (3.4) and (3.5)) define the discrete map
Yi+1 = Biyi, (3.6)
where the m + 2 dimensional state vector is
yi = COI(’jS’i Ty Tj—1 ... IEi_m) ; (37)
and the coefficient matrix has the form
a1 Qaio 0 0 blm
ap1 aoo O 0 bom
0 1 0 0 O
B, = (3.8)
0 0o 0 ... 0 0
0 o 0 ... 1 0

So, the connection between the states at ¢; and ¢;41 is determined by the transition
matrix B;.

Stability properties are determined by the transition matrix ® between the states
at to and to + 7. First, investigate the case when the principal period is equal to the
time delay: T = 7. Since to + 7 = to + (m + 1/2)At and ¢o + 27 = to + (2m + 1) At,
only the transition matrix between the states at ¢ty and ¢y + 27 can be constructed

by coupling the solutions for the discretization intervals of indeces ¢ =0, 1, ..., 2m.
This gives the square of the transition matrix over the principal period:
®? =B,,,Bs,_1...B1By. (3.9)

The eigenvalues of ® give the square of the eigenvalues of ®. Since |u| < 1 if and
only if [?| < 1, the stability condition for ®? is the same as for the matrix ®.

If T = 27, then the matrix multiplication in equation (3.9)) gives exactly the tran-
sition matrix over the principal period. If T = 7/2, then (3.9) gives the 4*" power of
the transition matrix over the principal period.
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Figure 4. Stability charts for equation (4.1)) with 7' = 27 determined
via Fargue-type method with n = 100

The proof of the convergence of the semi-discretization method is given in [16].

4. Comparison of the methods

The special case of equation ((1.1])
Z(t) 4+ box(t) + co(t)x(t) = crx(t —2m), co(t) = cos + coe cos(2nt/T) (4.1)

is investigated. For T = 2m, this gives the damped and delayed Mathieu equation
mentioned in the introduction.

Figure M| shows the stability charts for equation with T' = 27 determined by
the Fargue-type method with approximation parameter n = 100. This means that
the infinite dimensional equation was approximated by a 103 x 103 sized system.
For the autonomous case, when cy. = 0, the boundary curves were determined by
Hsu and Bhatt [13]. For the undamped case, when by = 0, Insperger and Stépan
[14] proved that the boundaries are straight lines with slope —1, 0 and 1. For these
special cases, the exact boundaries are shown by dotted lines in Figure [ It can be
seen that the stability boundaries predicted by the Fargue-type method with n = 100
are acceptable only in the parameter domain —1 < ¢ps < 1, —0.5 < ¢; < 0.5.
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Figure 5. Stability charts for equation (4.1)) with 7= 7 determined
via Fargue-type method with n = 100
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Figure 6. Stability charts for equation (4.1]) with T = 47 determined
via Fargue-type method with n = 100

Figures and@ show the stability charts for equation with T = mand T = 4,
respectively, determined by the Fargue-type method with n = 100. In these cases, the
boundary curves are not exactly known, so these results must be handled carefully.
For the case T' = m, the linear boundaries are still present and the stability charts
have a clear structure. For the case T = 4w, the structures of the charts are not so
clear, and also disjunct stable parameter domains arise.

Figure [7| shows the stability charts for equation (4.1)) with 7' = 27 determined by
the semi-discretization method with approximation parameter m = 20. This means
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Figure 7. Stability charts for equation (4.1)) with 7' = 27 determined
via semi-discretization method with m = 20

that a 22 x 22 sized discrete map was used to approximate the infinite dimensional
equation as opposed to the 103 x 103 sized Fargue-type approximation. For the
special cases, when either cg. = 0 or by = 0, the exact boundaries are also shown
by dotted lines. In the presented parameter domain —1 < cps < 5, —2 < ¢1 < 2,
however, the difference between the exact boundaries and the boundaries determined
by the semi-discretization method is not visible. These reference cases show that the
semi-discretization method is more effective than the Fargue-type approximation.

