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Imre KOZÁK, Institute of Applied Mechanics, University of Miskolc,
H-3515 Miskolc-Egyetemváros, Hungary
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A Short Preface for Authors and Readers

The Journal of Computational and Applied Mechanics (JCAM) came out first in 2000
and two issues a year were published till 2008. There was an increasing interest in
publishing papers in the journal since the review period was relatively short and in
addition the papers could be downloaded freely form the home page of the journal.
It was the main objective of the editorial board to establish an international journal
in Hungary which would provide an opportunity for publishing papers in the field of
theoretical and applied mechanics. With regard to the research carried out at the
University of Miskolc in computational mechanics (fluid mechanics and mechanics of
solid bodies as well as heat conduction could be mentioned here) a special emphasis
was laid on the results achieved in these fields. We planned to publish review papers
and special issues were devoted to novel results in biomechanics.

The financial difficulties that began in 2008 played a role in our being unable to
publish the journal between 2008 and 2013. With this issue we would like on one
hand to restart the journey we began in 2000 so that we can make up for what we
have missed and on the other hand to reinforce the objectives set in 2000.

It is worth emphasizing that the journal should be open access – in the same way
as before – for ambitious young and also for more experienced researchers, that is,
for everybody who takes an interest in doing research in theoretical and applied
mechanics. In contrast to some free journals which expect the authors to pay for
the review (or for the publication of a paper), JCAM insists on the novelty and the
level of the papers published, and at the same time we would like to emphasize that
publication as well as access to the papers published is free of charge. The review
process is, however, a rigorous one: we need two positive reviews to accept a paper
for publication.

We truly hope that we can regain the trust of our faithful readers, who would also
honor us contributing manuscripts for publication.

László Baranyi, István Páczelt and György Szeidl

P.S. Our home page is being redesigned, which will take some time. We apologize for
the inconvenience.
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Abstract. Classic solutions of the responses of plates subjected to uniform random pres-
sure are generally confined to simple boundary conditions where the assumed mode shape
solutions are known. Even in those simple cases, response solutions have neglected the
asymmetric modes for rectangular plates with symmetric boundary conditions due to math-
ematical limitations. To the best know;edge of the authors, the present paper presents for
the first time the random response and fatigue life prediction for plates subjected to un-
synchronized and statistically uncorrelated uniform random loads. A linear finite element
formulation combined with the Monte Carlo simulation is employed to determine the stress
response, and the stochastic Palmgrem-Miner reliability model is used for the fatigue analy-
sis. A simply supported rectangular plate is studied first in detail to show the contributions
of both symmetric and asymmetric modes due to the unsynchronized loading. A clamped-
simply supported plate is analyzed next to show the versatility of the present approach. In
both cases, a significant reduction on the responses and increase in fatigue life was observed
as compared to corresponding results from the uniform synchronized loading condition. Re-
sults also include RMS displacement and stress values, power spectral densities, probability
density functions, and rainflow plots. Computational burden due to the unsynchronized
random pressure fluctuations required the use of parallel computing capabilities.

Mathematical Subject Classification: 05C38, 15A15
Keywords: unsynchronized, random, fatigue life

1. Introduction

Currently the random acoustic pressure for sonic fatigue design and analysis of beam,
plate [1, 2, 3, 4, 5, 6, 7] and shallow shell [8] structures (linear or non-linear) is often
considered uniformly distributed over the surface of the structure and synchronized in
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time. In addition, the random loading is generally assumed as a truncated Gaussian
white noise. In two previous experiments, two clamped square aluminum plates were
tested in the Wideband Noise Test Chamber of the Flight Dynamics Laboratory Sonic
Fatigue Facility at WPAFB. The mean-square strains versus non-dimensional Sound
Pressure Level (SPL) showed good agreement among the PDE/Galerkin/Equivalent
Linearization (EL) analytical results and the experimental data [2, 9]. A steel beam
rigidly clamped in a clamping fixture and mounted on a vibration shaker was also
recently tested. Excellent agreement of the strain Power Spectral Density (PSD) was
obtained among the experimental data and the two finite element modal results [3, 10].
In both experiments, the loading could be considered as synchronized in time and
uniformly distributed, thus the asymmetric natural bending modes of the panel were
not considered in the analysis. By synchronized load it is meant that the simulated
random pressure load is generated from one seed number [1, 3, 7, 8, 10] (see Section
III. C) for the whole surface area of the panel, and at each time step the pressure load
on the beam, plate or shell is uniform. On the other hand, let us use the long period of
steady rain falling on top of a flat small roof as an illustration of the unsynchronized
uniform random load. The pressure of the raindrops falling on the roof surface is
certainly random in nature, with more or less a fairly uniform pressure distribution in
the random sense (white noise, but not identical time history). It cannot be simulated
as a random uniform pressure synchronized in time coming from only one seed number,
but rather as a random load with different seed number for each raindrop in an ideal
simulation case. Another example of uniform random load unsynchronized in time
is the 30,000 to 40,000 marathon runners across a long-span bridge, especially cable-
supported. For those cases, the asymmetric as well as the symmetric modes are excited
and they should be considered in the analysis. For panel design in practice, the highest
measured or estimated PSD level should be used, and it may also be reasonable to
assume that the PSD is a band-limited white noise, since the contribution from the
high frequency modes to the panel response is usually small. Influences of acoustic
pressure with nonwhite PSD (synchronized) on maximum deflection, stress/strain and
fatigue life have been investigated recently for plates[?] and shallow shells.[?]. This
paper studies the random response and fatigue life of isotropic rectangular plates
subjected to a uniformly distributed random pressure load unsynchronized in time.
Results show that the Root Mean Square (RMS) deflections and maximum stress are
reduced and the fatigue life is increased for the unsynchronized as compared with the
traditional synchronized loading case.

2. Analytical solution

The mathematical difficulties in considering the asymmetric modes in the response of
a plate under uniformly distributed random load (white-noise) using the classic ana-
lytical method is briefly explained first. Considering the linear vibrations of a Simply-
Supported (S-S) isotropic plate subjected to a uniformly distributed random pressure
P (t). The transverse displacement w(x, y, t) of a a× b×h (length×width×thickness)
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panel can be represented as

w(x, y, t) =

m∑
r=1

n∑
s=1

qr,s (t) sin
(rπx
a

)
sin
(sπy

b

)
, (r, s) = 1, 2, 3... (1)

The classic analytical partial differential equation (PDE) and normal mode approach
leads to the modal equations for the damped motion of the panel as

q̈r,s + 2ζr,sωr,sq̇r,s + ω2
r,sqr,s =

γr,s
mr,s

P (t) , (r, s) = 1, 3, 5... (2)

By setting (r, s) = m and (k, l) = n, the mean-square values of the modal amplitudes
are

E
[
q2m
]

=
γ2mS0

8m2ζmω3
m

(3)

and

E [qm qn] =

=
γmγn (ζmωm + ζnωn)S0

mmmn

[
(ω2
m − ω2

n)
2

+ 4ωmωn (ζmωm + ζnωn) (ζmωn + ζnωm)
] (4)

where ζm is the modal damping coefficient, ωm the natural frequency corresponding to
the (r, s) mode, respectively, and m = ρhab

4 the constant modal mass. The coefficient
γr,s = γm is the result from the application of the PDE/normal mode approach as

a∫
0

b∫
0

P (t) sin
(rπx
a

)
sin
(sπy

b

)
dxdy =

{
P (t) γm for (r, s) = odd

0 for r or s = even
(5)

where γm = 4ab
rsπ2 . The γm value from equations (3) and (5) implies that only the

symmetric modes (r and s =odd) are excited with the uniformly distributed random
pressure P (t) synchronized in time since for asymmetric modes, (r or s=even), the
integration of equation (5) over the surface of the panel is zero.

The definition of P (t) is a rather restricted case of random load since at any instant
time the pressure is constant at any location of the panel, and thus P (t) is statistically
synchronized in time. This synchronized uniform random pressure P (t) does not fit
the more general stochastic definition of band-limited white noise pressure,

Sp (ξ, η, f) =


S0 if 0 6 f 6 fu

0 if f < 0 or f > fu

ξ = x1 − x2
η = y1 − y2

(6)

where the spatial separations are denoted by ξ = x1−x2, γ= y1−y2, and the upper cut-
off frequency in hertz (Hz) by fu. The auto-spectral density function of the random
excitation is defined as

S0 = P 2
0 10

SPL/10 (7)
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where SPL denotes the sound pressure level in decibels (dB), and P0 is the reference
pressure equal to 2.9008× 10−9 psi (20µ Pa). Explicitly, the time histories of random
pressure P (x, y, t) at any two points of the panel could be different and statistically
unsynchronized in time, however, their PSD values (So) should be the same. This
statistically unsynchronized uniformly distributed random pressure would certainly
excite the asymmetric (r or s=even) as well as symmetric (r or s =odd) modes. How-
ever, as it can be easily seen from equation (5) that the asymmetric modes would not
be considered in the analytical PDE/normal mode solution. The steady rain and the
marathon runners discussed earlier are two examples of statistically unsynchronized
uniform random loads just addressed.

3. Formulation and Simulation

3.1. Finite Element Formulation.

Structural Node Degree of Freedom (DOF)
The finite element employed in the present study is the C1-conforming Bogner-Fox-
Schmit [11] (BFS) plate element, which has a total of 16 bending DOF {wb}:

{wb} = {wk w,xk w,yk w,xyk }T (8)

Applying the principle of virtual work, the system equations of motion are derived,

[Mb]
{
Ẅb

}
+ [Kb] {Wb} = {P} (9)

where [Mb] and [Kb] are the system consistent mass and stiffness matrices, and {P}
is the load vector for uniform random loading.

Modal DOF
The system equations of motion in the structural DOF are then transformed into
a set of truncated modal coordinates by expressing the plate response as a linear
combination of some base functions as

{Wb} =

l∑
m=1

qm (t) {φb}(m)
= [Φ] {q} (10)

where {φb}(m)
corresponds to the m-th normal mode of the linear vibration problem.

Adding a damping matrix 2ζmωm [I] where the modal damping ζm can be determined
experimentally or from previous experience. The equations of motion, equation (9),
are reduced to a set of uncoupled modal equations as[

M̄b

]
{q̈}+ 2ζrωr

[
M̄b

]
{q̇}+

[
K̄b

]
{q} =

{
P̄
}

(11)

where the diagonal modal mass and stiffness matrices are([
M̄b

]
,
[
K̄b

])
= [Φ]

T
([Mb] , [Kb]) [Φ] (12)

and the modal random load vector is{
P̄
}

= [Φ]
T {P} (13)

The modal displacement {q} in equation (11) is obtained by the fourth order Runge-
Kutta (RK4) numerical integration scheme. The system bending displacement {Wb}
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is then calculated with equation (10), and the stress vector {σ} at the element level
is evaluated with

{M} = [D] {κ} , {σ} =

(
± 6

h2

)
{M} (14)

where h is the thickness, {M} the bending moment vector, {κ} the curvature, and
[D] the bending stiffness matrix of the plate. For the displacement based finite el-
ement method, the stress calculation is not as accurate as displacement calculation.
According to Barlow [12] the stresses are more precise if calculated at the Barlow
points and then extrapolated to the nodal points or other desired point.

3.2. Fatigue Life Estimation - RFC Method.
The Palmgren-Miner [13] cumulative damage theory method is employed for fatigue
life analysis in the time domain

D =

k∑
i=1

ni
Ni

= 1.0 (15)

where D is the damage and ni and Ni are the actual number of cycles at a given
stress level and the number of total cycles at which failure occurs at the same stress
level. The stress/strain versus the number of cycles to failure (S-N) curve normally
takes the form,

N = K/Sβ (16)

where the material constants K and β are determined experimentally. For random
response, the Palmgren-Miner [13] theory is rewritten as

E[D(t)] =
1

K

∞∫
0

p (s) sβds = E

[
1

K

∑
p (s) sβ

]
= E

[
1

K

∑
sβk

]
(17)

where p(s) is the stress/strain range Probability Distribution Function (PDF). Based
on equations (15) and (17) the simplest fatigue life estimate is

T f =
1

E[D(t)]
(18)

Some of the cycles counting methods to predict p(s) are: (i) the peak counting method,
(ii) the range counting method, and (iii) the Rainflow Counting Cycles (RFC) method.
Langley and McWilliam [14] showed that the first two methods give similar results
for narrow-band processes, but quite different for a wide-band process. The RFC
method uses a specific counting scheme to account for effective stress ranges and
identified stress cycles related to closed hysteresis loops in the stress-strain curves.
The validity of the RFC method was studied in detail by Dowling [15] where the
accuracy of fatigue life predictors was based on eight commonly used cycle counting
methods. Dowling concluded that the RFC method was the only accurate method
for wide-band processes. The RFC algorithm used in this paper was provided as part
of the Wave Analysis for Fatigue analysis and Oceanography [16] (WAFO) toolbox.
In addition, Bishop and Sherratt [17] showed that fatigue life of wide-band Gaussian
signal using the RFC yields to the most realistic estimates.



8 J. M. Dhainaut, G. Cheng and C. Mei

3.3. Synchronized Random Pressure Generation.
Consider a uniformly distributed random pressure P (t) that is characterized by the
auto-spectral density function defined by equation (6) and (7). A simple process
possessing such a PSD is a truncated white noise and its samples are assumed here
to be drawn according to a Gaussian distribution. An algorithm [1, 3] that simulates
a random pressure using complex numbers with independent random phase angles
uniformly distributed between 0 and 2π is used to generate the band-limited truncated
white noise [1, 3, 8]. The algorithm uses a random number generator that needs an
initial seed number (ISEED). Once the random pressure time history is generated
the average value of the auto-spectral density is calculated and compared to S0 for
a given SPL. Each pressure time history had a time history of 1 second, a cut-off
frequency of 4096 Hertz (Hz), a time step ∆t = 1/216 second, and a total of 65536
(NPT) pressure data points.

3.4. Unsynchronized Random Pressure Generation.
The unsynchronized random load generation follows alike procedure as the synchro-
nized load case, except that for each plate element, a random load is generated with
a different ISEED number. Using different ISEED numbers guaranties that each
random pressure time history to be different from one another as shown in Figure 1.
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Figure 1. Random load generation for ISEED=14407 and ISEED=12357

This phenomenon was referred in the introduction as the simulation of the raindrops
and/or the marathon runners’ steps on a cable-supported bridge. Table 1 shows that
pressure histories from 5 different ISEED numbers have a PSD equal to mean value
of S0 at SPL=100 dB.
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Table 1. Load generation from 5 different ISEED numbers
ISSED Analytical PSD∗ Time history∗∗ ∗Err. % ∗∗Err. %

20392 3.44651799e-2 3.446530047e-2 3.453362e-2 0.00034 -0.1985

20462 3.44651799e-2 3.446530048e-2 3.459602e-2 0.00034 -0.3796

20506 3.44651799e-2 3.446530047e-2 3.435795e-2 0.00034 0.3111

20527 3.44651799e-2 3.446530047e-2 3.445678e-2 0.00034 0.02435

12357 3.44651799e-2 3.44653004e-2 3.446085e-2 0.00034 0.01254

Analytical: Power=(P2
ref10SPL/10) × fu, PSD∗: Power=mean(S0) × fu, and Time

history∗∗: Power=P(t)2/NPT

A more detailed analysis using the correlation coefficient command in MATLAB
has shown that the pressure time histories were statistically uncorrelated to each
other as shown in Figure 1. For instance, if a generated pressure time history was
compared with fifty others (all with different ISEED numbers), the lowest correlation
coefficient found was 0.0011 and the highest 0.0264, where a correlation coefficient
of 0 indicates no relationship and a coefficient of 1.0 indicates the highest possible
relationship (correlation factor of the pressure time histories with each other).

3.5. Parallel Computations.
The computational burden caused by the storage of the random loads from dif-
ferent ISEED numbers was resolved by the use of parallel computing facilities at
Embry-Riddle Aeronautical University. In Matlab the Distributed Computing Tool-
box (DCT) and the Distributed Computing Engine (DCE) enable to develop parallel
MATLAB applications and execute them on a cluster of computers without leaving
the Matlab environment. A local UNIX machine was used to connect to the DCE
installed in the cluster. The MCS-FE code was run into two workers (nodes) 4 GB
Ram memory each; the first worker was used as storage for the huge amount of data
points contained in the load matrix. (There are 1024 columns each containing 16384
points). The second worker is used exclusively to run the modal finite element numer-
ical simulation. The program is at the first stage to be adapted for parallel computing
capabilities. At this stage the program was modified such that at each time step the
FE-MCS was able to call the corresponding random pressure values contained in the
load matrix. In a near future the program would be optimized to be able to run on
multiples nodes which will significantly increase the number of degree of freedom (or
mesh size) and it will decrease the computational time.

4. Results and Discussion

The responses of a plate under the synchronized uniform random pressure are studied
first. Results are compared between the analytical solution (see section II) and the
Finite Element code (FE) which uses the Monte Carlo Simulation (MCS). Next, the
same panel is subject to an unsynchronized random load, and results are quantita-
tively compared to previous ones. Finally, the FE modal formulation is generalized
by the study of the response of a panel with mixed (asymmetric) boundary conditions
under the unsynchronized uniform random pressure.
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4.1. Validation. A Simply-Supported (S-S) plate was first selected for validation
because some preliminary results can be compared with the analytical solution. The
aluminum plate has dimension 15 in. × 12 in. × 0.040 in. (38.1 cm × 30.48 cm ×
0.1016 cm). The material properties are Young’s modulus E = 10.587x106 psi (73
GPa), density ρ = 2.588 × 10−4 lbf-sec2/in.4 (2763 kg/m3), Poisson ratio ν = 0.30.
A constant modal damping ratio of ζr = 0.02 is applied. The panel is modeled with
a convenient 32 × 32 mesh (1024 BFS elements). The lowest twenty-two natural
frequencies and corresponding modes are given in Table 2.

Table 2. Lowest twenty-two S-S panel modes and frequencies in Hz (32 ×32 mesh)
Mode (1,1) (2,1) (1,2) (2,2) (3,1) (1,3) (3,2) (4,1) (2,3) (4,2) (3,3)

FEM 43.8 95.07 123.9 175.2 180.5 257.5 260.7 300.2 308.7 380.4 394.2

Analy-
43.8 95.1 123.9 175.2 180.5 257.4 260.7 300.2 308.7 380.3 394.2

tical

Mode (1,4) (5,1) (2,4) (4,3) (5,2) (3,4) (6,1) (5,3) (1,5) (4,4) (6,2)

FEM 444.4 454.0 495.7 513.8 534.1 581.1 642.1 667.7 684.8 700.8 722.2

Analy-
444.4 454.0 495.7 513.8 534.1 581.1 642.0 667.7 684.7 700.8 722.1

tical

The number of modal coordinates to be included in the analysis for converged
deflection and stress is studied first. The RMS maximum non-dimensional deflection
(Wmax/h) and the RMS maximum stress (σy at the plate center) for different number
of modes under a synchronized random load of intensity SPL=100 dB are given in
Table 3. Analytical solutions (section II) for 1, 2, 4 and 5 symmetric modes are also
tabulated for validation of the present modal Finite Element Model (FEM).

Table 3. Verification and modal convergence for S-S panel under synchronized
loading (32 ×32 mesh)

SPL=100 dB
Analytical Analytical FEM FEM

Modes
RMS RMS(Stress) RMS RMS(Stress)

(Wmax/h) psi (Wmax/h) psi

(1,1) 0.6219 473.105 (3.26 MPa) 0.6220 474.472 (3.27 MPa)

(1,1), (3,1) 0.6227 475.043 (3.28 MPa) 0.6227 476.690 (3.28 MPa)

(1,1), (3,1),
0.6228 483.010 (3.33 MPa) 0.6229 485.220 (3.35 MPa)

(1,3), (3,3)

(1,1), (3,1),
0.6228 483.070 (3.33 MPa) 0.6230 484.950 (3.34 MPa)

(1,3), (3,3),(5,1)

Lowest 4 modes 0.6219 473.105 (3.26 MPa) 0.6220 474.472 (3.27 MPa)

Lowest 5 modes 0.6227 475.090 (3.28 MPa) 0.6227 476.690 (3.28 MPa)

Lowest 11 modes 0.6228 483.010 (3.33 MPa) 0.6229 485.220 (3.35 MPa)

Lowest 13 modes 0.6228 483.070 (3.33 MPa) 0.6230 484.950 (3.34 MPa)

Results show that the lowest four symmetric modes (1,1), (3,1), (1,3), and (3,3) are
sufficient for a converged displacement and stress solutions, and that the asymmetric
modes (2,1), (1,2), (2,2), (3,2), (4,1), (2,3), (4,2), (1,4) and (5,1) have no appreciable
contribution to the maximum displacement response. The modal convergence based
on stress also indicated that four symmetric modes are sufficient for converging stress
response. Since the present paper deals with fatigue life predictions, which are based
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on stress ranges, equation (17), four symmetric modes are considered for converged
stress calculations. In the RMS calculations, the transient part of the responses has
been omitted by dropping the first 8192 data points or 0.125 second (sec). This means
that the total useful time of data is 0.875 sec for each sample. This same procedure
is adopted for all subsequent results in the paper. Fatigue life prediction results are
obtained by evaluating the mean of the RMS values of ten samples.

Two other considerations for accurate and converged response predictions were also
addressed: the number of elements and the integration time step. It is found that a
discretization of the panel into 1024 BFS elements is more than adequate since 384
elements (24 x 16 mesh) should be sufficient for converged responses. The selection of
the time step has observed two criteria: 1) the Nyquist-Shannon sampling theorem,
which basically states that it is necessary to sample a time sequence at least two
times faster than the highest frequency present in the modal expansion (394.18 Hz),
and 2) two consecutive time steps (∆t2 = ∆t1/2), for a same pressure load, should
give identical time history responses. It was found that a time step of ∆t=1/216=
1.52×10−5 sec satisfies the above two requirements.

4.2. Unsynchronized Response of Simply Supported Panel.
The same panel (32 × 32 mesh) was subjected to an unsynchronized sample random
pressure load by the procedure described in section III.D. Results in this section
are obtained from a unique random load file containing 1024 uncorrelated random
pressure loads for the 32 × 32 = 1024 elements. This means that RMS values are
always calculated from the same random load file (always same ISEED numbers),
and can consequently be used for modal and mesh convergence purposes. However,
since the RMS values are based on only one load sample their accuracy (RMS values)
cannot be considered as accurate. As it will be explained in a later section, the
accuracy is improved by applying the MCS technique by taking many samples. Table
4 shows the RMS values of the maximum stress computed from different mesh sizes.
It is observed that a stress mesh convergence is not obtained by a mesh refinement
of 32×32, which is the maximum mesh size that a Dell Precision 450 (Intel Xeon
processor 533 MHz) with 4GB of ram memory could model. This limitation could be

Table 4. Mesh and modal convergence for stress of S-S panel under unsynchronized
loading

Mesh Size 16 × 16 mesh 24 × 20 mesh 32 × 32 mesh
RMS(Stress), psi RMS(Stress), psi RMS(Stress), psi

Lowest 11 modes 84.34 (0.582 MPa) 62.65 (0.432 MPa) 17.62 (0.121 MPa)

Lowest 18 modes 84.77 (0.585 MPa) 62.82 (0.433 MPa) 17.78 (0.123 MPa)

Lowest 20 modes 87.97 (0.607 MPa) 64.37 (0.444 MPa) 19.14 (0.132 MPa)

Lowest 22 modes 87.97 (0.607 MPa) 64.37 (0.444 MPa) 19.14 (0.132 MPa)

overcome by the use of Parallel Computing Methods (PCM), but it will not be ad-
dressed in this paper. The main goal of the present work is to show the reduction
in RMS responses and increase in fatigue life prediction due to the unsynchronized
characteristics of the random load. However, it was observed that 20 modes were
sufficient for modal convergence. Consequently, unsynchronized random results will
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be limited to a 32×32 mesh size with 20 modes, where the highest two modes are
(5,3) with a frequency of 667.65 Hz, and (1,5) with frequency 684.74 Hz, respectively.
These two modes indicate that the 32×32 mesh scheme is adequate for numerical
simulation.

In order to show the contribution from asymmetric modes other than the lowest
four symmetric modes (1,1), (3,1), (1,3), and (3,3), the deflection and stress PSD
plots at x = 15/4 in. and y = 12/4 in., and at the center of the panel for the
synchronized and unsynchronized loads at SPL=100 dB are shown in Figure 2. The
displacement figure at x = 15/4 in. and y = 12/4 in. (x = 38.1/4 cm & y = 30.48/4
cm) clearly indicates that the unsynchronized loading case excited the modes (2,1),
(1,2), and (2,3) in addition to the lowest five symmetric modes. A close observation
reveals that the mode (4,1) is also excited, but it does not appear on the PSD since
the analysis is at the node point for mode (4,1). Stress PSD at x = 15/4 in. and
y = 12/4 in. (x = 38.1/4 cm & y = 30.48/4 cm) shows that at this location the
stress is still influenced by the symmetric modes (3,1) for the synchronized loading
case, while for the unsynchronized case the contribution from the of symmetric and
asymmetric modes, (2,1), (1,2), (4,1), is more or less evenly distributed. Finally, the
stress PSD indicates that the area under the curve (Power=S0 ×∆f) is much lower
for the unsynchronized than for the synchronized load case. This implies that the
fatigue life would then be higher for the unsynchronized loading case [17].
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4.3. Panel Fatigue Life under Synchronized and Unsynchronized Loads.
The MCS technique is adopted for the accurate prediction of fatigue life of panels
under random synchronized and unsynchronized processes. The MCS consists of tak-
ing a number of various samples of load pressure distribution and evaluate the RMS
maximum stress response of each sample at a time. With the results from many
samples, a statistical distribution is obtained and used to find a mean value of the
RMS responses. Fatigue life results are based on 10 samples of 1 sec. each where the
first 0.125 sec. has been discarded to eliminate the initial transient response. The
MCS technique has been proven to be effective for synchronized loadings where a
small number of samples (based on one random ISEED number for each sample and
all finite elemnts) yield pretty quickly to a converged fatigue estimate. However, the
convergence for the unsynchronized loading case (each of the 32×32=1024 elements
is excited by a different ISEED number) has shown to be extremely slow and com-
putationally costly. This issue again makes the unsynchronized problem suitable for
PCM where the simulated random load (different ISEED) could be distributed among
different nodes (processors) instead of just one.

Table 5. Fatigue life prediction for simply-supported panel (10 samples)
SPL=100 dB Synchronized Unsynchronized

Fatigue Life Prediction (years) 85.47 8.97×107 (Infinity)

Fatigue results shown in Table 5 are based on the maximum bending stress with
S-N properties of β = 4.8 and K = 1.52× 1025. These fatigue life prediction results
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suggest the following two questions: 1) is the traditional synchronized random analysis
too conservative for structures subjected to highly unsynchronized loads, and 2) if the
SPL is high enough to require a nonlinear analysis for synchronized loads, would it
be valid just to consider the linear analysis for highly unsynchronized loads at high
SPL since their responses might be within the linear range? Certainly, much more
investigations are needed for the unsynchronized loading cases at higher SPL including
the consideration of nonlinear large deflection effects.

