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Abstract. The work presented in this paper utilizes advanced finite element models of
the pre-bending and hydroforming processes to investigate the effect of load control end-
feed (EF) on the formability of DP600 steel tube in hydroforming. A model of a rotary-
draw tube bender was used to simulate pre-bending. Validation of the pre-bending model
showed good agreement with the pre-bending experiments. The hydroforming process was
also successfully modelled and validated for a zero EF case. Increasing levels of EF were
simulated and the corner-fill expansion of the tube was measured to assess the formability
of the tube. The new and fully three dimensional Extended Stress-Based Forming Limit
Curve (XSFLC) failure criterion was used to predict the onset of necking in the hydroforming
simulations. In addition to varying the level of end-feed, two different pressurization schemes
were investigated. The models showed that an increase in end-feed improved formability
during hydroforming and also sensitivity to pressurization scheme was shown.

Mathematical Subject Classification: 74A10, 74S05
Keywords: hydroforming, stress-based failure criterion, load control end-feed, formability,
tube bending

1. Introduction

With increasing fuel costs and the negative impact current automobiles have on the
environment, a need to reduce their weight is apparent. One method this can be
realized is through the use of hydroforming to manufacture conventional automobile
components. The hydroforming process is shown in a simplified schematic (Figure 1)
and consists of (a) enclosing a circular tube within a die of different cross-section, (b)
pressurizing the tube and (c) expanding the tube to conform to the cross-section of
the die.

Hydroforming an automotive structural component from a continuously bent steel
tube possesses the following advantages over traditionally stamped and welded parts
[1, 2]:

• Weight reduction (improved fuel efficiency)
• Improved strength and stiffness due to work hardening of the tube

c©2006 Miskolc University Press
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• Part consolidation
• Reduced scrap

PP

a)          b)                    c)

Figure 1. Hydroforming process schematic [3]

Currently, hydroforming is being used by industry to manufacture the typical struc-
tural components shown in Figure 2.

A – Roof Header

B – Instrument Panel

C – Radiator Support

D – Engine Cradle

E – Roof Rail

F – Frame Rail

Figure 2. Examples of hydroformed structural components [4]

The main advantage of hydroformed components (weight reduction) can be fur-
ther improved through the use of high-strength steels. By using high-strength steels,
the wall thickness of a hydroformed component can be reduced while strength is
maintained. The main challenge encountered when using high-strength steels in hy-
droforming applications is the limited ductility/formability of these materials. The
low formability of high-strength steels limits the practicality of the hydroformed part
due to the low degree of corner-fill expansion (CFE) that can be achieved. Low CFE
is due to premature failure of the tube by fracture (burst). This is particularly true
for DP600 and is the main motivation behind the research activities at the University
of Waterloo.
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A fully instrumented Eagle EPT-75 servo-hydraulic mandrel-rotary draw tube ben-
der with an R/D (centre-line bend radius to tube diameter) ratio of 2.0 is used to
accurately control bend process parameters. The tubes considered for this work are
electric resistance seam welded with an initial OD of 76.2 mm (3.0") with a thickness
of 1.85 mm. In pre-bending, tubes were bent to a final angle of 90◦ . Hydroforming
experiments were conducted using a 1,000 Ton press. The bent tubes are hydroformed
in a square cross-section die. The formability is quantified by measuring the corner-
fill expansion of the tube in the die. To overcome the low formability inherent to
high-strength steels, end-feed (EF) during hydroforming was implemented. End-feed
refers to the application of a compressive axial force along the longitudinal direction
of the tube during hydroforming. It pushes the tube into the expansion zone, allowing
more material to be available for expansion. Hydraulic actuators are used to apply
a maximum of 240 kip EF force during hydroforming. Load control EF applies a
controlled load to the tube ends during internal pressurization. Another method of
applying EF is through displacement control, where the stroke of the EF actuator is
controlled.

Finite element (FE) models provide valuable insight into experimental work and
help predict trends and process parameters before experiments are designed. The
dynamic explicit code, LS-DYNA v970, was used to develop all of the FE models
for this paper. A new failure criterion coupled with LS-DYNA was developed at the
University of Waterloo and used to model (with exception to springback) the bending,
die-close and hydroforming processes. The material properties and friction charac-
teristics were determined experimentally and used as input for the FE simulations.
Different levels of EF load and two internal pressurization schemes were investigated
for this work.

1.1. Axial Members. Much of the published work on the effects of hydroforming
EF on the formability of steel and aluminium tubes is focused on axial members only.
The common hydroforming equipment used in these experiments is shown in Figure
3. Ahmetoglu et al. [5] used FE computation to show an increase in formability of
low carbon steel tubes due to a 10% increase in EF stroke using displacement control.
Their results also showed reduced thinning, increased thickening and greater final
forming pressure. A thin walled axisymmetrical shell model was used by Kim et al.
[6] to develop an analytical model which showed that a loading path with increased
compressive load (using load control) in the axial direction improved the circumfer-
ential expansion of an aluminium tube. The experimental work of Thiruvaudchelvan
et al. [7] on aluminium tubes showed that by increasing EF using load control, the
EF displacement increased by 42% while the radial expansion and failure pressure
increased by 8% and 5%, respectively.

The three dominant failure modes encountered during hydroforming are buckling,
wrinkling and fracture (burst) [1, 3, 5, 6, 7, 8, 9]. Figure 4 (a) shows the failure modes.
Buckling usually occurs at the beginning of the hydroforming process when there is
excessive EF force (increased compressive stress in the longitudinal direction) applied
to the tube. Similarly, wrinkling occurs symmetrically along the longitudinal axis of
the tube and is also caused by an excessive EF force. Although major wrinkles are
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a)                                        b)                    c)

A – Roof Header

B – Instrument Panel

C – Radiator Support

D – Engine Cradle

E – Roof Rail

F – Frame Rail

P

DIES
PUNCH PUNCH

END-FEED

DIES

END-FEED

Figure 3. Axial hydroforming with EF [7]

undesirable, minor wrinkles are sometimes created during the hydroforming process
and later ironed out with an increase of internal pressure. Fracture occurs due to
an excessively high internal pressure which creates high tensile stresses in the tube
due to the reduction (caused by friction between tube and die) of material flow into
the die cavity [8, 9, 10]. The process parameters involved in successful hydroforming
are critical and can be summarized in the axial force versus internal pressure process
diagram found in Figure 4 (b) and (c). Analytical [6, 8, 11] and experimental [9]
methods have been used to derive these process diagrams and serve as designs tools
for engineers. Through the use of a validated failure criterion, numerical simulations
can also be used to derive process diagrams.

Wrinkles at the 
fixing region

Process start

Bursting

Measuring points:
yielding point

Internal pressure

A
xi

al
 fo

rc
e experimental determined

limit for the plastic buckling

a)                                                          b)                                                             c)

Buckling      Wrinkling       Fracture

bursting
wrinkling

Figure 4. a) failure modes b) general process diagram [8] and c) ex-
perimentally derived process diagram [9]

1.2. Pre-Bent Members. The majority of commercial hydroformed components
are created from pre-bent tubular members (Figure 2). The major difference between
axial and pre-bent hydroforming is the non-symmetric bending axis. Depending on
the bending parameters, tensile strains in the range of 20% - 30% are imposed at the
outside radius of the bend and compressive strains of the same magnitude are seen at
the inside bend radius for a 90◦ pre-bent tube [1, 3, 12, 13]. To the authors’ knowledge,
there have been no publications on experimental or analytical work done on the effects
of EF on the formability of hydroformed pre-bent tubes. The extent of the published
work in this field is simulation based. The numerical trends have shown that increased
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EF improves the formability of the hydroformed part by increasing the CFE and
reducing thinning using both displacement [12] and load control [14]. Although the
trends show improvements in formability, a more accurate failure criterion must be
used in these simulations. The same failure modes shown in Figure 4 (a) are also
present for pre-bent tubes, but are too difficult to analytically predict due to pre-
bending. Therefore, experimental and numerical methods must be used to determine
the process diagrams for pre-bent hydroformed tubes.

1.3. Numerical Failure Criterion. In numerical hydroforming simulations of axial
members, many failure criteria exist with the stress-based FLD (σFLD) criterion de-
veloped by Stoughton [15] gaining the most attention by the metal forming industry.
This criterion was developed to overcome the monotonic strain path dependence of the
traditional strain-based FLD (εFLD). The σFLD is constructed from the εFLD, and
is based on a plane-stress assumption. This criterion was validated for free-expansion
(tube expands freely and does not conform to a die) experiments with AKDQ steel
tubes [16] and showed excellent agreement. This approach does not consider the
through-thickness stress component that is present when a tube is hydroformed in an
enclosed die. Hydroforming experiments at the University of Waterloo are conducted
on pre-bent tubes in enclosed hydroforming dies (Figure 5). Experiments have con-
sistently shown that the fracture (burst) location for hydroformed tubes (zero EF) is
at the tube/die contact area, not in the free-expansion zone. This was the motiva-
tion behind the development of the new Extended Stress-Based Forming Limit Curve
(XSFLC) failure criterion by Simha et al. [17, 18], which is a full three-dimensional
stress-based failure criteria.

PP

a)                                        b)                    c)

A – Roof Header

B – Instrument Panel

C – Radiator Support

D – Engine Cradle

E – Roof Rail

F – Frame Rail

P

DIES
PUNCH PUNCH

END-FEED

DIES

END-FEED

Figure 5. Pre-bent hydroforming dies at the University of Waterloo

2. Tube Bending Model

2.1. Mandrel Rotary-Draw Tube Bending Process. The fully instrumented Ea-
gle EPT-75 servo-hydraulic mandrel rotary-draw tube bender at the University of
Waterloo was used to experimentally bend the tubes and was modelled for the tube
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bending simulations. The repeatability for this method of bending has been shown
to be consistent by Bardelcik et al. [13] and Dwyer et al. [19]. Figure 6 shows the
experimental tube bender and a schematic of the tools involved in the tube bending
process.

Pressure Die Clamp Force

Pressure Die Boost Force

Mandrel Drag Force

Bend Die
Torque

Clamp Die
Force

Wiper Die

(a) Tooling Configuration

Pressure Die Clamping Load
Wiper Die

Mandrel

Bend Die

Pressure Die

Clamp Die

Pressure Die Clamp Force

Pressure Die Boost Force

Mandrel Drag Force

Bend Die
Torque

Clamp Die
Force

Wiper Die

(a) Tooling Configuration

Pressure Die Clamping Load
Wiper Die

Mandrel

Bend Die

Pressure Die

Clamp Die

Figure 6. Experimental mandrel rotary-draw tube bender and
schematic [3]

The bend die and clamp die hold the end of the tube and rotate together. This
action draws the tube around the bend die. The moment created at the left end
of the tube during the bending process is reacted by the pressure die. Also, the
pressure die can be used to apply boost during the bending process to change the
strain distribution along the tube [13]. A flexible two-ball mandrel supports the tube
and prevents collapse of the tube during bending. Wrinkling of the inside bend radius
is prevented by the wiper die which also reacts to some of the pressure die clamp
force.

2.2. Material Characterization. In order to successfully simulate the pre-bending
and hydroforming process, accurate representations of the DP600 material properties
and friction characteristics are necessary. The uniaxial tensile test was used to mea-
sure the stress-strain response of the DP600 and the twist-compression test (TCT)
[20, 21] provided the frictional characteristics.

2.2.1. Tensile Testing. The material model used to simulate the DP600 tube material
was based on the standard uniaxial tensile test. The tensile test specimens were cut
along the longitudinal direction of the tube and from different orientation along the
circumference (Figure 7). It was found that specimens from the 3 and 9 o’clock
positions resulted in identical material properties while the 6 o’clock position showed
a slightly higher yield stress due to additional work hardening from the roll forming
process [1, 3]. The engineering stress-strain curves were converted into true stress-
strain curves and averaged to produce the following power law relation [12],

σ̄ = 795.8ε̄0.115 (2.1)
This curve was then converted into a true stress vs. plastic strain curve. The

true stress vs. plastic strain curve was extrapolated to (0.60 mm/mm, 943 MPa) and
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used as the input curve for the FE simulations. A more accurate representation of
the stress-strain behaviour for the tube material would be to conduct free-expansion
bulge tests as proposed by Fuchizawa et al. [22].
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Figure 7. Tensile test results for DP600

2.2.2. Twist-Compression Test. The twist-compression test (TCT) is a common bench
test used to determine the coefficient of friction (COF) between two flat surfaces. In
the TCT, a sheet metal specimen is pressed and rotated against a flat tool steel cup.
The torque developed at the interface is measured and with the interfacial pressure
the static and dynamic COF is calculated (Figure 8) [20, 21]. The relative velocity
between the tube and die during the forming process is replicated in the test. The
sheet metal specimen used for these tests was cut from the same coil that was used to
roll form the DP600 tubes. The tool steel cups are made from the same material as
the bending and hydroforming dies and were heat treated to the same specifications.
For the tube bender, cups made from nitrided 4130 steel represent the bend, clamp
and pressure die, while the wiper die cup is made from untreated 4130 steel. The
hydroforming die cups are made from untreated P20 tool steel.

The interfacial pressure seen by the tools during the experiments was estimated to
select the appropriate COF from Figure 8. Table 1 summarizes the lubricants and
resulting COF that were used in the FE penalty-based contact models.

Bend Pressure Wiper Clamp Mandrel Hydroforming
Die Die Die Die Die

Lubricant Dry Dry D.A. Stuart- Dry D.A. Stuart- D.A. Stuart-
Hydrodraw 615 Hydrodraw 615 Hydrodraw 625

COF 0.08 0.08 0.08 0.08 0.06 0.03
Table 1. Lubricants and resulting COF used for contact algorithms
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Figure 8. Twist compression test results

2.3. Numerical Model. The mandrel rotary-draw tube bending simulation was de-
veloped using LS-DYNA v970. One-half of the model was simulated. The tube
bender tools were modelled as rigid surfaces with 4-noded shell elements. The tube
was meshed with 8-noded solid elements. Five through-thickness elements were used
to represent the tube. A coarse and fine mesh was used for the tube to reduce compu-
tational time. A total of 83,000 solid elements were used to model the tube. Figure
9 shows the bender and tube meshes used in the simulations. The bend model was
run over 30 milliseconds and required 88.2 hours of processor time. After bending, a
springback simulation, which used implicit integration, was carried out. After spring-
back, the tube was trimmed and a die-close simulation was run to prepare the model
for hydroforming simulations. The elemental stress and strain histories were trans-
ferred to all successive computations to account for the loading history of the elements
from the previous deformation.

2.4. Bending Results. To validate the bending model, strain and thickness at dif-
ferent locations along the tube were compared to experimental results. The validation
data was compared along the inside and outside of the bend (θ) and around the cir-
cumference of the tube (φ) at the 45◦ position (Figure 10). Engineering strains were
measured at the outside surface of the tube using circle grid analysis and thickness
was measured with an ultrasonic gauge. The inside and outside of bend measurements
begin at the mandrel end θ = 0◦ and finish at the clamp end θ = 90◦. For θ < 0◦ and
θ > 90◦, the measurements were along the straight section of tube and are shown for
completeness as they do not correspond to an angle. The measurements made at the
45◦ position begin at the weld seam φ = 0◦ and continue 360◦ around the tube in the
direction indicated in Figure 10.

The experimental and numerical strain and thickness distribution results are shown
in Figure 11. Experimental strain distributions for the three different measurement
locations are shown as an averaged curve-fit (measured from three tubes) 6th order
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Figure 9. a) tube bender mesh b) tube mesh, not to scale
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Figure 10. Strain and thickness measurement locations [12]

polynomial line. The experimental error bars represent the 3.0% strain scatter of
the circle grid analysis results. The accuracy of the thickness results is 0.001 mm;
therefore no error bars are shown. Experimental results were recorded approximately
every 3.0◦ . Numerical results were manually extracted from the model using post-
processor software at 10◦ increments.

2.4.1. Outside of the Bend Region. For the outside of the bend region, the major
(tensile) strain is in the longitudinal direction of the tube and is the sum of the
membrane and bending strain. The minor (compressive) strain occurs in the hoop
direction of the tube. Figure 11 (a) shows that experimentally, the steady-state region
20◦ < θ < 70◦ experiences an average of 26.0% major strain with a peak of 28.1%
at 65◦, while the steady-state minor strain is approximately -5.0%. Numerically,
the average major strain is 24.2% for the steady-state region with no peak and the
steady-state minor strain is -7.0%. With the exception of the peak strain not being
captured by the model, the experimental and numerical strain distributions show
good agreement.
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Figure 11. Strain and thickness distribution results for a) outside of
the bend, b) inside of the bend, c) and d) 360◦ around the circum-
ference at 45◦

Due to the major strain, thickness is reduced at the outside of the bend. Experi-
mentally, the average steady-state thickness is 1.56 mm (15.7% thinning), while the
numerical models predicted a thickness of 1.60 mm (13.5% thinning). Again, the
experimental and numerical thickness distributions show good agreement with each
other.

2.4.2. Inside of the Bend Region. In this case, the minor (compressive) strain is dom-
inant and along the longitudinal direction of the tube (Figure 11 (b)). It is also the
sum of the membrane and bending strain. The minor (tensile) strain occurs in the
hoop direction. The experimental steady-state region experiences an average major
strain of 3.8% and an average minor strain of -24.3%, while the numerical models
predict an average major strain of 7.0% and an average minor strain of -23.6%. The
experimental and numerical strain distributions show good agreement.

Due to the large minor strain, thickening occurs at the inside of the bend and the
experimental and numerical steady-state average thickness results agree at 2.25 mm
(21.6% thickening), showing excellent agreement.

2.4.3. 360◦ Around the Circumference. Figure 11 (c) shows the strain measured around
the tube circumference at θ = 45◦. For 0◦ < φ < 180◦, the major strain corre-
sponds to the hoop strain and the minor strain is in the longitudinal direction. For
180◦ < φ < 360◦, the major and minor strains reverse and the major strain occurs in



Evaluation of Load Control End-Feed in Hydroforming 143

the longitudinal direction since the bending strain is now tensile. The agreement be-
tween the two distributions is very good with a slight discrepancy at the 270◦ position
where the experimental strain is greater than the numerical strain.

The thickness distribution follows a sinusoidal trend (Figure 11 (d)) and shows a
peak in thickening at the 90◦ position and thinning at 270◦. Although there is a slight
underprediction of thickening and thinning by the numerical model, the agreement is
acceptable.