Figures |8 and @] show the stability charts for equation with T =7 and T =
47, respectively, determined by the semi-discretization method with approximation
parameter m = 20. Similarly to the charts given by the Fargue-type approximation,
the cases T'= 7 and T = 2x show linear stability boundaries, while the case T = 4w
gives the intriguing stability charts with disjunct stable domains.

5. Conclusions

Two approximation methods were investigated: the Fargue-type method and the semi-
discretization method. The Fargue-type method is a kind of analytical technique,
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Figure 8. Stability charts for equation (4.1)) with 7= 7 determined
via semi-discretization method with m = 20
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Figure 9. Stability charts for equation (4.1]) with T = 47 determined
via semi-discretization method with m = 20

where the discrete time delay is approximated by a special distributed one. Semi-
discretization is a numerical method that uses a partial time discretization. Both
methods can be characterised by the dimension of the approximated system.

Both methods were applied to construct stability charts for the damped and delayed
Mathieu equation (4.1]). Stability charts were constructed by the Fargue-type method
with 103 x 103 sized approximate system, and by the semi-discretization with 22 x 22
sized approximate system. It was shown that the semi-discretization method is much
more effective than the Fargue-type approach. This result is not surprising, since the
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numerical methods based on discretization techniques are considered more effective
than the analytical approximations.

For the cases with a time period equal to the time delay, and to half of it, the sta-

bility charts are reliable, close to each other and to the closed form results. When the
time period is double the time delay, the stability charts show substantial differences,
and there are still no reference results from the theory of periodic DDEs, either.
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A Short History of the Publications of the University of Miskolc

The University of Miskolc (Hungary) is an important center of research in Central Eu-
rope. Its parent university was founded by the Empress Maria Teresia in Selmecbanya
(today Banska Stiavnica, Slovakia) in 1735. After the first World War the legal pre-
decessor of the University of Miskolc moved to Sopron (Hungary) where, in 1929, it
started the series of university publications with the title Publications of the Mining
and Metallurgical Division of the Hungarian Academy of Mining and Forestry Engi-
neering (Volumes I.-V1.). From 1934 to 1947 the Institution had the name Faculty
of Mining, Metallurgical and Forestry Engineering of the Jozsef Nador University of
Technology and Economic Sciences at Sopron. Accordingly, the publications were
given the title Publications of the Mining and Metallurgical Engineering Division
(Volumes VIL.-XVI.). For the last volume before 1950 — due to a further change in
the name of the Institution — Technical University, Faculties of Mining, Metallurgical
and Forestry Engineering, Publications of the Mining and Metallurgical Divisions was
the title.

For some years after 1950 the Publications were temporarily suspended.

After the foundation of the Mechanical Engineering Faculty in Miskolc in 1949 and
the movement of the Sopron Mining and Metallurgical Faculties to Miskolc, the Pub-
lications restarted with the general title Publications of the Technical University of
Heavy Industry in 1955. Four new series - Series A (Mining), Series B (Metallurgy),
Series C (Machinery) and Series D (Natural Sciences) - were founded in 1976. These
came out both in foreign languages (English, German and Russian) and in Hungarian.

In 1990, right after the foundation of some new faculties, the university was renamed
to University of Miskolc. At the same time the structure of the Publications was
reorganized so that it could follow the faculty structure. Accordingly three new se-
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Series G (Humanities and Social Sciences). The latest series, i.e., the series H (Euro-
pean Integration Studies) was founded in 2001. The eight series are formed by some
periodicals and such publications which come out with various frequencies.

Papers on computational and applied mechanics were published in the
Publications of the University of Miskolc, Series D, Natural Sciences.

This series was given the name Natural Sciences, Mathematics in 1995. The name
change reflects the fact that most of the papers published in the journal are of math-
ematical nature though papers on mechanics also come out.

The series

Publications of the University of Miskolc, Series C, Fundamental
Engineering Sciences

founded in 1995 also published papers on mechanical issues. The present journal,
which is published with the support of the Faculty of Mechanical Engineering as a
member of the Series C (Machinery), is the legal successor of the above journal.
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