For the synchronized load, the maximum stress is at the panel center, whereas
for the unsynchronized the maximum stress alternated between the center node (No.
481) and its eight adjacent nodes (449, 450, 451, 480, 482, 511, 512, 513). Figure
3 gives more detailed information about the characteristics of the stress responses
yielding to the fatigue results in Table 5. The differences shown in both figures are
an indication on how the stress response differs as a result of synchronized versus
unsynchronized loading. This means that even if both responses were obtained from
the same SPL=100 dB, their fatigue characteristics are quite different due to the dif-
ferent stress min-max/rainflow amplitude distributions. For instance, the horizontal
coordinate axis in the min-max amplitudes figures clearly indicates that the min-max
amplitudes for the unsynchronized case are about a fourth of the min-max ampli-
tudes for the synchronized loading case. Consequently, higher fatigue life prediction
is expected for the unsynchronized case as shown in Table 5.

4.4. Unsynchronized Response of Panel with Clamped-Simply Supported
Boundary Conditions.

A clamped-simply supported (C-SS-SS-C) plate clamped on edges x=0 and y=0,
and simply supported on edges x=15 in. and y=12 in. (x=38.1 cm & y=30.48 cm),
with similar geometrical and material properties as in the previous section, is studied
next. Figure 4 shows the first twenty-two unsymmetrical natural modes normalized
with respect to the thickness, h=0.04 in. (0.1016 cm), with their corresponding
frequencies using a 24 × 20 mesh (480 elements). In order to reduce the computational
time, results in this section are obtained from a mesh size of 24 × 20, which is adequate
for 20 modes.

For the plate with mixed boundary conditions under synchronized or unsynchro-
nized load for which no closed-form solution is readily available or exists, the most
suitable approach is the MCS. For both loading conditions, the location of maximum
displacement is situated approximately 8.75 inches (22.225 cm) away from the short
clamped edge and 5.4 inches (13.716 cm) away from the long clamped edge (element
278 or node 243).

The MCS for modal and mesh convergence of the unsynchronized loading case is
numerically tedious and computationally costly, since each plate element is excited
by a different random load or ISEED number at each of the ten-sample runs. This
means that 480 pressure time histories with each time history containing 216 points
must be generated prior to the numerical integration. For the numerical simulation a
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Figure 4. C-SS-SS-C panel modes and frequencies

sample run for unsynchronized loading on a 24 × 20 mesh with twenty-two modes and
∆t = 1/216 sec. took approximately 12 hours. The maximum stress is located along
the long clamped edge at the node perpendicular to the maximum displacement. For
the 24 × 20 mesh, this corresponds to element 14 or node 13. The stress for the C-SS-
SS-C panel was found to be very sensitive to the location of the maximum curvature
{κ} which varies considerably with the mesh size.

Figure 5 presents the PSD of the maximum displacement (element 278 or node
243), and at the maximum stress (element 14 or node 13) for both synchronized
and unsynchronized loading cases. The synchronized response results were generated
using ISEED=12357 yielding to an RMS (Wmax/h) of 0.410, and RMS stress value
of 477.49 psi (3.292 MPa).

A first trial analysis of displacement PSD indicated that 6 asymmetric modes for
the synchronized and 8 asymmetric modes for the unsynchronized loading cases were
required for converged displacement responses. A refined analysis showed that more
asymmetric modes contributed to both responses but that they did not appear in the
PSD because their mode shapes were close to zero at that location (node 243). A
clear example is given by mode 2 (117.04 Hz)
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Figure 5. Maximum displacement and stress PSD for synchronized
and unsynchronized loads.

A first trial analysis of displacement PSD indicated that 6 asymmetric modes for
the synchronized and 8 asymmetric modes for the unsynchronized loading cases were
required for converged displacement responses. A refined analysis showed that more
asymmetric modes contributed to both responses but that they did not appear in the
PSD because their mode shapes were close to zero at that location (node 243). A clear
example is given by mode 2 (117.04 Hz) in Fig. 4, where the figure reveals that at
node 243 its modal contribution is very small or zero. It is observed for the stress PSD
that more modes (peaks) appear for the unsynchronized than for the synchronized
loading.

Table 6. Fatigue life prediction for C-SS-SS-C panel (10 samples)
SPL=100 dB Synchronized Unsynchronized

Fatigue Life Prediction (years) 77.42 (Infinity) 10.55×105 (Infinity)

Fatigue lives shown in Table 6 are predicted at node 13 where the stress is the
highest and most critical. Results are based on the mean value of the fatigue life of
ten samples.

5. Conclusion

The present work has studied the RMS responses of a simply supported and a
clamped-simply supported panel subjected to synchronized and unsynchronized load-
ing, respectively. Classic analytical solutions of the random responses are generally
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confined to simple boundary conditions where the mode shape solutions are known.
Even in those simple cases, response solutions have neglected the asymmetric modes
for the synchronized case due to mathematical limitations. The present work has
shown for the first time that panels under unsynchronized loads excite both symmet-
ric and asymmetric modes, and that the unsynchronized load characteristics lower
the RMS values and increase the fatigue life predictions.

These conclusions appear to be quite intuitive but they are a first attempt to
explore and understand the real loading conditions. It is likely that real random pres-
sure excitation characteristics are neither fully spatially correlated nor uncorrelated.
In such case developing a procedure applicable for analysis with an arbitrary spatial
input correlation is deemed an important part of future work. In addition, in order
to verify these conclusions, more simulation studies and further experimental data
of structures subjected to uniform random pressure loads that are unsynchronized in
time are needed.

The computational burden encountered in solving the unsynchronized loading case
required the necessity of considering Parallel Computing Methods (PCM). Parallel
computing methods greatly reduce the computational time by splitting the load gen-
eration into multiple processors (nodes).
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Abstract. The first part of the paper deals with the FEM computation of deformations,
stresses and strain in the surrounding area of inner and outer circular artificial failures with
a set of given geometrical dimensions in steel pipelines. For the investigation of this problem
three groups of mechanical models are applied: multilayered elastic shell, 3D elastic solid
and 3D elastic-plastic solid FEM models. The aim of this analysis is to clarify the case in
which the pipeline fails. When a pipe fails and needs repair or reinforcement, this is called
critical case.

In the second part of the paper the repaired pipes are investigated. For repairing of the
inner and outer failures, inner or outer multilayered textile composite reinforcements are
applied by winding technology. The task is to determine the width of the reinforcement and
the number of layers needed for repair.

The different mechanical models (multilayered elastic shell, 3D elastic solid and 3D elasto-
plastic solid) are compared on the basis of numerical results. The critical cases are determined
and the questions of repair are answered also numerically.

Keywords: Steel pipeline, artificial circular damage, textile composite reinforcement, FEM
analysis, elastic shell and 3D elastic-plastic modelling

1. Introduction

Oil and gas pipelines often have inner and outer circular failures. The inner failures
usually originate from welding on location, and the outer failures result from any
other violent outer effect, for instance due to agricultural equipment working above
the pipeline.

The first task is to predict the risk caused by these circular failures. In the first
step one needs to clarify the deformations, stresses and strains around the damaged
part of the pipe. On the basis of such analysis one can find critical cases in which
repairs are needed.

The second task is to fix or to repair the damaged pipe. In this paper an inner
or outer multilayered textile composite reinforcement are applied at the location of
the failures. The multilayered textile composite reinforcement is made by winding
technology. During design of this composite reinforcement the width and the number

c©2014 Miskolc University Press
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of layers of the winding should be determined. The failures are considered to be fixed
when stresses are below the critical values both in the steel pipe and in the composite
reinforcement.

The numerical aspects of both tasks are discussed in this paper. In the first step two
kinds of circular damaged pipe-parts using the finite element method and the I-DEAS
program code are investigated. The failures may have a high number of varieties
therefore two typical artificial failure geometries are chosen. On the basis of the
numerical analysis the critical cases have been determined in which repairs are needed.
In the second step an inner and/or outer composite reinforcement with different widths
and numbers of layers are applied for the critical cases. When analyzing critical cases
the proper width and number of layers of reinforcement can be found.

2. Geometry of typical artificial failures and reinforcements

Figure 1 shows the global geometry i.e. the location of the investigated inner and
outer circular failures.
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Figure 1. Global geometry of the inner and outer circular failures

The steel pipe’s outer diameter is dk = 323, 9 mm, its wall thickness ta = 7, 1
mm and the length of the investigated pipe part is l = 2000 mm. The steel pipe is
coated with a tp = 3, 12 mm thick polyethylene insulation layer against corrosion.
The longitudinal dimension of circular failures are hb = hk = 150 mm for both inner
and outer cases, the width is vb = 1, 5 mm for the inner case and vk = 2 mm for the
outer case. There are three depth versions mb = mk = 2; 4; 6 mm investigated.

Figure 2 shows the the local geometry of analyzed inner and outer circular failures.
The geometry of artificial failures (Figure 2) are assumed to be reproduced easily for
the planned experiments.
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Figure 2. Local geometry of the inner and outer circular failures
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An inner and outer circular failures of pipes can be reinforced theoretically from
the outside or the inside as well. Figure 3 shows the reinforcement possibilities for
an inner failure. At the location of the failure the anti-corrosion layer is removed and
the reinforcement is winded directly to the steel surface.
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Figure 3. Reinforcement versions for the inner circular damage

The layer thickness of reinforcement in each case is the same tk = tb = 0, 3 mm,
and three different widths of the winding bands are investigated sk = sb = 50; 100; 200
mm.

3. Mechanical modelling of the materials and working conditions

The pipe is made of steel, the protecting layer against corrosion is polyethylene and
the material of the reinforcement is carbon fiber textile reinforced plastics (CFRP). In
mechanical point of view the steel and the polyethylene are modelled as linear elastic
materials given by two material constants and the limit of elasticity. These material
parameters in Table 1 are measured by the Department of Mechanical Technology of
Miskolc University [7].

Table 1. Material constants and ultimate stress values

Material E [MPa] ν [–] Rt0,5 [MPa] Rm[MPa]

Steel 205 000 0,3 499 603
Polyethylene 527 0,31 – 12,8

In Table 1 E is the modulus of elasticity, ν is the Poisson’s ratio, Rt0,5 is the yield
limit and Rm is the breaking strength of material.

In linear elastic, isotropic, plane stress problems the following Hooke’s law provides
the constitutive equations:
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1 and 2 are directions perpendicular to each other in the tangent plane of the middle
surface of pipe. ε1, ε2 and σ1, σ2 are tensions and normal stresses in directions 1, 2
respectively. γ12 and τ12 are the in-plane shear strain and the shear stress.

The elasto-plastic computations are carried out by using the stress-strain diagram
in Figure 4 given by the Department of Mechanical Technology of Miskolc University
[7].

Figure 4. Stress-strain diagram of the steel pipe

For isotropic materials the well known von Mises failure criterium is applied:
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σred max ≤ Rt0,5, (3)

where σI , σII , σIII are the principal stresses.

According to references [1], [2], the carbon fiber textile reinforced composite can
be modelled from macroscopic point of view by an orthotropic constitutive law: ε1ε2

γ12

 =

 1/E1 −ν12/E2 0
−ν21/E1 1/E2 0

0 0 1/G12

σ1σ2
τ12

 , (4)
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In the above equations the indices 1, 2 stand for the principal material direction of
CFRP. In the constitutive law E1, E2 are orthotropic moduli of elasticity, ν12, ν21 are
Poisson’s ratios and G12 is the independent in-plane shear modulus. The Poisson’s
ratios are not independent from each other and due to energy reasons [2] the following
relation exists :

ν12
E2

=
ν21
E1

. (5)

Macroscopic modelling means that equations are not appropriate to determine
stresses and strains in the carbon fibers or in the matrix material, but do well for
a larger area with a lot of fibers. Therefore, the above stresses and strains are the
average features of an area with a lot of fibers.

For the orthotropic material the Tsai-Wu’s failure criterium is applied:

σ2
1

σH1σD1
+

σ2
2

σH2σD2
− σ1σ2√

σH1σD1σH2σD2
+

τ212
τ2S12

+

+

(
1

σH1
− 1

σD1

)
σ1 +

(
1

σH2
− 1

σD2

)
σ2 ≤ 1, (6)

or

Ktw ≤ 1, (7)

where σH1, σH2 are tensile, σD1, σD2 are compressive and τS12 is shear strengths.

Table 2 contains the measured material constants and ultimate stress values of the
applied CFRP measured by the Department of Polymer Engineering of the Budapest
University of Technology [8].

Table 2. Material constants and ultimate stress values of CFRP layers

Thickness [mm] E1 [MPa] E2 [MPa] ν [–] G12 [MPa]

0,3 47 600 45 000 0,036 2 000

σH1 [MPa] σH2 [MPa] σD1 [MPa] σD2 [MPa] σS12 [MPa]

436 430 310 340 76

The deformations, stresses and strains in the damaged pipe and in the reinforced
pipe are determined for two loading cases, i.e. for a normal working condition and
for an experimental loading, where it is possible to measure by gauges.
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rp

rp

x

y

b
d

kd

rp

Figure 5. Mechanical model for normal working condition
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In normal working conditions the pipeline is embedded in the earth which does not
allow the longitudinal displacements of the investigated pipe parts. This is the reason
why the mechanical model is clamped at both ends of the pipe part in the normal
working loading case. There is a pr = 63 bar inner pressure in both loading cases in
the pipe.
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Figure 6. Mechanical model for experimental checking

In the experiments the investigated pipe part is closed at both ends. The inner
pressure provides an pa = d2bpr/(d

2
k−d2b) additional axial loading because of the closed

ends. Therfore the experimental loading case consists of the inner pressure and the
axial loading.

4. Finite element approaches and meshes

For computation of deformations, stresses and strains around the circular failures the
following three models are applied: multilayered elastic shell, 3D elastic solid and 3D
elasto-plastic solid elements. However computations of repaired pipes are carried out
only by multilayered elastic shell elements.

By using layered shell elements it is possible to model failures by proper choice
of layer thicknesses. Figure 7 shows two cases for the proper thickness choice. The
left one is at a common location of the pipe and the right one is at an inner failure
with 4 mm depth. In both cases in Figure 7 the upper layer represents the insulation
and two inner layers for modelling the inner failure are shown in the right picture.
Naturally, for the failure area zero values should be given for material constants.

Figure 7. Modelling of failure thickness by multilayered shell elements
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Figure 8 shows two cases for the proper thickness choice of layers at reinforcement.
The left and right pictures represent the thicknesses of layers in undamaged and
damaged locations, respectively.

Figure 8. Modelling of reinforcement and failure thickness by shell elements

Using multilayered shell elements it is only possible to apply a sharp corner ap-
proach for failures, so the R2 mm rounding in Figure 2 is not taken into consideration
at shell modelling.

The 3D modelling allows a very accurate approach of real geometry of artificial
inner and outer failures, even an R2 mm rounding.

Table 3. Characteristic data for FEM meshes

Shell model 3D solid model

Number of elements 5 000 17 500
Number of nodes 15 000 36 000

Table 3 includes the characteristic data of applied meshes. The nodes of shell elements
have six degrees of freedom and the nodes of 3D solid elements three, so one has to
solve in both tasks a linear algebraic equation system with about 90-108 thousand
unknowns. The computations for both shell and 3D solid modelling are carried out
also with much denser mesh in order to prove that the applied mesh provides accurate
results.

When creating finite element meshes the double symmetry is taken into account.
Naturally, the mesh is much denser around the failures than at the other areas of the
model in interest of accuracy of computations.

Figure 9 shows a characteristic mesh for a shell model and a mesh part for a 3D
solid model. The lm = l/2 = 1000 mm length of mesh is chosen so that the influence
of boundary conditions at the end of the pipe part and the influence of the circular
failure do not disturb each other.
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Figure 9. Shell mesh and 3D solid mesh part for circular failure

Figure 10. Shell meshes for different reinforcements

On the basis of computational experience it is enough to apply shorter models with
lr = lm/2 = 500 mm length for the computation of reinforced pipe parts. In these
meshes one has to take into consideration the width of the reinforcing composite band
at meshing (Figure 10.).

5. Computational results

5.1. Influence of the insulation layer. The analysis of the influence of the outer
polyethylene insulation is carried out only for inner circular failure. Numerical results
prove that the insulation layer has no importance from the mechanical point of view,
since the stiffness of the insulation layer is negligible compared to the steel’s stiffness.
Therefore the insulation layer is neglected in the investigations.

5.2. Results for the damaged steel pipes. The character of deformations and
stress/strain distributions is similar for both loading cases. However the critical values
of deformations, stresses and strains are a little higher for the experimental checking
than for the normal loading conditions. This is the consequence of the additional
axial loading originated from the inner pressure. This axial loading seems to be a
little higher than the axial loading originated from the clamped ends of the pipe
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model at normal working conditions. Therefore, only the results of this hazardous
experimental loading case are presented in this paper.

Numerical results show that the deformation of pipes with inner failure depends
significantly on the depth of failure. Figure 11 demonstrates these differences on the
radial displacement distribution of the middle surface. It is very interesting that the
maximum deformation occurs not directly at the failure but beside that.

Figure 11. Radial displacements at inner failure with 2, 4 and 6 mm depth

Figure 12 shows the radial displacements in case of outer failure for the three
investigated failure depths. In this case the character of deformation does not depend
on the depth of outer failure. Naturally, the magnitudes of deformation are different.

Figure 12. Radial displacements at outer failure with 2, 4 and 6 mm depth

The different character of deformations for inner and outer failure will play a very
important role at the repair.
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Table 4 summarizes the critical strain and von Mises reduced stress values for the
hazardous experimental loading case at inner failure. Compering the εz max axial and
εϕ max circular strains it is seen that they are in the same order of magnitude at
lower depths. However the εz max axial strains become dominant at increasing failure
depth. Therefore one can state that the influence of axial loading is dominant for
strains around the circular failure at higher depths.

Table 4. Critical values - inner failures - experimental loading case

Depth Quantity Shell model 3D elastic 3D elasto-
[mm] [Dimension] model plastic model

2

εϕ max [1]

εz max [1]

σred max [MPa]

1,2603 · 10−3

1,0610 · 10−3

222,37

9,3827 · 10−4

1,2283 · 10−3

243,03

9,3827 · 10−4

1,2283 · 10−3

243,03

4

εϕ max [1]

εz max [1]

σred max [MPa]

2,4310 · 10−3

7,2919 · 10−3

502,38

8,7135 · 10−4

2,5820 · 10−3

455,11

8,7235 · 10−4

2,5820 · 10−3

455,11

6

εϕ max [1]

εz max [1]

σred max [MPa]

2,8736 · 10−3

3,5439 · 10−2

898,85

9,3700 · 10−4

6,7759 · 10−3

1191,4

9,4239 · 10−4

7,4800 · 10−3

603,0

The maximum reduced stresses computed by different models are close to each
other below the yield stress, in cases of 2 and 4 mm deep inner failures. At 4 mm
failure depth the maximum reduced stresses reach or are close to the yield stress value.
For 6 mm failure depth every model, including the shell model, indicates the fracture
of the pipe. Therefore the damaged pipe needs repair only at 6 mm failure depth.

Table 5. Critical values - outer failures - experimental loading case

Depth Quantity Shell model 3D elastic 3D elasto-
[mm] [Dimension] model plastic model

2

εϕ max [1]

εz max [1]

σred max [MPa]

8,9118 · 10−4

7,2939 · 10−4

196,39

9,8610 · 10−4

1,1496 · 10−3

233,38

9,8610 · 10−4

1,1496 · 10−3

233,38

4

εϕ max [1]

εz max [1]

σred max [MPa]

1,1614 · 10−3

2,5196 · 10−3

531 ,40

1,1841 · 10−3

2,7328 · 10−3

490,62

1,1841 · 10−3

2,7328 · 10−3

490,62

6

εϕ max [1]

εz max [1]

σred max [MPa]

1,4874 · 10−3

4,8891 · 10−3

1009,7

1,6668 · 10−3

5,5436 · 10−3

973,58

1,6706 · 10−3

7,1033 · 10−3

603,0
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Table 5 summarizes the characteristic critical strain and von Mises reduced stress
values for the more hazardous experimental loading case at outer failure. These results
show very similar behavior from the point of view of strains and stresses for the outer
damaged pipe than for the inner failure. Also the outer damaged pipe needs repair
only at 6 mm failure depth.

It is curious that though the deformations are different similar strain and stress
values have been obtained for the inner and outer failures.

All the three applied models indicate the fracture of the pipe for the same failure
depth. From here on the simplest multilayered shell model is used in the investigation
of repaired cases because it needs less numerical efforts than the others.

5.3. Results for the pipes repaired. As it is determined in 5.2 the axial loading
becomes dominant at both increasing inner and outer circular failure depths. This
dominant loading results very different deformations at inner (Figure 13.) and outer
(Figure 14.) failure. The highest radial deformations occur shifted in axial direction
nearby the inner failure and exactly in the middle of the outer failure.

Figure 13. Radial displacements at inner failure with 6 mm depth

Figure 14. Radial displacements at outer failure with 6 mm depth
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The phenomenon can be explained by Figure 15. If there is no failure in the pipe
wall the stress resultant over the thickness is only the Na force. In the undamaged
case there is no bending effect in the pipe wall.

However in case of inner failure the stress resultants provide a Na force and an
additional Mti bending moment. This bending moment opens the inner failure and
results maximum radial deformations shifted nearby the failure.

In case of outer failure the stress resultants provide a Na force and an additional
Mto bending moment. This bending moment also opens the outer failure and results
maximum radial deformations in the middle of the failure.

Figure 15. Force and moment resultants at inner and outer failure

Both inner and outer failures can be fixed from the outside or from the inside.
Figure 16. shows the repair versions for an inner failure.

Figure 16. Reparation versions at inner failure

The pipe can be considered as fixed if the σred max reduced stresses in the steel
wall do not reach the yield stress value (3.3) and the Ktw Tsai-Wu failure coefficient
in the reinforcement do not reach the value 1 (3.7).
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Computations are carried out for repaired inner failure by 50, 100 and 200 mm
bandwidth of CFRP layers. The numerical results proved that the bandwidth in this
range practically does not influence the behavior of repaired case.

Table 6 summarizes the numerical results for a 6 mm deep inner failure with 50
mm bandwidth reinforcement, in the left two columns for outer reinforcement and in
the right two columns for inner reinforcement.

Table 6. Reduced stresses and failure coefficients for inner failure with 6 mm depth

Number of layers/ σouter
red max Kouter

tw σinner
red max Kinner

tw

thickness [mm] [MPa] [–] [MPa] [–]

0/0 908 – 908 –
4/1,2 1046,0 0,6137 600,2 0,0641
8/2,4 984,4 0,7704 499,1 -0,0187
12/3,6 804,6 0,4633 – –
16/4,8 674,1 0,2729 – –
20/6,0 586,0 0,1909 – –
24/7,2 523,0 0,1188 – –
28/8,4 475,5 0,0862 – –

It can be seen from Table 6 that an inner circular failure can be repaired better by
inner reinforcement than by outer one. Both goals for failure criteria (3.3) and (3.87)
can already be fulfilled by 8 layers of inner winding. The outer reinforcement with a
low number of layers makes the situation worse and the pipe can only be fixed with
a very high number of layers.

Table 7. Reduced stresses and failure coefficients for outer failure with 6 mm depth

Number of layers/ σouter
red max Kouter

tw σinner
red max Kinner

tw

thickness [mm] [MPa] [–] [MPa] [–]

0/0 1009,7 – 1009,7 –
4/1,2 550,2 0,0704 1125,5 0,7026
8/2,4 499,2 0,0111 1017,3 0,8056
12/3,6 – – 825,1 0,4745
16/4,8 – – 692,3 0,2791
20/6,0 – – 602,8 0,1807
24/7,2 – – 539,4 0,1280
28/8,4 – – 491,9 0,0974

This phenomenon can be explained by Figure 16. With a lower number of outer
layers the e eccentricity is increased by the reinforcement which makes the Mti local
bending moment higher but a high enough number of layers can compensate this
action. However the inner reinforcement creates an opposite bending moment by e3
eccentricity which can balance the original bending moment.
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Table 7 summarizes the numerical results for a 6 mm deep outer failure with 50
mm bandwidth reinforcement, in the left two columns for outer reinforcement and in
the right two columns for inner reinforcement.

Table 7. Reduced stresses and failure coefficients for outer failure with 6 mm depth

Number of layers/ σouter
red max Kouter

tw σinner
red max Kinner

tw

thickness [mm] [MPa] [–] [MPa] [–]

0/0 1009,7 – 1009,7 –
4/1,2 550,2 0,0704 1125,5 0,7026
8/2,4 499,2 0,0111 1017,3 0,8056
12/3,6 – – 825,1 0,4745
16/4,8 – – 692,3 0,2791
20/6,0 – – 602,8 0,1807
24/7,2 – – 539,4 0,1280
28/8,4 – – 491,9 0,0974

When repairing outer circular failure the situation is the opposite to the previous
case. It is seen from Table 7 that an outer circular failure can be repaired better
by outer reinforcement than by inner one. Also in this case both failure criteria can
already be fulfilled by 8 layers of outer winding. The inner reinforcement with a low
number of layers makes the situation worse and the pipe can be fixed only with a very
high number of layers. The argumentation for this phenomenon is the same as given
at inner failures.

6. Conclusions

The numerical experience of the investigations is the following:

– From the engineering point of view the multilayered shell model is a suitable
tool for numerical analysis of pipe failures and for investigation of repaired
pipes.

– From the mechanical point of view the the insulation layer is negligible.
– The experimental loading case is more hazardous than the normal working

conditions.
– The critical strains and stresses are similar at inner and outer circular failures,

however the character of deformations is different.
– It is sufficient to use only a few number of CFRP layers for repair of very deep

circular failures, if they are applied from the failure side.
– The inner and outer failures have to be fixed by inner and outer reinforcement,

respectively.
– The bandwidth in the investigated range of composite layers does not play an

important role at the repair of circular failure.
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Abstract. A new iterative model is presented for the dynamic analysis of a piezoelectric
cylinder panel. The differential equations which govern the free vibrations of a piezoelectric
panel as well as the boundary conditions are derived from Hamilton’s principle by taking the
bending, shear and normal deformation into account. The author developed a new iterative
process to successively refine the stress and strain fields and the electrical field in the panel.
The model includes the effects of transverse shear and rotary inertia. The iterative model can
be applied to predict the modal frequencies and the stress field in the piezoelectric medium
under the conditions of cylindrical bending and periodic motion.
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Keywords: piezoelectric cylinder panel, stress and strain fields, electrical field, iterative model

1. Introduction

In recent years piezo-eletric materials and their use in structural dynamic have be-
come a growing area of research. These materials induce electric potential /charge
when they are subjected to mechanical deformations by virtue of direct piezoeletric
effect and are deformed due to the externally applied voltage by virtue of converse
piezoeletric effect. The load-bearing structures fitted with piezoelectric layers, called
intelligent structures, are subjected to the coupled action of electric and elastic fields.