3. Hydroforming Model

3.1. Hydroforming Process. Hydroforming experiments are conducted on a 1,000
Ton press at the University of Waterloo. Figure 12 shows the hydroforming die and
EF actuator that are used for the experiments. The EF actuators are hydraulic with
250 kip capacity each. For hydroforming, the EF actuator rams are inserted into each
end of the pre-bent tube until the shoulder engages the edge of the tube (Figure 12).
A polymeric o-ring is used to create a seal between the ram and the inside diameter
of the tube. This sealing concept is easy to model and minimizes friction in the seal
region of the tube. A zero EF case was hydroformed experimentally and simulated
numerically. In this case, the ram remains stationary and provides no EF force to
the end of the tube. For the case of load control EF, only numerical models were
simulated with EF loads of 5, 10, 20 and 30 kip.
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Figure 12. Hydroforming die and EF actuator

3.2. Formability Measurement. To evaluate the formability of a hydroformed
tube, CFE was measured. Figure 12 shows a CAD solid model cutaway of the hy-
droforming die. Two linear variable displacement transducers (LVDT) are located on
the inside and outside of the bend at θ = 45◦ and φ = 45◦, 315◦. They are used to
measure the corner expansion of the tube.

The following equation is used to calculate the %CFE using the Figure 13 section,

%CFE =
14.83 − d

14.83
× 100% (3.1)

where d is in mm.
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Figure 13. CFE measurement location section [12]

As d approaches zero, the CFE becomes 100%, which indicates a fully formed tube.
It is possible to have ’negative CFE’. This is due to tube ovalization during bending
or movement of the tube during hydroforming [3, 13]. Due to differences in expansion
at the inside and outside of the bend LVDT’s, the diametrical corner-fill expansion
(DCFE) is also calculated (due to symmetry plane) to quantify the overall formability
of the tube,

%DCFE =
%CFEinside + %CFEoutside

2
(3.2)

3.3. Numerical Model. Similar to the bending model, the hydroforming die and EF
rams were modelled as rigid surfaces with 4-noded shell elements (Figure 14). Also,
the LVDT’s shown in Figure 12 were modelled as a single beam and shell element and
can be seen in Figure 14. To simulate the internal pressurization of the tube, a very
thin shell mesh was created on the inside diameter tube surface. The nodes between
the thin shell mesh and and tube surface were coincident.

LVDT 
(inside)

LVDT 
(outside)

EF Ram

LVDT 
(inside)

LVDT 
(outside)

EF Ram

Figure 14. Meshed hydroforming tools and LVDT’s
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3.3.1. XSFLC Failure Criterion. This section briefly describes the theory which sup-
ports the XSFLC. For a more rigorous derivation, refer to [18]. The XSFLC is based
on the traditional strain-based forming limit (εFLC) curve, as proposed by Keeler et
al. [23] and Goodwin [24]. The εFLC curve plots major principle strain (ε1) vs. minor
principle strain (ε2) at the onset of necking and is derived from plane-stress experi-
ments. No εFLC was available for the DP600 material; therefore it was approximated
using the findings of Keeler and Brazier [25]. The shape of the curve is given and the
plain strain intercept (FLCo) is approximated using the materials’ strain hardening
exponent, n, and sheet thickness, t.

FLCo(%) = (23.3 + 14.14t)
( n

0.21

)
. (3.3)

The εFLC for the DP600 is shown in Figure 15.
Using Stoughton’s method [15], the principal strains (ε1, ε2) from the εFLC are

converted into principal stress-space (σ1, σ2). The x-axis of the XSFLC is the invariant
mean stress (hydrostatic stress) and is calculated from the principal stresses as follows,

σhyd =
σ1 + σ2 + σ3

3
. (3.4)

Since the εFLC was measured under plane-stress conditions, σ3 = 0, and reduces
to,

σhyd =
σ1 + σ2

3
. (3.5)

The y-axis of the XSFLC is the Von-Mises effective stress, which is an invariant
and calculated as follows,

σ̄ =

√
1

2
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] . (3.6)

Again, σ3 = 0, and 3.6 reduces to,

σ̄ =
√
σ2
1 + σ2

2 − σ1σ2 . (3.7)

Using the above procedure, the εFLC is converted into the XSFLC and is shown in
Figure 15. The extrapolated region shown in Figure 15 is assumed due to the uniaxial
stress point (A) of the εFLC.

The following assumptions are made to transform εFLC into the XSFLC,
Assumption 1: The alloys are assumed to be described by the J2 flow theory with

isotropic hardening. Hardening is described by the functional relationship σ̄ = σ̄(ε̄p).

Assumption 2: The invariants: effective stress and means stress that characterize
the formability limit under plane stress loading are representative of the formability
limit under three-dimensional stress states.

In order to attain realistic prediction for the pre-bent hydroformed parts, two ad-
ditional assumptions are required to take into account the tensile and compressive
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Figure 15. : a) εFLC b) XSFLC [18]

pre-strain created by the pre-bending operation.

Assumption 3: The formability of a material element that has a tensile effective
tensile pre-strain at the end of bending, ε̄p, is assumed to be max[σ̄(ε̄p), σ̄XSFLC ].

Assumption 4: The formability of a material element that has a compressive effec-
tive plastic pre-strain at the end of bending, ε̄p, is assumed to be max[σ̄(2ε̄p), σ̄XSFLC ].

3.3.2. Model Implementation. As previously mentioned, LS-DYNA v970 was used to
simulate the bending, springback, die close and hydroforming operations. In order to
use the XSFLC to predict the onset of necking in hydroforming, a user subroutine
was programmed to model the tube material. The XSFLC serves as an input to
the subroutine. In addition to implementing the stress update for the element, the
subroutine also tracks whether the load path (σhyd, σ̄) for each element has crossed
the XSFLC. A formability variable, γ, for a given σhyd, is defined as follows [17, 18],

γ =
σ̄

σXSFLC
0 ≤ γ ≤ 1 (3.8)

All of the simulations with exception to springback were modelled with the XS-
FLC subroutine. Using the post processor software LS-PREPOST, contours of γ are
plotted to determine when the onset of necking has occurred. It is convenient to
represent γ as binary to determine time of necking. Necking is said to occur when all
five through thickness elements have crossed the XSFLC curve as shown in Figure 16.

3.3.3. Pressurization and EF Load Schedules. The hydroforming simulations for this
work include a zero EF case and four different levels of load control EF. All of the
hydroforming simulations were run in 13.0 msec. The first millisecond for all of the
simulations was reserved for the activation of the simulated LVDT’s (Figure 17).

For the zero EF case, the EF ram displacement was set to zero for the entire
simulation. The internal pressure was linearly increased from zero at 1.0 msec to
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Figure 16. Failure locations during hydroforming using the XSFLC
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12.0 ksi at 13.0 msec using the *AIRBAG_LINEAR_FLUID card in LS-DYNA [26]
(Figure 17).

For the load control EF simulations, the scaled EF load curve shown in Figure 17
was used. The EF load was varied at 5, 10, 20 and 30 kip (for a full tube). The y-
coordinate points of the scaled EF load curve were multiplied by the appropriate EF
load scale factor for each simulation. *LOAD_RIGID_BODY [26] cards were used to
apply the load in the appropriate direction of action for each ram. Full EF load was
applied (ramped) from 2.0 to 3.0 msec of the simulation and remained constant until
the end of the simulation. Two different pressurization schemes were used for each
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different EF load case. The previously mentioned linear pressurization scheme was
used with an additional pre-pressurization scheme. The pre-pressurization scheme
increased the internal pressure from zero at 1.0 msec to 4.7 ksi at 2.0 msec. The
pressure then increased linearly to 12.0 kip at 13.0 msec. The pre-pressurization
pressure of 4.7 ksi is just below the pressure required to yield the tube. This scheme
was selected to show if the effect of pre-stressing the tube would affect the formability
during hydroforming.

3.4. Hydroforming Results. Using the XSFLC, three distinct failure areas were
observed for every simulation. These failure locations can be seen in Figure 16. Al-
though the inside failure location consistently occurred at the lowest internal pressure,
all three regions will be discussed. Figure 18 shows the results of the hydroforming
simulations.
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Figure 18. CFE and necking pressure results

3.4.1. Zero End-Feed Case. This EF case was tested experimentally and modelled for
the work done by Simha et al. [18]. In the experiment, the tube failed at approxi-
mately 6.9 ksi in the middle failure location as shown in Figure 19.

The XSFLC predicted the first failure occurrence at the outside location when the
internal pressure reached 7.3 ksi. The next failure occurred at the inside location at
7.9 ksi while the correct middle failure location was predicted at 8.3 ksi. The XSFLC
overpredicted the failure pressure by 12%, which is acceptable. The additional failure



Evaluation of Load Control End-Feed in Hydroforming 149

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35

End-Feed Load (kip)

C
or

ne
r-

Fi
ll 

E
xp

an
si

on
 (%

)

-6

-4

-2

0

2

4

6

8

10

12

14

N
ec

ki
ng

 P
re

ss
ur

e 
(k

si
)

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30 35

End-Feed Load (kip)

C
or

ne
r-

Fi
ll 

E
xp

an
si

on
 (%

)

0

1

2

3

4

5

6

7

8

N
ec

ki
ng

 P
re

ss
ur

e 
(k

si
)

OUTSIDE CFE INSIDE CFE DIAMETRICAL CFE PRESSURE

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35

End-Feed Load (kip)

C
or

ne
r-F

ill
 E

xp
an

si
on

 (%
)

-8

-6

-4

-2

0

2

4

6

8

10

12

N
ec

ki
ng

 P
re

ss
ur

e 
(k

si
)

OUTSIDE CFE INSIDE CFE DIAMETRICAL CFE PRESSURE

OUTSIDE CFE INSIDE CFE DIAMETRICAL CFE PRESSURE

0%

10%

20%

30%

40%

50%

60%

70%

IN
SID

E

OUTSID
E

MID
DLE

IN
SID

E

OUTSID
E

MID
DLE

IN
SID

E

OUTSID
E

MID
DLE

IN
SID

E

OUTSID
E

MID
DLE

IN
SID

E

OUTSID
E

MID
DLE

D
ia

m
et

ric
al

 C
or

ne
r-

Fi
ll 

E
xp

an
si

on
 R

at
io

 (%
) Linear Pressurization

Pre-Pressurization

Zero EF 5kip 
EF Load

30kip 
EF Load

20kip 
EF Load

10kip 
EF Load

Linear Pressurization

Pre-Pressurization

a) b)

d)c)

INSIDE FAILURE OUTSIDE FAILURE

MIDDLE FAILURE

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35

End-Feed Load (kip)

C
or

ne
r-

Fi
ll 

E
xp

an
si

on
 (%

)

-6

-4

-2

0

2

4

6

8

10

12

14

N
ec

ki
ng

 P
re

ss
ur

e 
(k

si
)

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30 35

End-Feed Load (kip)

C
or

ne
r-

Fi
ll 

E
xp

an
si

on
 (%

)

0

1

2

3

4

5

6

7

8

N
ec

ki
ng

 P
re

ss
ur

e 
(k

si
)

OUTSIDE CFE INSIDE CFE DIAMETRICAL CFE PRESSURE

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35

End-Feed Load (kip)

C
or

ne
r-F

ill
 E

xp
an

si
on

 (%
)

-8

-6

-4

-2

0

2

4

6

8

10

12

N
ec

ki
ng

 P
re

ss
ur

e 
(k

si
)

OUTSIDE CFE INSIDE CFE DIAMETRICAL CFE PRESSURE

OUTSIDE CFE INSIDE CFE DIAMETRICAL CFE PRESSURE

0%

10%

20%

30%

40%

50%

60%

70%

IN
SID

E

OUTSID
E

MID
DLE

IN
SID

E

OUTSID
E

MID
DLE

IN
SID

E

OUTSID
E

MID
DLE

IN
SID

E

OUTSID
E

MID
DLE

IN
SID

E

OUTSID
E

MID
DLE

D
ia

m
et

ric
al

 C
or

ne
r-

Fi
ll 

E
xp

an
si

on
 R

at
io

 (%
) Linear Pressurization

Pre-Pressurization

Zero EF 5kip 
EF Load

30kip 
EF Load

20kip 
EF Load

10kip 
EF Load

Linear Pressurization

Pre-Pressurization

a) b)

d)c)

INSIDE FAILURE OUTSIDE FAILURE

MIDDLE FAILURE

Inside

Outside

Middle Middle

Mandrel 
End

Clamp 
End Mandrel 

End
Clamp 
End

Figure 19. Numerical and experimental results for the zero EF case [18]

locations that were predicted are likely due to the approximations made for the DP600
material. These sources of error include the stress-strain curve (bulge test data is more
accurate) and the approximated εFLC. In [17, 18], these approximations were not
made for straight and pre-bent aluminium tube and the results showed significantly
more accurate predictions.

3.4.2. End-Feed Case. Due to the prediction of multiple failure locations, the results
for the inside, outside and middle failure locations will be discussed.

Inside Failure Location
This failure location was the first to occur for all of the EF levels and both pres-

surization schemes. Figure 18 (a) shows an increase in outside CFE from 44% to
approximately 60% for both pressurization schemes. The inside CFE has a decreas-
ing trend from a CFE of 25% at zero EF to 9% for the pre-pressurization scheme.
The negative CFE for linear pressurization was due to extreme buckling of the tube.
Buckling is a result of excessive EF load, which forces the outside radius of the tube
to form more than the inside radius of the tube as shown in Figure 20. In addition
to the effect of EF load, the thinner outside radius region of the tube is more easily
deformed than the thicker inside region of the tube. Buckling usually disappears as
the internal pressure of the tube increases and forms the inside CFE region more. The
effect of buckling is never entirely removed from the tube and results in the condition
that outside CFE is always greater than the inside CFE for all cases and EF levels.
At high levels of EF, risk of wrinkling occurs due to excessive EF force (Figure 20).

The DCFE remains constant as EF increases for both pressurization schemes (with
exception to linear pressurization at 30 kip). This trend is opposite to that of the
published work on the effects of EF on the hydroforming of axial members. The
failure pressure also decreases from 7.9 ksi at zero EF to 5.5 ksi at 30 kip EF.

Figure 21 (a) and (b) shows the stress-path in the last element to cross the XSFLC
at each failure location. The elements were on the outer layer of the tube. The paths
do not begin at the origin due to the non-zero stress after springback. Figure 21 (b)
indicates that failure on the inside occurred after the path surpassed the XSFLC. This
is because a new hardening limit was reached in pre-bending (Assumption 4). For
the path of the inside element, no contact with the die is made. Initially, the EF load
is dominant in the longitudinal direction (compression), but as the internal pressure
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CFE
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Inside 
CFE

Figure 20. Numerical hydroforming models showing buckling, wrin-
kling and CFE

increases and friction retards the material flow longitudinally, the dominant stress
becomes tensile and is in the hoop direction as the tube experiences free-expansion.
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Figure 21. a) and b) Stress-paths for the three failure location ele-
ments, pre-pressurization 20 kip case, c) stress-path for inside element
failure for increasing EF cases.

Figure 21 (c) is a plot of the stress-path for the inside failure location element at
zero, 10 and 20 kip EF. It serves to show how increasing EF affects the stress-path of
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the inside element. The trend shows a negative shift along the mean stress axis, as EF
increases. This shift is due to an increasing compressive stress component (from EF)
in the axial direction of the tube. The effective stress also increases with increasing EF
along the effective stress axis. Because the stress-path is in the extrapolated region
of the XSFLC at higher EF, the assumption of this extrapolation needs to be verified
experimentally. This is also the case for the outside element failure stress-path shown
in Figure 21 (a) and (b).

Outside Failure Location
This failure location was the second to occur for all of the EF levels and both

pressurization schemes. For the linear pressurization scheme, Figure 19 (b) shows
an increase in outside CFE from 40% to approximately 66% and 59% for the pre-
pressurization scheme. The inside CFE has the expected increasing trend as well with
a CFE of 19% at zero EF to 43% for the linear pressurization scheme and to 32% for
pre-pressurization. The DCFE increases for the linear pressurization and decreases
(after 10 kip case) for the pre-pressurization case, making the linear pressurization
scheme more favourable. The failure pressure increases from 7.3 ksi at zero EF to 11.0
ksi at 30 kip EF for the linear pressurization scheme. Whereas the pressure increases
and then decreases to 7.9 ksi for the pre-pressurization scheme.

The outside failure element is in contact with the die cavity at the beginning of
the simulation. A dominant compressive principal stress in the longitudinal direction
is due to the EF load which causes the mean stress to be negative (Figure 21). As
friction between the tube and die wall increases due to the internal pressure, the
material flow is impeded longitudinally and the dominant stress becomes tensile and
in the hoop direction. The compressive through-thickness stress component becomes
equivalent to the compressive longitudinal stress component during the simulation,
but both are considerably less than the hoop stress component.

Middle Failure Location
The most promising results come from this failure location because of the experi-

mental findings for the zero EF case. Almost no differences existed between the two
pressurization schemes. It should be noted that the final prescribed internal pressure
of 12.0 kip was achieved for the 20 and 30 kip EF cases. Figure 19 (c) shows that the
outside CFE increases from 46% to 69% and the inside CFE increases from 28% to
48%. The DCFE also increases from 37% to 59%. There is potential for greater CFE
due to the fact that necking pressure was not achieved by the 20 and 30 kip cases.
The necking pressure increases from 8.2 ksi at zero EF to the maximum prescribed
12.0 ksi at 20 and 30 kip EF.

The middle failure element is in contact with the die wall at the beginning of
the simulation. There is no dominant stress component for the first part of the
simulation with a tensile stress in the hoop direction and smaller compressive stresses
in the longitudinal and through-thickness directions. Near the end of the simulation, a
dominant tensile stress occurs in the hoop direction and a smaller tensile stress forms
in the longitudinal direction. A small through-thickness component is also present
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near the end of the simulation and causes the stress-path to curve left as shown in
the zoomed graph in Figure 21. The effective stress at this location never reaches the
XSFLC and is therefore safe for the 20 kip EF case in Figure 21.

4. Conclusions

Based on the investigation into the effect of load control EF on the formability of
DP600 steel tube using the XSFLC, the following conclusions can be made:

• The mandrel rotary-draw tube bending operation was successfully modelled
using the material properties extracted from uniaxial tensile tests and the
coefficients of friction from the twist compression test. The strain and thickness
distributions were accurately predicted and validated with experimental data.

• The XSFLC was shown to closely predict the failure (necking) pressure for
the zero EF case. Other failure locations were also predicted, but within a
close necking pressure range, causing questions to arise about the stress-strain
relationship used and the approximated εFLC for the DP600.

• With the application of load control EF, the prediction of failure at the three
distinct locations resulted in different trends for CFE (Figure 18 (d)). The first
location to fail for all models was at the inside which resulted in no change in
formability for increasing levels of EF. The outside and middle failure locations
indicated the expected results of increasing formability due to increased EF.
This will be verified experimentally at the University of Waterloo

• The effect of pre-pressurization showed that it prevents buckling at the highest
level of EF for the inside failure location results. Linear pressurization was
shown to be advantageous for the outside necking location results.