The theory of piezoelectricity was first formulated by Voigt in 1894. The basic
theory of linear piezoelectricity has been outlined by several authors [1, 2, 3]. Early
computational studies of piezoelectric solids include those of Eer Nisse [4] and Holland
[5] for electroelastic vibration analysis using Ritz method. The work of Tiersten [6]
provided the theoretical foundations and numerous examples of the dynamic behav-
ior of piezoelectric plates. Finite element modelling of the electroelastic behaviour of
a piezoelectric sensor/actuator structural system was presented by Tzou and Tseng
[7] and Tzou el al. [8]. Robbins and Reddy [9] developed the finite element mod-
els of a piezoelectrically actuated beam using four different displacement-based one-
dimensional beam theories, derivable from the generalized laminated plate theory of

c©2014 Miskolc University Press
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Reddy [10] to investigate the behaviour of a piezoelectrically actuated beam. Very few
exact solutions of the three-dimensional field equations are available for the coupled
response of piezoelectric elements to electromechanical loading. Ray el al. [10, 12]
presented exact solutions for the static analysis of a simply-supported piezoelectric
plate and a layered intelligent plate under cylindrical bending. A three-dimensional
analysis of semi-infinite crack embedded in a transversely isotropic piezoelectric ma-
terial was performed by Sosa and Pak [13]. Heylinger and Brooks [14] have presented
exact solutions for the free vibration behavior of piezoelectric laminates in cylinder
bending. The equations of motion, the charge equation, and the boundary and inter-
face conditions are satisfied exactly. A discrete-layer laminate model is presented for
the analysis of laminated piezoelectric composite shells in [15]. The variational for-
mulation and corresponding finite element model are developed using the equations of
motion and the charge equation. Páczelt and Kovács [16] have studied a semicircular
planar prismatic beam subjected to bending moments resulting from piezoelectric ac-
tuator devices bonded to the parallel surfaces of the beam. The bending and torsional
deformations are investigated with the Finite Element Method and the closed-form
solution of the linear theory of 3D curved beams, respectively.

The predictor-corrector procedures appear to have high potential for the accurate
prediction of vibration frequencies, stresses and deformations in multilayered com-
posite plates end shells. Zapfe and Lesieutre [17] developed an iterative process to
refine successively the shape of the stress/strain distribution for the dynamic analysis
of laminated beams. The iterative model is used to predict the modal frequencies and
damping of simply supported beams with integral viscoelastic layers. Noor and Bur-
ton [18] presented a predictor-corrector approach for the analysis of composite plates.
The authors used a plate model based on first-order shear deformation theory, coupled
with integration of the equilibrium equations, to refine the estimate of the local stress
field through the thicknesss of the laminate. The refined stress field was also used
to generate improved estimates of the shear correction factors in the first-order shear
deformation model, leading to improved estimates of the plate displacements and
natural frequencies. Lee and Cao [19] have presented a predictor-corrector approach
for the numerical analysis of general thick laminated plates which ensures that the
transverse shear stress distributions from both constitutive and equilibrium consider-
ations are sufficiently close to each other before the computations of the displacements
and stresses are considered sufficiently accurate. In the predictor phase, a linear or
cubic zig-zag model is adopted and the layerwise polynomial approximation of the
transverse shear stresses through the thickness is determined from the equilibrium
equations of elasticity.

The present research extends the iterative model developed by Zapfe and Lesieutre
to the dynamic analysis of a cylinder panel of piezoelectric medium. The current
model is developed for the specific case of a simply supported cylinder panel under
the conditions of cylindrical bending and periodic motion.
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2. Equations of motion

The geometry of interest and the notations are shown in Figure 1. We consider an
infinitely long (perpendicular to the plane of paper) cylinder panel of piezoelectric
medium. The free vibration of the cylinder panel is confined to the r−ϕ plane. The
z axis is out-of-plane, with the r and ϕ coordinates corresponding to the respective
radial and circumferential directions of the panel. Owing to the cylinder panel is
assumed to be infinitely long in the z - direction, the piezoelectric medium is under
cylindrical bending ( i.e. plane strain state ) in the r − ϕ plane. As indicated in
the Figure, the panel ends are simply supported as described by the end conditions.
The panel is considered to be thin and of radius of curvature R of the middle surface,
and thickness h. The arc length s is measured along the middle surface of the panel
in the circumferential direction, which is defined by s (Fig.1), where s = Rϕ. The
length of the panel in the circumferential direction is denoted by L. In this case
L = Rϑ where ϑ is the opening angle of the curved panel. The displacements of the
panel in the ϕ − and r− directions are denoted by u and w respectively. Under the
conditions of cylindrical bending (i.e. plane strain state), the displacements field takes
the form t = w(r, ϕ, t)er + u(r, ϕ, t)eϕ, and the electrostatic potential has the form
Φ = Φ(r, ϕ, t). Hence all variables are independent of the z coordinate, and terms
containing a gradient in the z−direction vanish. For the analysis of the response of
piezoelectric structural components we need to deal with two different field equations
that are coupled to each other. One is the balance of the momentum equation and
the other is the balance of the charge equation. These two field equations are coupled
to each other through the constitutive equations of the material.

R

w

u

h

 



= 0




Figure 1. Parameters for a cylinder panel.

We start with a linear, anisotropic, and electro-elastic solid for which the coupled
constitutive relation can be written as

σr = C11εr + C12εϕ − e33Er , (1)

σϕ = C12εr + C22εϕ − e31Er , (2)

τrϕ = C33γrϕ − e15Eϕ , (3)

Dr = e31εϕ + e33εr + ε33Er , (4)
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Dϕ = e15γrϕ + ε11Eϕ , (5)

where σr, σϕ and τrϕ are the stresses, εr, εϕ and γrϕ are the strains, Dr and Dϕ denote
the electric displacements, Er and Eϕ are the electric fields, C11, C12, C22 and C33 are
the elastic stiffnesses, e31, e33 and e15 are the electric permittivity components while
ε11 and ε33 stand for the dielectric constants of piezoelectric in the polar coordinate
system (r, ϕ).

In the present model the displacement field can be given in the following form

t(r, ϕ, t) = w(r, ϕ, t)er + u(r, ϕ, t)eϕ =

=

[
v0(ϕ, t)− r −R

R

(
∂w0

∂ϕ
− v0(ϕ, t)

)
+ f(r)v1(ϕ, t)

]
eϕ+

+ [w0(ϕ, t) + g (r)w1(ϕ, t)] er (6)

where f (R) = 0 and g (R) = 0 which means that (v0, w0) denote the displacement
at a point (R,ϕ) on the centre-line along the circumferential and radial directions,
respectively.

The terms f(r)v1(ϕ, t) and g (r)w1(ϕ, t) can be thought to be the corrections
needed to account for the transverse shear and normal deformation effects, respec-
tively. The functions f(r) and g (r) represent the shape of the corrections through
the thickness of the cylinder panel, while v1(ϕ, t) and w1(ϕ, t) determine their distri-
butions along the circumferential direction. The solution of a given problem requires
the determination of the unknown functions v0(ϕ, t), v1 (ϕ, t), w0 (ϕ, t) , w1 (ϕ, t) , f(r)
and g (r). By using the standard expressions

t = wer + ueϕ, εϕ =
1

r

∂ u

∂ϕ
+
w

r
, γrϕ =

1

r

∂ w

∂ϕ
+
∂ u

∂ r
− u

r
, εr =

∂ w

∂r

and using equation (6) we can determine the components of the strain tensor

εϕ =
1

r

[
∂v0
∂ϕ
− r −R

R

(
∂2w0

∂ϕ2
− ∂v0
∂ϕ

)
+ f(r)

∂v1
∂ϕ

+ w0 + g (r)w1(ϕ, t)

]
, (7)

γrϕ =

[
df

dr
− f (r)

r

]
v1(ϕ, t) +

g (r)

r

∂w1

∂ϕ
, (8)

εr =
dg

dr
w1(ϕ, t) , (9)

where f (r) and g (r) are single-valued functions at each point through the thickness.

For a piezoelectric body we have two balance equations to satisfy simultaneously.
The balance of momentum and balance of electric charge require the fulfilment of
equations

divT = ρ ẗ , (10)

divD = 0 (11)

where ρ is the density, D = Dr(r, ϕ, t)er +Dϕ(r, ϕ, t)eϕ is the electrical displacement,
T is the stress tensor and the partial derivative with respect to time is denoted by a
dot over the letter.
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Assume that the cylinder panel considered is in plane strain. Then the equations
of motion (10) and the balance of electric charge (11) can be manipulated into the
following forms

∂

∂ r

[
r2τrϕ

]
+ r

∂σϕ
∂ϕ

= r2ρ
∂2u

∂t2
, (12)

r
∂σr
∂r

+ σr +
∂τrϕ
∂ϕ
− σϕ = rρ

∂2w

∂t2
, (13)

∂Dr

∂ r
+
Dr

r
+

1

r

∂Dϕ

∂ϕ
= 0 . (14)

The components of the electric field are related to the electrostatic potential Φ(r, ϕ, t)
via the relations

Er = −∂Φ

∂ r
, Eϕ = − 1

r

∂Φ

∂ ϕ
(15)

If the panel is in plain strain Ez = 0 .

Here the electric potential can be given the following form

Φ(r, ϕ, t) = p(r)q(ϕ, t). (16)

In addition to these equations the boundary conditions on the upper and bottom
surface of the panel must be specified. For the study of free vibration these two sur-
faces are assumed to be traction free. Consequently the following boundary conditions
should be prescribed

τrϕ(r = R+
h

2
, ϕ, t) = τrϕ(r = R− h

2
, ϕ, t) = 0 , (17)

σr(r = R+
h

2
, ϕ, t) = σr(r = R− h

2
, ϕ, t) = 0 (18)

In addition to the mechanical boundary conditions, the electric surface conditions
should also be satisfied. This is accomplished in this study by specifying a homoge-
neous electrostatic potential:

Φ(r = R+
h

2
, ϕ, t) = Φ(r = R− h

2
, ϕ, t) = 0 (19)

Substitution of equation (16) into equation (19) yields the following boundary condi-
tions on the upper and bottom surface of the panel

p(r = R+
h

2
) = p(r = R− h

2
) = 0. (20)

The Lagrangian for the cylinder panel is given by [6]:

L =
1

2

∫ ϑ

ϕ=0

∫ R+h/2

R−h/2

[
−σrεr − σϕεϕ − τrϕγrϕ +DϕEϕ +DrEr + ρ

(
ṫ
)2]

rdrdϕ .

(21)
Substituting equations (7-9) and (15-16) into equations (1-5) and introducing the

results into the Hamilton’s principle δ
∫ t2
t1
Ldt = 0 one obtains
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A1,1
∂ 4w0

∂ϕ4
+A1,2

∂ 2w0

∂ϕ2
+A1,3

∂2 w1

∂ϕ2
+A1,4

∂ 3v0
∂ϕ3

+A1,5
∂ 3v1
∂ϕ3

+

+A1,6
∂2 q

∂ϕ2
+A1,7

∂ v0
∂ϕ

+A1,8
∂ v1
∂ϕ

+A1,9w1 +A1,10w0 +A1,11q =

= D1,1
∂ 4w0

∂ϕ2∂ t2
+D1,2

∂ 3v0
∂ϕ∂ t2

+D1,3
∂ 3v1
∂ϕ∂ t2

+D1,4
∂ 2w0

∂t2
+D1,5

∂ 2w1

∂t2
, (22a)

A2,1
∂ 2w0

∂ϕ2
+A2,2

∂ 2w1

∂ϕ2
+A2,3

∂2 q

∂ϕ2
+A2,4

∂ v1
∂ϕ

+A2,5
∂ v0
∂ϕ

+

+A2,6w1 +A2,7w0 +A2,8q = D2,1
∂ 2w0

∂ t2
+D2,2

∂ 2w1

∂ t2
, (22b)

A3,1
∂ 3w0

∂ϕ3
+A3,2

∂ 2v1
∂ϕ2

+A3,3
∂ 2v0
∂ϕ2

+A3,4
∂ w0

∂ϕ
+A3,5

∂ w1

∂ϕ
+

+A3,6
∂ q

∂ϕ
+A3,7v1 = D3,1

∂ 2v1
∂ t2

+D3,2
∂ 2v0
∂ t2

+D3,3
∂ 3w0

∂ϕ∂ t2
, (22c)

A4,1
∂ 3w0

∂ϕ3
+A4,2

∂ 2v0
∂ϕ2

+A4,3
∂ 2v1
∂ϕ2

+A4,4
∂ w0

∂ϕ
+

+A4,5
∂ w1

∂ϕ
+A4,6

∂ q

∂ϕ
= D4,1

∂ 3w0

∂ϕ∂ t2
+D4,2

∂ 2v0
∂ t2

+D4,3
∂ 2v1
∂ t2

, (22d)

A5,1
∂ 2w0

∂ϕ2
+A5,2

∂ 2w1

∂ϕ2
+A5,3

∂2 q

∂ϕ2
+A5,4w0 +A5,5w1 +A5,6q = 0 , (22e)

the equations of motion for the four unknown functions, w0(ϕ, t), w1(ϕ, t), v0(ϕ, t), v1(ϕ, t)
and q(ϕ, t). In equations (22a-22e) Aij and Dij are given in the Appendix.

The section stiffness K1−27 and the mass coefficients M1−8 are provided by the
following equations

K[1,...,10] =

R+h/2∫
R−h/2

C22

[
1

r
, r,

1

r
f2,

1

r
g2, 1,

1

r
f,

1

r
g, f, g,

1

r
fg

]
dr , (23a)

K[11] =

∫ R+h/2

R−h/2

C11r

(
dg

dr

)2

dr, (23b)

K[12,...,15] =

∫ R+h/2

R−h/2

C12

[
dg

dr
, r
dg

dr
, , f

dg

dr
, g
dg

dr

]
dr, (23c)

K[16,...,18] =

R+h/2∫
R−h/2

C33

[
r

(
df

dr
− f

r

)2

,

(
df

dr
− f

r

)
g,

1

r
g2

]
dr, (23d)

K[23] =

∫ R+h/2

R−h/2

e33r

(
dg

dr

)(
dp

dr

)
dr, (23e)
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K[24,25] =

R+h/2∫
R−h/2

e15

[
p

(
df

dr
− f

r

)
,

1

r
gp

]
dr, (23f)

K[26] =

∫ R+h/2

R−h/2

ε11
1

r
p2 dr, (23g)

K[27] =

∫ R+h/2

R−h/2

ε33r

(
dp

dr

)2

dr, (23h)

M[1,...,8] =

∫ R+h/2

R−h/2

ρ
[
r, r2, r3, rf, r2f, rf2, rg, rg2

]
dr , (23i)

The kinematic and natural boundary conditions specified at ϕ = 0 and ϕ = ϑ , are
given by

v0 = 0 , F11
∂2 w0

∂ϕ2
+ F12

∂ v0
∂ϕ

+ F13
∂ v1
∂ϕ

+ F14w0 + F15w1 + F16q = 0 (24a)

w0 = 0 , F21
∂ 3w0

∂ϕ3
+ F22

∂2 v0
∂ϕ2

+ F23
∂2 v1
∂ϕ2

+ F24
∂ 3w0

∂ϕ2∂t
+ F25

∂2 v0
∂t2

+

+ F26
∂2 v1
∂t2

+ F27
∂ w0

∂ϕ
+ F28

∂ w1

∂ϕ
+ F29

∂ q

∂ϕ
= 0 (24b)

v1 = 0 , F31
∂2 w0

∂ϕ2
+ F32

∂ v0
∂ϕ

+ F33
∂ v1
∂ϕ

+ F34w0 + F35w1 + F36q = 0 (24c)

∂ w0

∂ϕ
= 0 , F41

∂2 w0

∂ϕ2
+ F42

∂ v0
∂ϕ

+ F43
∂ v1
∂ϕ

+ F44w0 + F45w1 + F46q = 0 (24d)

w1 = 0 , F51
∂ w1

∂ϕ
+ F52v1 + F53

∂ q

∂ϕ
= 0 (24e)

q = 0 , F61
∂ w1

∂ϕ
+ F62v1 + F63

∂ q

∂ϕ
= 0 (24f)

where Fij are constants. For the special case of a simply supported curved panel, the
first, third and fourth natural boundary conditions are combined with the kinematic
condition, w0 = w1 = q = 0. In this case the edges of panel are assumed to be
grounded.

3. Solution for a simply supported panel

The displacement functions and the potential function satisfying the boundary con-
ditions can be given by

w0(ϕ, t) =W0 sin(knϕ)eiωnt (25a)

w1(ϕ, t) =W1 sin(knϕ)eiωnt (25b)

v0(ϕ, t) =V0 cos(knϕ)eiωnt (25c)

v1(ϕ, t) =V1 cos(knϕ)eiωnt (25d)
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q(ϕ, t) =Q sin(knϕ)eiωnt (25e)

where kn = (nπ) /ϑ. Substitution of equations (25) into equations (22-23) results in a
set of five simultaneous, homogeneous algebraic equations with symmetric coefficients.
In matrix form, these equations are[

−ω2
n [M ] + [Y ]

]
{U} = 0, {U} = {W0,W1, V0, V1, Q} (26)

where Mij and Yij are given in the Appendix. While the assumed form of the cor-

rection functions f (k)(r), g(k)(r) and p(k)(r) will change from one iteration to the
next, in each iteration step they can be treated as known functions. In this phase an

estimation of the eigenvalues W
(k)
0 ,W

(k)
1 , V

(k)
0 , V

(k)
1 and Q(k) and frequency of vibra-

tion ω
(k)
n are obtained by solving equation (26). This approximation is then used in

the corrector phase in order to improve the predictions for the correction functions
f (k+1)(r), g(k+1)(r) and p(k+1)(r).

4. Improved estimate for correction functions

An improved estimate for the correction functions f (k+1)(r), g(k+1)(r) and p(k+1)(r) is
derived from the three-dimensional equilibrium equations and the three-dimensional
constitutive relations. The transverse shear and normal stress are obtained by inte-
grating the 3D equilibrium equations (12-13) in the thickness direction as follows:

τ (k+1)
rϕ =

1

r2

∫ r

R−h/2

r2ρ
∂2u(k)

∂t2
− r ∂σ

(k)
ϕ

∂ϕ
dr + C1, (27)

σ(k+1)
r =

1

r

∫ r

R−h/2

rρ
∂2w(k)

∂t2
+ σ(k)

ϕ − ∂τ
(k+1)
rϕ

∂ϕ
dr + C2 , (28)

where σ
(k)
ϕ = C12ε

(k)
r +C22ε

(k)
ϕ −e31E(k)

r is obtained from equation (2). The constants
C1 and C2 can be determined from the stress boundary conditions imposed on the
outer surfaces of the panel. Owing to equations (17) and (18) we have C1 = C2 = 0.

The transverse electric displacement Dr is calculated by integrating the 3D charge
equation of electrostatic (14) in the thickness direction

D(k+1)
r =

1

r

∫ r

R−h/2

−∂D
(k)
ϕ

∂ϕ
dr + C3 , (29)

whereD
(k)
ϕ = e15ε

(k)
rϕ +ε11E

(k)
ϕ is obtained from equation (5). The integration constant

C3 is obtained by setting D
(k+1)
r at r = R to be equal to the transverse electric

displacement of the previous iteration D
(k)
r .

Substitution of equations (7-9), (15-16) and (25) in equations (1), (3) and (4) yield
the following set of differential equations in terms of the new unknown correction
functions f (k+1)(r), g(k+1)(r) and p(k+1)(r).

C11W
(k)
1

dg(k+1)

dr
− C12

r
knV

(k)
1 f (k+1)(r) +

C12

r
W

(k)
1 g(k+1)(r)− e33Q(k) dp

(k+1)

dr
=
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= σ(k+1)
r − C12

r
(−V (k)

0 kn +
r −R
R

(k2nW
(k)
0 − knV (k)

0 ) +W
(k)
0 ) (30a)

C33V
(k)
1

df (k+1)

dr
− C33

r
knV

(k)
1 f (k+1)(r)+

+
C33

r
W

(k)
1 kng

(k+1)(r) +
e15
r
knQ

(k)p(k+1) = τ (k+1)
r (30b)

e33W
(k)
1

dg(k+1)

dr
− e33Q(k) dp

(k+1)

dr
− e31

r
knV

(k)
1 f (k+1)(r) +

e31
r
W

(k)
1 g(k+1)(r) =

= D(k+1)
r − e31

r
(−V (k)

0 kn +
r −R
R

(k2nW
(k)
0 − knV (k)

0 ) +W
(k)
0 ) (30c)

where τ
(k+1)
rϕ , σ

(k+1)
r and D

(k+1)
r are obtained from equations (27-29). As implied

above, in addition to these differential equations, the new correction functions must
satisfy the following boundary conditions:

f (k+1)(R) = g(k+1)(R) = p(k+1)(R− h/2) = p(k+1)(R+ h/2) = 0. (31)

The distribution of the new correction functions in the thickness direction is obtained
by integrating the equations (30) subject to the boundary conditions of equations
(31). The integrals in equations (30) are evaluated numerically using a trapezoidal
method. This new estimates of f (k+1)(r), g(k+1)(r) and p(k+1)(r) are used as the
correction functions for the next iteration. As with any smeared laminate model,
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Figure 2. Through-thickness mode shapes for piezoelectric cylinder panel.

there are two distinct ways to calculate the shear stress distribution: from the
material constitutive relations; or by elemental stress equilibrium. The ultimate goal
of the iterative analysis is the determination of the functions, f (r) and g (r) , that
causes the two stress distributions to be equal. This defines the convergence point for
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the iterative functions f (r) and g (r) , the point at which the stresses and strains are
self-consistent.

5. Results and discussion

We consider a layer of piezoelectric material. The input data used here were h = 12.0
mm, R = 0.8 m, L = 0.8 m, ϑ = 1.0 rad, C11 = 6.45 · 1010 N/m2, C22 = 8.13 · 1010

N/m2, C12 = 0.0432 · 1010 N/m2, C33 = 2.56 · 1010 N/m2, ρ = 2.7 · 103 kg/m3,
e33 = 15.8 C/m2, e31 = −5.2 C/m2, e15 = 12.72 C/m2, ε11 = 1.51 · 10−8 F/m,
ε33 = 1.3 · 10−8 F/m. In the example the thickness-to-radius ratio was 0.015 i.e. the
panel is considered to be thin and of radius of curvature R of the middle surface, and
thickness h.

Table 1 Iteration improvement of frequency factor for the panel

Iteration frequency factor ω2
n

number
1 6.297877 · 104

2 6.399191 · 104

3 6.386247 · 104

4 6.386247 · 104

For the minimum vibration frquencies (n = 1) representative through-thickness
distributions of the elastic and electric field variables are shown.

These have been normalized by dividing through by the maximum value for each
field variable. The through-thickness distributions for axial displacement u, transverse
shear stress τrϕ, transverse normal stress σr, and transverse electric field Er are shown
in Fig. 2-3, respectively, associated with minimum vibration frequencies. The plot for
the transverse displacement w is not shown because for the thin panel the distribution
is essentially constant throught the thickness.
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Figure 3. Through-thickness mode shapes for the piezoelectric cylin-
der panel.
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Since f (r) and g (r) are determined from the previous iteration, the question arises
as to what to use for the first iteration. Almost any reasonable displacement as-
sumption is acceptable, however experience has shown that a quadratic shear stress
distribution is a very good starting point. Table 1. shows the improvement in the
prediction of the frequency factor ω2

n for the cylinder panel example using a quadratic
shear stress as a starting point for the first iteration.

6. Conclusions

A new iterative model has been presented for a thin piezoelectric cylindrical panel
that can accurately determine the dynamic stress distribution in the panel. This
represents an advantage over previous smeared laminate models, in which accurate
estimates of the stress field were only possible if the assumed displacement field was
a reasonable approximation of the actual displacement field. Accurate determination
of the stress and displacement fields is particularly important for ”stress critical”
calculations such as damping and delamination.
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Appendix A. Constants

Equations (22) to (23) in the main text are given in terms of Ai j and Di j which are
presented below:
A1,1 = K1 +K2 − 2K5/R, A1,2 = 2K1 − 2K5/R

A1,3 = K7 +K12 −K9/R−K13/R

A1,4 = −K2 +K5/R, A1,5 = K6 −K8/R

A1,6 = K19 −K20/R, A1,7 = K5/R

A1,8 = K6, A1,9 = K12 +K7, A1,10 = K1, A1,11 = K19

A2,1 = −K7 −K12 +K9/R+K13/R, A2,2 = K18, A2,3 = K27,

A2,4 = K17 −K10 −K14, A2,5 = −K9/R−K13/R

A2,6 = −K4 −K11 −K15

A2,7 = −K7 −K12, A2,8 = −K22 −K23

A3,1 = K6 −K8/R, A3,2 = K3, A3,3 = K8/R

A3,4 = K6, A3,5 = K10 +K14 −K16

A3,6 = K21 −K26, A3,7 = −K16

A4,1 = K5/R−K2, A4,2 = K2, A4,3 = K8/R, A4,4 = K5/R

A4,5 = K9/R+K13/R, A4,6 = K20/R

A5,1 = K20/R−K19, A5,2 = K27, A5,3 = −K30, A5,4 = −K19

A5,5 = −K22 −K23, A5,6 = K31

D1,1 = M1 − 2M2/R+M3/R
2

D1,2 = M2/R−M3/R
2, D1,3 = M4 −M5/R

D1,4 = −M1, D1,5 = −M7, D2,1 = M7, D2,2 = M8

D3,1 = M6, D3,2 = M5/R, D3,3 = M4 −M5/R

D4,1 = M2/R−M3/R
2, D4,2 = M3/R

2, D4,3 = M5/R.
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Equation (26) in the main text contain the quantities Yij and Mij which are
presented below:
Y11 = k4n (K1 +K2 − 2K5/R)− 2k2n(K1 −K5/R) +K1

Y12 = Y21 = K7 +K12 − k2n (K7 +K12 −K9/R−K13/R) ,

Y13 = Y31 = k3n(K5/R−K2)− knK5/R

Y14 = Y41 = k3n(K6 −K8/R)− knK6

Y15 = Y51 = K19− k2n(K19 −K20/R)

Y22 = k2nK18 +K4 +K11 +K15, Y23 = Y32 = kn (−K9/R−K13/R)

Y24 = Y42 = kn(K17 −K10 −K14), Y25 = Y52 = k2nK27 +K22 +K23

Y33 = k2nK2, Y34 = Y43 = k2nK8/R, Y35 = Y53 = −knK20/R

Y44 = k2nK3 +K16, Y45 = Y54 = kn(K26 −K21), Y55 = −K31 − k2nK30

M11 = M1 + k2n
(
M1 +M3/R

2 − 2M2/R
)
, M12 = M21 = M7

M13 = M31 = kn
(
M2/R−M3/R

2
)
, M14 = M41 = kn (M4 −M5/R)

M33 = M3/R
2, M34 = M43 = M5/R, M44 = M6, M22 = M8

M23 = M32 = M24 = M42 = 0.
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Abstract. Optimal design with thousands of variables is a great challenge in engineering
calculations. In this paper an iteration based topology design technique is introduced for
the optimization of linearly elastic continuum type structures under single parametric static
loading and different displacement boundary conditions. The support optimization is dis-
cussed briefly, as well. The investigated problem is utilized by minimization of the weight
of the structure subjected to displacement constraints. The numerical procedure is based
on an iterative formula which is formed by the use of the Kuhn-Tucker condition of the
Lagrangian function of the constraint mathematical programming problem. The application
is illustrated by numerical examples.

Mathematical Subject Classification: 74P15
Keywords: mathematical programming, topology optimization, optimal design

1. Introduction

The past century has produced impressive improvements in power and efficiency of
mathematical programming techniques as applied to general structural design prob-
lem. These methods with their generality do not allow significant number of design
variables and number of constraints. This tends to restrict their usefulness to problems
with from tens to a few hundreds of design variables. Attempts to apply numerical
search procedures to resize problem have failed due to the fact of the large number
of design variables involved or the huge computational expenses. The special ap-
proaches which have solved such problems successfully are known from the literature
as optimality criteria methods.

Recently the topology optimization is one of the most ”popular” topic in the ex-
panding field of optimal design. A great number of papers indicates the importance of
the topic [1,3-5,7,9,11,23,25,27,28]. The popularity comes one part from the needs of
the industry (car, airplane, etc.) and other part from the complexity of the problem
which is a great challenging for the researchers. In present stage the field of topology
optimization can be divided into two subfields: optimal design of skeletal structures
(trusses, grids, etc.,) deals with the simultaneous optimization of the member sizes

c©2006 Miskolc University Press
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and geometry (coordinates of joints). This field is named layout optimization. The
other subfield is called generalized shape optimization which deals with the simul-
taneous optimization of the topology and shape of the internal boundaries of the
continuum type structures made of composite or porous materials. This subfield is
based on the use on the Finite Element method and in the fundamental problem class
the optimal structure is “built up” from empty (no material) and solid (filled with
given isotropic material) elements.

The history of the topology optimization is approximately 100 years old. At the
first 80 years a skeletal structure (usually a truss) was the object of the optimization
problem. Exactly one hundred years ago Michell [13] used the full stress design (FSD)
criteria on statically determinate structures to obtain the minimum weight structure.
In 1957 Barta [2] extended this method to statically indeterminate structures and
found that FSD did not converge to the minimum weight design. The other important
intuitive method was the uniform strain energy density design. Formal methods of
the calculus of variation, applied by Taylor [29], Prager and his co-workers [see e.g.
15,16,17] to specific distributed parameter problems, showed great promise, suggesting
that implementation to discretized (e.g., FEM) models could lead to a new class
of general purpose optimization methods. The first discretized optimality criteria
methods were based on strain energy distributions characterizing optimum structural
designs for stress constraints. As Prager and Taylor [15] showed, if the work of the
applied loads is limited as an equality constraint, the optimum structure with uniform
material properties has uniform energy density distribution.

The origin of the classical optimality criteria method (COC) is dated back into the
70-es. Turning attention to certain stiffness constraints theoretically valid optimality
criteria were derived for skeletal structures with displacement constraints employing
classical Lagrangian multiplier methods of mathematical programming optimization.
To satisfy the optimality criteria an algorithm (an iterative formula) was proposed by
Berke [6] based on the attitude that this formula theoretically correctly guaranteeing
at least a local optimum when satisfied. Berke also suggested that the design vari-
ables and constraints should be separated into a passive and an active sets. In 1991
Kaliszky and Lógó [10] presented a new type of application for the optimal design of
dynamically loaded reinforced concrete frames under displacement and deformation
constraint. The solution based on Berke’s optimality criteria method with multiple
constraints and a penalty parameter was used in the iterative formulation. The finite
element based topology optimization was first explored in 1973 by Rossow and Taylor
[18] and later Cheng and Olhoff [8]. In 1988 a new generation of problem formu-
lation were created by Bendsoe and Kikuchi [3] using homogenization. A detailed
description of continuum-type optimality criteria method was reported in Rozvany’s
books [20, 23] and several reports [21, 22, 25, 30]. Their work opened a new “road”
in research named topology optimization, but the common thing is that all of them
use the basic idea of the classical optimality criteria.

It can be seen that it was enough a half decade to develop a new direction in field of
structural optimization. At the beginning of 90-es the topology optimization method
was split into two main parts: one part is based on the SIMP type method (Solid
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Isotropic Microstructures with Penalty) the other part is used homogenization. Allaire
and Khons’ work [1, 23] gives a clear description of the homogenization technique.

In the following an iterative technique (which is named SIMP method) and the con-
nected numerical examples will be discussed in detail. The standard FEM computer
program with quadrilateral membrane and truss elements is applied in the numerical
calculation. The object of the design (so-called ground structure) is a rectangular disk
with given loading (one parametric static) and support conditions (fix or/and elastic
bars) . The material is linearly elastic. The design variables are the thickness or/and
cross-sectional are of the finite elements. To obtain the correct optimal topology some
filtering method has to be applied to avoid the so-called “checker-board pattern”.

2. Optimization problem

2.1. Problem statement. For illustration purposes an engineering design problem
is investigated. Let’s given a design space (space means a volume which has to fill
with structural elements), where the structure is constructed by truss and membrane
elements. By the use of the FEM (Finite Element Method) definitions, let’s consider
the simple case of

• a 2D structure consisting of disk’ ground elements (g = 1, . . . , G) which must
have a constant thickness (tg) of either tg = tmin = 0 or tg = tmax = 1,
such that each ground elements (g) contains one or several sub-elements (e =
1, . . . , Es), whose stiffness coefficients are linear homogeneous functions of the
ground element thickness tg, (Practically it means that the meshing consists
of two parts, a primary and a secondary one.)
• The truss elements are given by their length and cross-sectional area. The

above “thickness” normalization is used for the cross-sectional areas, as well.
(The cross-sectional area is multiplied by tg.)
• A single static loading with given boundary conditions and
• displacement constraints (d = 1, . . . , D).

Using the above-normalized determination, the structure can easily be transformed
to problems with a different prescribed maximum thickness tg = tmax. Due to the
linear relations this is done by multiplying all loads by tmax, whilst stresses, strains
and displacements do not alter their value.

2.1.1. The applied finite element technique. The design domain is discretized in the
usual way. (Figure 1.) As it was mentioned 4 nodes disk elements (Figure 2) and
2D truss elements are used. In that way numerically the two types of element can be
handled easily.

The nodes are interconnected by disk or/and bar elements. The applied shape
functions of the disk’s element are given as follows: N1(ξ, η) = 1

4 (1 − ξ)(1 − η);

N2(ξ, η) = 1
4 (1+ ξ)(1−η); N3(ξ, η) = 1

4 (1+ ξ)(1+η); N4(ξ, η) = 1
4 (1− ξ)(1+η). The

displacement boundary conditions are given in form of fix supports, elastic springs
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Figure 1. Discretization
of the design domain
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Figure 2. Local coordi-
nate system and basic
disk element

and elastic bars, respectively. The system stiffness matrix can be constructed by
applying the assembling rule for iso-parametric elements.

2.1.2. Mathematical programming formulation. The structure is constructed by G
piece of ground elements, where G = NDisk+NBar. Here NDisk is the number of
the ground disk elements and NBar is the number of the bar elements.

The weight (W) of the structure is given by

W =

ndisc∑
id=1

γidAidtid +

nbar∑
ib=1

γibAib`ibtib . (1a)

Here γid and γib the specific weight of the disk and bar elements, respectively. Aid is
the area of the id-th disk element, Aib is cross-section area and `ib the length of the
ib-th bar element. If an artificial variable Ag is introduced (in case of disk it means
the area of the element Ag = Aid, while in case of bar elements it has the following
meaning: Ag = Aib`ib) the weight calculation can be expressed by the following
compact form:

W =

G∑
g=1

γgAgtg , (1b)

where γgis the specific weight of the ground element g.

The displacement constraint can be expressed as

ûTdKu−∆d 6 0 ; (d = 1, ..., D) (2)

where ûd is the virtual nodal displacement vector caused by the virtual loads (e.g.
“unit dummy loads”) associated with the displacement constraints, K is the system
stiffness matrix, u is the nodal displacement vector associated with the real load and
∆d is the prescribed limit on the displacement value in constraint d.
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The side constraints can be stated as

−tg + tmin 6 0 ; (for g = 1, ..., G) ,

tg − tmax 6 0 ; (for g = 1, ..., G) .
(3)

In order to suppress the intermediate thicknesses, the weight calculation formulation

is replaced by W̃ =
G∑
g=1

γgAgt
1
p
g (where p is the penalty parameter and p > 1). This

gives the correct weight value for tg = 0 and tg = 1. The use of the penalty parameter
has similar effect in the later formulations as it was the role of the penalty parameter
in the classical optimality criteria method.

The optimization problem is to minimize the penalized weight of the structure
which is subjected to a given single displacement and side constraints.

W̃ =

G∑
g=1

γgAgt
1
p
g = min!

subject to

 uTKu−∆ 6 0;
−tg + tmin 6 0; (for g = 1, ..., G) ,
tg − tmax 6 0; (for g = 1, ..., G) .

(4)

In equation (4) the nodal displacement vector u associated with the real load P is
calculated from the linear system of equations Ku = P .

2.1.3. Lagrange function. Using the Lagrange multipliers υ, αg, βg and slack variables
h1, h2g, h3g for the constraints in problem (4), the following Lagrange function can
be formed:

£ (tg, υ, αg, βg, h1, h2g, h3g) =

G∑
g=1

γgAgt
1
p
g + ν

(
uTKu−∆ + h21

)
+

G∑
g=1

αg
(
−tg + tmin + h22g

)
+

G∑
g=1

βg
(
tg − tmax + h23g

)
. (5)

2.1.4. Kuhn-Tucker conditions . Neglecting the details, one can obtain

∂£

∂tg
=

1

p
γgAgt

1−p
p

g + ν

(
∂uT

∂tg
Ku + uT

∂K

∂tg
u + uTK

∂u

∂tg

)
− αg + βg = 0

(g = 1, ..., G) . (6a)

Due to symmetry of the stiffness matrix K and other simplifications equation (4) can
be replaced by the following relation

∂£

∂tg
=

1

p
γgAgt

1 - p
p

g − ν
Es∑
e=1

u
T

ge

∂Kge

∂tg
uge − αg + βg = 0; (g = 1, ..., G) , (6b)

where the subscript ge refers to thee-th finite element of the g-th ground element.
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If the “normalized” element stiffness matrix is K̃ge (e.g. calculated for a unit
thickness (tg = 1)), then the element stiffness matrix Kge for actual thickness tg is

expressed by Kge = tgK̃ge due to the linear relation and
∂Kge

∂tg
= K̃ge. Introducing

the following notation Rg = t2g

Eg∑
e=1

uTgeK̃geuge equation (5) becomes very simple

1

p
γgAgt

1−p
p

g − νRg
t2g
− αg + βg = 0 . (6c)

Continuing the derivations:

∂£

∂ν
= uTKu−∆ + h21 = 0 and

∂£

∂h1
= 2νh1 = 0 , (7)

∂£

∂αg
= −tg + tmin + h22g = 0 and

∂£

∂h2g
= 2αgh2g = 0 , (8)

∂£

∂βg
= tg − tmax + h23g = 0 and

∂£

∂h3g
= 2αgh3g = 0 . (9)

Omitting the details from equations (6c), (7), (8) and (9) the values of the Lagrange
multipliers, slack variables and the thickness values tgcan be calculated iteratively.

As it is in COC type methods, before the calculation of the Lagrange multiplier ν,
one needs to define a range for the thickness: a set of active and passive thicknesses.

There exist three possibilities:

If tmin < tg < tmax (or the ground element is “active”, g ∈ A) then αg = βg = 0
and by (6c) the following formula can be obtained

tg =

(
νpRg
Agγg

) p
p+1

(10)

In case of tg = tmin the corresponding Lagrange multipliers are αg > 0, h2g = 0 and
(6c) implies

tg >

(
νpRg
Agγg

) p
p+1

(11)

This means that if (10) gives a tg - value which is smaller than tmin then (6c)) is
satisfied by tg = tmin. Similarly, in case of tg = tmax the corresponding Lagrange
multipliers are βg > 0, h3g = 0 and then (6c) implies

tg 6

(
νpRg
Agγg

) p
p+1

(12)

which allows tg = tmax when (10) gives a tg - value which is greater than tmax. If
tg = tmin or tg = tmax we call the ground element “passive” (g ∈ P).

2.1.5. Calculation of the final iterative formulas. In order to keep the number and
layout of ground elements constant and avoid the ill-conditioned stiffness matrix,
one can replace the zero element thickness (tmin) with a small but finite value (e.g.
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tmin = 10−6). If the single displacement constraint is active in problem (4) (e.g.
satisfies the equality sign) the following form holds

∆−
G∑
g=1

Rg
tg

= 0. (13)

Since the thickness value for passive elements (g ∈ P) is given and for active elements
(g ∈ A), it can be calculated from (10) that

∆−

Rg
tg∑
g∈P

=

Rg
tg∑
g∈A

=
∑
g∈A

Rg(
υpRg

Agγg

) p
p+1

(14)

implying

ν
p

p+1 =

∑
g∈A

(
Agγg
p

) p
p+1

R
1

p+1
g

∆−

Rg
tg∑
g∈P

(for A 6= 0 ). (15)

The optimal solution can be obtained by evaluating iteratively the thickness values
tg and the Lagrange-multiplier from (10) and (15).

2.1.6. The Applied SIMP Algorithm can be defined as follows:

1. Specify the Max and Min value of tg, ( tgmax = 1 , tgmin = 10−6).
2. Specify a maximum displacement ∆ (single displacement).
3. Set the penalty value, p = 1, later this value will be incremented to p = 1.5, 2,

etc.
4. Specify design domain, including supports and loading.
5. Carry out FEM.
6. Extract displacement field for entire structure uT .
7. Calculate Rg with displacement vector based on current element solution set
tg, but using the stiffness matrix for the elements as if it had tg = 1.

8. Calculate Lagrange multiplier ν:

ν =

∑
g∈A

(
Agγg
p

)
R

1
p
g∆−

Rg
tg∑
g∈P


p+1
p

(for A 6= 0 ).

9. Calculate new element solution set:

tg,new =

(
νpRg
Agγg

) p
p+1

where ν
p

p+1 is the Lagrange multiplier calculated in step 8 with the correct
power.
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10. Determine set of active and passive elements by the following element limit
set:

tg,new = tmin if tg,new 6 tmin = 10−6; e ∈ P ,
tg,new = tmax if tg,new > tmax = 1 ; e ∈ P ,
tg,new = tg,new if tmin 6 tg 6 tmax = 1 ; e ∈ A .

11. If active set has changed from the previous iteration, go to step 5, else if active
set has not changes from pervious iteration go to step 12.

12. Increment p until all the elements become passive or reach the limit for p, using
following formula: p = p+increment (step size is controlled).

In topology optimization the checker-board pattern -what is a numerical artifacts
with artificially high stiffness is a big problem. To avoid it as an optimal solution
there are several techniques (see e.g. Sigmund and Petersson [28]). Here a simple
procedure was used which was published by Gáspár, Lógó and Rozvany [9]. The key
point is that all the ground elements in case of disk (a primary meshing provides the
so-called ground elements) should sub-divide into further finite elements (secondary
elements). For the subdivision it is enough to use 2 by 2 elements. Further number
of sub-elements can not improve significantly the final result.

3. Numerical examples

The 100 years old Michell’s theory on least-weight trusses [13] provides an optimal-
ity criteria formula for a continuum in case of low volume fraction. Since his solution
usually consists of an infinite number of members, Prager [16] termed Michell’s frame-
works “truss-like” structures. The Michell’s theory was generalized to other structures
by Prager and Rozvany (e.g. [17]). During this century several researcher added fur-
ther result to this topic, but among them Rozvany’s school made the most intensive
research on it and published many papers with very significant results (e.g. Rozvany
[21,22,24,27]). In this Chapter some new optimal topologies are introduced. The
computer program is based on the above mentioned algorithm. 4-nodes quadrilateral
and 2 nodes truss FE’s are used. In each case the normalized “thickness” of the fi-
nite elements is used as design variable and a unit Young’s Modulus is applied. The
displacement limit is always 150% of initial displacement obtained from the initial
design at the load location.

3.1. Example 1. “MBB beam”. Consider a rectangular ground structure with
hinge support in one end and roller support at the other end (Figure 3). The aspect
ratio (height over length) at the initial design is 1 to 4.

The total number of the finite elements is 9600. The applied load is 100 unit at the
middle of the top of the design domain. Only 4-nodes quadrilateral FE’s are used The
penalty parameter p was run from p = 1 to p = 3 with smooth increasing (increment
is 0.25). The Poisson ratio is 0. The exact analytical solution (e.g. Rozvany et al.
[21] ) is shown in Figure 4.
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Figure 3. Design domain with boundary conditions

Figure 4. Exact analytical solution after Rozvany et al.

The solution in Figure 5 agrees closely with the exact analytical solution with zero
volume fraction. One can see that by the use of 2x2 4-nodes FE’s per ground element
the checkerboard pattern is completely suppressed (Figure 2).

Figure 5. Optimal topology obtained by numerical calculation

3.2. Example 2. Rectangular domain with unequal point loads and un-
symmetrical location. An intensively investigated test structure is rectangular do-
main with two hinge supports and two point loads [12,21,27]. The usual aspect
(height/length) ratio is 0.5 and the supports are located at the middle of the left and
right edges, respectively. Sometimes this ratio is not enough because the active zone
reaches the top and the bottom edges of the design domain. To avoid this effect the
height of the design domain is increased and the aspect ratio is 0.7 (Fig.4.).

In this example the effect of the unsymmetrical location and magnitude of the right
hand point loading is investigated. The ratio of magnitudes of the unequal point loads
is 2 (left load is 100 units, right load is 50 units). The left hand load is always located
at 1/4 of the horizontal dimension while the location of the right load is varied from
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Figure 6. Design domain for variable location of F2

2/8 to 7/8 of the horizontal dimension. Total number of finite elements is 40320 by
the use of 84 × 120 ground elements and 2 × 2 sub-elements. The Poisson ratio is
equal to 0. The same type of penalty parameter p was applied (from p = 1 to p = 1.5
with smooth increasing (increment is 0.1) and later to p = 3.5 with increment=0.25).

The pictures of the optimal topologies in function of the right force location can be
found in Table 1. The exact analytical solution for zero volume fraction can be seen
in Fig.5. after Melchers [12]. The obtained numerical solutions are in good agreement
with the analytical solutions.

Figure 7. Exact analytical solution after Melchers.
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Table 1. Optimal topologies for unsymmetrical loading conditions

Locat
Optimal Solution

Locat
Optimal Solutionion of ion of

F2 F2

1.0a 1.5a

2.0a 2.5a

2.5a 3.0

To demonstrate the evolution of the optimal topologies during the major iterations
the intermediate results (correspond to different penalties) are displayed. One can see
in Figure that enough a few major iterations to reach the final topologies which proves
the robustness of the applied algorithm. At the beginning there are intermediate
thicknesses (light colours), what disappears at the end of the program (only two
thicknesses exist: 1or 0) .



60 J. Lógó
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Figure 8. Evolution of the optimal topology in function of the penalty parameter

3.3. Example 3. Topology optimization for variable external forces of
nonzero cost. Classical theories of variable force (mostly support) optimization,
based on optimality criteria and adjoint displacement fields, were developed in the
mid-seventies (see e.g. Rozvany and Mroz [19]. More recently, Buhl [7] and Pomezan-
ski [14], Rozvany et al. [26] ) developed numerical methods for topology optimization
with allowance for the cost of supports. This example discusses the problem of opti-
mizing structural topologies when some of the external forces are variable and they
have a nonzero cost. Such forces may represent a reaction at a support, a force gen-
erated by passive control or a ballast (weight) used for increasing cantilever action or
modifying natural frequencies. In the presented examples, it is assumed that the cost
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of external forces depends on their magnitude and in this way it is proportional to
the volume of the optimal topology.

Assuming the same permissible stress in tension and compression, in the objective
function of optimization problem (4) the formulation for bars can be reformulate as
follows:

min

∑
i

k`i |Fi| t
1
p

i +
∑
j

b`j |Rj | t
1
p

j

 ; (16)

where k and bare given constants, Fi are bar forces and Rj are reaction forces. Replace
all supports with a set of bars, such that in the direction of any potential reaction
force. (At roller support, for example, we have only one fictitious bar and at a pin
support, we have an infinite number of fictitious bars in all possible directions.) It is
easy to proof that the optimality conditions become the same as was indicated before.

Let’s consider a rectangular design domain with a single point load at middle of the
right edge (Figure 10.) On the left side there are fix hinges at the top and the bottom
corners and there are pin supports at the 1/4 and 3/4 of the left side, respectively.
(Here the “infinite number” of bars means at the pin support that initially there is a

 

20 
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20 

40 

40 

40 

20 

Figure 9. Design domain
for variable supports

Figure 10. Optimal topol-
ogy in Case A.

bar in every five degree direction.) The cost of the supports are varied from 1 (no
cost) to 10000 (expensive). To demonstrate the method and the algorithm, three
cases are presented: Case A: the bars have high cost while the hinges have no cost;
Case B: all supports have cost, but the bars have three times more cost than the
hinges, Case C: all the supports have same unit cost. For the continuum design do-
main 4-nodes quadrilateral FE’s are used Total number of finite elements is 1600 by
the use of 10× 40 ground elements and 2× 2 sub-elements. The Poisson ration is 0.
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Same type of penalty parameter p was applied (from p = 1 to p = 1.5 with smooth in-
creasing (increment is 0.1) and later to p = 4.0 with increment=0.25). The numerical
results can be seen in Figures 10-11. They are in good agreement with the expected
ones. In Figures 12-13. among the bar supports only one member at the bottom and
one member at above are active. Their directions are 135 and 225 degree, respectively.

Figure 11. Optimal topol-
ogy in Case B.

Figure 12. Optimal topol-
ogy in Case C.

4. Conclusion

A very efficient iterative algorithm was presented for topology design of continuum
type structures by the use of displacement constraint. The derived algorithm is suit-
able for support design as well. The applied meshing provides a good technique to
avoid the checkerboard pattern. By the use of the smooth penalization increment
the obtained numerical solutions are in good agreement with the existing and proved
analytical solutions. Conceptually this topology design is simple, since the algorithm
does not require intensive mathematics. The number of the design variables (thou-
sands) significantly exceeds the maximum number of variables what can be used in
any kind of mathematical programming algorithm. The main disadvantage is that
the buckling and other constraints are not taken into consideration during the opti-
mization procedure but the obtained numerical topologies are a good starting points
for further optimal design. The support optimization technique is suitable to demon-
strate the effects of strengthening of structures.
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Abstract. In this paper, a new approach to tackle the quadratic flow past axially symmetric
bodies at low Reynolds number is presented. Firstly, a new method for the evaluation of
drag based on DS conjecture (Datta and Srivastava, [1, 1999]) and surface average velocity
defined by Chwang and Wu (part 2 and 3 [2, 3, 1975]) on a body placed in quadratic
flows like parabolic and stagnation like parabolic is presented. Later on, these general
values of drag are utilized for bodies like sphere, spheroid and egg-shaped in both axial
and transverse situations. Author claims that the proposed method is easy and very handy
to study the quadratic flow past not only for a isolated body but also for assemblage of bodies
situated along the axis of symmetry in comparison to complicated methods like distribution
of basic singularities which is not applicable to all axially symmetric bodies except sphere and
spheroidal bodies. Numerical values of drag in every flow situation have been calculated and
presented in Tables 1-9. The respective variations with respect to eccentricity ‘e’ are depicted
via figures. Limiting cases of slender spheroid and flat circular disk are also discussed.

Mathematical Subject Classification: 76D07
Keywords: Quadratic flows, parabolic flow, stagnation like parabolic flow, Stokes drag

1. Introduction

In physical and biological science, and in engineering, there is a wide range of prob-
lems of interest like sedimentation problem, lubrication processes etc. concerning the
flow of a viscous fluid in which a solitary or a large number of bodies of microscopic
scale are moving, either being carried about passively by the flow, such as solid par-
ticles in sedimentation, or moving actively as in the locomotion of micro-organisms.
In the case of suspensions containing small particles, the presence of the particles will
influence the bulk properties of the suspension, which is a subject of general interest
in Rheology. In the motion of micro-organisms, the propulsion velocity depends crit-
ically on their body shapes and modes of motion, as evidenced in the flagellar and
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cilliary movements and their variations. A common feature of these flow phenom-
ena is that the motion of the small objects relative to the surrounding fluid has a
small characteristic Reynolds number Re. Typical values of Re may range from order
unity, for sand particles settling in water, for example, down to 10−2 to 10−6, for
various micro-organisms. In this low range of Reynolds numbers, the inertia of the
surrounding fluid becomes insignificant compared with viscous effects and is generally
neglected and the Navier-Stokes equations of motion reduce to the Stokes equations
as a first approximation. The zero Reynolds number flow is called Stokes flow. The
hydromechanics of low Reynolds number flows play an important role in the study
of rheology, lubrication theory, micro-organism locomotion and many areas of bio-
physical and geophysical interest. In the case when the inertial effects are negligible
compared with the viscous forces, the Navier-stokes equations are usually simplified
to Stokes equations as a first approximation. Determination of the solutions for the
Stokes flows, however, isstill recognized to be difficult in general for arbitrary body
shapes. As a consequence, not many exact solutions are known. Of the few analytical
methods available for solving Stokes flow problems, one is the boundary value method,
which is based on the choice of an appropriate co-ordinate system to facilitate sep-
aration of the variables for the body geometry under consideration. Another is the
singularity method, whose accuracy depends largely on whether the correct types of
singularity are used and how their spatial distributions are chosen. The boundary
value method seems to have been widely adopted in practice, more so than the singu-
larity method. Stokes flow of an arbitrary body is of interest in biological phenomena
and chemical engineering. In fact, the body with simple form such as sphere or el-
lipsoid is less encountered in practice. The body, which is presented in science and
technology, often takes a complex arbitrary form. For example, under normal condi-
tion, the erythrocyte is a biconcave disk in shape, which can easily change its form
and present different contour in blood motion due to its deformability. In second half
of twentieth century, a considerable progress has been made in treating the Stokes
flow of an arbitrary body.

An exact solution for the motion of a spheroidal particle placed in a quadratic
as well as in a linear flow of incompressible viscous fluid is very useful in the study
of blood flow and general suspension rheology. In particular, a correct description
of the behavior of a spheroidal particle in a paraboloidal or Poiseuille flow will fa-
cilitate accurate calculation of the bulk flow properties of tube flows of dilute or
concentrated suspensions of blood cells, long-chain polymers or any other biological
supra-macromolecules. When the Reynolds number based on the particle size, the
local flow velocity and the kinematic viscosity of the surrounding fluid is very small,
as in the case of microcirculation of blood cells, the inertial effects of the fluid can be
neglected and the Navier-Stokes equations of motion reduce to the Stokes equations
as a first approximation.