• For the inside and outside necking locations, the effect of the through-thickness
compressive stress component causes a shift in the stress-space load path, prov-
ing it is important to consider in hydroforming.
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Abstract. Relying on his theoretical and experimental examinations, O. Reynolds arrived
at the conclusion that the Navier-Stokes equation of motion describing laminar flow contin-
ues to remain valid in terms of velocity fields interpreted by instantaneous values when the
fluid is in turbulent motion. Th. von Kármán also used experimental experience to con-
struct his similarity hypothesis [1], according to which, on the one hand, outside the viscous
layer close to the wall, the turbulent velocity distribution does not depend on the viscosity
of the medium, and on the other, the local (turbulent) flow patterns show mechanical sim-
ilarities in points of the fully developed turbulent flow field; in other words each of them
can be transferred into a common (turbulent) flow pattern by means of a suitably chosen
transformation.
The turbulence model used in this paper also relies on the same hypothesis. The model’s

fundamental principle can be summed up in the following words: in any point of the flow
field the Helmholz-Thomson vortex theorem valid in the relative coordinate system - that is
a coordinate system moving steadily at a velocity equal to the average Reynolds velocity in
the given point - is suitable for describing the turbulent velocity fluctuation, thus it can be
considered to be the equation of motion of turbulence, which then can be transformed, on the
basis of von Kármán’s similarity hypothesis, into the coordinate system of the common flow
pattern mentioned. And a particular solution to the partial differential equation obtained
can be used to represent the stochastic flow of the turbulence while the optional coefficients
and phase constants appearing in it as integration constants are considered to be probability
variables. By using the scalar components of the turbulent velocity fluctuation obtained in
this way – in this special relative coordinate system – it is possible to produce the scalar
elements of Reynolds’ turbulent stress tensor, which can be re-transformed into the physical
space on the basis of mechanical similarity. Thus, by using the stochastic turbulence model
it becomes possible to produce Reynolds’ turbulent stress tensor in a specific way, which in
the transport equations of turbulent motion leads to formal changes that can be used in the
numerical solutions with advantage.
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1. Governing equations of turbulent motion

The turbulent motion of a fluid continuum in the Eulerian approach can be described
by the superposition of two velocity fields depending on place and time: one is velocity
fluctuation changing rapidly and in a stochastic way in time, and the other velocity
field determines the motion of the fluid continuum without fluctuations but showing
changes in time. The latter can naturally be a motion constant with time, when
we have to do with the steady flow of the continuum; by contrast the velocity field
describing turbulent fluctuation is invariably a function of time. Each characteristic
of the instantaneous state of motion (scalar, vector or tensor) can be considered to be
composed of two components: instantaneous value = mean value + fluctuation. The
mean value – i.e. the Reynolds time average – is an integral mean value of a given
motion characteristic referring to a time interval t0 that is relatively big compared to
the period of turbulent fluctuation:

f(x, t) =
1

t0

t+t0∫
t

fT (x, τ)dτ , (1.1)

where x is the vector of place, t is time; the function f(x, t) may interpret a scalar,
vector or tensor field; and the subscript T here refers to ‘instantaneous value’. The
Reynolds time-mean of the fluctuation is naturally zero. Accordingly, the instanta-
neous velocity field of the fluid continuum performing the turbulent motion can be
written in the form

vT (x, t) = v(x, t) + v′(x, t) , (1.2)
where v(x, t) is the Reynolds mean velocity field and v′(x, t) is the velocity field of
turbulent fluctuation. The curl of the velocity leads to the instantaneous vortex field,
which is also the sum of two components, the Reynolds mean vortex field and the
turbulent fluctuation field:

ΩT (x, t) = ∇× vT = Ω(x, t) + Ω′(x, t) . (1.3)

The surface forces (caused by molecular viscosity) arising between the fluid particles
are also subject to stochastic fluctuation in the instantaneous velocity field of the
turbulent flow; i.e. the instantaneous value of the tensor field expressing the stresses
arising on the surface of the fluid components can be given similarly in the form

F T (x, t) = F (x, t) + F ′(x, t) , (1.4)

where tensor F (x, t) expresses the Reynolds’ time-mean value, and tensor F ′(x, t)
expresses the fluctuation caused by the turbulence; the time-mean value of the latter
being also zero. With respect to the fact that pressure in a viscous fluid in motion
is equal to the negative of the first scalar invariant of the stress tensor, the following
relationship:

pT = −1

3
(F11 + F22 + F33)− 1

3
(F ′11 + F ′22 + F ′33) = p+ p′ ,

where p′ is turbulent pressure fluctuation, and p is thermodynamic pressure (the
pressure in the thermodynamic equation of state of the medium in flow), holds for
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the instantaneous value of pressure in a turbulent flow as follows from equation (1.4).
Accordingly, the Reynolds time-mean of instantaneous turbulent pressure is equal to
thermodynamic pressure. In our investigation we tend to suppose that the Stokes
molecular viscosity law also holds for the instantaneous turbulent motion of a viscous
fluid:

F T = −pT I + η

[
(vT ◦ ∇+∇ ◦ vT )− 2

3
(∇ · vT ) I

]
, (1.5)

where η is the dynamic viscosity factor (considered constant), and I is unit ten-
sor. Assuming that, on the one hand, the law of the conservation of mass continues
to hold for the turbulent motion of the fluid continua, and that, on the other, the
Navier-Stokes equation of motion gives an appropriate description of the instanta-
neous motion as well, in the velocity field of turbulent flow interpreted by means of
instantaneous values, the equation of continuity expressing the conservation of mass
can be written in the form

∂ρT
∂t

+∇ · ρTvT = 0 (1.6)

and the Navier-Stokes equation of motion can be given in the form

ρT
∂vT
∂t

+ ρT (vT · ∇) vT = ρTg + Div F T , (1.7)

where g is the specific value of the field force referring to a mass unit. If the medium
in flow is incompressible (ρT = ρ = const), the equation of continuity takes the form
∇ · vT = 0, from which it follows that for an incompressible medium the turbulent
fluctuation is ∇ · v′ = 0 also for the velocity field of v′(r, t). Now, substituting the
expression vT = v + v′ into the above equations and taking the time-mean value of
each member, in the v(r, t) Reynolds mean velocity field the equation of continuity
and the equation of motion take the following forms:

∇ · v = 0 (1.8)

ρ
∂v

∂t
+ ρ (v · ∇) v = ρg −∇p+ η∆v + Div FR , (1.9)

respectively, where FR is the Reynolds turbulent stress tensor:

FR = −ρ(v′ ◦ v′) . (1.10)

This tensor expresses a surface force in the Reynolds equation of motion (1.9) in the
same way as the viscous stress tensor does, which, however, originates not from the
molecular viscosity of the fluid, but from the change of momentum due to turbulent
velocity fluctuation.

It should be noted that for the laminar flow of an incompressible medium developing
in a potential field of force (g = −∇U ; U being the potential of the field of force) the
equation of motion (1.9) will take the form

ρ
∂v

∂t
+ ρ (v · ∇) v = −ρ∇U −∇p+ η∆v (1.11)

of the Navier-Stokes equation of motion, which, when supplemented with the equation
of continuity ∇·v = 0, gives a system of equations (consisting of a total of four scalar
differential equations) for the purpose of determining the four unknown functions
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(the three components of velocity and the pressure). In the laminar case the three
scalar equations of motion and the equation of continuity thus form a closed system
of equations for determining the four unknown functions. In the case of turbulent
flow, however, the equation of motion (1.9) – since the turbulent stress tensor FR
introduces new unknowns into it – does not form a closed system with the equation
of continuity (1.8) any more.

In order to develop the equation of equilibrium of internal energy, our starting
point is the theorem of the conservation of energy referring to transport processes,
which is written for an incompressible medium in the velocity field of turbulent flow
interpreted by instantaneous values for the case without dissipation heat transfer:

ρcP

(
∂TT
∂t

+ (vT · ∇)TT

)
= ∇ · (λ∇TT ) + (σT · ∇) · vT , (1.12)

where cP is the specific heat of the medium in flow under constant pressure, λ is its
thermal conduction coefficient, and σT is the deviator of the turbulent stress tensor
F T interpreted by instantaneous values, for which the Stokes formula of the form

σT=η (vT ◦ ∇+∇ ◦ vT )

holds. Substituting relationship (1.2) into the above equation of the conservation of
energy, and then taking the time-mean value of each member, a short calculation
gives the scalar equation of the form

ρcP

(
∂T

∂t
+ (v · ∇)T

)
= ∇ · (λ∇T )− ρcP∇ · (v′T ′) + ρ(ϕ+ ε) , (1.13)

where the first member on the right-hand side is an expression of molecular heat
transport and the second one is that of turbulent heat transport; the third and the
fourth member gives direct (viscous) dissipation and turbulent dissipation, resp.:

ϕ = ν (v ◦ ∇): (v ◦ ∇+∇ ◦ v) ; ε = ν(v′ ◦ ∇) : (v′ ◦ ∇+∇ ◦ v′) , (1.14)

where ν is the kinematic viscosity factor (ν = η/ρ).
By way of summary of the above it can be stated that from the point of the

solubility of a problem of non-isothermal turbulent flow three equations – the equation
of continuity (1.8), the Reynolds equation of motion (1.9) and the energy equation
(1.13) – are already available to determine the unknown velocity distribution v(x, t),
the pressure distribution p(x, t) and the temperature distribution T (x, t), but further
unknown functions also appear in the equations: a) in equation (1.9) the turbulent
stress tensor FR, b) in equation (1.13) the turbulent dissipation ε as well as the
velocity-temperature correlation v′T ′. Thus the number of unknowns is higher than
the number of scalar differential equations at our disposal for solving them; i.e. the
system of differential equations to be solved is underdetermined. It follows that in
order to solve a given problem of turbulent flow, it is necessary to supplement the
system of equations constituted by the equation of continuity, the Reynolds equation
of motion and the equation of equilibrium of internal energy with further equations.

In order to develop the equation of equilibrium of the specific turbulent kinetic
energy defined by equation k = v′ · v′/2, the Navier-Stokes equation (1.7) of the fluid
continuum moving in the velocity field vT (x, t) interpreted by instantaneous values
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is first multiplied scalarly by the velocity vector v′ of turbulent fluctuation, then its
time-mean value is taken, and then after ordering the following expression

dk

dt
+
(
v′ ◦ v′

)
: (∇ ◦ v) + v′ · ∇v′ · v′

2
+

1

ρ
v′ · ∇p′ − νv′ ·∆v′ = 0 (1.15)

is obtained. Let us now take into account that for an incompressible fluid the following
two equalities

∇

[
v′
(

v′ · v′
2

+
p′

ρ

)]
= v′ · ∇v′ · v′

2
+

1

ρ
v′ · ∇p′ (1.16)

∆
v′ · v′

2
= v′ ·∆v′ + (v′ ◦ ∇) : (v′ ◦ ∇+∇ ◦ v′)− (v′ ◦ ∇) : (∇ ◦ v′)

hold. After ordering and taking the time-mean value, the latter gives the following
equation

v′ ·∆ v′ = ∆
v′ · v′

2
− (v′ ◦ ∇) : (v′ ◦ ∇+∇ ◦ v′) + (v′ ◦ ∇) : (∇ ◦ v′) ,

which, multiplied by the kinematic viscosity factor ν and taking into account the
definition equation (1.14) of the turbulent dissipation ε, results in the following:

νv′ ·∆ v′ = ν∆k − ε+ ν(v′ ◦ ∇) : (∇ ◦ v′) .

Let us now determine first the divergence of tensor v′ ◦ v′:

Div (v′ ◦ v′) = (v′ ◦ v′) · ∇ = (v′ · ∇) v′

and then also the divergence of the vector obtained, and take the time-mean value of
the latter:

∇ ·
[
Div

(
v′ ◦ v′

)]
= (v′ ◦ ∇) : (∇ ◦ v′) .

Using the former relations gives the following:

νv′ ·∆ v′ = ν∇ ·
[
∇k + Div

(
v′ ◦ v′

)]
− ε (1.17)

for the fifth term of equation (1.15). Substituting the relations (1.16) and (1.17) into
equation (1.15) gives the equation of equilibrium of turbulent kinetic energy in the
form

dk

dt
+
(
v′ ◦ v′

)
: (∇ ◦ v) + ε+∇ ·

[
v′
(

v′ · v′
2

+
p′

ρ

)
− ν∇k − ν Div

(
v′ ◦ v′

)]
= 0 ,

(1.18)
which can be used as the supplementary equation of the system of equations con-
stituted by the equation of continuity (1.8), the equation of motion (1.9) and the
equation of equilibrium of internal energy (1.13).
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2. Vortex theorems in turbulent flow

The German H. Ertel and the Russian A. A. Friedmann [2] showed independently of
each other that if in a fluid continuum moving in a given velocity field v(x, t) there
is also a second arbitrary vector field a(x, t) given, then the necessary and sufficient
condition that the vector lines determined by the equation a × dx = 0 should be
constituted during the complete time of the motion by the same fluid particles and
that the intensity a · dA = a dAn of the elementary vector tubes constituted by the
vector lines should remain unchanged is that the vector function a(x, t) should satisfy
the requirement of the following equation:

∂a

∂t
+ (v · ∇) a− (a · ∇) v + a (∇ · v) = 0 . (2.1)

After ordering and taking the rotations of all the members of the equation of motion
(1.7) of the motion of the fluid developing in the turbulent velocity field vT (x, t)
interpreted by instantaneous values, in case of a potential force field gives the equation
of the form

∂ΩT

∂t
+ (vT · ∇) ΩT − (ΩT · ∇) vT + ΩT (∇ · vT ) = ν∆ΩT , (2.2)

which is nothing else but the Helmholz-Thomson vortex theorem referring to the
turbulent vortex field ΩT (x, t) interpreted by instantaneous values. In line with
the Ertel-Friedmann theorem of vector-line conservation (2.1), thus in case of the
turbulent flow of a compressible barotrope medium in a potential force field the in-
stantaneous vortex lines determined by the equation ΩT × dx = 0 do not remain
unchanged, but are diffused into the surroundings, however, they remain unchanged,
while ν tends to 0.

The vortex theorem concerning the velocity field v(x, t) interpreted by turbulent
mean values is obtained from the vortex theorem (2.2) concerning the velocity field
vT (x, t) interpreted by instantaneous values by substituting ΩT = Ω+Ω′ and taking
the time-mean values:

∂Ω

∂t
+ (v · ∇) Ω− (Ω · ∇) v + Ω (∇ · v) = ν∆Ω +∇× (v′ ×Ω′) . (2.3)

Comparing this now with Ertel-Friedmann’s theorem of conservation (2.1), it can be
stated that in the velocity field interpreted by the turbulent mean velocity the vortex
lines determined by the differential equation Ω × dx = 0 do not remain unchanged
with the limit of ν tending to 0, but become diffused in the surroundings during
the motion. The extent of vortex diffusion is determined by the expression on the
right-hand side of equation (2.3): the first member is the viscosity of the medium in
flow and the second one expresses the extent of vortex diffusion caused by turbulent
exchange of momentum.

The vortex theorem regarding the velocity field of turbulent fluctuation v′(x, t) is
obtained by the following train of thought. Let us consider the turbulent motion of
a compressible barotrope fluid continuum in the surroundings of an arbitrarily fixed
point P in the field. Let the turbulent mean velocity in the point be vP and the
vortex vector ΩP = ∇×vP . In the surroundings of the fixed point P in an arbitrary
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running point Q

vT = vQ + v′ ; ΩT = ∇× vT = ΩQ + Ω′ (2.4)

are the turbulent instantaneous values. Since the extent of change in the time-mean
velocity is by several orders smaller than that of turbulent fluctuation, the general
validity is not restricted if – in the examination of the velocity field of turbulent
fluctuation – the turbulent mean velocity field is considered to be steady (stationary)
and thus velocity vP and the vortex vector ΩP are regarded as constant. The vortex
theorem (2.2) concerning the instantaneous turbulent velocity field is evidently valid
also when seen from the relative coordinate system, whose origin performs a steady
motion at the same speed as velocity vP dominant in point P . In other words, it is
possible to write the vortex theorem of the form

∂ΩT

∂t
+ [(vT − vP ) · ∇] ΩT − (ΩT · ∇) (vT − vP ) + ΩT [∇ · (vT − vP )] = ν∆ΩT

for the vortex field ΩT in the relative velocity field vT − vP . Let us now substitute
the relationships (2.4) into this equation and then take boundary transition Q → P
together with vQ → vP and ΩQ → ΩP :

∂

∂t
(ΩP + Ω′) + (v′ · ∇) (ΩP + Ω′)− [(ΩP + Ω′) · ∇] v′+

+ (ΩP + Ω′)∇ · v′ = ν∆ (ΩP + Ω′) .

However, the vortex vector ΩP is constant in this equation, and therefore its deriva-
tives (both according to time and to place) disappear. And since it can no longer
lead to misunderstandings, subscript P can also be omitted from the vortex vector,
and thus the former equation gives the vortex theorem of the form

∂Ω′

∂t
+ (v′ · ∇) Ω′ − (Ω′ · ∇) v′ + Ω′ (∇ · v′) = (Ω · ∇) v′ −Ω (∇ · v′) + ν∆Ω′ (2.5)

in the velocity field v′(x, t) of turbulent fluctuation. Accordingly, the vortex lines
determined by the equation Ω′ × dx = 0 in the velocity field of turbulent fluctuation
do not remain unchanged in the case ν → 0 either, but get diffused during the motion
into the surroundings. With respect to the fact that, the higher Reynolds number
the flow has (the better developed the turbulence is), the easier it is to neglect the
intensity of viscous vortex diffusion as compared to that of turbulent vortex diffusion,
the third term on the right-hand side of the above vortex theorem can be neglected,
and the equation

∂Ω′

∂t
+ (v′ · ∇) Ω′ − (Ω′ · ∇) v′ + Ω′ (∇ · v′) = (Ω · ∇) v′ −Ω (∇ · v′) (2.6)

thus obtained can be considered to be the equation of motion of turbulent fluctuation
arising in the vicinity of an arbitrary point P of the flow, which equation describes
the instantaneous motion of a compressible barotropic fluid continuum in a relative
coordinate system with the same velocity as the Reynolds mean velocity.
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3. Stochastic turbulence model

The turbulent motion pattern arising in an arbitrary point of the flow field is examined
in a suitably chosen special relative coordinate system that moves steadily at the same
velocity as the Reynolds mean velocity in the given point and following von Kármán’s
[1] similarity hypothesis, it is assumed that, on the one hand, the turbulent motion
patterns in all the points of the field are mechanically similar to each other, therefore
all of them can be transformed into a common motion pattern, and, on the other
hand, the viscosity of the medium filling the field of this common motion pattern
is zero. Solving the equation of motion (2.6) of turbulent fluctuation in the relative
coordinate system of the common motion pattern results in the scalar components
of the velocity fluctuation, and they can be used to determine the scalar components
of the Reynolds turbulent stress tensor, which, in line with the similarity hypothesis,
are also components of the common motion pattern.