All these motions are characterized by low Reynolds numbers and are described by
the solution of the Stokes equations. Although the Stokes equations are linear, to ob-
tain exact solutions to them for arbitrary body shapes or complicated flow conditions
is still a formidable task. There are only relatively few problems in which it is possible
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to solve exactly the creeping motion equations for flow around a single isolated solid
body. Stokes [4, 1851] calculated the flow around a solid sphere undergoing uniform
translation through a viscous fluid whilst Oberbeck [5, 1876] solved the problem in
which an ellipsoid translates through liquid at a constant speed in an arbitrary direc-
tion. Edwards [6, 1892], applying the same technique, obtained the solution for the
steady motion of a viscous fluid in which an ellipsoid is constrained to rotate about a
principal axis. The motion of an ellipsoidal particle in a general linear flow of viscous
fluid at low Reynolds number has been solved by Jeffery [7, 1922], whose solution was
also built up using ellipsoidal harmonics. The analysis described by Jeffery extended
further by Taylor [8, 1923]. Goldstein [9, 1929] obtained a force on a solid body
moving through viscous fluid. Lighthill [10, 1952] studied the problem of squirming
motion of nearly spherical deformable bodies through liquids at very small Reynolds
number. Hill and Power [11, 1956] have obtained arbitrarily closed approximations of
drag by proving a complimentary pair of extremum principles for a Newtonian viscous
fluid in quasi-static flow.

In a series of studies over low-Reynolds-number-flow, Chwang and Wu [12, part 1,
1974] have developed an effective method of solution for arbitrary body shapes. In
this first part authors have considered the viscous flow generated by pure rotation
of an axisymmetric body having an arbitrary prolate form, the inertia forces being
assumed to have a negligible effect on the flow. The method of solution explored
in this paper is based on a spatial distribution of singular torques, called rotlets, by
which the rotational motion of a given body can be represented. Exact expressions
of torque are determined in closed form for a number of body shapes, including the
dumbbell profile, elongated rods and some prolate forms. Chwang and Wu [2, part 2,
1975] explored the fundamental singular solutions for Stokes flow that could be useful
for constructing solutions over a wide range of free-stream profiles and body shapes.
Authors have employed these fundamental singularities (Stokeslet and their deriva-
tives like rotlets, stresslets, potential doublets and higher orderpoles) to construct
exact solutions to a number of exterior and interior Stokes-flow problems for several
specific body shapes translating and rotating in a viscous fluid which may itself be
providing a primary flow. The different primary flows considered here include the
uniform stream, shear flows, parabolic profiles and extensional flows(hyperbolic pro-
files), while the body shapes cover prolate spheroids, spheres and circular cylinders.
Chwang [3, part 3, 1975] has been found exact solutions in closed form (expressions
of drag) using singularity method for various quadratic flows of an unbounded in-
compressible viscous fluid at low Reynolds numbers past a prolate spheroid with an
arbitrary orientation with respect to the fluid. The quadratic flows considered here in-
clude unidirectional paraboloidal flows, with either an elliptic or a hyperbolic velocity
distribution, and stagnation-like quadratic flows as typical representations. Chwang
and Wu [13, part 4, 1975] have analyzed the problem of a uniform transverse flow past
a prolate spheroid of arbitrary aspect ratio at low Reynolds numbers by the method
of matched asymptotic expansions. They have found expressions of drag depending
on two Reynolds numbers, one based on the semi-minor axis b, Rb = Ub/ν, and the
other on the semi-major axis a, Ra = Ua/ν. Ho and Leal [15, 1976] considered the
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migration of a rigid sphere in a two-dimensional unidirectional shear flow of a second
order fluid. Chan and Leal [31, 1977] wrote a note on the motion of a spherical par-
ticle in a general quadratic flow of a second order fluid. Parker [16, 1977] considered
the two-dimensional motion of a projectile experiencing a constant gravitational force
and a fluid drag force which is quadratic in the projectiles speed. Johnson and Wu
[14, part 5, 1979] elucidated the characteristics of the general stokes flow for slender
bodies of finite centre-line curvature. The singularity method for Stokes flow has been
employed by authors to construct the solutions to the flow past a slender torus.

Majhi and Vasudevaiah [17, 1982] considered the axisymmetric parabolic shear flow
past a spinning sphere in an unbounded viscous medium using the matching technique
and taking the non-uniform shear as the dominant feature, where the Reynolds num-
ber based on parabolic shearRe ≤ 1 and rotational Reynolds number based on the
angular rotation of sphere Ro ≤ 1 are such that R2

o/Re = O(1). Kaloni [18, 1983]
studied the motion of a rigid sphere, suspended in micropolar fluid which is undergo-
ing a slow unidirectional two-dimensional flow. Keh and Anderson [19, 1984] obtained
the configurational distribution function of dumbbell macromolecules(rigid and lin-
early elastic) in a quadratic rectilinear flow. Yuan and Wu [20, 1987] obtained the
analytic expressions in closed form for flow field by distributing continuously the im-
age Sampsonlets with respect to the plane and by applying the constant density, linear
and the parabolic approximation. Yang and Hong [21, 1988] found exact solutions
in closed form using the eigen function-expansion method for various linear and qua-
dratic flows of an unbounded incompressible viscous liquid at low Reynolds number
past a porous sphere with a uniform permeability distribution. Seki [22, 1996] studied
the motion of a rigid ellipsoidal particle freely suspended in a Poiseuille flow(parabolic
flow) of an incompressible Newtonian fluid through a narrow tube numerically in the
zero-Reynolds-number limit. Haber and Brenner [23, 24, 1984, 1999] investigated
analytically the quasi-steady hydrodynamic Stokes drag force and torque exerted on
each of N non-identical particles immersed in a general quadratic undisturbed flow
field at infinity. Datta & Srivastava [1, 1999] advanced a new approach to evaluate the
drag force in a simple way on a restricted axially symmetric body placed in a uniform
stream (i) parallel to its axis, (ii) transverse to its axis, when the flow is governed
by the Stokes equations under no-slip boundary conditions. Authors have evaluated
the analytic closed form expressions of drag for spheroids, deformed sphere, cycloidal
body, an egg-shaped body. Palaniappan and Daripa [25, 2000] have found exact ana-
lytical solutions for the steady state creeping flow in and around a vapor-liquid com-
pound droplet, consisting of two orthogonally intersecting spheres of arbitrary radii(a
and b), submerged in axisymmetric extensional(hyperbolic) and paraboloidal flows
of fluid with viscosity µ. Lin et al. [26, 2005] studied the hydrodynamic interaction
between two neutrally-buoyant smooth spheres moving at negligible Reynolds num-
bers in an unbounded plane Poiseuille flow calculated by three-dimensional boundary
element (BEM) simulations. Pasol et al. [27, 2006] provided comprehensive results
for the creeping flow around a spherical particle in a viscous fluid close to a plane
wall, when the external velocity is parallel to the wall and varies as a second degree
polynomial in the coordinates. By using bipolar coordinates technique, authors have



Quadratic flow past axially symmetric bodies at low Reynolds number 69

concluded that by linearity of Stokes equations, the solution is a sum of flows for
typical unperturbed flows: a pure shear flow, a ‘modulated shear flow’, for which
the rate of shear varies linearly in the direction normal to the wall, and a quadratic
flow. Prakash et al. [28, 2012] studied the hydrodynamics of a porous sphere in an
oscillatory viscous flow of an incompressible Newtonian fluid. Authors have derived
the Faxen’s law for drag and torque acting on the surface of the porous sphere. In the
later part of the paper, examples of uniform flow, oscillating Stokeslets, oscillatory
shear flow and quadratic shear flow are discussed.

In the present paper, author tried to advanced the own conjecture (Datta & Sri-
vastava [1, 1999]) to evaluate the closed form analytic expressions of drag over axi-
symmetric bodies placed under different primary flows including uniform stream, par-
abolic profiles and stagnation like parabolic profiles by considering the surface average
of the primary flow velocity. This conjecture is briefly explained in Section 2. Reader
is advisable to go through the author’s (Srivastava et al., [29, 2012]) recently published
paper for complete detail regarding its application to class of oblate bodies.

2. Body geometry and method

2.1. Geometry of the body. Let us consider the axially symmetric body of char-
acteristic length L placed along its axis (x-axis, say) in a uniform stream U of viscous
fluid of density ρ1 and kinematic viscosity ν. When the Reynolds number UL/ν is
small, the motion is governed by the Stokes equations (Happel and Brenner, [30,
1964]),

0 = −
(

1

ρ1

)
grad p+ ν∇2 u , div u = 0 (2.1)

subject to the no-slip boundary condition.

We have taken up the class of those axially symmetric bodies which possesses con-
tinuously turning tangent, placed in a uniform stream U along the axis of symmetry
(which is x-axis), as well as constant radius b of maximum circular cross-section at the
mid of the body. This axi-symmetric body is obtained by the revolution of meridional
plane curve (depicted in Figure 1) about axis of symmetry which obeys the following
limitations:

i. Tangents at the points A, on the x-axis , must be vertical,
ii. Tangents at the points B, on the y-axis , must be horizontal,
iii. The semi-transverse axis length ‘b’ must be fixed.

The point P on the curve is may be represented by the Cartesian coordinates (x, y)
or polar coordinates (r, θ) respectively , PN and PM are the length of tangent and
normal at the point P. The symbol R stands for the intercepting length of normal
between the point on the curve and point on axis of symmetry and symbol α is the
slope of normal PM which can be vary from 0 to π.



70 D. K. Srivastava, N. Srivastava and Raja Ram Yadav

 

 O M Q A N 

r 
y 

R 
  

   
b 

        am=xmax 

 

P(x, y) or (r, ) 

                    (==/2)B 

==0 

= 

= 

   C 

D 

U 

U 

Figure 1. Geometry of the axially symmetric body

2.2. Axial flow. The expression of Stokes drag on such type of axially symmetric
bodies placed in axial flow(uniform flow parallel to the axis of symmetry) is given by
(Datta & Srivastava [1, 1999])

F|| =
1

2

λb2

h||
, where λ = 6πµU|| (2.2)

and

h|| =

(
3

8

)∫ π

0

R sin3 α dα . (2.3)

where the suffix || has been introduced to assert that the force is in the axial direction.

Sometimes it will be convenient to work in Cartesian co-ordinates. Therefore,
referring to Figure 1 for the profile geometry, we have

y = R sinα , tanα = −
(

dy

dx

)−1
= −dx

dy
= −x′ . (2.4)

Using above transformation, we may express (2.3) as

h|| = −3

4

∫ a

0

yy′′

(1 + (y′)2)
2 dx (2.5)

where 2am represents the axial length of the body and dashes represents derivatives
with respect to x. In the sequel, it will be found simpler to work with y as the
independent variable. Thus, h|| assumes the form

h|| = −3

4

∫ b

0

y(x′)2x′′

(1 + (x′)2)
2 dy (2.6)
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where dashes represents derivatives with respect to y.

2.3. Transverse flow. The expression of Stokes drag on such type of axially sym-
metric bodies placed in transverse flow (uniform flow perpendicular to the axis of
symmetry) is given by (Datta & Srivastava [1, 1999])

F⊥ =

(
1

2

)
λb2

hy
where λ = 6πµU⊥ , (2.7)

and

h⊥ =

(
3

16

)∫ π

0

R
(
2 sinα− sin3 α

)
dα . (2.8)

According to the same manner as we did in axial flow equation (2.8) may also be
written in Cartesian form as (in both cases having x and y treated as independent)

h⊥ = −3

8

∫ a

0

yy′′
[
1 + 2 (y′)

2
]

[
1 + (y′)

2
]2 dx , (2.9)

and

h⊥ = −3

8

∫ b

0

yx′′
[
2 + (x′)

2
]

[
1 + (x′)

2
]2 dy (2.10)

In (2.9) and (2.1) the dashes represents derivatives with respect to x and y respectively.
The suffix ⊥ has been placed to designate the force due to the external flow along the
y-axis, the transverse direction.

The proposed conjecture is, of, course, subject to restrictions on the geometry of
the meridional body profile y(x) of continuously turning tangent implying that y′(x)
is continuous together with y′′(x) 6= 0, thereby avoiding corners or sharp edges or
other kind of nodes and straight line portions, y = ax + b, x1 ≤ x ≤ x2. Also,
it should be noted here that the method holds good for convex axially symmetric
bodies which possesses fore-aft symmetry about the equatorial axis perpendicular to
the axis of symmetry(polar axis). Apart from this argument, It is interesting to note
here that the proposed conjecture is applicable also to those axi-symmetric bodies
which fulfills the condition of continuously turning tangent but does not possesses
fore-aft symmetry like egg shaped body (Datta & Srivastava [1, 1999]). By using
these formulae of drag, Srivastava et al. [30, (2012] have calculated the expressions of
drag on the deformed sphere up to second order deformation parameter and later on
oblate spheroid and flat circular disk as a special case. This conjecture is much simpler
to evaluate the numerical values of drag than other existing numerical methods like
Boundary Element Method (BEM), Finite Element Analysis (FEA) etc. as it can be
applied to a large set of convex axi-symmetric bodies possessing fore-aft symmetry
about maximal radius situated in the middle of the body for which analytical solution
is not available or impossible to evaluate.

Since both axial and transverse flows have been considered in a free stream results
of the force at an oblique angle of attack may be resolved into its components to get
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the required result. The present analysis can be extended to generate a drag formula
for axi- symmetric bodies for more complex flows like paraboloidal flow for which free
stream may be represented by surface average velocity (Chwang and Wu [2, part 2,
1974]). The present analysis may be extended to generate a drag formula for axi-
symmetric bodies for more complex flows like paraboloidal flow and stagnation like
paraboloidal flow for which free stream may be represented by surface average velocity
(Chwang and Wu [2, part 2, 1974]).

3. Formulation of the problem

(Chwang and Wu [2, part 2, 1974]) have constructed the exact solutions to a number
of exterior and interior Stokes-flow problems by employing fundamental singularities
(Stokeslets, rotlets, stresslets, potential doublets and higher order poles) for several
specific body shapes translating and rotating in a flow other than primary flow include
the uniform stream, shear flows, parabolic profiles and extensional flows(hyperbolic
profiles), while the body shapes cover prolate spheroids, spheres and circular cylinders.
Just after this paper, Chwang [3, part 3, 1975]) extended the analysis and considered
the quadratic flows including unidirectional paraboloidal flows, with either an elliptic
or a hyperbolic velocity distribution, and stagnation-like quadratic flows as typical
representations. Each of these exact solutions (in closed form) regarding the types
of singularities required the construction of a solution in each specific form; their
distribution densities are not easily attainable always.

The immediate aim of this problem is to reduce this complexity and to evaluate
the exact solution(closed form) by using the DS conjecture (Datta & Srivastava [1,
1999]). In Section 2, we have briefly explained the formulas for evaluating drag on
axially symmetric bodies placed under axial flow (flow is along the axis of symmetry)
and transverse flow(along the direction perpendicular to axis of symmetry) and in
Section 4, we explain the extension of this conjecture further for quadratic flows
including parabolic flow (Figures 2 and 3) and stagnation like parabolic flow Figures
5 and ??).

4. Quadratic flow past axially symmetric bodies

4.1. Axial paraboloid flow(or unbounded longitudinal paraboloidal flow).
We consider an axi-symmetric body placed under a flow (Figure 2) with a paraboloidal
velocity profile

Uparaboloid = K(y2 + z2) (4.1)

or = K(αy2 + z2) (4.2)

along the axis of symmetry which is the x-axis, where K is arbitrary constant and α is
also arbitrary constant may be positive or negative indicating that paraboloidal flow
is either elliptic or hyperbolic. When α vanishes, the paraboloidal flow degenerates
into a two-dimensional parabolic flow. For arbitrary positive values of α, it represents
Hagen-Poiseuille flow through a pipe of elliptic cross-section. If α = 1, it becomes
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a paraboloidal flow of revolution which corresponds to Heigen-Poiseuille flow in a
circular tube. Hyperbolic paraboloidal flow (α < 0) may not exist physically, but it
can certainly serve as a local component of a more complicated flow field.

Figure 2. A longitudinal or axial paraboloidal flow past axisymmetric
body

By DS-conjecture (Datta & Srivastava [1, 1999]), the expression of drag on axially
symmetric body placed in axial uniform stream U (from equations (2.2) and (2.3)) is

Fx =
1

2

λb2

hx
, where λ = 6πµUx (4.3)

and

hx =

(
3

8

)∫ π

0

R sin3 αdα . (4.4)

where the suffix x has been introduced to assert that the force is in the axial direction.
Now equation (4.1) may be re-written as

Fx =
1

2

(6πµ) b2

hx
Ux =

3πµb2

hx
Ue , (4.5)

where Ue is precisely the surface average of the primary flow velocity

U = Kr2 = K(y2 + z2) (4.6)

over a surface of axi-symmetric body(conjectured by Chwang and Wu [2, part 2, 1975],
b is largest cross-section radius situated at the middle of the body and hx is given by
equation (4.2).

4.2. Transverse paraboloid flow. We consider an axi-symmetric body placed un-
der a flow (Figure 3) with a paraboloidal velocity profile

Uparaboloid = K(x2 + z2) (4.7)
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or = (βx2 + z2) (4.8)
 

 

 

Figure 3. A transverse paraboloid flow past axisymmetric body

along axis of symmetry which is y-axis, where K and β are arbitrary constants.

The expression of Stokes drag on such type of axially symmetric bodies placed
in transverse flow(uniform flow perpendicular to the axis of symmetry) is given by
(Datta & Srivastava [1, 1999])

Fy =
1

2

λb2

hy
where λ = 6πµUy, (4.9)

and

hy =

(
3

16

)∫ π

0

R
(
2 sinα− sin3α

)
dα . (4.10)

Now equation (4.7) may be re-written as

Fy =
1

2

(6πµ) b2

hy
Uy =

3πµb2

hy
Ue, (4.11)

where Ue is precisely the surface average of the primary flow velocity

U = Kr2 = K(x2 + z2) (4.12)

over a surface of axi-symmetric body (conjectured by Chwang and Wu [2, part 2,
1975]), b is largest cross-section radius situated at the middle of the body, and hy is
given by equation (4.8).

Now, we apply the expressions (4.3) and (4.9) to evaluate drag on axially sym-
metric bodies like sphere, spheroid and egg-shaped body placed under longitudinal
unbounded paraboloid and transverse unbounded paraboloid flows.
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5. Sphere

5.1. Axial Flow. We shall consider a sphere having a radius a placed under axial
paraboloidal flow velocity Uparaboloid = K(y2+z2), by considering the surface average
velocity Ue = 2Ka2/3, over a spherical surface R = a, the value of hx = a/2 (from
equation (4.2)), the expression of drag on comes out to be (with the use of equation
(4.3))

Fx =
3πµb2

hx
Ue =

3πµa2

a
2

(
2

3
Ka2

)
= 4πµKa3 . (5.1)

which matches with that obtained by Chwang and Wu ([2, part 2, 1975, p. 807, Eq.
(69)]) treated with singularity method.

5.2. Transverse flow. Here we shall consider again a sphere having a radius a placed
under transverse paraboloidal flow velocity Uparaboloid = K(x2 + z2), by considering
the surface average velocity Ue = 2Ka2/3, over a spherical surface R = a, the value
of hy = a/2 (from equation (4.8)), the expression of drag on sphere comes out to be
(with the use of equation (4.3))

Fy =
3πµb2

hy
Ue =

3πµa2

a
2

(
2

3
Ka2

)
= 4πµKa3 . (5.2)

6. Prolate spheroid

6.1. Axial Flow. We consider a prolate spheroid

x2

a2
+
ρ2

b2
= 1 , ρ2 = y2 + z2 , a ≥ b , c =

√
a2 − b2 = ea , 0 ≤ e ≤ 1 (6.1)

having semi-major axis a and semi-minor axis b, e as eccentricity, and c as distance of
focus from centre, placed under axial paraboloidal flow velocity Uparaboloid = (αy2 +
z2) along x-axis, and for α 6= 1, the surface average velocity Ue, over a spheroidal
surface (6.1) is

Ue =
1

3
(1 + α)

(
1− e2

)
a2 , (6.2)

the value of hx (from equation (4.2)) is

hx =
3b2

16ae3
[
−2e+

(
1 + e2

)
L
]
, L = log

1 + e

1− e
. (6.3)

For α 6= 1, the expression of drag on prolate spheroid (6.1) in axial or longitudinal
paraboloid flow may be obtained from (4.3) by utilizing the values of Ue from (6.2)
and hx from (6.3) as

Fx =
16πµ (1 + α) e3a3

(
1− e2

)
3 [−2e+ (1 + e2)L]

, (6.4a)

the expression of drag coefficient, for α 6= 1, with respect to sphere drag, 4πµa3, may
be written as

CFx
=

Fx
4πµa3

=
4 (1 + α) e3

(
1− e2

)
3 [−2e+ (1 + e2)L]

(6.4b)
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the corresponding variation of drag coefficient with respect to eccentricity for various
values of α are given in Table 1 and depicted in Figure 6.

For α = 1, the case of axi-symmetrical paraboloidal flow, this expression of drag
(6.4) reduces to the closed form [by using surface average velocity Ue = 2a2(1−e2)/3 =
2b2/3] as

Fx =
32πµe3a3

(
1− e2

)
3 [−2e+ (1 + e2)L]

, (6.5a)

which immediately reduces to4πµa3, i.e., the drag on sphere having radius a in lon-
gitudinal paraboloid axisymmetric flow, as e→ 0 (b = a). This limiting value of drag
on sphere may be used to write the expression of drag coefficientCFx as

CFx =
Fx

4πµa3
=

8e3
(
1− e2

)
3 [−2e+ (1 + e2)L]

. (6.5b)

Equation (6.5b) may be directly obtained by using (6.4b) and setting α to 1.

6.2. Transverse flow. We consider a prolate spheroid having semi-major axis a and
semi-minor axis b, e as eccentricity, and c as distance of focus from centre, placed
under transverse paraboloidal flow velocity Uparaboloid = (βx2 + z2) along y-axis, and
for β 6= 1 , the surface average velocityUe, over a spheroidal surface (6.1) is

Ue =
1

3

(
1 + β − e2

)
a2 , (6.6)

the value of hy (from equation (4.8)) is

hy =
3b2

32ae3
[
2e+

(
3e2 − 1

)
L
]
, L = log

1 + e

1− e
. (6.7)

For β 6= 1, the expression of drag on prolate spheroid (6.1) may be obtained from
(4.9) by utilizing the values of Ue from (6.6) and hy from (6.7) as

Fy =
32πµe3a3

(
1 + β − e2

)
3 [2e+ (3e2 − 1)L]

, (6.8a)

the expression of drag coefficient, for β 6= 1, with respect to sphere drag, 4πµa3, may
be written as

CFy =
Fy

4πµa3
=

8e3
(
1 + β − e2

)
3 [2e+ (3e2 − 1)L]

, (6.8b)

the corresponding variation of drag coefficient with respect to eccentricity for various
values of β are given in Table 2 and depicted in Figure 7.

For β = 1, the case of axi-symmetrical paraboloidal flow, this expression of drag
(6.8) reduces to the closed form [by using surface average velocity Ue = a2(2−e2)/3 =
(a2 + b2)/3] as

Fy =
32πµe3a3

(
2− e2

)
3 [2e+ (3e2 − 1)L]

, (6.9a)
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which immediately reduces to 4πµa3, i.e. the drag on sphere having radius a in
transverse paraboloid axisymmetric flow, as e → 0, (b = a). This limiting value of
drag on sphere may be used to write the expression of drag coefficient CFy as

CFy
=

Fy
4πµa3

=
8e3
(
2− e2

)
3 [2e+ (3e2 − 1)L]

. (6.9b)

This expression (6.9b) may be directly obtained by (6.8b), by taking β = 1.

7. Oblate spheroid

7.1. Axial Flow. We consider an oblate spheroid

x2

b2
+
ρ2

a2
= 1 , ρ2 = y2 + z2 , a ≥ b , c =

√
a2 − b2 = ea , 0 ≤ e ≤ 1 (7.1)

[on interchanging the roles of a and b in equation (6.1)], e as eccentricity, and
c as distance of focus from centre, placed under axial paraboloidal flow velocity
Uparaboloid = (αy2 + z2) along x-axis, and for α 6= 1 the surface average velocityUe,
over a spheroidal surface (7.1) is

Ue =
1

3
(1 + α) a2, (7.2)

the value of hx (from equation (4.2)) is

hx =
3a

8e3

[
e
√

1− e2 −
(
1− 2e2

)
sin−1 e

]
, L = log

1 + e

1− e
. (7.3)

For α 6= 1 the expression of drag on oblate spheroid (7.1) may be obtained from
equation (4.3) by utilizing the values of Ue from (7.2) and hx from (7.3) as

Fx =
8πµe3a3 (1 + α)

3
[
e
√

1− e2 − (1− 2e2) sin−1 e
] , (7.4a)

the expression of drag coefficient, for α 6= 1, with respect to sphere drag, 4πµa3, may
be written as

CFx
=

Fx
4πµa3

=
2e3 (1 + α)

3
[
e
√

1− e2 − (1− 2e2) sin−1 e
] (7.4b)

the corresponding variation of drag coefficient with respect to eccentricity for various
values of α are given in Table 3 and depicted in Figure 8.

For α = 1, the case of axi-symmetrical paraboloidal flow, this expression of drag
(7.4) reduces to the closed form [by using surface average velocity Ue = 2a2/3] as

Fx =
16πµe3a3

3
[
e
√

1− e2 − (1− 2e2) sin−1 e
] , (7.5a)

which immediately reduces to 4πµa3, i.e. the drag on sphere having radius a in
longitudinal paraboloid axisymmetric flow, as e → 0 (b = a). This limiting value of
drag on sphere may be used to write the expression of drag coefficient CFx as

CFx =
Fx

4πµa3
=

4e3

3
[
e
√

1− e2 − (1− 2e2) sin−1 e
] (7.5b)
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Expression (7.5b) may be directly obtained by (7.4b), by taking α = 1.

7.2. Transverse flow. We consider a oblate spheroid having semi-major axis b and
semi-minor axis a, e as eccentricity, and c as distance of focus from centre, placed
under axial paraboloidal flow velocity Uparaboloid = (βx2 + z2) along y-axis, and for
β 6= 1, the surface average velocity Ue, over a spheroidal surface (6.1) is

Ue =
1

3

(
1 + β − e2

)
b2 , (7.6)

the value of hy (from equation (4.8)) is

hy =
3a

16e3

[(
1 + 2e2

)
sin−1 e− e

√
1− e2

]
, L = log

1 + e

1− e
. (7.7)

For β 6= 1, the expression of drag on oblate spheroid (7.1) may be obtained from (4.9)
by utilizing the values of Ue from (7.6) and hx from (7.7) as

Fy =
16πµe3a3

(
1 + β − e2

)
3
[
(1 + 2e2) sin−1 e− e

√
1− e2

] , (7.8a)

the expression of drag coefficient, for β 6= 1, with respect to sphere drag, 4πµa3, may
be written as

CFy =
Fy

4πµa3
=

4e3
(
1 + β − e2

)
3
[
(1 + 2e2) sin−1 e− e

√
1− e2

] (7.8b)

the corresponding variation of drag coefficient with respect to eccentricity for various
values of β are given in Table 4 and depicted in Figure 9.

For β = 1, the case of axi-symmetrical paraboloidal flow, this expression of drag
(7.8) reduces to the closed form [by using surface average velocity Ue = b2(2−e2)/3 =
(a2 + b2)/3] as

Fy =
16πµe3ab2

(
2− e2

)
3
[
(1 + 2e2) sin−1 e− e

√
1− e2

] , (7.9a)

which immediately reduces to 4πµa3, i.e. the drag on sphere having radius a in
transverse paraboloid axisymmetric flow, as e → 0 (b = a). This limiting value of
drag on sphere may be used to write the expression of drag coefficient CFx as

CFy
=

Fy
4πµa3

=
4e3
(
2− e2

)
3
[
(1 + 2e2) sin−1 e− e

√
1− e2

] . (7.9b)

This expression (7.9b) may be directly obtained by (7.8b), by taking β = 1.

8. Egg-shaped body

8.1. Axial flow. We consider a body of revolution whose left half is semi-sphere with
radius b

x = b cos t , r = b sin t , π ≤ t ≤ π/2 , (8.1a)

and right half is semi-spheroid (prolate) having semi-major axis length a and semi-
minor axis length b

x = a cos t , r = b sin t , π/2 ≤ t ≤ 0 (8.1b)
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placed under unbounded longitudinal or axial flow with parabolic velocity profile

Uparaboloid = αy2 + z2

along x-axis, and for α 6= 1, the surface average velocity Ue over egg-shaped body
(8.1) is

Ue =
1

6
(1 + α)

[
b2 + a2

(
1− e2

)]
, (8.2)

the value of hx (from equation (4.2)) is

hx =
3

8

{
2b

3
+

b2

4ae3
[
−2e+

(
1 + e2

)
L
]}

, L = log
1 + e

1− e
. (8.3)

For α 6= 1, the expression of drag on egg-shaped body (8.1) may be obtained from
(4.3) by utilizing the values of Ue from (8.2) and hx from (8.3) as

Fx =
8πµa

√
1− e2

2
3 +

√
1−e2
4e3 [−2e+ (1 + e2)L]

{
1

6
(1 + α)

[
b2 + a2

(
1− e2

)]}
, (8.4a)

the expression of drag coefficient, for α 6= 1, with respect to sphere drag, 4πµa3, may
be written as [with the help of b2 = a2(1− e2)]

CFx =
Fx

4πµa3
=

4
(
1− e2

)3/2
2 + 3

√
1−e2
4e3 [−2e+ (1 + e2)L]

(8.4b)

the corresponding variation of drag coefficient with respect to eccentricity for various
values of α are given in Table 5 and depicted in Figure 10.

For α = 1, equation (8.4a) reduces to, by using the fact b2 = a2(1−e2), the form

Fx =
16

3

πµa3
(
1− e2

)3/2{
2
3 +

√
1−e2
4e3 [−2e+ (1 + e2)L]

} , (8.5a)

which immediately reduces to the expression of drag on sphere having radius b, i.e.
4πµb3, as e → 0. This limiting value of drag on sphere may be used to write the
expression of drag coefficient CFx as

CFx
=

Fx
4πµa3

=
4

3

(
1− e2

)3/2{
2
3 +

√
1−e2
4e3 [−2e+ (1 + e2)L]

} (8.5b)

This expression (8.5b) may be directly obtained by (8.4b), by taking α = 1.

As the drag on sphere and spheroid in paraboloid flow, Uparaboloid = αy2 + z2,
has already been calculated independently in (5.1), (6.4) and (6.5), the expression
of drag on egg-shaped body in paraboloid flow, for α 6= 1, may be expressed in the
combination of both as

Fx = πµ (1+) b3 +
πµ (1 + α)

[
8e3a3

(
1− e2

)]
3 [−2e+ (1 + e2)L]

, (8.6)
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for α = 1, this expression (8.6) reduces to the form, with the aid of b2 = a2(1− e2),

Fx = 2πµ
b3
[
−2e+

(
1 + e2

)
L+ 8e3a3

(
1− e2

)]
−2e+ (1 + e2)L

, (8.7)

which immediately reduces to the expression of drag on sphere having radius b placed
in axial axi-symmetric paraboloidal flow, i.e. πµb3, as e→ 0 (a = b).

8.2. Transverse flow. We shall consider a body whose left half is semi-sphere with
radius b

x = b cos t , r = b sin t , π ≤ t ≤ π/2 , (8.8a)

and right half is semi-spheroid(prolate) having semi-major axis length a and semi-
minor axis length b

x = a cos t , r = b sin t , π/2 ≤ t ≤ 0 , (8.8b)

placed under unbounded transverse flow with parabolic velocity profile

Uparaboloid = βx2 + z2

along y-axis, and for β 6= 1, the surface average velocity Ue over egg-shaped body
(8.8) is

Ue =
1
3 (1 + β) b2 + 1

3

(
1 + β − e2

)
b2

2
=
b2

6

[
2 (1 + β)− e2

]
(8.9)

from where if β = 1 it follows

Ue =
b2

6

(
4− e2

)
→ 2

3
b2

which is the average surface velocity on a sphere with radius R = b as e→ 0 (b = a).

The value of hy from equation (4.8)) is

hy =
3

16

[
4

3
+

√
1− e2
4e3

{
2e+

(
3e2 − 1

)
L
}]

, L = log
1 + e

1− e
. (8.10)

For β 6= 1, the expression of drag on egg-shaped body (8.8) may be obtained from
(4.9) by utilizing the values of Ue from (8.9) and hy from (8.10) as [with the aid of
b2 = a2(1− e2)]

Fy =
16πµa

√
1− e2[

4
3 +

√
1−e2
4e3 {2e+ (3e2 − 1)L}

] [b2
6

{
2 (1 + β)− e2

}]
=

=
8πµa3

(
1− e2

)3/2 [
2 (1 + β) e2

]
3
[
4
3 +

√
1−e2
4e3 {2e+ (3e2 − 1)L}

] (8.11a)

the expression of drag coefficient, for β 6= 1, with respect to sphere drag, 4πµa3, may
be written as

CFy =
Fy

4πµa3
=

2
(
1− e2

)3/2 [
2 (1 + β)− e2

]
3
[
4
3 +

√
1−e2
4e3 {2e+ (3e2 − 1)L}

] , (8.11b)



Quadratic flow past axially symmetric bodies at low Reynolds number 81

the corresponding variation of drag coefficient with respect to eccentricity for various
values of α are given in Table 6 and depicted in Figure 11.

If β = 1, equation (8.11a) reduces to

Fy =
8πµa3

(
1− e2

)3/2 [
4− e2

]
3
[
4
3 +

√
1−e2
4e3 {2e+ (3e2 − 1)L}

] , (8.12a)

which immediately reduces to the expression of drag on sphere having radius b, i.e.
4πµb3, as e→ 0 (b = a). This limiting value of drag on sphere may be used to write
the expression of drag coefficient CFy as

CFy =
Fy

4πµa3
=

2
(
1− e2

)3/2 [
4− e2

]
3
[
4
3 +

√
1−e2
4e3 {2e+ (3e2 − 1)L}

] . (8.12b)

Equation (8.12b) can also be obtained directly from (8.11b) by setting β to 1.

As the drag on sphere and spheroid in transverse paraboloid flow having velocity,
Uparaboloid = βx2 + z2, has already been calculated independently in (5.2), (6.8) and
(6.9), the expression of drag on egg-shaped body in transverse paraboloid flow may
be expressed in the combination of both as

Fy = πµ (1 + β) b3 +
16πµe3a3

(
1 + β − e2

)
3 [2e+ (3e2 − 1)L]

. (8.13)

If β = 1 equation (8.13) takes the form

Fy =
2πµ

[
3b3
{

2e+
(
3e2 − 1

)
L
}

+ 8e3a3
(
2− e2

)]
3 [2e+ (3e2 − 1)L]

, (8.14)

which immediately reduces to the drag expression of drag on sphere having radius a
placed in transverse axi-symmetric paraboloidal flow, i.e. 4πµa3, as e→ 0 (b = a).

9. Stagnation like quadratic flow past axially symmetric bodies

9.1. Axial stagnation like paraboloid flow (or unbounded longitudinal stag-
nation paraboloidal flow). We consider an axi-symmetric body placed in a longi-
tudinal stagnation-like quadratic flow (Figure 5) with velocity

u = x2ex − 2xyey (9.1)

u = |u| = (x4 + 4x2y2)1/2 (9.2)

along axis of symmetry which is x-axis, which obviously satisfies the Stokes equations
(2.1) if the pressure associated with it is 2µx. The stagnation plane is the centre-plane
x = 0. In the half-space x < 0 the flow is towards the stagnation plane while in the
half-space x > 0 it is away from this plane. This type of quadratic flow is important
since it can serve as a component in the general study of the motion of a spheroidal
particle placed in a paraboloidal flow whose direction does not coincide with any one
of the principal axes of the spheroid.
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Figure 4. A longitudinal or axial stagnation like parabolic flow past
axisymmetric body

9.2. Transverse stagnation like paraboloid flow. We consider an axi-symmetric
body placed in a longitudinal stagnation-like quadratic flow (Figure 05 ) with velocity

 

 

 Figure 5. A longitudinal or axial stagnation like parabolic flow past
axisymmetric body
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10. Sphere

10.1. Axial Flow. We consider a sphere with radius b and placed under axial stagna-
tion like paraboloidal flow having velocity U = |U| = (x4 + 4x2y2)1/2, by considering
the surface average velocity Ue = b2/3, over a spherical surface R = b, the value
ofhx = b/2 (from equation (4.2)), the expression of drag on sphere comes out to be
(with the use of equation (4.3))

Fx =
3πµb2

hx
Ue =

3πµb2

a
2

(
1

3
b2
)

= 2πµb3 , (10.1)

which matches with that obtained by Chwang [3, part 3, 1975, p. 28, eq. 42] treated
with singularity method.

10.2. Transverse flow. We consider a sphere having radius b placed under transverse
stagnation like paraboloidal flow velocity U = |U| = (y4 + 4x2y2)1/2, by considering
the surface average velocity Ue=(1/3)b2, over a spherical surface R = b, the value
of hy = b/2 (from equation (4.8), the expression of drag on sphere in transverse
stagnation like paraboloidal flow comes out to be (with the use of equation (4.9))

Fy =
3πµb2

hy
Ue =

3πµb2

b
2

(
1

3
b2
)

= 2πµb3 , (10.2)

which matches with that obtained by Chwang [3, part 3, 1975, p. 28, eq. 42] treated
with singularity method and is exactly the same as obtained in axial situation (10.1).
The reason behind it is the fore and aft symmetry of the spherical body.

11. Prolate spheroid

11.1. Axial Flow. details – which is subjected to an axial stagnation like a paraboloidal
flow with a velocity U = |U| = (x4 + 4x2y2)1/2 along x-axis. The surface average
velocity Ue, over a spheroidal surface is

Ue =
1

3
a2 (11.1)

The value of hx can easily be obtained from equation (4.2) and coincides with equation
(6.3).

The expression for drag on a prolate spheroid (6.1) in axial stagnation like a pa-
raboloid flow may be obtained from (4.3) by utilizing the values of Ue from (11.1)
and hx from (6.3) as

Fx =
16πµe3a3

3 [−2e+ (1 + e2)L]
, (11.2a)

The above expression takes the form 2πµa3, i.e., that of the drag on a sphere with
radius a and placed in axial stagnation type parabolic flow with velocity U = |U| =
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(x4 + 4x2y2)1/2, as e→ 0. The expression of drag coefficient, with respect to sphere
drag 2πµa3, may be written as

CFx =
Fx

2πµa3
=

8e3

3 [−2e+ (1 + e2)L]
(11.2b)

the corresponding variation of drag coefficient with respect to eccentricity are given
in Table 7 and depicted in Figure 12.

11.2. Transverse flow. Assume that the prolete spheroid is placed under transverse
stagnation like a paraboloid flow having velocity U = |U| = (y4 + 4x2y2)1/2 along
y-axis. The surface average velocity Ue over a spheroidal surface is

Ue =
1

3
b2 =

1

3
a2
(
1− e2

)
. (11.3)

The value of hy (obtainable from equation (4.8)) coincides with the right side of
equation (6.7).

The expression of drag on prolate spheroid (6.1) in transverse stagnation like pa-
raboloid flow can be obtained from (4.9) by utilizing the values of Ue from (11.3) and
hy from (6.7) as

Fy =
32πµe3a

2e+ (3e2 − 1)L

a2
(
1− e2

)
3

=
32πµe3a3

(
1− e2

)
3 [2e+ (3e2 − 1)L]

, (11.4a)

which immediately reduces to 2πµa3, the drag on sphere having a radius a placed in
transverse stagnation type parabolic flow with velocity U = |U| = y4 + 4x2y2)1/2, as
e→ 0. The expression of drag coefficient, with respect to sphere drag, 2πµa3 may be
written as

CFy
=

Fy
2πµa3

=
16e3

(
1− e2

)
3 [2e+ (3e2 − 1)L]

(11.4b)

the corresponding variation of drag coefficient with respect to eccentricity are given
in Table 7 and is depicted in Figure 12.

12. Oblate spheroid

12.1. Axial Flow. We consider an oblate spheroid – see equation (7.1). If we in-
terchange the roles of a and b in equation (6.1) – e is eccentricity and c is the dis-
tance of focus from centre – assuming axial paraboloidal flow velocity U = |U| =
(x4 + 4x2y2)1/2 along x-axis, the surface average velocity Ue, over the spheroidal
surface (7.1) is

Ue =
1

3
b2 . (12.1)

The value of hx (obtainable from equation (4.2)) coincides with the right side of
equation (7.3).

The expression of drag on oblate spheroid (7.1) in axial stagnation like paraboloid
flow can be obtained from (4.3) by utilizing the values of Ue from (11.1) and hx from
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(7.3) as

Fx =
8πµae3

e
√

1− e2 − (1− 2e2) sin−1 e

b2

3
=

8πµa3e3
(
1− e2

)
3
[
e
√

1− e2 − (1− 2e2) sin−1 e
] . (12.2a)

Equation of drag (12.2a) reduces to the closed form, 2πµb3, the drag on sphere having
radius b placed in axial stagnation type parabolic flow with velocity U = |U| =
(x4 + 4x2y2)1/2 as e→ 0 (b = a). The expression of drag coefficient, with respect to
sphere drag,2πµa3, may be written as

CFx
=

Fx
2πµa3

=
4e3
(
1− e2

)
3
[
e
√

1− e2 − (1− 2e2) sin−1 e
] (12.2b)

the corresponding variation of drag coefficient with respect to eccentricity are given
in Table 8 and depicted in Figure 13.

12.2. Transverse flow. We consider an oblate spheroid (7.1), e as eccentricity, and
a as distance of focus from centre, placed under transverse stagnation like paraboloid
flow having velocity U = U |U| = (y4 + 4x2y2)1/2 along y-axis. The surface average
velocity Ue, over a spheroidal surface (7.1), is

Ue =
1

3
a2, (12.3)

the value of hy (obtainable from equation (4.2)) coincides with the right side of equa-
tion (7.7).

The expression of drag on oblate spheroid (7.1) in transverse stagnation like pa-
raboloid flow may be obtained from (4.9) by utilizing the values of Ue from (12.3)
and hy from (7.7) as

Fy =
16πµe3a

(1 + 2e2) sin−1 e− e
√

1− e2
a2

3
=

16πµe3a3

3
[
(1 + 2e2) sin−1 e− e

√
1− e2

] , (12.4a)

which immediately reduces to 2πµb3, the drag on sphere having radius b placed in
transverse stagnation type parabolic flow with velocity U = |U| = (y4 + 4x2y2)1/2, as
e→ 0 (b = a). The expression of drag coefficient, with respect to sphere drag, πµa3,
may be written as

CFy
=

Fy
2πµa3

=
8e3

3
[
(1 + 2e2) sin−1 e− e

√
1− e2

] (12.4b)

the corresponding variation of drag coefficient with respect to eccentricity are given
in Table 8 and depicted in Figure 13.

13. Egg-shaped body

13.1. Axial flow. We consider again the body described by equations (8.1) and
placed under unbounded longitudinal or axial stagnation flow with parabolic velocity
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profile U = |U| = (x4 + 4x2y2)1/2 along x-axis. The surface average velocity Ue over
egg-shaped body (8.1) is

Ue =
1

6

[
b2 + a2

(
1− e2

)]
(13.1)

The value of hx (obtainable from equation (4.2)) coincides with the right side of
equation (8.2).

The expression of drag on egg-shaped body (8.1) may be obtained from (4.3) by
utilizing the values of Ue from (13.1) and hx from (8.2) as

Fx =
8πµa

√
1− e2

2
3 +

√
1−e2
4e2 {−2e+ (1 + e2)L}

1

6

[
b2 + a2

(
1− e2

)]
. (13.2)

Equation (??) reduces to, by using the fact b2 = a2(1− e2), the form

Fx =
16

3

πµa3
(
1− e2

)3/2
2
3 +

√
1−e2
4e2 [−2e+ (1 + e2)L]

, (13.3a)

The expression of drag coefficient, with respect to sphere drag, 2πµa3, may be written
as

CFx =
Fx

2πµa3
=

8
(
1− e2

)3/2
3
{

2
3 +

√
1−e2
4e2 [−2e+ (1 + e2)L]

} (13.3b)

the corresponding variation of drag coefficient with respect to eccentricity are given
in Table 9 and depicted in Figure 14.

Equation (13.3a) immediately reduces to the expression of drag on sphere having
radius b placed in axial stagnation like paraboloid flow, i.e., 2πµb3, as e→ 0 (b = a).
As the drag on sphere and spheroid in axial stagnation type paraboloid flow, U =
|U| = (x4 + 4x2y2)1/2, has already been calculated independently in (10.1) and (11.2,
11.4)), the expression of drag on egg-shaped body in axial stagnation like paraboloid
flow may be expressed in the combination of both as

Fx = πµb3 +
8πµe3a3

3 [−2e+ (1 + e2)L]
, (13.4)

which immediately reduces to the drag expression of drag on sphere having radius ‘b’
placed in axial stagnation like paraboloidal flow i.e. 2πµb3, as e→ 0, (b = a).

13.2. Transverse flow. We consider again the body described by equations (8.8)
and placed under unbounded longitudinal or axial stagnation flow with under un-
bounded transverse stagnation like flow with parabolic velocity profile U = |U| =
(y4 + 4x2y2)1/2 along y-axis. The surface average velocity Ue over egg-shaped body
(8.8) is

Ue =
b2

6

(
2− e2

)
=

1

3
b2 , (13.5)

i.e. the average surface velocity on sphere placed in stagnation like flow, as e→ 0.

The value of hx (obtainable from equation (4.2)) coincides with the right side of
equation (8.10).
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The expression of drag on egg-shaped body (8.8) may be obtained from (4.9) by
utilizing the values of Ue from (13.5) and hy from (8.10) as

Fy =
16πµa

√
1− e2

4
3 +

√
1−e2
4e3 [2e+ (3e2 − 1)L]

b2

6

(
2− e2

)
=

8πµa3
(
1− e2

)3/2 (
2− e2

)
3
{

4
3 +

√
1−e2
4e3 [2e+ (3e2 − 1)L]

} ,
(13.6a)

which immediately reduces to the expression of drag on sphere having radius b placed
in transverse stagnation like flow of paraboloidal velocity, U = |U| = (y4 + 4x2y2)1/2,
i.e. 2πµb3, as e→ 0.

The expression of drag coefficient, with respect to sphere drag, 2πµa3, may be
written as

CFy =
Fy

2πµa3
=

4
(
1− e2

)3/2 (
2− e2

)
3
{

4
3 +

√
1−e2
4e3 [2e+ (3e2 − 1)L]

} , (13.6b)

the corresponding variation of drag coefficient with respect to eccentricity are given
in Table 9 and depicted in Figure 14.

As the drag on sphere and spheroid in transverse stagnation like flow of paraboloidal
velocity, U = |U| = (y4 + 4x2y2)1/2, has already been calculated independently in
(10.2) and (11.4a), the expression of drag on egg-shaped body in transverse stagnation
like paraboloid flow may be expressed in the combination of both as

Fy = πµb3 +
16πµe3a3

(
1− e2

)
3 [2e+ (3e2 − 1)L]

, (13.7)

which immediately reduces to the drag on sphere having radius b placed in transverse
stagnation like paraboloidal flow, U = |U| = (y4 + 4x2y2)1/2, i.e. 2πµb3, as e → 0,
(b = a).

14. Numerical discussion

The numerical values of drag coefficient for axi-symmetric bodies like sphere, spher-
oid and egg-shaped body placed in axial and transverse quadratic (parabolic) flow
have been calculated with respect to eccentricity e and presented in Tables 1-6 re-
spectively for various values of flow constants α and β (varies from 1 to 5). In all
these calculations, the flow constants α and β are equal to one which represents the
case of axi-symmetric quadratic Stokes flow. In Table 1, the values of CFx (drag
coefficient for prolate spheroid placed in axial parabolic flow, Figure 2 decreases from
corresponding drag values of sphere (1.0, 1.5, 2.0, 2.5, 3.0 for α = 1, 2, 3, 4, 5) to 0
with respect to increasing values of eccentricity e (from 0 to 1). In Table 1, it is
interesting to note that the maximum difference between the two values ofCFx for
two successive values of flow constant α never exceeded by 0.5 which in every case
decreases further to 0. For e = 1, the case of slender or needle shaped body, CFx
comes out to be 0 which is justified. In comparison to axi-symmetric flow (for α = 1),
the non-symmetric flow situations (for α = 2, 3, 4, 5, . . ..) create maximum difference
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by values 0.5, 1.0, 1.5, 2.0 and so on. All the respective values of CFx have been
calculated from equation (6.4b)). All these variations are depicted in Figure 6.

In Table 2, the values of CFy (drag coefficient for prolate spheroid placed in trans-
verse parabolic flow, Figure 3) decreases from corresponding drag values of sphere
(1.0, 1.5, 2.0, 2.5, 3.0 for β = 1, 2, 3, 4, 5) to 0 with respect to increasing values of
eccentricity e(from 0 to 1). In Table 2, it is interesting to note that the maximum
difference between the two values of CFy for two successive values of flow constant
β never exceeded by 0.5 which in every case decreases further to 0. For e = 1, the
case of slender or needle shaped body, CFy comes out to be 0 which is justified. In
comparison to axi-symmetric flow (for β = 1), the non-symmetric flow situations(for
β = 2, 3, 4, 5, . . .) create maximum difference by values 0.5, 1.0, 1.5, 2.0 and so on.
All the respective values of CFy have been calculated from equation (6.8b). On com-
paring the values of drag coefficient in Table 1 and Table 2, it may be observed that
the transverse values are always greater then to axial values at every stage. This fact
is also justified as the broader part of the prolate body faces the transverse flow. All
these variations are depicted in Figure 7.

In Table 3, the values of CFx (drag coefficient for oblate spheroid placed in axial
parabolic flow, Figure 2) decreases from corresponding drag values of sphere(1.0, 1.5,
2.0, 2.5, 3.0 for α = 1, 2, 3, 4, 5) with respect to increasing values of eccentricity e (from
0 to 1). In Table 3, it is interesting to note that the maximum difference between the
two values of CFx for two successive values of flow constant α never exceeded by 0.5
which in every case decreases further. For e = 1, the case of flat circular disk, CFx
comes out to be non-zero which is justified again. In comparison to axi-symmetric
flow (for α = 1), the non-symmetric flow situations (for α = 2, 3, 4, 5, . . .) create
maximum difference by values 0.5, 1.0, 1.5, 2.0 and so on. All the respective values
of CFx have been calculated from equation (7.4b). All these variations are depicted
in Figure 8.