In flows surrounded by solid walls the velocity vector v and the vortex vector
Ω = ∇× v are not parallel vectors, and thus in these flows it is not always possible
to interpret a special curvilinear orthogonal coordinate system, in which one set of
coordinate lines is formed by the vortex lines (therefore one base vector is parallel to
the vortex vector), i.e. in an arbitrary fixed point one coordinate surface will always
be perpendicular to the vortex vector. If in this point the tangent plane of the other
coordinate surface is given by the surface formed by the velocity vector v and the
vortex vector Ω = ∇×v, then the normal of the third coordinate surface is necessarily
parallel to the vector v× (∇×v), and the base vectors of the given special curvilinear
orthogonal coordinate system (Figure 1) will be as follows:

e′3 = −Ω

Ω
; ; e′2 =

v ×Ω

|v ×Ω|
=

1√
1− S2

(
v

v
× Ω

Ω

)

e′1 = e′2 × e′3 =
1√

1− S2

(
v

v
− SΩ

Ω

)
; v = |v| ; Ω = |Ω| ; S =

e

v
· Ω

Ω
.

This special coordinate system will be the natural coordinate system in what follows.
The transformation between the calculation coordinate system determined by the
base vectors e1, e2, e3 and the previous natural coordinate system based on e′1, e′2,
e′3 can be performed by means of the tensor (and its transposed) given by the following
dyadic product sums of the base vectors:

E = e′1 ◦ e1 + e′2 ◦ e2 + e′3 ◦ e3 ; ; ET = e1 ◦ e′1 + e2 ◦ e′2 + e3 ◦ e′3 .

The transformation of vector and tensor fields from the natural coordinate system
x′1, x

′
2, x
′
3 into the calculation coordinate system x1, x2, x3 is:

a(x1, x2, x3) = E · a(x′1, x
′
2, x
′
3) (3.1)

A(x1, x2, x3) = E ·A(x′1, x
′
2, x
′
3) ·ET . (3.2)
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Figure 1. The three coordinate systems interpreted in an arbitrary
point of the flow: the calculation coordinate system x1, x2, x3, the
natural coordinate system x′1, x

′
2, x
′
3 and the relative coordinate sys-

tem ξ, η, ζ with steady motion at a velocity equalling v.

Turbulent fluctuation is investigated separately from the turbulent main motion
arising in the Reynolds mean-velocity field v(x, t) in the relative coordinate system,
which moves steadily at a velocity equalling the Reynolds mean velocity valid in the
given point and whose axis is parallel to that of the natural coordinate system (Figure
1) and whose base vectors are the same as those of the natural coordinate system. In
this relative coordinate system the differential operators ∇ and Ω · ∇ are as follows:

∇ =
e′1
H ′1

∂

∂x′1
+

e′2
H ′2

∂

∂x′2
+

e′3
H ′3

∂

∂x′3
; Ω · ∇ = −Ω(e′3 · ∇) = − Ω

H ′3

∂

∂x′3
,

where H ′i ( i = 1, 2, 3) means the Lamé metric coefficients of the relative coordinate
system x′1, x

′
2, x
′
3 , which are identical with the metric coefficients of the natural

coordinate system. Next – also with respect to the relationship Ω′ = ∇ × v′ – the
equation of motion of turbulent fluctuation is obtained from equation (2.6) – assuming
an incompressible medium – in the given relative coordinate system in the following
form:

∂ (∇× v′)

∂t
+ (v′ · ∇)(∇× v′)− [(∇× v′) · ∇] v′ = − Ω

H ′3

∂v′

∂x′3
. (3.3)

According to hydro-mechanic evidence, we can talk about the similarity of two mo-
tion processes if their equations of motion can be transformed into each other by
means of suitably chosen (geometric and dynamic) transformations. This requires
that there exist accurately determined relationships between the scales (the conver-
sion factors of the geometric and physical quantities in the equation of motion) used
in the transformation, which will then create the necessary conditions of similarity.
For the curvilinear orthogonal coordinates of place of the relative coordinate system
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x′1, x
′
2, x
′
3 the geometric transformations

H ′1dx
′
1 = MLdξ ; H ′2dx

′
2 = MLdη ; H ′3dx

′
3 = MLdζ (3.4)

are introduced with the length scale ML, which will transform the physical space
of the velocity fluctuation into the points of the space described by the orthogonal
coordinates ξ, η, ζ so that the point of origin O(0, 0, 0) of the coordinate system ξ, η, ζ
should correspond to the fixed point P (Figure 1). The corresponding base vectors of
the two coordinate systems are identical with the base vectors of the natural coordi-
nate system. Let us also introduce the physical transformations

dt = MT dτ and v′ (x′1, x
′
2, x
′
3, t) = MV w′ (ξ, η, ζ, τ) (3.5)

for the time coordinate and the velocity fluctuation, respectively, where MT is the
time scale and MV is the transformation scale of turbulent velocity fluctuation. This
transformation maps the turbulent motion of the fluid continuum investigated arising
in the vicinity of an arbitrary point P of the physical space onto the motion of a fluid
model with zero viscosity filling an orthogonal coordinate system ξ, η, ς, and thus this
coordinate system can be called the pattern space of the turbulence.

The turbulent motion patterns arising in the different points of the flow space can
naturally only be considered to be mechanically similar to each other if from the equa-
tion of motion (3.3) of the turbulent fluctuation the given transformation can produce
a differential equation for the dimensionless velocity fluctuation w′ (ξ, η, ζ, τ), which
does not depend on the characteristics of the motion in point P . After performing
the transformation described in detail above, the differential equation (3.3) assumes
the following form:

MV

MTML

∂ (∇×w′)

∂τ
+
M2
V

M2
L

[(w′ · ∇)(∇×w′)− [(∇×w′) · ∇] w′] = −ΩMV

ML

∂w′

∂ζ
,

and this for the condition of mechanical similarity being searched for – i.e. the dif-
ferential equation obtained for w′ should not be dependent on the characteristics of
motion in point P evidently results in the following equality between the ‘constants’
in the equation holding:

MV

MTML
=
M2
V

M2
L

=
ΩMV

ML
. (3.6)

Namely now the former differential equation determining the vector function w′(ξ, η, ζ, τ)
assumes the form

∂ (∇×w′)

∂τ
+ (w′ · ∇)(∇×w′)− ((∇×w′) · ∇) w′ = −∂w′

∂ζ
, (3.7)

which is in fact independent of the characteristics of motion in point P . However,
according to the above, point P can be arbitrarily chosen, i.e. it may be any point
in the turbulent flow space, consequently in every point of the flow space under
examination the same dimensionless velocity fluctuation w′(ξ, η, ζ, τ) can be attached
to the turbulent velocity fluctuation in the relative coordinate system ξ, η, ζ (the
pattern space of the turbulence); and this at the same time expresses the mechanical
similarity of turbulent velocity fluctuations and of the three-dimensional turbulence
phenomenon itself as well.
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The equality (3.6) between the conversion scales ML, MT and MV contains two
independent relationships. This means that one of the three scales can be chosen at
will and that the development of the other two depends on this choice. Let e.g. the
scale to be chosen at will be the length scale: ML = l, then the others will take the
forms, resp.:

MT = 1/Ω ; MV = lΩ . (3.8)

The free choice of the length scale naturally only means here that its size l is indifferent
in terms of the existence of mechanical similarity and that it is determined by other
physical conditions.

In order to set up the turbulence model representing the internal mechanism of
turbulent fluctuation, a particular solution of the differential equation (3.7) is to be
found. The vector potential Ψ(ξ, η, ζ, τ) can be attached to the fluctuation velocity
field, from which it is possible to derive the velocity field w′(ξ, η, ζ, τ) by forming the
rotation: w′ = ∇×Ψ . It is easy to understand that the vector ∇×w′ can be written
by using the three vectors Ψ, w′ = ∇×Ψ and u = Ψ× (∇×Ψ) as follows:

∇×w′ = aΨ + b(∇×Ψ) + cΨ× (∇×Ψ) ,

where a, b, c are scalar values. The vector ∇ ×w′ thus broken down is substituted
now into the differential equation (3.7), which gives the following:

a

{
∂Ψ

∂τ
+ (w′ · ∇)Ψ− (Ψ · ∇)w′

}
+b

∂w′

∂τ
+c

{
∂u

∂τ
+ (w′ · ∇)u− (u · ∇)w′

}
= −∂w′

∂ζ
.

However, the vector potential Ψ can also be chosen so that on the one hand ∇·Ψ = 0,
i.e. it is sourceless, and, on the other, its vector lines determined by the equation
Ψ × dx = 0 should remain unchanged in the viscosity-free fluid model filling the
system ξ, η, ζ; and then in accordance with the Ertel-Friedmann conservation theorem
(2.1), the two expressions in the figure bracket will disappear in the above equation.
Finally, by introducing the term ω = −1/b, the differential equation (3.7) to be solved
assumes the following form:

∂w′

∂τ
− ω∂w′

∂ζ
= 0 . (3.9)

In order to solve this homogeneous first-order partial differential equation, the new
independent variables u = ζ+ωτ and z = ζ are now introduced and then considering
the identity w′(ξ, η, ζ, τ) ≡ w′ [ζ(u, z), τ(u, z); ξ, η] it is transformed for the coordinate
planes u, z:

∂w′

∂z
= 0

The solution of this differential equation is the optional vector function of the form
w′(u, ξ, η), which can be written by reversing the transformation in the following
form:

w′(ξ, η, ζ, τ) = w′(ξ, η, ζ + ωτ) .

Accordingly, the dimensionless velocity fluctuation w′ can be described by an arbi-
trary vector function that has the following independent variables: ξ, η, and ζ + ωτ .
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Since the differential equation (3.9) to be solved is linear, its solution can also be
given in the form of the following sum:

w′(ξ, η, ζ, τ) = c

N∑
n=1

 A1n(ξ, η) cos [n(ζ + ωτ) + α1n]
A2n(ξ, η) cos [n(ζ + ωτ) + α2n]
A3n(ξ, η) cos [n(ζ + ωτ) + α3n]


−c

N∑
n=1

 A2n(ξ, η) sin [n(ζ + ωτ) + α2n]
A3n(ξ, η) sin [n(ζ + ωτ) + α3n]
A1n(ξ, η) sin [n(ζ + ωτ) + α1n]

 , (3.10)

where c, ω, and αin (i = 1, 2, 3) are constants, and Ain(ξ, η) (i = 1, 2, 3) are scalar
functions, which, in line with the above, are to be chosen while satisfying the con-
dition ∇ · w′ = 0. The phase angles α1n, α2n, α3n are considered to be the three
components of the three spatial dimensions, respectively, (and may be termed spatial
phase angles), so the following relationship

cos2 α1n + cos2 α2n + cos2 α3n = 1 (3.11)

has to hold between them. The physical meaning of the constant ω is: it is the
smallest of the angular frequencies of the wave components of turbulent fluctuation.
In order to determine the functions Ain(ξ, η), substituting the vector function (3.10)
into the equation of condition ∇ ·w′ = 0 gives after a short calculation the following:

A1n(ξ, η) = C1n(η)enξ ; A2n(ξ, η) = C2n ; A3n(ξ, η) = C3n(ξ)e−nη ,

where C2n is constant, and C1n(η) and C3n(ξ) are arbitrary functions (may also be
constants). However, the origin O(0, 0, 0) of the coordinate system ξ, η, ζ belongs to
an arbitrary point of the physical space, where the dimensionless velocity vector of
turbulent fluctuation can be given as

w′(0, 0, 0, τ) = cu′0(τ) ,

where

u′0(τ) = c

N∑
n=1

 C1n cos(nωτ + α1n)− C2n sin(nωτ + α2n)
C2n cos(nωτ + α2n)− C3n sin(nωτ + α3n)
C3n cos(nωτ + α3n)− C1n sin(nωτ + α1n)

 . (3.12)

When the dimensionless velocity fluctuation w′ is known, the physical transformation
(3.5) can be used to determine in the natural coordinate system x′1, x

′
2, x
′
3 the velocity

fluctuation:
v′(x′1, x

′
2, x
′
3, t) = MV w′(0, 0, 0, τ) = clΩu′0(τ) . (3.13)

Since the vector function u′0(τ) is dedicated to describing the stochastic process of
turbulent fluctuation, in the following the coefficients Cin will be considered to be
random amplitudes and the values αin to be random phase angles ( i = 1, 2, 3). One
way of producing the coefficients Cin may be:

Cin = kin exp
[
−(n/K)2

]
,

where kin are probability variables with even distribution in given intervals [0, δi],
|δi| ≤ 1 and K >> 1. The phase angles αin (i = 1, 2, 3) are also probability variables
with even distribution, among which, however, the relationship (3.11) holds, therefore
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only two of the three values can be chosen at will; so finally there appear five indepen-
dent probability variables in each element of the function series (3.12). Therefore it
can be stated that our stochastic turbulence model handles the scalar components of
the dimensionless velocity fluctuation as the series sum of cosine waves with random
phase and random amplitude.

When formula (3.13) of the turbulent velocity fluctuation v′ is known, equation
(1.10) can be used to determine the Reynolds turbulent stress tensor FR in the natural
coordinate system x′1, x

′
2, x
′
3:

FR(x′1, x
′
2, x
′
3, t) = −ρ(v′ ◦ v′) = −ρ (lΩ)2c2(u′0 ◦ u′0) .

If now the notations

α = u′ 20ξ/u
′
0ξu
′
0η ; β = u′ 20η/u

′
0ξu
′
0η ; γ = u′ 20ζ/u

′
0ξu
′
0η

µ = u′0ξu
′
0ζ/u

′
0ξu
′
0η ; ϑ = u′0ηu

′
0ζ/u

′
0ξu
′
0η ; κ2 = −c2u′0ξu′0η

and the similarity tensor formed by using them

H =

 α 1 µ
1 β ϑ
µ ϑ γ

 (3.14)

as well as the dominant turbulent shear stress

Θ(x′1, x
′
2, x
′
3, t) = ρ (κlΩ )2 (3.15)

are introduced, then the former formula of the turbulent stress tensor FR can be
written in the following form:

FR(x′1, x
′
2, x
′
3, t) = Θ(x′1, x

′
2, x
′
3, t)H . (3.16)

κ is a constant known in the literature as the Kármán-constant: κ = 0.407 (the free
parameter c appearing in the formula (3.10) of the dimensionless velocity fluctuation
serves to adjust it accurately). On the basis of the relationships (3.14) and (3.16) it
can be realised that the physical meaning of the always positive Θ is: shear stress in
the natural coordinate system.

Next, regarding turbulent temperature fluctuation also as the series sum of co-
sine waves with random phase and random amplitude, and similarly to the formulas
(3.10)-(3.12) of the scalar components of dimensionless velocity fluctuation, the di-
mensionless temperature fluctuation

h′(τ) = ĉh′0(τ) = ĉ

N∑
n=1

[
Ĉ1n cos(nωτ + α̂1n)− Ĉ2n sin(nωτ + α̂2n)

]
(3.17)

is introduced where ω is identical with the value appearing in the formulas of di-
mensionless velocity fluctuation (thus the angular frequencies of the fluctuation will
be identical in the velocity and temperature fields). The coefficients Ĉ1n, Ĉ2n and
the phase angles α̂1n, α̂2n are probability variables with even distribution, and thus
among the latter the relationship

cos2 α̂1n + cos2 α̂2n = 1 (3.18)
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holds (therefore the phase angles α̂1n , α̂2n determine a planar direction). In a
non-isotherm turbulent flow it may be assumed that the larger the inhomogeneity of
the temperature field interpreted with the mean values is, the larger the turbulent
temperature fluctuation may be; in other words, the temperature fluctuation T ′ is
proportional with the absolute value of the gradient of the temperature field T inter-
preted in terms of mean values. On the basis of this, and similarly to the velocity
fluctuation, the temperature fluctuation in the natural coordinate system x′1, x

′
2, x
′
3

can be written in the form

T ′(x′1, x
′
2, x
′
3, t) = l(x′1, x

′
2, x
′
3)|∇T (x′1, x

′
2, x
′
3, t)|h′(τ)

and thus the following

v′T ′ = l2Ω |∇T |w′(0, 0, 0, τ)h′(τ) = l2Ω |∇T |cĉu′0(τ)h′0(τ)

is obtained for the mean value according to time v′T ′ – i.e. the velocity-temperature
correlation – in the natural coordinate system. Now the notations

κκ̂ = −cĉu′0ηh′0 ; δ = u′0ξh
′
0/u
′
0ηh
′
0 ; χ = u′0ζh

′
0/u
′
0ηh
′
0

are introduced, where the free parameter ĉ is used for the adjustment of the universal
constant κ̂ = 0.47, the role of which in the turbulent boundary layers is similar to
that of the Kármán-constant κ [3]. The direction vector

q̂(x′1, x
′
2, x
′
3) = δe′1 + e′2 + χe′3 (3.19)

of the specific turbulent heat flux density is interpreted in the natural coordinate
system x′1, x

′
2, x
′
3, and it can be used to write the velocity-temperature correlation

v′T ′ in the form
v′T ′ = −κκ̂l2Ω |OT |q̂

and thus the vector of the specific turbulent heat flux density appearing in the equation
of equilibrium of the internal energy (1.13) in the natural coordinate system x′1, x

′
2, x
′
3

is:
qturb = ρcP (v′T ′) = −ρcPκκ̂l2Ω |OT |q̂ . (3.20)

With the help of the formula of turbulent velocity fluctuation (3.13) the following
can be determined in the natural coordinate system x′1, x

′
2, x
′
3 one after the other:

a) turbulent kinetic energy:

k =
1

2
v′ · v′ = −1

2
(α+ β + γ)(κlΩ)2 , (3.21)

b) the vector of triple auto-correlation:

v′ · v′ · v′ = (lΩ)3t̂ , (3.22)

t̂ =

 t̂1
t̂2
t̂3

 = c3

 u′ 30ξ + u′0ξu
′ 2
0η + u′0ξu

′ 2
0ζ

u′0ηu
′ 2
0ξ + u′ 30η + u′0ηu

′ 2
0ζ

u′0ζu
′ 2
0ξ + u′0ζu

′ 2
0η + u′ 30ζ

 , (3.23)
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c) turbulent dissipation:

ε = ν(v′ ◦ ∇) : (v′ ◦ ∇+∇ ◦ v′) =

= −νκ2

{
2α+ β + γ

H ′ 21

(
∂(lΩ)

∂x′1

)2

+
α+ 2β + γ

H ′ 22

(
∂(lΩ)

∂x′2

)2

+
α+ β + 2γ

H ′ 23

(
∂(lΩ)

∂x′3

)2

+

+2

(
1

H ′1H
′
2

∂(lΩ)

∂x′q′1

∂(lΩ)

∂x′2
+

µ

H ′1H
′
3

∂(lΩ)

∂x′1

∂(lΩ)

∂x′3
+

ϑ

H ′2H
′
3

∂(lΩ)

∂x′2

∂(lΩ)

∂x′3

)}
. (3.24)

Since the length scaleML = l, time scaleMT = 1/Ω and velocity scaleMV = lΩ of
turbulence obviously play a decisive role in the formulas of the stochastic turbulence
model, the question arises: what is their relation with the length, time and velocity
scales of Kolmogorov? The π-theory of dimension analysis will be of assistance in
answering it. If we accept that the process of turbulent fluctuation (its internal
mechanism) is fundamentally determined by the length scale l, the vortex intensity
Ω, the specific turbulent dissipation ε and the kinematic viscosity ν of the medium,
then these four parameters are the dominant physical characteristics of the turbulence,
the dimensions of which expressed in terms of the basis dimensions – length L and
time T in our case – assume the following forms:

target variable (a function of the rest): ε turbulent dissipation ∼ L2/T 3

geometrical variable: l length scale ∼ L
process variable: Ω vortex intensity ∼ 1/T
material variable: ν kinematic viscosity ∼ L2/T .