In Table 4, the values of CFx (drag coefficient for oblate spheroid placed in trans-
verse parabolic flow, Figure 2) decreases from corresponding drag values of sphere
(1.0, 1.5, 2.0, 2.5, 3.0 for β = 1, 2, 3, 4, 5) with respect to increasing values of eccen-
tricity e(from 0 to 1). In Table 4, it is interesting to note that the maximum difference
between the two values of CFy for two successive values of flow constant α never ex-
ceeded by 0.5 which in every case decreases further. For e = 1, the case of flat circular
disk, CFy comes out to be non-zero which is justified again. In comparison to axi-
symmetric flow(for α = 1), the non-symmetric flow situations (for α = 2, 3, 4, 5, . . .)
create maximum difference by values 0.5, 1.0, 1.5, 2.0 and so on. All the respective
values of CFx have been calculated from equation (7.4b). On comparing the numeri-
cal values of drag coefficients for flat circular disk in axial and transverse flow cases,
it may be observed that drag in axial flow is greater than drag in transverse flow. It
is also justified the fact that broader part of oblate spheroid faces the axial parabo-
loid flow whereas the thinner portion faces the transverse paraboloid flow. All these
variations are depicted in Figure 9. In Table 5 and 6, the numerical values of drag on
egg-shaped body consisting of semi-spherical and semi-spheroidal part are presented.
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Figure 6. Variation of drag coefficient with respect to the eccentricity
e for various values of the constant α

Table 1. Numerical values of drag coefficient(axial parabolic flow)
for prolate spheroid with respect to eccentricity e for various values
of constant α (depicted in Figure 6) [Calculated from equation (6.4b)]

α = 1 α = 2 α = 3 α = 4 α = 5
e CFx CFx CFx CFx CFx

0.0 1.000000 1.50000 2.0000 2.50000 3.00000
0.1 0.986041 1.47906 1.9721 2.46513 2.95812
0.2 0.944659 1.41699 1.8893 2.36165 2.83398
0.3 0.877349 1.31602 1.7547 2.19337 2.63205
0.4 0.786635 1.17995 1.5732 1.96659 2.35993
0.5 0.676056 1.01408 1.3521 1.69014 2.02817
0.6 0.550093 0.82514 1.1002 1.37523 1.65028
0.7 0.413956 0.62093 0.8279 1.03489 1.24187
0.8 0.273257 0.40989 0.5465 0.68314 0.81977
0.9 0.133576 0.20036 0.2672 0.33394 0.40073
1.0 0 0 0 0 0
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Figure 7. Variation of drag coefficient with respect to the eccentricity
e for various values of the constant β

Table 2. Numerical values of drag coefficient (transverse parabolic
flow) for prolate spheroid with respect to eccentricity e for various
values of constant β (depicted in Figure 7) [Calculated from equation
(6.8b)]

β = 1 β = 2 β = 3 β = 4 β = 5
e CFy CFy CFy CFy CFy

0.0 1.00000 1.50000 2.00000 2.50000 3.00000
0.1 0.992002 1.49049 1.98899 2.48748 2.98597
0.2 0.968035 1.46193 1.95583 2.44972 2.94362
0.3 0..928246 1.41424 1.90023 2.38622 2.87222
0.4 0.873064 1.34756 1.82205 2.29654 2.77103
0.5 0.803443 1.26255 1.72166 2.18077 2.63989
0.6 0.721095 1.16079 1.60048 2.04017 2.47986
0.7 0.628631 1.04494 1.46125 1.87757 2.29388
0.8 0.529529 0.918889 1.30825 1.69761 2.08697
0.9 0.427866 0.787417 1.14697 1.50652 1.86607
1.0 0 0 0 0 0
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Figure 8. Variation of drag coefficient with respect to the eccentricity
e for various flow constant α

Table 3. Variation of drag coefficient (axial parabolic flow) for oblate
spheroid with respect to eccentricity e for various values of constant
α (depicted in Figure 8) [Calculated from equation (7.4b))]

α = 1 α = 2 α = 3 α = 4 α = 5
e CFx CFx CFx CFx CFx

0.0 1.00000 1.50000 2.0000 2.50000 3.00000
0.1 0.998998 1.49856 1.9985 2.49749 2.99699
0.2 0.995964 1.49395 1.9919 2.48991 2.98789
0.3 0.990812 1.48622 1.9816 2.47703 2.97244
0.4 0.983382 1.47507 1.9668 2.45846 2.95015
0.5 0.973406 1.46011 1.9468 2.43351 2.92022
0.6 0.960476 1.44071 1.9210 2.40119 2.88143
0.7 0.944111 1.41617 1.8882 2.36028 2.83233
0.8 0.924349 1.38652 1.8487 2.31087 2.77305
0.9 0.905344 1.35802 1.8107 2.26336 2.71603
1.0 0.848484 1.27272 1.6968 2.12125 2.54526
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 Figure 9. Variation of drag coefficient CFx with respect to the eccen-
tricity e for various flow constant β

Table 4. Numerical values of drag coefficient(transverse parabolic
flow) for oblate spheroid with respect to eccentricity e for various
values of constant β (depicted in Figure 9)[Calculated from equation
(7.8b)]

β = 1 β = 2 β = 3 β = 4 β = 5
e CFx CFx CFx CFx CFx

0.0 1.000000 1.50000 2.00000 2.50000 3.00000
0.1 0.993195 1.49229 1.99138 2.49047 2.98957
0.2 0.972874 1.46924 1.96564 2.46197 2.95833
0.3 0.939316 1.43114 1.92289 2.41468 2.90647
0.4 0.892978 1.37829 1.86361 2.34892 2.83423
0.5 0.834493 1.31135 1.78826 2.26505 2.74196
0.6 0.764651 1.23095 1.69715 2.16344 2.62965
0.7 0.684369 1.13759 1.59082 2.04404 2.49727
0.8 0.594571 1.03176 1.46894 1.90612 2.34331
0.9 0.495601 0.91207 1.32854 1.74501 2.16149
1.0 0.370187 0.74037 1.11056 1.48074 1.85093
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 Figure 10. Variation of drag coefficient with respect to the eccentric-
ity e for various values of the constant α

Table 5. Numerical values of drag coefficient (axial parabolic flow)
for egg-shaped body with respect to eccentricity e for various values
of constant α (depicted in Figure 10)[Calculated from equation
(8.4b)]

α = 1 α = 2 α = 3 α = 4 α = 5
e CFx CFx CFx CFx CFx

0.0 1.000000 1.50000 2.00000 2.50000 3.00000
0.1 0.985534 1.47834 1.97107 2.46383 2.9568
0.2 0.942545 1.41382 1.88509 2.35636 2.82763
0.3 0.872297 1.30845 1.74459 2.18074 2.61689
0.4 0.777018 1.16533 1.55404 1.94255 2.33105
0.5 0.660082 0.99012 1.32016 1.65024 1.98025
0.6 0.526246 0.78936 1.05249 1.31561 1.57874
0.7 0.381933 0.57295 0.76386 0.95483 1.14586
0.8 0.235596 0.35339 0.47119 0.58899 0.70679
0.9 0.098860 0.14829 0.19772 0.24715 0.29658
1.0 0 0 0 0 0
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Figure 11. Variation of drag coefficient with respect to the eccentric-
ity e for various values of the constant β

Table 6. Numerical values of drag coefficient (transverse parabolic
flow) for egg-shaped body with respect to eccentricity e for various
values of constant β(depicted in Figure 11)[Calculated from equation
(8.11b)]

β = 1 β = 2 β = 3 β = 4 β = 5
e CFx CFx CFx CFx CFx

0.0 1.000000 1.50000 2.00000 2.50000 3.00000
0.1 0.983564 1.47658 1.96959 2.46261 2.95562
0.2 0.935017 1.40725 1.87948 2.35171 2.82394
0.3 0.856634 1.29481 1.73299 2.17116 2.60934
0.4 0.752191 1.14396 1.53572 1.92749 2.31926
0.5 0.626971 0.96136 1.29574 1.63013 1.96451
0.6 0.487834 0.75587 1.02391 1.29195 1.55998
0.7 0.343286 0.53888 0.73448 0.93008 1.12568
0.8 0.203567 0.32474 0.44591 0.56708 0.68825
0.9 0.081137 0.13201 0.18288 0.23375 0.28462
1.0 0 0 0 0 0
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 Figure 12. Variation of drag coefficient with respect to the eccen-
tricity e for prolate spheroid body placed in axial and transverse
stagnation like quadratic flow

Table 7. Numerical values of drag coefficient (axial and transverse
stagnation like quadratic flow) for prolate spheroid with respect to ec-
centricity e (depicted in Figure 12)[Calculated from equations (11.2b)
and (??)]

Axial Transverse
stagnation

e CFx CFy

0 1.000000 1.000000
0.1 0.995990 0.987022
0.2 0.983847 0.948350
0.3 0.963242 0.884779
0.4 0.933688 0.797685
0.5 0.894658 0.689195
0.6 0.845791 0.562531
0.7 0.787188 0.422511
0.8 0.719729 0.276000
0.9 0.645306 0.131863
1 0.566800 0.000000
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 Figure 13. Variation of drag coefficient with respect to the eccentric-
ity e for oblate spheroid body placed in axial and transverse stagna-
tion like quadratic flow

Table 8. Numerical values of drag coefficient (axial and transverse
stagnation like quadratic flow) for oblate spheroid with respect to ec-
centricity e (depicted in Figure 13)[Calculated from equations (12.2b)
and (??)]

Axial Transverse
stagnation

e CFx CFy

0 1.000000 1.000000
0.1 0.989008 0.997994
0.2 0.956124 0.991909
0.3 0.901627 0.981531
0.4 0.82599 0.966489
0.5 0.729928 0.946228
0.6 0.614529 0.919985
0.7 0.481472 0.886711
0.8 0.333281 0.844916
0.9 0.173193 0.791535
1 0.000000 0.6910
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 Figure 14. Variation of drag coefficient with respect to the eccentric-
ity e for egg-shaped body placed in axial and transverse stagnation
like quadratic flow

Table 9. Numerical values of drag coefficient (axial and transverse
stagnation like quadratic flow) for egg-shapped body with respect
to eccentricity e (depicted in Figure 14)[Calculated from equations
(13.3b) and (13.6b)]

Axial Transverse
stagnation

e CFx CFy

0 1.0000000 1.000000
0.1 0.9707880 0.981099
0.2 0.8865610 0.925572
0.3 0.7572270 0.836916
0.4 0.5982050 0.72085
0.5 0.4287360 0.585173
0.6 0.2694380 0.439583
0.7 0.1391050 0.295358
0.8 0.05088870 0.164792
0.9 0.00818752 0.0605348
1 0.0000000 0.0000000
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For axisymmetric case (α=1), drag value decreases from 1 to 0 with respect to in-
creasing eccentricity from 0 to 1. For non-symmetric cases (α = 2 to 5), for specific
body, drag value increases on moving from left to right in table. In both the flows
(axial and transverse), for e = 1, the limiting case of slender body, drag comes out to
be 0, which is again justified. It clearly indicates that for uniform and parabolic flows
the drag on slender needle shaped body, drag comes out to be same. The variation
of these drag values with respect to eccentricity e for various flow parameters α and
β are depicted in Figure 10 and 11, respectively.

In Table 7, the numerical values of drag on prolate spheroid in axial and transverse
stagnation like quadratic flow have been calculated with respect to eccentricity e.
It is found that drag values decreases from 1 to 0.56680 in axial flow situation and
decreases from 1 to 0 in transverse situation as eccentricity e increases from 0 to 1. It
is interesting to observe that in the limiting case as e = 1, the case of slender or needle
case, drag comes out to be non-zero (= 0.56680) while its value is zero in transverse
flow situation. The variation of these drag values with respect to eccentricity e are
depicted in Figure 12.

In Table 8, the numerical values of drag on oblate spheroid in axial and transverse
stagnation like quadratic flow have been calculated with respect to eccentricity e. It
is found that drag values decreases from 1 to 0 in axial flow situation and decreases
from 1 to 0.6910 in transverse situation as eccentricity e increases from 0 to 1. It
is interesting to observe that in the limiting case as e = 1, the case of flat circular
disk, drag comes out to be 0 while its value is non-zero (= 0.6910) in transverse
flow situation. The variation of these drag values with respect to eccentricity e are
depicted in Figure 13.

In Table 9, the numerical values of drag on egg-shaped body in axial and transverse
stagnation like quadratic flow have been calculated with respect to eccentricity e. It
is found that drag values decreases from 1 to 0 in both axial and transverse stagnation
flow situation as eccentricity e increases from 0 to 1. It is interesting to observe that
in the limiting case as e = 1, the case of slender spheroid or needle like body, drag
comes out to be 0. The variation of these drag values with respect to eccentricity e
are depicted in Figure 14.

15. Conclusion

The authors have further developed the conjecture published in paper [1, 1999] by
Datta and Srivastava and evaluated the general expressions of drag on axially sym-
metric bodies under the restrictions imposed in Section 2 placed in unbounded axial
and transverse paraboloid as well as axial and transverse stagnation like paraboloid
flows with appropriate choice of surface average velocity on body surface defined by
Chwang and Wu [2, 3, 1975, parts 2 and 3]. These general expressions have been suc-
cessfully applied not only to sphere and spheroid but also to egg-shaped body having
left half semi-spherical and right half semi-spheroidal. The same may be applied to
check on egg-shaped body when left half is spheroidal and right half is semi-spherical
that the values of drag remains the same. The reason behind it is that the Stokes
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flow does not distinguish the fore and aft symmetry of the body. It may be easily
analyzed that the proposed new analytical technique is very easy in comparison to the
singularity method provided by other workers in the past for quadratic flow. Authors
are searching the avenues of this analysis further for non-linear Stokes flow and other
type of quadratic complex flows.

Acknowledgements. First author convey his sincere thanks to University Grants Com-
mission, New Delhi, India, for providing financial assistance under major research project
scheme[F.N. 39-55/2010(SR), 24-12-2010] at the Department of Mathematics, B.S.N.V.
Post Graduate College, Lucknow(U.P.), India. Authors are also thankful to the authorities
of B.S.N.V. Post Graduate College, Lucknow, to provide basic infrastructure facilities during
the preparation of the paper.

References

1. Datta, S. and Srivastava, D. K.: Stokes drag on axially symmetric bodies: a new
approach, Proc. Indian Acad. Sci.(Math. Sci.), 109(4), (1999), 441-452.

2. Chwang, A. T. and Wu, T. Y.: Hydromechanics of low reynolds number flow. Part 2.
Singularity method for stokes flows, J. Fluid Mech., 67(4), (1975), 787-815.

3. Chwang, A. T.: Hydromechanics of low Reynolds number flow. Part 3. Motion of a
spheroidal particle in quadratic flows, J. Fluid Mech., 72, (1975), 17-34.

4. Stokes, G. G.: On the effect of internal friction of fluids on pendulums, Trans. Camb.
Philos. Soc., 9, (1851), 8-106.
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Abstract. A dimensionally reduced axisymmetric shell model using a three-field comple-
mentary energy-based variational principle set up in terms of non-symmetric stresses, rota-
tions and displacements is derived. Considering axisymmetrically loaded shells of revolution,
a special form of the three-dimensional variational principle of Hellinger-Reissner is obtained
and applied for the derivation of the Euler-Lagrange equations and natural boundary con-
ditions of the shell model.
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1. Introduction

Mixed variational principles in elasticity offer the possibility of approximating the
stress space directly. Complementary energy-based dual-mixed variational formu-
lations and properly designed finite element models have the additional advantage
that they provide better convergence rates and higher accuracy for the variables of
primary interest, i.e. for the stresses, when compared to strain energy-based primal-
mixed formulations and displacement-based formulations. Stress-based finite element
models, furthermore, are known to be free from those numerical locking problems that
appear in many displacement-based finite element models. These facts seem to be
especially important for shell models and shell finite elements for which the modelling
and approximation difficulties can lead to several type of numerical problems.

The main objective of this paper is to derive a dimensionally reduced axisymmetric
shell model based on Hellinger-Reissner’s three-field dual-mixed variational principle.
Its functional can be derived from the total complementary energy functional

Kd (σrs) = −1

2

∫
(V )

σklεkl (σ
rs) dV +

∫
(Su)

ũkσ
klnl dS , (1.1)

c©2014 Miskolc University Press
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which depends on the stress tensor σrs alone. Here V denotes the volume of the
body in the undeformed configuration, εkl is the symmetric strain tensor and ũk is
the displacement vector prescribed on the surface part Su with outward unit normal
nl. The subsidiary conditions to the total complementary energy functional (1.1) are
the equilibrium equations

σpq;q + bp = 0 xm ∈ V , (1.2)

where bp stands for the body forces, the symmetry condition

εpqrσ
pq = 0 xm ∈ V , (1.3)

where εpqr is the covariant permutation tensor, and the stress boundary conditions

p̃k = σklnl xm ∈ Sp , (1.4)

where p̃k are prescribed surface tractions on Sp with outward unit normal nl (the
surface of the body is S = Sp ∪ Su, Sp ∩ Su = ∅). For linear elastic materials the
strain tensor εkl can be obtained from the inverse stress-strain relations (Hooke’s law)

εkl = C−1klrsσ
rs xm ∈ V , (1.5)

where the fourth-order tensor C−1klrs with symmetry properties C−1klrs = C−1klsr = C−1rskl
is the elastic compliance tensor.

Classical, complementary energy-based and dimensionally reduced shell models in
terms of symmetric stresses can be derived using functional (1.1). In that case both
the translational and rotational equilibrium equations, (1.2) and (1.3), as well as the
stress boundary conditions (1.4) should be satisfied a priori. A dimensionally reduced
cylindrical shell model based on this approach using second-order stress functions
can be found in [3]. The related finite element formulation requires, however, C1

continuous approximation of the second-order stress functions and this requirement,
which is primarily due to the symmetry condition for the stress tensor, makes it rather
difficult to establish a numerically efficient formulation for general shells.

One possibility to overcome the difficulties mentioned in connection with the deriva-
tion of numerically efficient stress-based shell models is the incorporation of the sym-
metry condition for the stress tensor into the principle by the use of the rotations as
Lagrangian multipliers. A dimensionally reduced non-linear shell model using the cor-
responding dual-mixed variational principle of Fraeijs de Veubeke [6] has been derived
in [4].

Another possibility for the derivation of dimensionally reduced stress-based shell
models is to apply the three-field dual-mixed variational principle of Hellinger-Reissner
[7, 9, 10]. The functional of this principle can be considered as the sum of the total
complementary energy functional (1.1) and two Lagrangian multiplier terms which
red ensure the fulfillment of the translational and rotational equilibrium equations,
(1.2) and (1.3). In the linear theory of elasticity the functional red is of the form

HRd (σrs, φs, up) = −
∫
(V )

Wc (σrs) dV +

∫
(Su)

ũpσ
pqnqdS +
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+

∫
(V )

σpqεpqsφ
sdV −

∫
(V )

up
(
σpq;q + bp

)
dV , (1.6)

where σrs is the not a priori symmetric stress tensor, red the strain tensor εpq is a
symmetric one, φs denotes the axial vector of the skew-symmetric rotation tensor,
ψpq red which are related to each other via the equation

ψpq = −εpqsφs , (1.7)

ũp is the prescribed displacement vector on Su with outward unit normal nq and Wc

is the complementary strain energy density defined by

Wc (σrs) =
1

2
σpqεpq (σrs) =

1

2
C−1pqrsσ

pqσrs . (1.8)

The only subsidiary conditions to be satisfied by functional (1.6) are the stress bound-
ary conditions (1.4). It means that applying Hellinger-Reissner’s dual-mixed principle
with functional (1.6), a priori satisfaction of neither the translational nor the rota-
tional equilibrium equations is required.

It is noted here that the classical two-field dual-mixed variational principle of
Hellinger-Reissner with a priori symmetric stresses can also be used as a starting
point for deriving dimensionally reduced stress-based shell models. The design of
stable and efficient finite element models assuming symmetric stresses is, however,
much more difficult than that with not a priori symmetric ones (for a discussion of
the latter problem, see [5]).

This paper presents a dimensional reduction procedure for shells of revolution ap-
plying the three-dimensional dual-mixed variational principle of Hellinger-Reissner
with functional (1.6). Section 2 contains the geometric description of the shell of
revolution. In section 3 the three-dimensional equilibrium equations are derived in
the curvilinear coordinate system attached to the shell middle surface. The dimen-
sional reduction procedure is presented in Section 4. Applying truncated power series
expansions, the independent variables, i.e., the stresses, the displacements and the
rotations are approximated by polynomials of the first- and second-order in the thick-
ness coordinate. After inserting the variables expanded into series into the special
form of the Hellinger-Reissner functional for thin shells of revolution and introducing
the notions of strain and rotation resultants as well as that of the prescribed displace-
ment resultants, the Euler-Lagrange equations and the natural boundary conditions
of the dimensionally reduced shell model are derived, assuming axisymmetrical loads.
Section 5 contains some concluding remarks and an outlook for further research in
the presented direction.

2. Geometry of the shell of revolution

Let xk refer to a fixed right-handed orthogonal Cartesian frame in an Euclidean three-
dimensional space, the corresponding base vectors are denoted by ek. We consider a
shell of revolution as a three-dimensional body, the rotation axis of which is defined
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by

0 ≤ x1 ≤ L , (2.1)

where L is the length of the shell (see Figure 1). The axisymmetric shell is a 3D
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Figure 1. Axisymmetric shell

region bounded by two axisymmetric surfaces S+ and S− called the top and bottom
surfaces which are symmetrically situated with respect to the surface S0 called the
middle surface, and the lateral surfaces S0 and SL, the intersections of which with
S0 are the circles `0 (0) and `0 (L), respectively (see Figure 1). The middle surface of
the shell can be generated by rotating a curve about the x1–axis. This curve is the
meridian curve defined by the function

R = R
(
x1
)
> 0 . (2.2)

The shell is parametrized by the curvilinear coordinates ξm, with ξα called surface
coordinates on S0 and with ξ3 which is the arc-length measured along the normal to
the middle surface (ξ3 = 0). Throughout this paper, the usual summation convention
is used and the range of the Latin indices is 1, 2, 3 and that of the Greek indices is 1
and 2. The undeformed configuration of the shell is defined by

V =

{
ξm | ξα ∈ S0, |ξ3| 6

d

2

}
, (2.3)
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where d, the distance between S+ and S− measured along ξ3, is the thickness of
the shell. Henceforward it will be assumed that d is constant. The boundary of V ,
denoted by S, consists of the top and bottom surfaces

S± =

{
ξm | ξα ∈ S0, ξ

3 = ±d
2

}
(2.4)

and lateral surfaces

S0 =

{
ξm | ξα ∈ `0 (0) |ξ3| ≤ d

2

}
, (2.5)

SL =

{
ξm | ξα ∈ `0 (L) , |ξ3| ≤ d

2

}
. (2.6)

The relation between the Cartesian coordinates xk and the curvilinear coordinates ξα

parametrizing the shell middle surface S0 is given by

x1 = f
(
ξ1
)
, (2.7)

x2 = R sin ξ2 , (2.8)

x3 = R cos ξ2 , (2.9)

where ξ1 is measured along the meridian curve and ξ2 is the polar angle:

0 ≤ ξ2 < 2π (2.10)

measured along the latitude circles lying in the planes perpendicular to the rotation
axis (see Figure 1). The position vector of an arbitrary point P0 ∈ S0 can be written
in the Cartesian coordinate frame as

r0 = xkek = x1e1 +R sin ξ2e2 +R cos ξ2e3 . (2.11)

Introducing the notations

A1

(
x1
)

=
dξ1

dx1
,

1

A1 (x1)
=

dx1

dξ1
, (2.12)

the base vectors aα of the surface coordinate system can be obtained by deriving the
position vector r0 (2.11) with respect to ξα:

a1 =
∂r0
∂ξ1

=
1

A1
e1 +

1

A1
R′ sin ξ2e2 +

1

A1
R′ cos ξ2e3 = a1, (2.13)

a2 =
∂r0
∂ξ2

= R cos ξ2e2 −R sin ξ2e3 = R2a2 . (2.14)

The base vector a3, which is a normal to the middle surface S0, is obtained as

a3 =
a1 × a2
|a1 × a2|

=
1

A1

(
sin ξ2e2 + cos ξ2e3 −R′e1

)
= a3 , (2.15)

where the prime in the superscript indicates differentiation with respect to the coor-
dinate x1. Making use of equations (2.13)–(2.15), the matrices of the covariant and
contravariant metric tensor on the middle surface are obtained as

[ak`] =

 1 0 0
0 R2 0
0 0 1

 , [apq] =

 1 0 0
0 1

R2 0
0 0 1

 . (2.16)
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The covariant base vectors at an arbitrary shell point P are denoted by gl (see Figure
2). The covariant metric tensor at P is denoted by gkl (g3β = 0). The Christoffel

P
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1x
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0

r
0

r

3x

S

21

3

1

2

3

2

ξ

ξξ

ξ
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g

g

g

a

a a

3

1
2

Figure 2. Local coordinate systems and their base vectors

symbols of the second kind on the middle surface S0 are defined by the equations

Γ
k

sm = as,m · ak , Γ
κ

αβ = aα,β · aκ , Γ
µ

λ3 = Γ
m

33 = Γ
3

3κ = Γ
3

λ3 = 0 , (2.17)

where the subscripts m or β preceded by a coma mean partial differentiation with
respect to the corresponding coordinates ξm or ξβ . The curvature tensor of the middle
surface is given by

bκλ = Γ
3

κλ , bµκ = Γ
µ

3κ . (2.18)

The relation between the covariant and contravariant base vectors at P and P0 ∈ S0

is written in the following form:

gl = µkl ak , gm =
(
µ−1

)m
p
ap , (2.19)

where µkl and
(
µ−1

)m
p

are, respectively, the shifter and the inverse shifter. Making

use of (2.19) an arbitrary tensor T defined at the point P of the shell can be shifted
to the point P0 of the middle surface:

T = T `
k g

kgl = T
n

m aman , (2.20)

where a bar over a tensor variable denotes its tensorial components related to the
base vectors ak of the shell middle surface, and

T
n

m = T `
k

(
µ−1

)k
m
µn` (2.21)
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are the shifted tensor components. Thus the covariant derivative tensor T pq;m can be
obtained by

T pq;m = T
kl

|m
(
µ−1

)p
k

(
µ−1

)q
l
, (2.22)

where

T
kl

|m = T
kl

,m + Γ
k

smT
sl

+ Γ
l

rmT
kr

(2.23)

is the three-dimensional covariant derivative on the middle surface S0. The covariant
derivative (2.23) can be separated into

T
kl

|ν = T
kl

,ν + Γ
k

sνT
sl

+ Γ
l

rνT
kr

(2.24)

and

T
kl

|3 = T
kl

,3 . (2.25)

In the case of axisymmetric shells the non-zero components of the Christoffel symbols
(2.17) and the curvature tensor (2.18) are, respectively,

Γ
2

12 = Γ
2

21 =
R′

RA1
, Γ

1

22 = −RR
′

A1
(2.26)

and

b11 = Γ
3

11 =
R′′

A3
1

, b22 = Γ
3

22 = − R

A1
, (2.27)

b11 = − 1

R1
= −Γ

1

31 =
R′′

A3
1

, b22 = − 1

R2
= −Γ

2

32 = − 1

RA1
, (2.28)

where R1 and R2 are the principal radii of curvature of the middle surface S0. In
view of (2.28), the matrix of the shifter (2.19) can be represented by

[
µkl
]

=

 1− R′′

A3
1
ξ3 0 0

0 1 + 1
RA1

ξ3 0

0 0 1

 . (2.29)

For thin shells, the thickness is assumed to be small, i.e., the relations

d

L
� 1 ,

d

Rmin
� 1 (2.30)

hold true, where
Rmin = min

x1∈[0;L]
{|R1| , |R2|} , (2.31)

thus
µkl
∼=
(
µ−1

)k
l
∼= δkl , µ = 1 , (2.32)

where µ is the determinant of the shifter (2.29). For thin shells of revolution, the
volume element dV and the surface elements dS0 and dSL are given by

dV = Rdξ1dξ2dξ3 , (2.33)

dS0 = R0dξ2dξ3 , (2.34)

dSL = RLdξ2dξ3 , (2.35)

where
R = R

(
x1 = 0

)
= R0, R = R

(
x1 = L

)
= RL . (2.36)
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3. Equilibrium equations of shells of revolution

The three-dimensional equilibrium equations of the axisymmetric shells are derived
from equations (1.2). Using the derivation rule (2.22) and the geometric properties
(2.30)–(2.32), the three-dimensional translational equilibrium equations for thin shells
can be written in the following form:

σpl|l + b
p

= 0 ξm ∈ V . (3.1)

Making use of equations (2.26)–(2.28) obtained for the Christoffel symbols, the three-
dimensional scalar equilibrium equations (3.1) can be written as

σ11
,1−

R′′

A3
1

(
σ31 + σ13

)
+σ12

,2 +
1

RA1

(
R′σ11 + σ13

)
− RR

′

A1
σ22 +σ13

,3 + b
1

= 0 , (3.2)

σ21
,1 −

R′′

A3
1

σ23 + σ22
,2 +

R′

RA1

(
σ12 + 2σ21

)
+

1

RA1

(
σ23 + σ32

)
+ σ23

,3 + b
2

= 0 , (3.3)

σ31
,1 +

R′′

A3
1

(
σ11 − σ33

)
+ σ32

,2 +
1

RA1

(
R′σ31 + σ33

)
− R

A1
σ22 + σ33

,3 + b
3

= 0 . (3.4)

For axisymmetrically loaded shells of revolution the differentiation with respect to ξ2

leads to zero, thus the equations (3.2)–(3.4) can be simplified to

σ11
,1 −

R′′

A3
1

(
σ31 + σ13

)
+

1

RA1

(
R′σ11 + σ13

)
− RR′

A1
σ22 + σ13

,3 + b
1

= 0 , (3.5)

σ21
,1 −

R′′

A3
1

σ23 +
R′

RA1

(
σ12 + 2σ21

)
+

1

RA1

(
σ23 + σ32

)
+ σ23

,3 + b
2

= 0 , (3.6)

σ31
,1 +

R′′

A3
1

(
σ11 − σ33

)
+

1

RA1

(
R′σ31 + σ33

)
− R

A1
σ22 + σ33

,3 + b
3

= 0 . (3.7)

These two-dimensional scalar equilibrium equations can be separated into two inde-
pendent groups according to the stress components. Equations (3.5) and (3.7) involve
the stress components σ11, σ22, σ13, σ31 and σ33 which describe the bending-shearing
problems (including tension-compression) of the axisymmetric shell while equation
(3.6) describes the torsion problem of the shell. The corresponding stress components
are σ12, σ21, σ23 and σ32.

4. Dimensionally reduced axisymmetric shell model

4.1. Approximation of the stress components along the thickness. Let us
consider a shell of revolution loaded axisymmetrically. Then the problem is a two
dimensional one – each quantity depends on ξ1 and ξ3 only. The components of the
tensor variables are assumed to be shifted to the points of the middle surface. The
fundamental variables of the two-dimensional problems can be expanded in power
series with respect to the thickness coordinate ξ3. After being expanded into series
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the stresses σkl, the rotation components φ
m

and the displacements un can be written
as

σk`(ξ1, ξ3) =

∞∑
i=0

iσ
k` (ξ1)

(
ξ3
)i
, (4.1)

φ
m

(ξ1, ξ3) =

∞∑
i=0

iφ
m

(ξ1)
(
ξ3
)i
, (4.2)

un(ξ1, ξ3) =

∞∑
i=0

iun (ξ1)
(
ξ3
)i
, (4.3)

where the rotation coefficients iφ
m

(ξ1), the stress coefficients iσ
k` (ξ1) and the dis-

placement coefficients iun (ξ1) depend only on the surface coordinate ξ1. Substi-
tuting stress components (4.1) into the two-dimensional scalar equilibrium equations
(3.5)–(3.7) and making separation with respect to the powers of the thickness coor-
dinate ξ3, the following one-dimensional equilibrium equations are obtained for the
one-dimensional stress coefficients:

iσ
11
,1 −

R′′

A3
1

(
iσ

31 + iσ
13
)

+
1

RA1

(
R′ iσ

11 + iσ
13
)
− RR′

A1
iσ

22 +

+(i+ 1) i+1σ
13 + ib

1
= 0 , i = 0, 1, 2, ... , (4.4)

iσ
21
,1 −

R′′

A3
1
iσ

23 +
R′

RA1

(
iσ

12 + 2 iσ
21
)

+
1

RA1

(
iσ

23 + iσ
32
)

+

+(i+ 1) i+1σ
23 + ib

2
= 0 , i = 0, 1, 2, ... , (4.5)

iσ
31
,1 +

R′′

A3
1

(
iσ

11 − iσ
33
)

+
1

RA1

(
R′ iσ

31 + iσ
33
)
− R

A1
iσ

22 +

+(i+ 1) i+1σ
33 + ib

3
= 0 , i = 0, 1, 2, ... . (4.6)

Depending on the number of equations selected from the above equilibrium equations,
a large number of dimensionally reduced axisymmetric shell models can be derived.
In this paper a shell model, which is based on the equations valid for i = 0 and
i = 1, is investigated assuming that the higher-order equilibrium equations are iden-
tically satisfied. In this case the stress components σkλ and σk3 are approximated,
respectively, by polynomials of the first- and second-degree in ξ3:

σkλ(ξ1, ξ3) = 0σ
kλ(ξ1) + 1σ

kλ(ξ1) ξ3 , (4.7)

σk3(ξ1, ξ3) = 0σ
k3(ξ1) + 1σ

k3(ξ1) ξ3 + 2σ
k3(ξ1)

(
ξ3
)2
. (4.8)

The corresponding one-dimensional translational equilibrium equations for the 18
stress coefficients 0σ

kλ, 1σ
kλ, 0σ

k3, 1σ
k3, 2σ

k3 are obtained from equations (4.7)–
(4.8):

0σ
11
,1−

R′′

A3
1

(
0σ

31 + 0σ
13
)
+

1

RA1

(
R′ 0σ

11 + 0σ
13
)
−RR

′

A1
0σ

22+ 1σ
13+ 0b

1
= 0, (4.9)
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0σ
21
,1−

R′′

A3
1

0σ
23+

R′

RA1

(
0σ

12 + 2 0σ
21
)
+

1

RA1

(
0σ

23 + 0σ
32
)
+ 1σ

23+ 0b
2

= 0, (4.10)

0σ
31
,1 +

R′′

A3
1

(
0σ

11 − 0σ
33
)

+
1

RA1

(
R′ 0σ

31 + 0σ
33
)
− R

A1
0σ

22 + + 1σ
33 + 0b

3
= 0 ,

(4.11)
and

1σ
11
,1 −

R′′

A3
1

(
1σ

31 + 1σ
13
)

+
1

RA1

(
R′ 1σ

11 + 1σ
13
)
− RR′

A1
1σ

22 + 2 2σ
13 + 1b

1
= 0 ,

(4.12)

1σ
21
,1 −

R′′

A3
1

1σ
23 +

R′

RA1

(
1σ

12 + 2 1σ
21
)

+
1

RA1

(
1σ

23 + 1σ
32
)

+ 2 2σ
23 + 1b

2
= 0 ,

(4.13)

1σ
31
,1 +

R′′

A3
1

(
1σ

11 − 1σ
33
)

+
1

RA1

(
R′ 1σ

31 + 1σ
33
)
− R

A1
1σ

22 + 2 2σ
33 + 1b

3
= 0 .

(4.14)

The rotation components φ
m

(ξ1) and the displacement components un (ξ1) are ap-
proximated by polynomials of the first-degree in ξ3:

φ
m

(ξ1, ξ3) = 0φ
m

(ξ1) + 1φ
m

(ξ1) ξ3 , (4.15)

and

un(ξ1, ξ3) = 0un (ξ1) + 1un (ξ1) ξ3 , (4.16)

where 0φ
m

, 1φ
m

and 0un, 1un are, respectively, the rotation and displacement coef-
ficients.

4.2. Stress boundary conditions and prescribed displacements. The stress
boundary conditions on the top and bottom surfaces S± of the shell can be written
in the form

σ · n± = σ · (±a3) = ±σk3ak = p̃± , ±σk3 = (p̃
±

)k ξm ∈ S± , (4.17)

where the outward unit normals are denoted by

n± = n±a3 , n± =

{
−1 on S− ,
1 on S+ ,

(4.18)

and p̃± are prescribed surface tractions on S±. Substituting (4.8) into the stress
boundary conditions (4.17) and taking into account (4.18), we obtain the following
equations:

0σ
k3 + 1σ

k3 d

2
+ 2σ

k3 d

4

2

= (p̃
+

)k, (4.19)

−0σ
k3 + 1σ

k3 d

2
− 2σ

k3 d

4

2

= (p̃
−

)k . (4.20)

Adding and subtracting the above equations, the one-dimensional vector-valued load
coefficients on S± are given by

0p̃
k
(ξ1) =

1

2

[
(p̃

+
)k + (p̃

−
)k
]
, (4.21)
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1p̃
k
(ξ1) =

1

d

[
(p̃

+
)k − (p̃

−
)k
]
. (4.22)

Making use of equations (4.21)–(4.22), the stress boundary conditions (4.19)–(4.20)
can be manipulated into the form

1σ
k3 =

2

d
0p̃

k
, (4.23)

2σ
k3 = − 4

d2
0σ
k3 +

2

d
1p̃

k
, (4.24)

where

p̃
k
(ξ1, ξ3) = 0p̃

k
+ 1p̃

k
ξ3 , (4.25)

and

p̃
k
(ξ1, ξ3 = ±d/2) = (p̃

±
)k = 0p̃

k ± d

2
1p̃

k
. (4.26)

The outward unit normals of the lateral surfaces S0 and SL can be given by

n× = n×a1 , n× =

{
−1 on S0 ,
1 on SL .

(4.27)

Let p̃× be the prescribed surface traction on the lateral surface SL with outward unit
normal n× defined by equation (4.27). The stress boundary conditions on SL can be
written in the form

σ · n× = σ · a1 = σk1ak = p̃× , σk1 = (p̃
×

)k ξm ∈ SL . (4.28)

Expanding the prescribed lateral surface tractions (p̃
×

)k into a truncated power series
with respect to ξ3 and substituting (4.7) into (4.28), we obtain the following stress
boundary conditions on the lateral surface SL:

0σ
k1
∣∣
x1=L

= 0(p̃
×

)k ξm ∈ SL , (4.29)

1σ
k1
∣∣
x1=L

= 1(p̃
×

)k ξm ∈ SL , (4.30)

where 0(p̃
×

)k and 1(p̃
×

)k are the prescribed one-dimensional vector-valued load co-
efficients on the lateral surface SL.

Considering expression (4.16), the displacement boundary conditions on the lateral
surface S0 with outward unit normal n× can be given by

uk = 0uk + 1uk ξ
3 = ũk = 0ũk + 1ũk ξ

3 ξm ∈ S0 , (4.31)

or

0uk|ξ1=0 = 0ũk ξm ∈ S0 , (4.32)

1uk|ξ1=0 = 1ũk ξm ∈ S0 , (4.33)

where 0ũk, 1ũk are prescribed displacement coefficients on the lateral surface S0.
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4.3. Euler-Lagrange equations and natural boundary conditions. Assuming
linearly elastic, homogeneous and isotropic materials, the strain tensor εkl for thin
shells can be expressed by the inverse stress-strain relation (Hooke’s law)

εkl(σ
rs) =

1

4G

[
(σrs + σsr) arkasl −

2ν

1 + ν
σpqapq akl

]
, (4.34)

where G is the shear modulus of elasticity and ν is the Poisson ratio. Making use
of equation (2.16), the above constitutive equations can be written in the following
form:

ε11 =
1

E

[
σ11 − ν

(
R2σ22 + σ33

)]
, (4.35)

ε22 =
R2

E

[
R2σ22 − ν

(
σ11 + σ33

)]
, (4.36)

ε33 =
1

E

[
σ33 − ν

(
σ11 +R2σ22

)]
, (4.37)

ε31 =
1

4G

(
σ13 + σ31

)
= ε13 , (4.38)

ε21 =
R2

4G

(
σ12 + σ21

)
= ε12 , (4.39)

ε32 =
R2

4G

(
σ23 + σ32

)
= ε23 , (4.40)

where E = 2G(1+ν) is the elasticity modulus. In the case of axisymmetric shells, the
outward unit normal to the lateral surface Su ≡ S0 is defined by (4.27). In view of
this, the Hellinger-Reissner functional (1.6) for thin shells can be written in the form

HRd(σ
rs, φ

m
, un) = −1

2

+ d
2∫
− d

2

∫
(S0)

σklεkl (σ
rs) dS0dξ3 −

+ d
2∫
− d

2

2π∫
0

ũkσ
k1R0dξ2dξ3+

+

+ d
2∫
− d

2

∫
(S0)

σklεklmφ
m

dS0dξ3 −

+ d
2∫
− d

2

∫
(S0)

un

(
σnl|l + b

n
)

dS0dξ3 . (4.41)

Since the axisymmetrical deformation means that tensor variables are independent of
the coordinate ξ2, the integration with respect to ξ2 can easily be carried out. Thus
the first variation of (4.41) with respect to stresses σkl, rotations φ

m
and displacements

un yields the Hellinger-Reissner variational principle in the following form

1

2π
δHRd(σrs, φ

m
, un, δσ

rs, δφ
m
, δun) =

−

+ d
2∫
− d

2

sL∫
0

δσklεklRdξ1dξ3 −

+ d
2∫
− d

2

ũkδσ
k1R0dξ3 +

+ d
2∫
− d

2

sL∫
0

δσklεklmφ
m
Rdξ1dξ3+
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+

+ d
2∫
− d

2

sL∫
0

σklεklmδφ
m
Rdξ1dξ3−

+ d
2∫
− d

2

sL∫
0

unδσ
nl
|lRdξ1dξ3−

+ d
2∫
− d

2

sL∫
0

δun

(
σnl
|l + b

n
)
Rdξ1dξ3 = 0,

(4.42)

where

sL =

L∫
x̂1=0

A1

(
x̂1
)

dx̂1 (4.43)

is the arc-length measured along the meridian curve.

4.3.1. The first variation of the complementary strain energy. Making use of the ex-
panded stress components (4.7)–(4.8), the first variation of the complementary strain
energy of the shell can be written as

1

2π

∫
(V )

δWc (σrs) dV =

+ d
2∫
− d

2

sL∫
0

δσklεklRdξ1dξ3 =

=

+ d
2∫
− d

2

sL∫
0

[
δ 0σ

klεkl + δ 1σ
klεkl ξ

3 + δ 2σ
k3εk3

(
ξ3
)2]

Rdξ1dξ3 . (4.44)

Introducing the strain resultants

E
(0)
k` :=

+ d
2∫

− d
2

εk` dξ3 , E
(1)
k` :=

+ d
2∫

− d
2

εk` ξ
3 dξ3 , E

(2)
k3 :=

+ d
2∫

− d
2

εk3
(
ξ3
)2

dξ3 (4.45)

and inserting them into equation (4.44) the following expression is obtained:

1

2π

∫
(V )

δWc (σrs) dV =

+ d
2∫

− d
2

sL∫
0

δσklεklRdξ1dξ3 =

=

sL∫
0

[
δ 0σ

klE
(0)
k` + δ 1σ

klE
(1)
k` + δ 2σ

k3E
(2)
k3

]
Rdξ1 . (4.46)

4.3.2. The first variation of the boundary integral term. Making use of the expanded
stress components (4.7), the first variation of the boundary integral in equation (4.41)
in terms of the variations of the one-dimensional stress coefficients can be written as

−

+ d
2∫

− d
2

ũkδσ
k1R0dξ3 = −

+ d
2∫

− d
2

[
ũkδ 0σ

k1 + ũkδ 1σ
k1 ξ3

]
R0dξ3 . (4.47)
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Introducing the prescribed displacement resultants

Ũ
(0)

k :=

+ d
2∫

− d
2

ũk dξ3 , Ũ
(1)

k :=

+ d
2∫

− d
2

ũk ξ
3 dξ3 (4.48)

and substituting these into equation (4.47), the first variation of the boundary integral
term takes the form

−

+ d
2∫

− d
2

ũkδσ
k1R0dξ3 = −R0Ũ

(0)

k δ 0σ
k1 −R0Ũ

(1)

k δ 1σ
k1 . (4.49)

4.3.3. The first variation of the Lagrangian multiplier terms. Making use of the ex-
panded stress components (4.7)–(4.8) and rotation components (4.15), the first vari-
ations of the Lagrangian multiplier term

+ d
2∫
− d

2

∫
(S0)

σklεklmφ
m

dS0dξ3 (4.50)

in functional (4.41) with respect to the stresses σkl and the rotations φ
m

are, respec-
tively,

+ d
2∫
− d

2

sL∫
0

δσklεklmφ
m
Rdξ1dξ3 =

=

+ d
2∫
− d

2

sL∫
0

[
δ 0σ

klεklmφ
m

+ δ 1σ
klεklmφ

m
ξ3 + δ 2σ

k3εk3mφ
m (

ξ3
)2]

Rdξ1dξ3 (4.51)

and

+ d
2∫
− d

2

sL∫
0

σklεklmδφ
m
Rdξ1dξ3 =

+ d
2∫
− d

2

sL∫
0

[
σklεklmδ 0φ

m
+ σklεklmδ 1φ

m
ξ3
]
Rdξ1dξ3 .

(4.52)
Introducing the rotation resultants

Φ
(0)

kl := −

+ d
2∫

− d
2

εklmφ
m

dξ3, Φ
(1)

kl := −

+ d
2∫

− d
2

εklmφ
m
ξ3 dξ3, Φ

(2)

k3 := −

+ d
2∫

− d
2

εk3mφ
m (

ξ3
)2

dξ3

(4.53)
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and substituting them into equation (4.51), expression (4.51) can be written in the
following form:

+ d
2∫

− d
2

sL∫
0

δ σklεklmφ
m
Rdξ1dξ3 = −

sL∫
0

[
δ 0σ

klΦ
(0)

kl + δ 1σ
klΦ

(1)

kl + δ 0σ
k3Φ

(2)

k3

]
Rdξ1 .

(4.54)
Let us investigate the integral (4.52) appearing in (4.42). Substituting the expanded
stress components (4.7)–(4.8) into (4.52) and carrying out integrations with respect
to ξ3 , the equation (4.52) can be written as

+ d
2∫

− d
2

sL∫
0

σklεklmδφ
m
Rdξ1dξ3 =

sL∫
0

{
d
[(

0σ
23 − 0σ

32
)
δ 0φ

1
+
(
0σ

31 − 0σ
13
)
δ 0φ

2
+
(
0σ

12 − 0σ
21
)
δ 0φ

3
]

+

+
d3

12

[(
1σ

23 − 1σ
32
)
δ 1φ

1
+
(
1σ

31 − 1σ
13
)
δ 1φ

2
+
(
1σ

12 − 1σ
21
)
δ 1φ

3
+

+ 2σ
23δ 0φ

1 − 2σ
13δ 0φ

2
]}

R2dξ1 . (4.55)

According to (4.42), the coefficients of the rotation components δ0φ
m
, δ1φ

m
in the

above expression should be equal to zero:

δ 0φ
1

: 0σ
32 = 0σ

23 +
d2

12
2σ

23 , (4.56)

δ 0φ
2

: 0σ
31 = 0σ

13 +
d2

12
2σ

13 , (4.57)

δ 0φ
3

: 0σ
12 = 0σ

21 , (4.58)

δ 1φ
1

: 1σ
32 = 1σ

23 , (4.59)

δ 1φ
2

: 1σ
31 = 1σ

13 , (4.60)

δ 1φ
3

: 1σ
12 = 1σ

21 . (4.61)

It can easily be seen that equations (4.56)–(4.57) and (4.59)–(4.60) are equivalent to
the symmetry of the transverse shear stresses satisfied in integral average sense. The
advantage of equations (4.56)–(4.61) is that 0σ

32, 0σ
31, 0σ

12, 1σ
32, 1σ

31 and 1σ
12

are expressed in terms of the stress coefficients 0σ
23 and 2σ

23, 0σ
13 and 2σ

13, 0σ
21,

1σ
23, 1σ

13 and 1σ
21, respectively. Thus, not only the number of rotation variables

but also the number of stress variables could further be reduced. After substituting
the expanded displacement components (4.16) into equation (4.42) and carrying out
the integration with respect to ξ3, the coefficients of the displacement components



116 B. Tóth

δ0uk , δ1uk should be equal to zero:

0σ
11
,1 −

R′′

A3
1

(
0σ

31 + 0σ
13
)

+
1

RA1

(
R′ 0σ

11 + 0σ
13
)
− RR′

A1
0σ

22 + 1σ
13 + 0b

1
= 0 ,

(4.62)

0σ
21
,1−

R′′

A3
1

0σ
23+

R′

RA1

(
0σ

12 + 2 0σ
21
)
+

1

RA1

(
0σ

23 + 0σ
32
)
+ 1σ

23+ 0b
2

= 0, (4.63)

0σ
31
,1 +

R′′

A3
1

(
0σ

11 − 0σ
33
)

+
1

RA1

(
R′ 0σ

31 + 0σ
33
)
− R

A1
0σ

22 + + 1σ
33 + 0b

3
= 0 ,

(4.64)
and

1σ
11
,1 −

R′′

A3
1

(
1σ

31 + 1σ
13
)

+
1

RA1

(
R′ 1σ

11 + 1σ
13
)
− RR′

A1
1σ

22 + 2 2σ
13 + 1b

1
= 0 ,

(4.65)

1σ
21
,1 −

R′′

A3
1

1σ
23 +

R′

RA1

(
1σ

12 + 2 1σ
21
)

+
1

RA1

(
1σ

23 + 1σ
32
)

+ 2 2σ
23 + 1b

2
= 0 ,

(4.66)

1σ
31
,1 +

R′′

A3
1

(
1σ

11 − 1σ
33
)

+
1

RA1

(
R′ 1σ

31 + 1σ
33
)
− R

A1
1σ

22 + 2 2σ
33 + 1b

3
= 0 .

(4.67)
Thus we have obtained the one-dimensional equilibrium equations (4.9)–(4.14) for the
one-dimensional stress coefficients.

Applying a similar procedure to the Lagrangian multiplier term

+ d
2∫
− d

2

sL∫
0

unδσ
nl
|lRdξ1dξ3 (4.68)

and taking into account the integration rule
sL∫
0

iunδ iσ
n1
,1Rdξ1 =

[
iunδ iσ

n1R
]ξ1=sL
ξ1=0

−

−
sL∫
0

iun,1δ iσ
n1Rdξ1 −

sL∫
0

iunδ iσ
n1 R

′

A1
dξ1, i = 0, 1 , (4.69)

as well as expressions (4.46), (4.49) and (4.54), the coefficients of δ0σ
kl, δ1σ

kl and
δ2σ

k3 should be equal to zero, yielding the kinematic equations

δ 0σ
11 : d 0u1,1 − d

R′′

A3
1

0u3 − E
(0)
11 = 0 , (4.70)

δ 0σ
12 : −d R

′

A1
0u2 −RΦ

(0)

12 −RE
(0)
12 = 0 , (4.71)

δ 0σ
13 : d

(
RR′′

A3
1

− 1

A1

)
0u1 −RΦ

(0)

13 −RE
(0)
13 = 0 , (4.72)



Axisymmetric shell model using a three-field dual variational principle 117

δ 0σ
21 : dR 0u2,1 − d

R′

A1
0u2 −RΦ

(0)

21 −RE
(0)
21 = 0 , (4.73)

δ 0σ
22 : d

RR′

A1
0u1 + d

R

A1
0u3 − E

(0)
22 = 0 , (4.74)

δ 0σ
23 : d

(
RR′′

A3
1

− 1

A1

)
0u2 −RΦ

(0)

23 −RE
(0)
23 = 0 , (4.75)

δ 0σ
31 : d 0u3,1 + d

R′′

A3
1

0u1 − Φ
(0)

31 − E
(0)
31 = 0 , (4.76)

δ 0σ
32 : − d

A1
0u2 −RΦ

(0)

32 −RE
(0)
32 = 0 , (4.77)

δ 0σ
33 : d

(
RR′′

A3
1

− 1

A1

)
0u3 −RE

(0)
33 = 0 , (4.78)

and

δ 1σ
11 :

d3

12

(
1u1,1 +

R′′

A3
1

1u3

)
− E

(1)
11 = 0 , (4.79)

δ 1σ
12 : −d

3

12

R′

A1
1u2 −RΦ

(1)

12 −RE
(1)
12 = 0 , (4.80)

δ 1σ
13 :

d3

12

(
RR′′

A3
1

− 1

A1

)
1u1 − dR 0u1 −RΦ

(1)

13 −RE
(1)
13 = 0 , (4.81)
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21 :

d3

12

(
R 1u2,1 −
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1u2

)
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(1)

21 −RE
(1)
21 = 0 , (4.82)
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22 :

d3

12

(
RR′

A1
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R

A1
1u3
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− E

(1)
22 = 0 , (4.83)
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12

(
RR′′

A3
1
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)
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(1)

23 −RE
(1)
23 = 0 , (4.84)
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12

(
1u3,1 +

R′′

A3
1

1u1

)
− Φ

(1)

31 − E
(1)
31 = 0 , (4.85)
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32 : − d3

12A1
1u2 −RΦ

(1)

32 −RE
(1)
32 = 0 , (4.86)
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d3

12

(
RR′′

A3
1

− 1
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)
1u3 − dR 0u3 −RE

(1)
33 = 0 , (4.87)

δ 2σ
13 : −d

3

6
1u1 − Φ

(2)

13 − E
(2)
13 = 0 , (4.88)

δ 2σ
23 : −d

3

6
1u2 − Φ

(2)

23 − E
(2)
23 = 0 , (4.89)

δ 2σ
33 : −d

3

6
1u3 − E

(2)
33 = 0 , (4.90)
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and the natural boundary conditions

δ 0σ
n1 : −d 0un|ξ1=0 − Ũ

(0)

n = 0 , (4.91)

δ 1σ
n1 : −d

3

12
1un|ξ1=0 − Ũ

(1)

n = 0 . (4.92)

The Euler-Lagrange equations of Hellinger-Reissner’s variational principle with func-
tional (4.41) are the rotational and translational equilibrium equations, (4.56)–(4.61)
and (4.62)–(4.67), respectively, the kinematic equations (4.70)–(4.90) and the dis-
placement boundary conditions (4.91)–(4.92).

5. Conclusions

A new dimensionally reduced shell model in terms of displacements, rotations and
non-symmetric stresses has been derived for axisymmetric shells applying the three-
dimensional dual-mixed variational principle of Hellinger-Reissner. The displacement
and rotation fields appearing in this principle are considered as Lagrangian multipliers
that enforce the translational and the rotational equilibrium equations into the func-
tional of the total complementary energy. A priori satisfaction of the stress boundary
conditions is required, boundary conditions for the rotations cannot be prescribed.

After describing the geometry of the shell of revolution, the main steps of the di-
mensional reduction in terms of displacements, rotations and non-symmetric stresses
are presented. Applying a special form of the Hellinger-Reissner functional derived
for shells of revolution and introducing the notion of strain, rotation and prescribed
displacement resultants, the Euler-Lagrange equations and the natural boundary con-
ditions of the dimensionally reduced shell model are derived, assuming axisymmetrical
loads. These equations, written in terms of one-dimensional variables defined on the
middle surface of the shell, consist of the special forms of the translational and rota-
tional equilibrium equations, the kinematic equations and the displacement boundary
conditions. The Euler-Lagrange equations obtained may be used for analytical inves-
tigations of shells of revolution with special geometry, especially when closed-form
solutions in terms of the stress field can be constructed.

The most important features of the shell model derived and presented in this paper
can be summarized as follows:

• Classical kinematical hypotheses regarding the deformation of the normal to
the shell middle surface are not applied.
• The transverse normal stress distribution is parabolic across the thickness of

the shell. This allows for the deformation of the shell in the thickness direction.
• Unmodified three-dimensional constitutive equations are applied and, at the

same time, the inverse stress-strain relations for linearly elastic isotropic ma-
terials do not contain the 1/(1− 2ν) term. This fact has importance from the
point of view of an incompressibility locking-free finite element formulation,
when the Poisson ratio ν is close to the incompressible limit of 0.5.
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The finite element formulation and the development of new hp-version dual-mixed
finite element models based on the shell theory presented in this paper are the next
step of the research work in this direction.
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1. Béda, Gy., Kozák, I.: Mechanics of elastic bodies, Műszaki Könyvkiadó, Budapest,
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