According to the π-theory of dimension analysis it follows from this that if the number
of the dominant physical characteristics is: n = 4, and the number of basis dimensions
is: m = 2, then the number of dimensionless physical characteristics determining the
process is: n −m = 2; and between them exists an implicit relationship of the form
f(π1, π2) = 0, where

π1 =
ν

l2Ω
; π2 =

ε

l2Ω3 (3.25)

are the two dimensionless physical characteristics. Choosing the power function

f(π1, π2) = π2 − CEπN1 = 0

as the implicit relationship, after substituting the dimensionless characteristics and
ordering the equation, the relationship

ε = CEν
N (lΩ)2(1−N)ΩN+1 (3.26)

is given for the specific turbulent dissipation ε. From the analysis of experimental
results the following conclusions can be drawn: on the one hand N ≈ 7/4, and, on
the other, the coefficient CE is a constant directly proportional with the Reynolds
number (calculated with the wall friction velocity).

It takes a short calculation to obtain from the formulas (3.25) the relationships

ML = l =

(
π2

π3
1

)1/4(
ν3

ε

)1/4

; MT =

(
π2

π1

)1/2 (ν
ε

)1/2

; MV =
(εν)1/4

(π1π2)1/4

(3.27)



170 T. Czibere

for the length scale l, the time scale MT = 1/Ω and the velocity scale MV = lΩ of the
stochastic turbulence model. Since the length, time and velocity scales of Kolmogorov
[4] are all determined by the formulas

ML,K =
(
ν3/ε

)1/4
; MT,K = (ν/ε)

1/2
; MV,K = (εν)

1/4
,

equations (3.27) express at the same time the relation between the scales of the
stochastic turbulence model and the Kolmogorov scales.

It is worth mentioning that the dimensionless characteristics π1 is nothing else
than the reciprocal value of the Reynolds number ReΩ = l2Ω/ν calculated with the
peripheral velocity lΩ of the form (vortex) with radius l and angular velocity Ω . This
ReΩ-number is related to the turbulent Reynolds number, the Prandt ReT = l

√
k/ν

as follows

ReT = κ

√
−1

2
(α+ β + γ) ReΩ ≈ 0.767 ReΩ ,

thus the ReΩ-number is a local dimensionless characteristic of the turbulence.

Summary. The stochastic turbulence model handles turbulent fluctuation processes
as the series sum of cosine waves with random phase and random amplitude. It
examines turbulent fluctuation, separated from the turbulent mainstream motion de-
veloping in the Reynolds mean velocity field, in a relative coordinate system moving
steadily at a velocity identical with the Reynolds mean velocity; the base vectors of
the coordinate system being identical with those of the natural coordinate system. In
the relative coordinate system a particular solution of the equation of motion obtained
for turbulent fluctuation can be used to produce one by one the following constant
values: elements of the similarity tensor α, β, γ, µ, ϑ; scalar components t̂1, t̂2, t̂3
of the triple auto-correlation vector; components δ and χ of the direction vector of
turbulent heat flux density. Series calculations were performed in order to determine
the constants listed and they were compared with the results of several laboratory
experimental examinations, and the following proposals were arrived at:

α = −3.2 ; β = −1.6 ; γ = −2.4 ; µ = ϑ = 0

t̂1 = 1.3 ; t̂2 = −0.9 ; t̂3 = −1.0 ; δ = −0, 4 ; χ = 0 .

These α, β, γ values also correspond to the measurement results published by Kle-
banoff in 1955 [5], according to which turbulence in the boundary layer along the
planes is anisotropic, and the following proportionality

v′1v
′
1 : v′2v

′
2 : v′3v

′
3 = 4 : 2 : 3

holds between the normal components of the Reynolds turbulent stress tensor.

4. Calculating turbulent flow based on the stochastic model

In the Reynolds equation of motion of turbulent flow a divergence of the turbulent
stress tensor FR arises, which is the sum of the divergence of the deviator of the
tensor and the gradient of its first scalar invariant. Thus the first scalar invariant
of the turbulent stress tensor FR achieves the same role in the equation of motion
as the (thermodynamic) pressure p forming the first scalar invariant of the viscous
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stress tensor: in the equation of motion the negative gradients of both form part
of the specific driving force. Going on with this train of thought: the deviator of
the turbulent stress tensor FR together with the friction stress tensor forming the
deviator of the viscous stress tensor are responsible for the resistance of the fluid
to deformation. Thus the apparent increase in viscosity inherent in the turbulent
motion of the flowing fluid is caused by the deviator of the Reynolds turbulent stress
tensor. Following from equation (3.16), the deviator σR of the stress tensor FR
can be expressed in the natural coordinate system x′1, x

′
2, x
′
3 with the deviator of the

similarity tensor:

σR(x′1, x
′
2, x
′
3, t) = Θ(x′1, x

′
2, x
′
3, t)H∗ ,

where Θ is the dominant turbulent shear stress according to equation (3.15), and H∗
is the deviator of the similarity tensor:

H∗ =

 α∗ 1 µ
1 β∗ ϑ
µ ϑ γ∗

 =

 1
3 (2α− β − γ) 1 µ

1 1
3 (2β − γ − α) ϑ

µ ϑ 1
3 (2γ − α− β)

 .

Then the turbulent stress tensor FR in the natural coordinate system can be written
in the form

FR (x′1, x
′
2, x
′
3, t) = SII + Θ H∗ , (4.1)

where I is the unit tensor, and SI is the first scalar invariant of the stress tensor FR,
which can be expressed using the specific turbulent kinetic energy k as follows:

SI = −1

3
ρ
(
v′1v

′
1 + v′2v

′
2 + v′3v

′
3

)
= −2

3
ρk . (4.2)

Since the natural coordinate system x′1, x
′
2, x
′
3 is not fixed in space, but changes

from point to point in the flow space (Figure 1), it can only be used with limitations
in the numerical solution of the concrete flow problems. It is expedient to perform
the numerical calculations in a fixed coordinate system, consequently, the vector and
tensor quantities have to be transformed from the natural coordinate system into a
calculation coordinate system matching the problem to be solved according to equa-
tions (3.1)-(3.2). In the transformation the point-wise values of dominant turbulent
shear stress Θ and scalar invariant SI being scalar functions – do not change, and the
transformed of the unit tensor I also remains a unit tensor, thus the transformation
of the turbulent stress tensor FR affects only the deviator H∗:

G(x1, x2, x3, t) = E ·H∗ ·ET . (4.3)

Next the Reynolds turbulent stress tensor assumes the following form:

FR(x1, x2, x3, t) = −ρ2
3
kI + ΘG (4.4)

in the calculation coordinate system x1, x2, x3. Since the apparent increase in viscosity
mentioned is caused by the deviator σR = ΘG the deviator G defined by equation
(4.3) will be called vortex viscosity tensor in what follows.
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The tensor and its transformed of the natural x′1, x′2, x′3 and the calculation coor-
dinate system x1, x2, x3 can be written in the following matrix form:

E =

 E11 E12 E13

E21 E22 E23

E31 E32 E33

 ; ET =

 E11 E21 E31

E12 E22 E32

E13 E23 E33

 . (4.5)

The scalar elements are determined by the scalar components (physical coordinates)
of the velocity vector v and the vortex vector Ω = ∇×v in the calculation coordinate
system x1, x2, x3:

E11 =
1√

1− S2

(
v1

v
− SΩ1

Ω

)
; E12 =

1√
1− S2

v2Ω3 − v3Ω2

vΩ
; E13 = −Ω1

Ω

E21 =
1√

1− S2

(
v2

v
− SΩ2

Ω

)
; E22 =

1√
1− S2

v3Ω1 − v1Ω3

vΩ
; E23 = −Ω2

Ω

E31 =
1√

1− S2

(
v3

v
− SΩ3

Ω

)
; E32 =

1√
1− S2

v1Ω2 − v2Ω1

vΩ
; E33 = −Ω3

Ω

v = |v| ; Ω = |∇ × v| ; S =
v1Ω1 + v2Ω2 + v3Ω3

vΩ
.

If now the expression (4.4) of the turbulent stress tensor FR is substituted into the
equation of motion (1.9), then after the introduction of the so-called total potential
determined by the equation

Π = U +
p

ρ
− SI

ρ
= U +

p

ρ
+

2

3
k , (4.6)

the Reynolds equation of motion describing the turbulent motion of the incompressible
fluid is obtained in the following form:

∂v

∂t
+ (v · ∇)v = −∇Π + ν∆v +

1

ρ
Div(ΘG) . (4.7)

This equation is the equation of equilibrium of the momentum transport of turbulent
flow, where the terms have the following physical meanings: the two terms on the
left-hand side are the substantial (complete in time) change of the momentum; the
first term on the right-hand side is the specific driving force relating to mass unit,
the second and the third terms are the specific resistance of the fluid to deformation,
which result from, on the one hand, the molecular viscosity of the fluid, and, on the
other, from the change of momentum resulting from the turbulent motion of the fluid
particles.

In turbulent flow problems the equation of motion (4.7) and the equation of conti-
nuity

∇ · v = 0 (4.8)

expressing the conservation of mass of incompressible fluids are generally used as basic
equations. But the Poisson-equation of the total potential Π may also be included
among the basic equations, as it can be derived from the equation of motion (4.7)
according to what follows under consideration of the equation of continuity (4.8). If
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the medium in flow is incompressible, then taking the divergence of each member in
equation (4.7) gives the following equation:

∇ · (v · ∇) v = −∆Π +
1

ρ
∇ ·Div (ΘG)

For an incompressible fluid – with respect to the expansion rule

(a ◦ b):(c ◦ d) = (a · c)(d · b)

of the double scalar product of dyads – the following is obtained:

∇ · [(v · ∇)v] = ∇ · [(v ◦ v) · ∇] = (v ◦ ∇) : (∇ ◦ v) ,

which gives the following Poisson-equation referring to the total potential:

∆Π = −(v ◦ ∇) : (∇ ◦ v)+
1
ρ
∇ ·Div (ΘG) . (4.9)

It is easy to understand that supplementing the equation of motion (4.7) – either
with the differential equation (4.8) or (4.9) – does not produce a closed system of
equations in terms of solving the turbulent flow problem. Namely, in the system of
equations formed by the four scalar differential equations the number of unknown
functions – the three velocity components, the total potential Π and the dominant
turbulent shear stress Θ – exceeds the number of equations, and thus the system of
equations remains underdetermined. (The vortex viscosity tensor G does not increase
the number of unknowns, for in its elements besides the constant elements of the
similarity tensor H the velocity components and their place-derivates appear.)

Owing to its underdetermined character, in turbulent flow it is necessary to supple-
ment this system of equations with further equations so that it can be solved. There
are several possibilities for this.

a) For some turbulent flows with simpler geometrical configurations the scale func-
tion l(x) of the turbulence is known, so it can be given in advance. In such a case it
is possible to add the algebraic equation

Θ(x, t) = ρ (κlΩ)2 (4.10)

to the four partial differential equations and then the system of equations to be solved
is formed by the four scalar partial differential equations and the algebraic equation
(4.10) added. The system of equations formed by the total of five equations is suitable
for determining the five unknowns: the three velocity components as well as Π and
Θ; this is the algebraic version of the stochastic turbulence model.

b) The four partial differential equations are supplemented with a fifth differential
equation, in which, however, new unknowns may appear, and thus further algebraic
equations have to be added, in which there are no more new unknowns, which results
in a closed system of equations formed by differential and algebraic equations. As
the fifth differential equation it is possible to choose equation (3.24) of the stochastic
turbulence model after it has been transformed into the calculation coordinate system



174 T. Czibere

x1, x2, x3:

νκ2
{

(2α+ β + γ)A2 + (α+ 2β + γ) B2 + (α+ β + 2γ)C2+

+2 (AB + µAC + ϑBC)}+ ε = 0 (4.11)

A =
∂(lΩ)

H ′1∂x
′
1

= E11
∂(lΩ)

H1∂x1
+ E12

∂(lΩ)

H2∂x2
+ E13

∂(lΩ)

H3∂x3

B =
∂(lΩ)

H ′2∂x
′
2

= E21
∂(lΩ)

H1∂x1
+ E22

∂(lΩ)

H2∂x2
+ E23

∂(lΩ)

H3∂x3

C =
∂(lΩ)

H ′3∂x
′
3

= E31
∂(lΩ)

H1∂x1
+ E32

∂(lΩ)

H2∂x2
+ E33

∂(lΩ)

H3∂x3
.

With this addition, however, the five unknowns – the three velocity components, Π
and Θ – in the original four partial differential equations have been increased by two
more: the velocity scale lΩ and the specific turbulent dissipation ε, thus another two
algebraic equations have to be added in order to obtain a closed system of equations.
One is (4.10), and the other is equation (3.26) of turbulent dissipation ε:

ε = CEν
N (lΩ)2(1−N)ΩN+1 . (4.12)

The system of equations to be solved – the original four + the supplementary (4.11) –
is thus formed by five scalar partial differential equations, as well as the two algebraic
equations (4.10) and (4.12) added; that is a total of seven equations. The number
of unknowns is also seven: v1, v2, v3, Π, Θ, lΩ, and ε, thus the system of equations
formed by the five partial differential equations + two algebraic equations is closed;
this is the one-equation version of the stochastic turbulence model.

c) The equation of equilibrium (1.18) of turbulent kinetic energy can be used as
the second differential equation to supplement the original four partial differential
equations, after some formulas of the stochastic turbulence model have been intro-
duced into it. The first such formula results from the formula (4.4) of the Reynolds
turbulent stress tensor:

v′ ◦ v′ =
2

3
kI − 1

ρ
ΘG , (4.13)

the second is the formula of the velocity-pressure correlation v′p′, which, following
Prandtl [6] is written in the form

v′p′ = −ρνt∇k/Ck
where Ck ≈ 0.75. Here νt is the Boussinesq vortex viscosity factor, which is equal to
the product of the length scale l and the square root of the turbulent kinetic energy
k; with respect to the relationship (3.21) of the turbulence model, the following is
obtained for it:

νt = l
√
k = κal2Ω ; a =

√
−1

2
(α+ β + γ) .

Now the formula of the velocity-pressure correlation assumes the following form:

v′p′ = −ρ κa
Ck

l2Ω ∇k . (4.14)
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The third formula results from the form of the triple auto-correlation determined
by equation (3.22) in the natural coordinate system transformed into the calculation
coordinate system:

v′ · v′ · v′ = (lΩ)3t ; t = E · t̂ . (4.15)

Finally, after substituting and ordering the relationships (4.13)-(4.15), the equation
of equilibrium (1.18) of turbulent kinetic energy assumes the following form:

dk

dt
=

1

ρ
ΘG : (∇ ◦ v)− ε−∇ ·

[
1

2
(lΩ)3t−

(
5

3
ν +

κa

Ck

(lΩ)2

Ω

)
∇k +

ν

ρ
Div(ΘG)

]
.

(4.16)
This can be used as the second supplementary equation of the four original partial
differential equations given by the equation of continuity and the three Reynolds
scalar equations of motion. Thus – supplementing the four original scalar differential
equations with the partial differential equations (4.11) and (4.16) and adding the al-
gebraic equations (4.10) and (4.12) – a closed system of equations with eight members
is obtained for determining the total of eight unknown functions (v1, v2, v3, Π, Θ, lΩ,
k and ε ); this is the two-equation version of the stochastic turbulence model. It is
easy to see that also when the latter version is chosen, the first step of the calculation
is given by performing the one-equation version under b), and only then comes as
a second step the solution of the differential equation (4.16) by using the functions
determined above, which gives the distribution of turbulent kinetic energy k(x, t).

d) Finally it is worth noting that it is possible to choose the equation of equilib-
rium (4.16) as the fifth equation supplementing the four original partial differential
equations instead of (4.11). Then due to the appearance of the three new unknown
functions (k, ε and lΩ), it becomes necessary to add three more algebraic equations:
equations (4.10) and (4.12) and equation

k = (aκlΩ)2 (4.17)

resulting from (3.21) via the notation a2 = −(α + β + γ)/2; thus a closed system
of equations is obtained, which may be called the second one-equation version of the
stochastic turbulence model, and which corresponds – essentially – to the one-equation
model published by Bradshaw, Ferris and Atwell [7]. Then it is no coincidence that
the value 1/a2 = 0.278 in equation (4.17) – calculated with the constants of the
stochastic turbulence model – is a good approximation of the Bradshaw-constant
(≈ 0.3) [8] expressing the ratio between turbulent shear stress and turbulent kinetic
energy.

In order to solve the underdetermined character of the differential equation system
describing turbulent flow the first three of the four versions described above are ev-
idently easier to handle than the fourth one, and according to our experience so far
the results obtained from them give a good approximation of reality, versions a)-c)
are to be given preference to version d).
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In the knowledge of the distributions of the dominant turbulent shear stress Θ(x, t)
and turbulent kinetic energy k(x, t) the further scalar elements of the Reynolds tur-
bulent stress tensor FR can be determined on the basis of tensor equation (4.4) as:

v′iv
′
i =

2

3
k − (κlΩ )2Gii ; i = 1, 2, 3 , (4.18)

v′iv
′
j = −(κlΩ)2Gij . (4.19)

It is worth noting here that these formulas of the scalar elements of the turbulent
stress tensor can also be used in the one-equation version as well, if the distribution
of turbulent kinetic energy k is calculated in the knowledge of the velocity scale lΩ
using the relationship (4.17).

5. Turbulent flow in a straight pipe with circular cross-section

Let us take as an example a steady turbulent flow in a long straight pipe, which
can be assumed to be rotation-symmetric and that only the axial component of the
Reynolds time-mean average speed is not zero, and the other two components disap-
pear. The computations are performed in the cylinder-coordinate system x, r, ϕ, and
the following hold for the velocity and vortex components:

vx = v(r) ; vr = vϕ = 0 ; Ωx = Ωr = 0 ; Ωϕ = −dv
dr

; Ω = |Ωϕ| =
∣∣∣∣dvdr

∣∣∣∣ .
From all this it also follows that the dominant turbulent shear stress is a function
of only the coordinate r: Θ(r). The elements of the tensor E of the transformation
between the natural and the calculation coordinate systems and of the vortex viscosity
tensor G now take the forms:

E =

 1 0 0
0 −1 0
0 0 −1

 ; G =

 α∗ −1 0
−1 β∗ 0
0 0 γ∗

 .

A short calculation gives the following forms for the components in directions x and
r of the divergence of the Reynolds turbulent stress tensor:

Div (ΘG)|x = −1

r

d(rΘ)

dr
; Div (ΘG)|r =

β∗
r

d(rΘ)

dr
− γ∗

r
Θ .

Then the two scalar equations of motion assume the forms:

0 = −∂Π

∂x
+
ν

r

d

dr

(
r
dv

dr

)
− 1

r

d(rΘ)

dr
(5.1)

0 = −∂Π

∂r
+
β∗
r

d(rΘ)

dr
− γ∗

r
Θ (5.2)

and the first supplementary differential equation assumes the form:

νκ2(α+ 2β + γ)

(
d(lΩ)

dr

)2

+ ε = 0 . (5.3)

Since in these three differential equations there are altogether five unknown functions
– velocity v, total potential Π, dominant turbulent shear stress Θ, velocity scale lΩ
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of fluctuation and specific turbulent dissipation ε –, two algebraic equations have to
be added which contain no new unknown function:

Θ = ρ(κlΩ)2 (5.4)

ε = CEν
N (lΩ)2(1−N) |dv/dr|N+1

. (5.5)

It is easy to see that the system of equations (5.1)-(5.5) is a closed system from
the point of determining the five unknown functions, thus this case represents an
application of the one-equation version of the stochastic turbulence model.

In order to determine the elements of the turbulent stress tensor it is necessary to
solve the second supplementary differential equation – the equation of equilibrium of
the turbulent kinetic energy – as well:

0 =
Θ

ρ

dv

dr
+ ε

− 1

r

d

dr

{
r

[
t̂

2

dv

dr
(lΩ)3 +

(
5ν

3
+
κa

Ck

(lΩ)2

Ω

)
dk

dr
− ν

ρ

(
β∗
r

d(rΘ)

dr
− γ∗

r
Θ

)]}
. (5.6)

In this differential equation only the specific turbulent kinetic energy k appears as a
new unknown function, therefore the system of equations (5.1)-(5.6) forms a closed
system regarding the determination of the six unknown functions: velocity v, total
potential Π, dominant turbulent shear stress Θ, the velocity scale lΩ of turbulent
fluctuation, turbulent dissipation ε, and turbulent kinetic energy k. The numerical
solution of this system of equations with six members represents the two-equation
version of the stochastic turbulence model.

Equations (5.1)-(5.2) make it easy to see that the partial derivative of the total
potential Π(x, r) according to x is constant, which can be expressed by the drop in
potential ∆Π measured on the pipe-section of length L as follows: ∂Π/∂x = −∆Π/L.
As usual, the viscous shear stress on the pipe wall is used to define the wall friction
velocity v∗:

v∗ =

√
|τwall|
ρ

=

√
∆ΠR

2L
,

where R is the pipe radius. If the Reynolds number Re∗ = v∗R/ν calculated with
the wall friction velocity v∗ as well as the dimensionless place coordinate ξ = r/R,
the dimensionless velocity V = v/v∗ and the dimensionless velocity scale Y = lΩ/v∗
are introduced, the differential equations (5.1) and (5.3) after the substitution of the
algebraic equations (5.4) and (5.5) assume the forms:

dV

dξ
= Re∗

(
κ2Y 2 − ξ

)
(5.7)

a∗κ
dY

dξ
=

√
CE

Re(N−1)/2
∗

Y 1−N
∣∣∣∣dVdξ

∣∣∣∣N+1
2

, (5.8)

where on the basis of analysing the measurement results N ≈ 7/4, and

a∗ =
√
−α− 2β − γ .
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The coefficient CE depends, beyond depending on the Re∗-number, on the spatial
coordinate ξ:

CE = C0 (1− ξ)3
; C0 = (0.09.̇..0.16) Re∗ .

Reducing equations (5.7) and (5.8) gives for the velocity scale Y the differential equa-
tion

dY

dξ
=

Re∗
√
CE

a∗κ
Y 1−N ∣∣κ2Y 2 − ξ

∣∣N+1
2 .

It is easy to see that the introduction of the function

U = Y N

results in the differential equation to be solved assuming the form

dU

dξ
= N

Re∗
√
CE

a∗κ

∣∣∣κ2U2/N − ξ
∣∣∣N+1

2

,

which is easy to integrate numerically with the Runge-Kutta method. When the
distribution Y (ξ) is known, integration of the equation (5.7) determines the dimen-
sionless velocity distribution V (ξ). The dimensionless velocity maximum playing the
role of integration constant depends on the Re∗-number:

Vmax = 6 +
1

κ
lnRe∗ . (5.9)

Figure 2. Smooth fitting of the turbulent distribution onto distribu-
tion in a viscous sub-layer

With respect to the fact that the differential equation (3.9) forming the basic
equation of the stochastic turbulence model and the vector function (3.10) obtained
as its solution for turbulent velocity fluctuation are valid for the fully developed
turbulent motion – and this restriction applies to all the relationships derived from
it –, the differential equations (5.7)-(5.8) do not hold in the thin viscous sublayer
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adhering to the pipe wall. As a result, in the calculation of the functions Y (ξ) and
V (ξ), the zero boundary conditions relating to the pipe wall can be fulfilled by the
smooth fitting of the viscous sublayer onto the distributions disappearing next to the
wall. For the turbulent distribution F (ξ), the polynomial of the form

f(ξ) = (a+ bξ) (1− ξ) ; ξδ ≤ ξ ≤ 1 (5.10)

is used to approximate the smoothly fitting distribution in place ξδ, where the co-
efficients a and b can be determined by fulfilling the conditions of smooth fitting,
according to which the two functions fitting each other and their first derivatives are
identical in place ξδ of the fitting (Figure 2), which results in the following:

a = F (ξδ)
1− 2ξδ

(1− ξδ)2
− F ′(ξδ)

ξδ
1− ξδ

; b = F (ξδ)
1

(1− ξδ)2
+ F ′(ξδ)

1

1− ξδ
.

Experimental experience shows that the derivative of the velocity distribution V (ξ)
on the wall (in place ξ = 1) both for the laminar and turbulent cases is

V ′(1) = −Re∗ .

For f(ξ) replacing F (ξ)

f ′(1) = − tanα = −(a+ b)

holds (Figure 2), thus for V (ξ)the condition

a+ b = Re∗

has to hold, which, after the substitution of the previous formulas of the coefficients
a and b gives the equation

2V (ξδ) + (1− ξδ) [v′(ξδ)− Re∗] = 0 (5.11)

for determining the coordinates ξδ of smooth fitting. When ξδ is known, it is possible
to calculate also the coordinates a and b of the distributions in the viscous sublayer
not only in terms of the dimensionless velocity scale Y (ξ) and the dimensionless ve-
locity V (ξ), but also in terms of the other turbulent distribution as well. It follows
from all this that the place coordinate ξδ determined by means of equation (5.11) can
be considered to be the boundary of the viscous sublayer, where the turbulent distri-
butions smoothly fit the laminar distributions fulfilling the zero boundary condition
valid on the pipe wall.

When the dimensionless velocity scale Y (ξ) is known, the as yet unknown fur-
ther turbulent distributions can be determined: the dimensionless distribution of the
dominant turbulent shear stress of the form

Θ

ρv2
∗

= κ2Y 2 (5.12)

and the dimensionless distribution of the specific turbulent dissipation of the form

εR

v3
∗

= CE Re∗ Y
2(1−N)

∣∣κ2Y 2 − ξ
∣∣N+1

. (5.13)
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Finally the integration of differential equation (5.2) gives for the dimensionless total
potential the equation

Π(x, ξ)

v2
∗

=
Π0

v2
∗
− ∆Π

v2
∗

x

L
+ β∗κ

2Y 2 + (β∗ − γ∗)κ2

ξ∫
0

Y 2 dξ

ξ
(5.14)

for the integration constant Π0/v
2
∗ neglecting the field forces, the following form is

obtained:
Π0

v2
∗

=
p0

ρv2
∗
− κ2α+ β + γ

3
,

where p0 is pressure in the middle of the initial cross-section of the pipe section (in
place x = 0) and ∆Π is the total potential drop in section with length L. The
calculation of the distribution of the total potential gives the last step of the one-
equation version of the stochastic turbulence model.

In order to determine the distribution of the specific turbulent kinetic energy it is
necessary to solve the – second supplementary – differential equation (5.6) numerically.
When the distribution Y (ξ) is known, the differential equation (5.6) can be made with
some modification – including one integration in terms of ξ – suitable for determining
the distribution of the dimensionless specific turbulent kinetic energy K = k/v2

∗:{
5

3
+
κa

Ck

Y 2

|κ2Y 2 − ξ|

}
dK

dξ
− 2κ

β∗
a∗

Re∗
√
CEY

2−N ∣∣κ2Y 2 − ξ
∣∣N+1

2 +

+ Re∗
t̂2
2
Y 3 − κ2(β∗ − γ∗)

Y 2

ξ
− Re2

∗ F (ξ) = 0 , (5.15)

where Ck ≈ 0.75, and

F (ξ) =
1

ξ

ξ∫
0

{
κ2Y 2

(
κ2Y 2 − ξ

)
+ CEY

2(1−N)
∣∣κ2Y 2 − ξ

∣∣N+1
}
ξdξ .

When the distribution of the dimensionless velocity scale Y (ξ) is known (i.e. it has
been determined on the basis of the one-equation version), there is no obstacle in the
way of the numerical solution of the differential equation (5.15). For the integration
constant K0 the formula

K0 = −κ2α+ β + γ

2
can be recommended, which is also supported by measurement results.

Next – when the distributions K(ξ) and Y (ξ) are known – the formulas (4.18)-
(4.19) can be used to calculate the scalar elements different from zero of the Reynolds
turbulent stress tensor as well:

FR11
=
v′xv
′
x

v2
∗

= 2K(ξ)
α

α+ β + γ
; FR22

=
v′rv
′
r

v2
∗

= 2K(ξ)
β

α+ β + γ

FR33
=
v′ϕv
′
ϕ

v2
∗

= 2K(ξ)
γ

α+ β + γ
; FR12

=
v′xv
′
r

v2
∗

= κ2Y 2(ξ) .
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In the viscous sublayer – similarly to equations (5.7)-(5.8) and for the same reason
– the differential equation (5.15) also loses its validity, therefore the zero boundary
conditions referring to the pipe wall for the main stresses can also be fulfilled by
smooth fitting on the distributions disappearing on the wall. The connection between
the distributions in turbulent and sublayer zones can be approximated by a third
order polynomial for v′xv′x/v2

∗ and by a second polynomial for the other two main
stresses. The place ξF of the fitting of the velocity distribution V (ξ) is in the vicinity
of the place of fitting of ξδ: ξF ≤ ξδ (it is smaller for larger Re∗-numbers). In a
second order approximation the main stress distribution F (ξ) in the viscous sublayer
is replaced by the following function

f(ξ) = F (ξF )
(1− ξ)(b+ ξ)

(1− ξF )(b+ ξF )
; ξF ≤ ξ ≤ 1 ,

where the coefficient b can be determined as follows:

b =
1− (B + 2)ξF

B + 1
; B =

F ′(ξF )

F (ξF )
(1− ξF ) .

In a third-order approximation the main stress distribution F (ξ) in the viscous sub-
layer is replaced by the function

f(ξ) = F (ξF )
(1− ξ)(ξ2 + bξ + c)

(1− ξF )(ξ2
F + bξF + c)

; ξF ≤ ξ ≤ 1 .

In this case the value of the maximum of the main stress – assumed in the viscous
sublayer – is also to be given, which according to experimental experience is a function
of the Re∗-number:

fm =
7 Re∗−475

Re∗−50
and then the coefficients b and c as well as the place of maximum ξm are to be
determined iteratively on the basis of the formulas

b =
(B + 1)(2− 3ξm)ξm + (B + 3)ξ2

F − 2ξF
(B + 1)(2ξm − 1)− (B + 2)ξF + 1

c = (2− 3ξm)ξm + (1− 2ξm)b ,

while the condition f(ξm) = fm is simultaneously fulfilled. Determining also the dis-
tribution of the scalar elements of the Reynolds turbulent stress tensor in the viscous
sublayer has performed the last step in the two-equation version of the stochastic
turbulence model.

Figure 3 shows the solutions of the differential equations (5.7), (5.8) and (5.15)
describing the turbulent flow in a pipe with circular cross-section for three different
Re∗-numbers (Re∗1 = 100, Re∗2 = 1000 and Re∗3 = 10000) against the dimensionless
place coordinate y+ = Re∗(1− r/R). Notations: V (y+) is velocity, Y (y+) is velocity
scale and K(y+) is turbulent kinetic energy (all are made dimensionless by means
of the wall friction velocity v∗). For the sake of better comparison, the Figure also
includes the Prandtl universal turbulent velocity profile V = 1

κ ln y+ + 5 and the
laminar velocity distribution V = y+ of the viscous sublayer. Our experience shows
that for the stability of the calculation it is necessary to choose the division of the
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interval 0 ≤ ξ ≤ 1 to be at least 5000; and so that it increases with the Re∗-number
(5000 is sufficient for Re∗ = 100, while 15000 is recommended for Re∗ = 10000).
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Figure 3. Solutions for Y , V , K of the differential equation of tur-
bulent flow in a pipe for three different Re∗-numbers.

Figure 4 shows a comparison of calculated velocity distribution for two different
Reynolds-numbers with the measurement results of Laufer [9]; the Reynolds-numbers
of the identification are calculated using the velocity maximum because that was used
in the measurements as well. Since it is expedient to use the number Re∗ = v∗R/ν
calculated with the wall friction velocity v∗ for identifying the numerical calculations,
the Rem and Re∗ numbers: Rema = 50000 and Re∗a = 1079.44 as well as Remb

=
500000 and Re∗b = 8826.69 corresponding to each other in the two cases shown in
the Figure are given. The figures show a good correlation between the calculated and
measured results.

Figure 5 shows a comparison between the calculated results of the scalar elements
along the main diagonal of the Reynolds turbulent stress tensor (i.e. the main stresses)
while Figure 6 shows a comparison between the calculated results of turbulent shear
stresses as well as those of velocity profiles in terms of the velocity maximum and the
measurement results of Laufer [9] for the same two Rem-numbers.
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Figure 4. Comparison of calculated velocity distributions with the
measurement results of Laufer [9].
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Figure 5. Comparison of calculated turbulent main stresses for two
different Re-numbers with the measurement results of Laufer [9].
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Figure 6. Comparison of the calculated results for the velocity profile
and turbulent shear stress with the measurement results of Laufer
[9].
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For the sake of completeness let us sum up in short the formulas forming the
algebraic version of the stochastic turbulence model as well. If the expression

Y =
lΩ

v∗
=

l

R

∣∣∣∣dVdξ
∣∣∣∣ (5.16)

is substituted into differential equation (5.7), and the equation – of second order for
dV/dξ – obtained is solved, a differential equation of the form

dV

dξ
=

1±
√

1 + 4κ2 Re2
∗(l/R)2ξ

2κ2 Re∗(l/R)2

is obtained, where evidently the lower one of the double sign has physical reality (i.e.
for a flow in pipes in the points of the cross-section dV/dξ ≤ 0). Taking this into
account, the above equation is modified to some extent, then its integration produces
an integral expression for determining the dimensionless velocity distribution V (ξ):

V (ξ) = Vmax −
ξ∫

0

2 Re∗ ξ dξ

1 +
√

1 + 4κ2 Re2
∗(l/R)2ξ

, (5.17)

where the integration constant Vmax is to be calculated using relationship (5.9). For
determining the dimensionless velocity scale, on the basis of (5.16) the following for-
mula is obtained:

Y (ξ) =
2 Re∗(l/R)ξ

1 +
√

1 + 4κ2 Re2
∗(l/R)2ξ

. (5.18)

By using the following dimensionless scale function, calculation results with a good
correspondence with the laboratory measurements are obtained:

l/R =
(
0.35 + 0.15ξ2

) (
1− ξ2

)
{1− exp [m(ξ − 1)]} ,

where m = Re∗ /25. When the distributions Y (ξ) and V (ξ) are known – as it has
already been expounded concerning the one-equation version –, the formulas (5.12)-
(5.14) can be used to determine the following one after the other: the dimensionless
dominant turbulent shear stress Θ/ρv2

∗, the dimensionless specific turbulent dissipa-
tion εR/v3

∗ and the dimensionless total potential Π/v2
∗.

Finally it should be noted that by using a special scale function the integration can
be performed in the formula (5.17), resulting in a closed analytic expression for the
turbulent profile fully developed in the pipe. The dimensionless scale function is

l/R =
(
1− ξ3

)
/3 , (5.19)

which substituted into equation (5.17) results after integration in the formula:

V (ξ) = Vm −
1

κ
ln

1 + ξ3/2

1− ξ3/2
. (5.20)

Since this distribution does not automatically satisfy the zero boundary condition
referring to the pipe wall either (i.e. it has a pole in place ξ = 1), the zero boundary
condition can be fulfilled in this case in the viscous sublayer by a smoothly fitted
distribution (Figure 2).
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It should be noted that the turbulent velocity distribution calculated by formulas
(5.17) and (5.20) of the algebraic version of the stochastic turbulence model is identical
‘within line thickness’ with the velocity distribution calculated on the basis of the one-
and two-equation versions, which in turn shows a very good correspondence with the
measurement results.

6. Summary

The underdetermined character of the system of differential equations formed by the
equation of continuity and the three Reynolds scalar equations of motion can be
eliminated on the basis of the stochastic turbulence model by adding the differential
equation for the turbulent velocity scale, and the turbulent mean velocity field can
be determined by solving the system of equations with a suitable numerical method.
When the velocity scale is known, the distribution of the turbulent shear stress can
be calculated. This method – where the original system of differential equations
containing four members is supplemented with a further differential equation – is
termed the one-equation version of the stochastic turbulence model.

In order to be able to determine the scalar elements along the main diagonal of the
Reynolds turbulent stress tensor, the system of equations to be solved is to be sup-
plemented with a second differential equation as well, i.e. the transport equation of
the specific turbulent kinetic energy. After determining the distribution of the turbu-
lent kinetic energy it becomes possible to calculate the distributions of the turbulent
main stresses by using the formulas of the stochastic turbulence model. The method
obtained – in a three dimensional case built on numerically solving a system of equa-
tions constituted by a total of six differential equations and two algebraic equations
– forms the two-equation version of the stochastic turbulence model.

A comparison of the calculations performed for a flow in a pipe with a circular cross-
section for two different Reynolds-numbers with the experimental results of Laufer
[9] shows that the results calculated on the basis of the stochastic turbulence model
exhibit a satisfactory correspondence with the measurements; for the distribution of
velocity and shear stress the calculated and measured results are practically identical;
for the turbulent main stresses the correspondence at present can be interpreted with
a certain limit of error, which can be improved by a correction of the constants in the
model.
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Abstract. This paper deals with potential energy functions of elastic structures with two
symmetry planes. Optimization leads to double cusp catastrophes at the critical point.
Catastrophe theory distinguishes 15 classes of double cusp catastrophes. To classify the
structures of the equilibrium paths we need some subclassification, due to the special role
of the load parameter and because in some cases determinacy of the function is higher than
four. Different types of the equilibrium paths are shown for the subclasses.
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1. Introduction

Structures with a finite degree of freedom under conservative load are in equilibrium
in a position where the gradient of the total potential energy function is zero. If the
load is single-parametric, then the equilibrium paths consist of the equilibrium states
belonging to the values of the load parameters. The equilibrium states are critical if
the Hessian matrix of the energy function is singular. By optimizing the structures it
can be achieved that the two lowest critical load parameters are equaled, that means
the co-rank of the Hessian matrix is 2 at this critical point.

According to the Splitting Lemma [1] in this case the coordinates describing the
position can be transformed in such a way that the total potential energy function
splits into two parts: an active and a passive one. The active part is dependent only
on two variables and at the critical value of the load parameter it has parts only
exceeding the third order. The passive part depends on the other variables and has
the form of the Morse saddle.

If the active part is symmetric only in one of its variables, then the function is called
half-symmetric. Functions symmetric in both variables are called full symmetric.

The half-symmetric cases are divided by Thompson and Hunt [2] into three groups:
the monoclinal, the homeoclinal, and the anticlinal point of bifurcations. (The third
one of the above mentioned bifurcations belongs to the elliptic umbilic catastrophe,
and the first two pertain to the hyperbolic umbilic catastrophe. The classification

c©2006 Miskolc University Press
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of the hyperbolic umbilic catastrophe is justified by the significant role the load pa-
rameter plays in the equilibrium paths.) Equilibrium paths were created for both the
perfect and imperfect structures, and the imperfection-sensitivity surfaces were ana-
lyzed. In these general cases the exact local examination requires no further analysis
of the potential energy function at the critical point than to be approximated with
the Taylor series expansion of the function up to the third order. Different types of
the critical points are often illustrated by simple models (Thompson and Hunt [2],
Gioncu [3], Gáspár [4]).

Thompson and Gáspár [5] made an analysis for all the half-symmetric cases by con-
stantly changing one parameter during the investigation of a family of simple models,
and thus identified the transitions between the above mentioned three classifications:
the case of the triple root, the parabolic umbilic and the symbolic umbilic catastro-
phe. In these degenerated cases the exact local investigation required also the fourth
order parts. Equilibrium paths in the neighborhoods of these cases were analyzed by
Pajunen and Gáspár [6].

Augusti [7] had an investigation of two-fold bifurcations before, where the struc-
tures have two symmetry planes. In this case the energy function has a double cusp
catastrophe point, and these catastrophes are not included in the 13 catastrophes
listed in Thom’s theorem (e.g. [8, 1]), because they are produced typically by spe-
cially assuming more than five parameters. By the root structure of the bivariate
homogeneous cubic form the umbilical catastrophes are to be classified into 4 fun-
damental types (which are by names: elliptic, hyperbolic, parabolic and symbolic.)
Poston and Stewart [9] classified the double cusp catastrophes into 15 types on the
basis of the root structures of the binary quartic.

Gáspár [10] has drawn attention to structures where again another type of the
double cusp catastrophes appears, by which the primary path can be intersected by
any number of secondary equilibrium paths. Samuels and Stevens [11] investigate also
the equilibrium paths of the typical double cusp catastrophes, and thus the Taylor
expansion of the function is used only up to the fourth order. Gáspár and Lengyel
[12] are investigating another family of structures, which creates 4 different types,
including two degenerated ones.

The aim of this paper is to specify all the various types of the equilibrium paths of
the full symmetry (perfect) structures. It will be shown that with the full symmetry
14 of the 15 types of the double cusp catastrophe are accessible. Some classes have
subclasses because of the special role of the load parameter.

2. Accessible classes

Supposed the critical states are identified, where the co-rank of the Hessian matrix of
the potential energy is 2, and the Taylor expansion of function up to the fourth order
is generated, and the passive part is separated. In the active part (in case of critical
load) there are no first and second degree terms, and because of full symmetry in
both active variables (x, y) only even exponents are to be found in the factors, thus
there are no cubic terms, either. At the critical load (λ = 0) the 4-jet of the energy
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function is a homogeneous quartics:

j4V (x, y, 0) = Ax4 +Bx2y2 + Cy4. (1)

The roots of this polynomial correspond to a maximum number of four lines crossing
the origin, where some of the lines may contain compound roots, and the lines may
also be complex. Poston and Stewart [9] give transformations for the coefficients of
the general homogeneous quartics by means of which they illustrate the connections
between these above mentioned types in a three-dimensional space (Figure 1). Each
type consists of the functions that belong to the points of the respective sections of
space, surfaces, faces or heads, shown below.

 γ 

βR 

βI 

Figure 1. Classes of double cusp catastrophe

By means of the transformations defined by Poston and Stewart the points projected
on the cylinder:

αH
R =sign (A−B + C) , αH

I =0 ,

βH
R =4

A− C
|A−B + C|

, βH
I =0 , (2)

γH =
A+B/3 + C

|A−B + C|
.

If αH
R = 1, then we have the points of βI = 0 coordinate plain. If αH

R = −1, then a
rotation needs to be performed to obtain the resulting section shown in Figure 1:

α̃H
R =1 , α̃H

I = 0 ,

β̃H
R =βH

I , β̃H
I = −βH

R , (3)

γ̃H =γH .
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Thus we get the point belonging to the coordinate plain βR = 0. Thus we generated
14 types out of the total 15, only the points found on the faces of the tetrahedron are
not accessible.

Because of full symmetry the homogeneous fourth order polynomial may only have
three co-efficients which are different from zero, to classify these, we do not need to
use the transformations given by Poston and Stewart [9]. Moreover, since multiplying
the whole energy function by a positive constant does not change the equilibrium
paths, we only need to use two-dimensional figures to illustrate the classes.

Let us deal with the A = C = 0 case separately. Multiplying by a suitable positive
constant the polynomial takes the form:

± x2y2. (4)

In the other cases we choose the variables x, y in a way, that |A| > |C|, and after
multiplying by a proper positive constant the polynomial yields the form:

±
(
x4 +Bx2y2 + Cy4

)
(5)

where −1 6 C 6 1. The root lines of the polynomial (5) are as follows:

x1,2,3,4 = ±y
2

√
−2B ± 2

√
B2 − 4C. (6)

It can be concluded that in the points of the line C = 0 and of the curve C = B2/4
the root can change from real into complex (and vice versa). The classes in case of a
positive sign of (5) are illustrated in Figure 2.
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Figure 2. Classes if the sign of (5) is positive

If the sign of (5) is negative the same figure holds, but the sequential number of the
types 2-8 gets a cap as well, indicating that in that case they refer to another class.
The changing of the sign does not alter types 1 and 2. The root structure of types
illustrated in Figure 2 are as follows (for each type it is indicated whether the root
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lines are real (r) or complex (c), whether there are compound roots, and it is also
shown where the corresponding points are located in Figure 1):

1. r1, r2, r3, r4 inside the tetrahedron,
2. r1, r2, c3, c4 outside both tetrahedron and bowls,
3. c1, c2, c3, c4 inside the top bowl,
4. r1 = r2, r3, r4 on faces of the tetrahedron having only one common point with

the top bowl,
5. r1 = r2, c3, c4 on the surface of the top bowl,
6. r1 = r2, r3 = r4 on the top line of self-intersection,
7. c1 = c2, c3 = c4 on the top whiskers,
8. r1 = r2 = r3 = r4 on the common points of the top bowl and the whiskers.

The root structure of the types with cap is identical to that of the ones without cap,
but in the description of their location word ‘top’ needs to be changed to ‘lower’. We
note that function (4) in case of a positive sign belongs to type 6, but in case of a
negative sign naturally it belongs to type 6̂.

3. Equilibrium paths

If we are to define the equilibrium path in the neighborhood of the critical point,
then also the deviation of the load parameter from the critical value in the energy
function must be taken into consideration. Because of full symmetry only terms of
the state variables with even numbered order can be non-zero. If the coefficient of a
term is not zero even in the critical point, then the effects of the load parameter on
the coefficient can be neglected compared to the former term. The general form of
the quadratic terms is the following:

− λ
(
ax2 + by2

)
, (7)

where a and b are positive numbers, because of the assumption that the critical point
under investigation is reached from the state of a stable equilibrium (which means
that in case of λ < 0 the x = y = 0 is a stable equilibrium position). The relation
between the scale of x and y, and the scale of λ can be defined so that a = b = 1.
The stability of the equilibrium position is described by calculating the eigenvalues
of the Hessian matrix of the energy function in this point. If both are positive, than
the position is stable, if there is a negative value, the state is unstable, but if there is
a value which is zero, the state is critical.

3.1. Fourth order energy function. The above mentioned simplifications and the
definition of the scale are used first to deal with the energy function:

V (x, y, λ) = x4 +Bx2y2 + Cy4 − λ
(
x2 + y2

)
. (8)

If a negative sign is chosen in term (5), then in the cases of the equilibrium paths
below the direction of λ should be changed, and as a result the eigenvalues would
also change sign. Hence these cases do not require a detailed examination, because
by applying the principles the equilibrium paths are easy to obtain by means of the
equilibrium paths analyzed here.
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The gradient of V:

gradV =

[
4x3 + 2Bxy2 − 2λx
2Bx2y + 4Cy3 − 2λy

]
, (9)

the Hessian matrix of V:

H =

[
12x2 + 2By2 − 2λ 4Bxy
4Bxy 2Bx2 + 12Cy2 − 2λ

]
. (10)

The line x = y = 0 is always a solution of the equation gradV = 0, and it has
curve solutions in the coordinate planes x = 0 and y = 0 as well, and it may also
have a further pair of solutions. These solutions are indicated in Table 1. (a suitable
independent variable is defined in all cases), and in the last two columns also the
eigenvalues of H are given.

j x y λ Sj1 Sj2

1 0 0 λ –2λ –2λ

2 0 y 2Cy2 8Cy2 2 (B − 2C) y2

3 x 0 2x2 8x2 2 (B − 2)x2

4
±y
√

B−2C
B−2 y B2−4C

B−2 y2 4B2−4C
B−2 y2 4 (2C −B) y2

x ±x
√

B−2
B−2C

B2−4C
B−2C x2 4B2−4C

B−2C x2 4 (2−B)x2

Table 1. The equilibrium paths and the eigenvalues of H

Looking at the table it is easy to see that

– the part λ < 0 of the always existing equilibrium path x = y = 0 is stable, the
part λ > 0 is unstable, and both eigenvalues are negative,

– in cases of the other paths both the numbers and the types of the equilibrium
paths change on the lines B = 2 and B = 2C further to the curves shown in
Figure 2.

It shows that it is sometimes necessary to set up subclasses when investigating the
catastrophe types analyzed above. The subclasses created are shown in Figure 3.

To define the pair of solutions marked 4 in the case of B = 2C, we have to use the
upper solution, and in the case of B = 2 the lower solution must be used. In case of
being part of both lines, (that is B = 2 and C = 1):

V (x, y, λ) =
(
x2 + y2

)2 − λ (x2 + y2
)
, (11)

or transforming it to polar coordinates:

V (r, α, λ) = r4 − λr2. (12)
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Figure 3. Subclasses if the sign of (5) is positive

since

grad V =

[
4r3 − 2λr
0

]
, (13)

further to the primary equilibrium path r = 0, there is a secondary equilibrium surface
given by the function λ = 2r2. In its points the Hessian matrix is as follows:

H =

[
8r2 0
0 0

]
. (14)

That means that all points of the surface are critical, and the other eigenvalue is
positive. (We note that Gáspár and Mladenov [13] have shown structures which are
producing secondary equilibrium surfaces even if there is no full symmetry.)

In Figure 4 we display three cases as an example choosing the energy function
from the subclasses 1, 2c and 7b. Here we denote the stable equilibrium paths with
continuous lines and the paths containing the critical states with dash-dot lines. In
case of the unstable states where the energy function has a saddle point or a maximum
point, dashed lines or dotted lines are used, respectively.

If we display the projection of the equilibrium paths on the xy plane, it becomes
even more clear what types these paths represent in the corresponding subclasses,
and what kind of transitions can become possible between the subclasses. This kind
of display does not show the primary equilibrium path which is always the same.
Paths represented by upward curves, downward curves and straight lines are denoted
by dashed, dotted and continuous lines, respectively. In case of overlapping paths we
plot all paths shifted a little. Near the paths we give the sign of the eigenvalues of
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Figure 4. Equilibrium paths of subclasses 1, 2c and 7b
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Figure 5. Projections of the equilibrium paths of the subclasses
the Hessian matrix of the energy function. In Figure 5 we display one case for each
of all the subclasses, in the same arrangement as it was done in Figure 3. Subclass 8
has 10 neighbors, and subclass 7b has 5 neighbors.

3.2. Considering the determinacy. A function is called [1] k-determinate, if the k
segment of the function by a simple transformation of coordinates remains equivalent
to all the functions which are composed as a sum of the original function and another
one which has terms exceeding k in order.
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The function (5) is 4-determinate if there are quadratic polynomials which if mul-
tiplied by the first derivative of (5) and then these new polynomials are summed, the
result would be either of the fifth order one factors

(
x5, x4y, ..., y5

)
. It can be done

if C 6= 0 and C 6= B2/4, namely in case of subclasses 1, 2 and 3. For example the
derivatives are:

J1 = 4x3 + 2Bxy2, J2 = 2Bx2y + 4Cy3 (15)
and so:

x4y =
C

4C −B2
xyJ1 −

B

8C − 2B2
x2J2. (16)

Because there are no factors with odd numbered order in the energy function under
investigation, the functions of the other types are maximum 6-determinate.

In case of subclasses 4 and 5 C = 0 and B 6= 0. The function (5) with the addition
of the possible sixth order terms has the form:

f (x, y) = x4 +Bx2y2 +Dx6 + Ex4y2 + Fx2y4 +Gy6 (17)

which together with the

x = u− D

4
u3 and y = v +

(
D

4
− E

2B

)
u2v − F

2B
v3 (18)

diffeomorphism (by leaving the factors with higher than the sixth order) can be trans-
formed to the more simple form:

g (u, v) = u4 +Bu2v2 +Gv6. (19)

Henceforward it is supposed that G 6= 0, and this way it can be shown that (19) is
6-determinate.

In case of subclasses 6 and 7 C = B2/4 and B 6= 0. The function (5) with the
addition of the possible sixth order terms has the form:

f (x, y) = x4 +Bx2y2 +
B2

4
y4 +Dx6 + Ex4y2 + Fx2y4 +Gy6 (20)

which together with the

x = u+

(
F

B2
− E

2B

)
u3 − F

2B
uv2 and y = v (21)

diffeomorphism (by leaving the terms with higher than the sixth order) can be trans-
formed to the more simple form:

g (u, v) = u4 +Bu2v2 +
B2

4
v4 +Hu6 +Gv6 (22)

where
H =

4F

B2
− 2E

B
+D. (23)

Henceforward it is supposed that G 6= 0 and H 6= 0, and this way it can be shown
that (22) is 6-determinate.

In case of subclass 8 B = C = 0. The function (5) with the addition of the possible
sixth order terms has the form:

f (x, y) = x4 +Dx6 + Ex4y2 + Fx2y4 +Gy6 (24)
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which together with the

x = u− D

4
u3 − E

4
uv2 and y = v (25)

diffeomorphism (by leaving the factors with higher than the sixth order) can be trans-
formed to the more simple form:

g (u, v) = u4 + Fu2v4 +Gv6. (26)

Henceforward it is supposed that F 6= 0 and G 6= 0, and this way it can be shown
that (26) is 6-determinate.

3.3. Sixth order energy function. The functions of the first three classes are 4-
determinate, and therefore there is no need for sixth order factors. In case of subclasses
4 and 5 based on (19) we analyze the function formulated as follows:

V (u, v, λ) = u4 +Bu2v2 +Gv6 − λ
(
u2 + v2

)
. (27)

The third terms causes only one important change: the former horizontal equilibrium
path in the plane u = 0 becomes a fourth order curve:

λ = 3Gv4. (28)

In case of subclasses 6 and 7 on the basis of (2) we analyze the function formulated
as follows:

V (u, v, λ) = u4 +Bu2v2 +
B2

4
v4 +Hu6 +Gv6 − λ

(
u2 + v2

)
. (29)

In case of subclass 6 the two former horizontal equilibrium paths become curves, unless
there is a very special ratio between the terms. The change of the load parameter:

λ =
24G− 3HB3

8− 4B
v4. (30)

While investigating subclass 7a we saw that there were no degenerated equilibrium
paths, therefore the sixth order terms do not cause major changes. In subclass 7b
the secondary equilibrium surface ceases to exist. In both vertical coordinate planes
there will always be an upward quadratic curve, but only in case of identical signs of
the sixth order terms will there be such (upward curves) equilibrium paths out of the
coordinate planes, where

u = ±
(
G

H

)1/4

v and λ =

(
2 + 2

√
G

H

)
v2 . (31)

In case of subclass 8 based on (26) we analyze the function formulated as follows:

V (u, v, λ) = u4 + Fu2v4 +Gv6 − λ
(
u2 + v2

)
. (32)

Here remains the
v = 0 and λ = 2u2 (33)

equilibrium path. In the plane u = 0 there will be always a fourth order curve

λ = 3Gv4 (34)
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where the eigenvalues of the Hessian matrix are:

24Gv4 and 2 (F − 3G) v4 . (35)

If 3G > F the previous threefold solution falls apart, and the new pair of solution:

u = ±
√

3G− F
2− 2Fv2

v2 ≈ ±
√

3G− F
2

v2, (36)

λ =
3G− F 2v2

1− Fv2
v4 ≈ 3Gv4 (37)

where the eigenvalues of the Hessian matrix are:

24Gv4 and − 4 (F − 3G) v4 . (38)

That means one remains the same, the other changes its sign compared to (35). If
3G < F, (36) is imaginary, consequently out of the three overlapping paths there
remains only the (34) equilibrium path. The projections of the equilibrium paths
belonging to the energy function (32) are shown in Figure 6.
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Figure 6. Projections of the equilibrium paths of subclass 8

4. Conclusions

We have analyzed the types of equilibrium paths in case of two coalescing critical
loads and of full symmetry. Under these conditions out of 15 types of the double cusp
catastrophes 14 are accessible. We have to analyze only 8 of the 14 classes, because in
the other cases there is nothing more to do but change the sign in the factors which
do not contain a load parameter, and thus the secondary paths will be mirrored on
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a horizontal plane, and the eigenvalues of the Hessian matrix describing the stability
have to be multiplied by -1.
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Abstract. The paper presents a simple optimal elasto-plastic design method of steel frames
and beams constructed of prismatic parts with I shape cross-sections in which the thicknesses
of flanges are varying continuously. Two different loading conditions are considered. The
normal load (dead load and live load) must be carried in elastic state while it is supposed
that under the simultaneous action of an extreme load (explosion, impact, earthquake) and
the dead load the structure is in fully plastic state. This state forms the basis of the optimal
design. Using a quadratic weight function the determination of the optimal plastic moment
distribution is reduced to the analysis of a fictitious linearly elastic structure of the same
configuration as the one to be designed but with special bending stiffnesses [1,2,3]. In the
knowledge of the optimal plastic moments the corresponding elastic bending stiffnesses and
the elastic solution of the original structure subjected to the working load can be determined
in which constraints on displacements and stresses are included. Besides, assuming that the
complementary strain energy of the residual moments can be considered an average measure
of plastic deformations, the plastic behaviour of the structure can also be controlled [4]. The
proposed method is described in the form of two elastic solutions coupled in nonlinear form
by the design variables. For the solution an iterative procedure and an approximate method
are used. The application is illustrated by two numerical examples.

Keywords: optimal plastic design, plastic deformations, mathematical programming

1. Introduction

The application of optimal plastic design methods leads to saving in material but
might result in repeated or accumulating plastic deformations and excessive residual
displacements which can cause unserviceability or collapse of the structure. To prevent
these undesirable phenomena different kinds of constraints are used in the design
to control the plastic behaviour of structures (e.g. [1, 2]). Applying the plastic
design methods in case of extreme loads (explosion, impact, earthquake) an additional
requirement might also be necessary that under the normal working loads in elastic

c©2006 Miskolc University Press
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state the elastic displacements and stresses should not exceed certain limits either.
For this purpose further constraints are applied (e.g. [2, 3]).

The aim of this paper is to present a simple optimal plastic design method of
elasto-plastic steel frames and beams constructed of prismatic parts with I shape
sections in which the thicknesses of the flanges vary continuously. Two different types
of load are taken into consideration. The normal load (the dead load P0 and the live
load P) must be carried in elastic state. Considering a possible abnormal situation,
the structure is subjected together with the dead load also to an extreme load Pex.
It is assumed that under the action of these two loads the structure is in a fully
plastic state. In the following this state forms the basis of the optimal design in
which the fully plastic moments are the design variables. It will be proved that using
a quadratic weight function the optimal solution can be obtained from a fictitious
moment distribution of a linearly elastic structure of the same configuration as the
one to be designed but with special bending stiffnesses [4, 5, 6]. In the knowledge
of the optimal plastic moments the corresponding elastic bending stiffnesses and the
elastic solution can be determined in which limits for the elastic displacements and
stresses are applied. In addition, it is assumed that the complementary strain energy
of the residual moments can be considered an average measure of the residual plastic
deformations, therefore introducing appropriate limits the plastic behaviour of the
structure can also be controlled [1, 2, 3].

The formulation of the method is simple because it is described in the form of two
elastic solutions. These solutions, however, are coupled by the design variables in
nonlinear form therefore they cannot be solved independently but generally a certain
iterative technique has to be used. Introducing some approximations a simple solution
method is also presented. The application is illustrated by two numerical examples.

2. Assumptions, Notations

Consider linearly elastic-perfectly plastic frame-type or beam-type structures con-
structed of k = 1, 2, . . . ,m prismatic parts with I shape cross-sections. The prismatic
parts are subdivided into i = 1, 2, . . . , Nk finite elements. Hence, the total number

k
ℓ  

tk 
hk 

vi 

sk 
 

Figure 1. I shape cross-section

of the finite elements is n =
m∑
k=1

Nk.

The height and thickness of the webs
and the width and thickness of the
flanges of the cross-sections are de-
noted by hk; tk and sk; vi, respec-
tively (Figure 1.). The thicknesses vi
of the flanges belonging to the i-th fi-
nite element are the design variables,
but for convenience, instead of vi the
fully plastic momentsMpi of the cross-
sections will be introduced as design
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variables expressed in terms of vi in the following form:

Mpi =

(
tkh

2
k

4
+ skhkvi

)
σy . (1)

Here σy is the yield stress of the material.

3. The weight function

In optimal design the objective function plays an important role. In this case the
objective function is the weight of the structure expressed in terms of the relationship
between the specific weight wi of the finite element and the fully plastic moment Mpi

of the cross-section. Since, for practical reasons, the size of cross-sections cannot be
reduced below certain limits, we assume that the minimum applicable size is the area
of the web. Hence, the corresponding minimum specific weight and plastic moment
of the prismatic parts are as follows:

wmin
k = tkhk and Mmin

pk =
tkh

2
k

4
σy . (2)

Here, for convenience, it is assumed, that the specific weight of the material is equal
to the unit. After a simple calculation the specific weight function can be expressed
in the form:

if |Mpi| >Mmin
pk , wi = 1

2 tkhk + 2
hkσy

|Mpi| ,
if |Mpi| < Mmin

pk , wi = wmin
k .

}
(3)

Figure 2. Different functions of the weight

This relations are illustrated by the full lines in Figure 2. On the basis of this weight
function analytical solutions cannot be achieved and even the numerical solutions lead
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to complicated calculations. To avoid these difficulties the relationships (3) will be
approximated by a single quadratic function:

wi = tkhk +
M2
pi

Dk
, (4)

illustrated by a dotted line in Figure 2. Here the constant Dk is chosen so, that in
the domain 0 6 |Mpi| 6 Mmax

pk the deviation between relations (3) and (4) is zero.
The following formula is obtained:

Dk =

(
tkh

2
k

4 + hkskv
max
k

)3

σ2
y

3hks2
k

(
vmax
k − vmin

k

)2 . (5)

Here vmax
k is the maximum allowable thickness of the flanges. The corresponding

plastic moment is as follows:

Mmax
pk =

(
tkh

2
k

4
+ hkskv

max
k

)
σy . (6)

The use of the above approximation was suggested by Megarefs and Hodge [4] and
later generalized and extended to the optimal design of reinforced concrete structures
by Kaliszky [5, 6]. The advantage of this approximation is that the weight function
is expressed in term of a single function and because of its quadratic form the use
of absolute value can be omitted. These advantages make it possible to reduce the
optimum plastic design to a special elastic analysis to be shown next.

4. Optimal plastic design

Denoting by M (M1, M2, . . . ,Mi, . . . ,Mn) the moments of the structure arising in
the plastic limit state under the action of the load

(
P0 + Pex

)
and making use of the

weight function (4) the optimal plastic design can be formulated as below:

min

m∑
k=1

Nk∑
i=1

[
wmin
k +

M2
pi

Dk

]
∆i (7)

subject to
G∗M +

(
P0 + Pex

)
= 0; (8)

−Mpi 6Mi 6Mpi; (i = 1, 2, . . . , n) . (9)
Here G∗ is the equilibrium matrix and ∆i denotes the length of finite elements.
Searching for the minimum of the function (7) the constant terms wmin

k can be omitted
and because of the continuous variation of the flange thickness and consequently of
the plastic moments in an optimal solution all the cross-sections are fully utilized.
Hence,

|Mi| = Mpi; (i = 1, 2, . . . , n) (10)
Then relations (9) are automatically fulfilled and equations (9-10) can be written in
the form:

min

m∑
k=1

Nk∑
i=1

[
M2
pi

Dk

]
∆i (11)
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subject to
G∗M +

(
P0 + Pex

)
= 0. (12)

Here equation (11) can be considered the minimum of the complementary potential
energy of an elastic structure at which the prismatic parts have special bending stiff-
nesses Dk. Consequently, equations (11) and (12) together define the elastic solution
of a fictitious structure and the problem of optimal plastic design is reduced to the
analysis of an elastic structure of the same configuration as the one to be designed
but of constant bending stiffnesses Dk throughout the prismatic parts. The solution
of this fictitious elastic problem can be expressed in the following form:

M = F−1
k GK−1

k

(
P0 + Pex

)
= KkGFk

(
P0 + Pex

)
. (13)

Here G is the geometrical matrix , Fk and Kk denote the flexibility and stiffness
matrices corresponding to the special stiffnesses Dk of the prismatic parts. After
solving this simple problem the plastic moments which provide the minimum weight
of the structure can be obtained:

if |Mi| 6Mmin
pk , Mpi = Mmin

pk ,

if |Mi|〉Mmin
pk , Mpi = |Mi| .

}
(14)

This is, however, not the final solution of the problem because the constraints of the
elastic displacements, stresses and plastic deformations to be formulated next also
have to be satisfied.

5. Constraint on elastic displacements and stresses

The elastic constraints can be formulated in the framework of the elastic analysis of
the structure subjected to the normal load (P0 +P). First we have to determine the
moments of inertia Ii of the cross-sections which correspond to the plastic moments
obtained in optimal design and given by equations (13), (14). This calculation leads
to the following relation:

Iki =
hk
2σy

[
Mpi −

1

3
Mmin
pk

]
. (15)

In the knowledge of the moments of inertia the elastic limit moments of the cross-
sections can also be obtained

M0
ki =

2Ii
hk
σa =

[
Mpi −

1

3
Mmin
pk

]
σa
σy
. (16)

Here σa is the allowable elastic stress.

Introducing limits ur0 for the displacements at given points (r = 1, 2, . . . , s) of the
structure and denoting by Mei the elastic moments under the action of the normal
load (P0 + P) the elastic analysis including the displacement and stress constraints
are formulated as below:

Me = F−1
e GK−1

e

(
P0 + P

)
= KeGFe

(
P0 + P

)
, (17)

1

E

m∑
k=1

Nk∑
i=1

MeiM̄ri

Iki
∆i − ur0 ; (r = 1, 2, . . . , s) (18)
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−M0
ki 6Mei 6M0

ki ; (i = 1, 2, . . . , Nk) , (k = 1, 2, . . . ,m) . (19)
Here M̄ri denotes the moments calculated from the unit dummy forces Pr acting at
the points (r = 1, 2, . . . , s) in the directions of ur0, E is the Young’s Modulus of the
material and Fe and Ke are the flexibility and stiffness matrices corresponding to the
moments of inertia Ii given by equations (15) and (16), respectively.

6. Constraint on plastic deformation

To construct the plastic deformation constraint first the elastic moments Mex
e cor-

responding to the load (P + Pex) have to be calculated assuming that the structure
is elastic without limits:

Mex
e = F−1

e GK−1
e

(
P0 + Pex

)
= KeGFe

(
P0 + Pex

)
. (20)

Then the residual moments can be obtained

Mr = Mp −Mex
e . (21)

As it was stated in Section 1 it is assumed that the complementary strain energy of
the residual moments is considered an overall measure of the plastic behaviour of the
structure (e.g. [6, 1, 2]). Hence, the plastic deformations can be controlled by the
following constraint:

1

2E

m∑
k=1

Nk∑
i=1

(Mpi −Mex
e )

2

Iki
∆i −Wp0 6 0 . (22)

Here Wp0 is an appropriately chosen allowable plastic strain energy of the residual
moments [1, 2].

7. Solution of problem

Equations (13)-(22) derived above are summarized as follows:

M = KkGFk
(
P0 + Pex

)
if |Mi| 6Mmin

pk , Mpi = Mmin
pk ,

if |Mi| > Mmin
pk , Mpi = |Mi| .

 (A)

Me = KeGFe
(
P0 + P

)
1
E

m∑
k=1

Nk∑
i=1

MeiM̄ri

Iki
∆i − ur0 6 0 ; (r = 1, 2, . . . , s) ,

−M0
ki 6Mei 6M0

ki ; (i = 1, 2, . . . , s) , (k = 1, 2, . . . ,m) ,

 (B)

1

2E

m∑
k=1

Nk∑
i=1

(Mpi −Mex
e )

2

Iki
∆i −Wp0 6 0; (C)

Iki = hk

2σy

[
Mpi − 1

3M
min
pk

]
;

M0
ki = 2Ii

hk
σa

}
(D)

Here equations (A) provide the optimal plastic moment distribution, equations (B)
describe the elastic solution with constraints on the elastic stresses and displacements



Optimal design of elasto-plastic steel frames 207

and equation (C) stands for the constraint on plastic deformations. These equations
are coupled by the design variables Mpi throughout equations (D) in nonlinear form
therefore the solution of the problem requires the application of an iterative procedure
or an approximate solution can be used.

The idea of the approximate method is the proportional reduction of the optimal
solution obtained by equation (13). First the optimal plastic moments Mpi have to
be determined from equations (13), (14). Then making use of the relations (15) and
(16) and introducing the unknown slack variables λr; (r = 1, 2, . . . , s), κ′i and κ′′i ;
(i = 1, 2, . . . , n) and α equations (17)-(19) and (22) can be written in the following
form:

Me = KeGFe
(
P0 + P

)
, (23)

1

E

m∑
k=1

Nk∑
i=1

MeiM̄ri

Iki
∆i − λrur0 = 0 ; (r = 1, 2, . . . , s) , (24)

− σa
σy
κ′iM

0
ki = Mei =

σa
σy
κ′′iM

0
ki ; (i = 1, 2, . . . , Nk) , (k = 1, 2, . . . ,m) , (25)

1

2E

m∑
k=1

Nk∑
i=1

(Mpi −Mex
ei )

2

Iki
∆i − αWp0 = 0 . (26)

Solving these equations the maximum value of the slack variables can be calculated

Ψ = max (λr, κ
′
i, κ
′′
i , α) ; (r = 1, 2, . . . , s) , (i = 1, 2, . . . , n) . (27)

Then the plastic moment distribution M̄pi which satisfies the constraints of the elastic
displacements, stresses and plastic deformations and, at the same time, can carry the
load

(
P0 + Pex

)
in fully plastic state can be approximated in the following form

if Ψ 6 1 , M̄pi = Mpi;

if Ψ > 1 , M̄pi =
2σf

hk
ΨIki + 1

3M
min
pk ;

}
(i = 1, 2, . . . , Nk) , (k = 1, 2, . . . ,m) .

(28)
If Ψ 6 1, then the constraints are not active and therefore the exact solution is
identical with the optimal plastic moment distribution given by equations (13), (14).

If Ψ > 1 then the application of the plastic moments M̄pi calculated from equation
(15) on the basis of the increased moments of inertia assures the satisfaction of the
constraints and larger thanMpi, therefore the structure can carry the load

(
P0 + Pex

)
in plastic state.

8. Examples

In the following the application of the method is illustrated by presenting the results
of the optimal plastic design of two different structures. A computer program system
was elaborated in standard FORTRAN language to solve the problem numerically.
The finite element program provides the necessary information for the mathematical
programming part. The optimization algorithm is based on sequential quadratic
programming [7]. Due to the nature of the test problems the computer times were
not significant and conducting a few iterations the optimal solutions were found.
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Example 1. A Beam
Consider an elasto-plastic continuous simple supported beam subjected to dead load,
normal and extreme loads shown in Figures 3.a-c. Corresponding to the two spans the
beam is constructed of two prismatic parts with the length `1=5.40m and `2=4.50m,
respectively.

Figure 3.a. Dead load

Figure 3.b. Normal load

Figure 3.c. Extreme load

The I-shape cross-sections (Figure 1) of the two prismatic parts have the following
data: h1 = 100 mm, t1 = 10 mm, s1 = 100 mm and h2 = 100mm, t2 = 12mm,
s2 = 100 mm. The limits of the thickness of the flanges are vmin

1 = vmin
2 = 5 mm and

vmin
1 = vmin

2 = 40 mm, respectively.
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Optimal Plastic Moment Distribution
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Figure 4. Plastic moment distribution

Each prismatic part is subdivided into 9 finite elements (n=18) with equal lengths
∆1 = 60 cm and ∆2 = 50 cm, respectively. The material constants are σy =

21 kN/cm2 and E = 21000 kNcm2.

Flange thickness distribution

0

0,5

1

1,5

2

2,5

3

3,5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T
h

ic
k

n
e

s
s
 (

c
m

)

Ur=4 Ur=6 Ur=8

Figure 5. Flange thickness distribution at different elastic limit displacements

The allowable plastic strain energy of the residual moments is assumed to Wp0 =
20 kNm. Three different elastic limit displacements u01 = 4, 6, 8 cm and u02 =
4, 6, 8 cm are taken into account at the middle of the spans.
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The results are shown in Figures 4-5. In Figure 4 the variation of the optimal plas-
tic moment distribution of the beam is plotted in case of u01 = u02 = 8cm. Figure 5
shows the distribution of the thicknesses of the flanges along the beam for different
limit displacements.

Example 1. A Frame
Consider an elasto-plastic rectangular frame shown in Figure 6.a. The frame is sub-
jected to dead load P0, normal load P and extreme load Pext given in Figure 6.b.
The extreme load corresponds to the impact of a vehicle with mass m=800 kg and
velocity 5 m/s which is equivalent to Pext=200 kN [7]. The beam and the columns
are constructed of two prismatic parts (k=1,. . . ,6) as it is shown in Figure 6.a. and
each prismatic part has 3 finite elements (i = 1, . . . , 18) with lengths ∆1 = 75 cm and
∆2 = 60 cm, respectively.

Figure 6.a. Dimensions of the frame

The allowable plastic strain energy of the residual moments is assumed to be Wp0 =
10 kNm. Two different elastic limit displacements u01 = 7.5; 12.5cm and u02 =
7.5; 12.5cm are taken into account at points b and d, respectively. The prismatic
parts have I-type cross-sections (Figure 1) with the assumed dimensions shown in
Table 1. In the Table the minimum and maximum values of the thickness of the
flanges are also given.

Solving the example the thicknesses of the flanges calculated at the finite elements
in case of u01 = u02 = 7.5 cm are shown in the last but one column of Table 1, while
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Figure 6.b. Dead load P0, normal load P and extreme load Pext

in the last column the constant thicknesses to be applied along the prismatic parts
are given.

Table 1. Data of the cross-sections and the results
k `k hk tk sk vmin

k vmax
k vi vk,applied

[cm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
12.2

1 60 220 12 140 8 44 23.0 28
27.6
27.5

2 60 220 14 160 8 50 31.5 36
35.5
40.6

3 75 200 12 160 8 50 30.5 42
30.0
29.6

4 75 200 12 160 8 50 29.1 30
28.6
36.7

5 60 180 12 140 8 44 24.2 38
18.6
13.6

6 60 180 10 140 8 44 8.00 14
13.6
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9. Conclusions

The presented method can be used for the optimal plastic design of steel frames
and beams composed of prismatic parts with I type cross-sections and subjected to
three different kinds of loads. Under the action of the dead load and normal load
the structure must be in elastic state with limited displacements and stresses while
the extreme load together with the dead load is carried in fully plastic state when
the plastic deformations are also controlled. Using a quadratic weight function the
plastic optimal design is reduced to the analysis of a fictitious elastic structure with
special bending stiffnesses. Because the equations are coupled by the design variables
in nonlinear form an iterative procedure should be applied to the solution. The
convergence of this iteration is generally good and the solution does not need lengthy
calculations.

The approximate method is very simple and provides a good estimation of the
optimal solution. It is on the safe side regarding the load carrying capacity of the
structure and fulfils all constraints. The proposed method can be also applied to the
optimal design of trusses.
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