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Abstract. A three-dimensional elastic contact problem is examined. It is assumed that
the displacements and deformations are small and the supposed zone of the contact domain
must be single-connected, and surrounded by a smooth closed curve. The closed curve is
interpolated by a single closed spline. For numerical tests three-dimensional p-extension
finite elements are used. To take the conditions of contact and separation into account the
penalty method is applied. Numerical examples presented here show the effect of positioning
3D p-version elements along the contact-separation and/or stick-and-slip borders and the
influence of the friction coefficient, respectively.
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Keywords: Contact problem, frictional contact, p-extension FEM, B-spline, interpolation
with a closed spline, contact element positioning

1. Introduction

The modern history of contact mechanics might be said to have begun in 1882
with the publication by Hertz of his classic paper [1]. The classical Signorini problem
[2] formulated in 1933 leading to the developement of variational inequalities for
the contact problem. These methods have been developed within several decades.
After some analytical approached published by Muskelishvili [3] or Galin [4] there are
numerous researchers who also worked on these fields e.g. Goldsmith [5], Fichera [6]
or Kikuchi and Oden [7] and see some books for historical remarks in Johnson [8], in
Kalker [9] or in Wriggers [10].

The finite element method (FEM) developed together with the growing power of
modern computers. Turner and his colleagues in [11] have taken the first attempts
to solve structural problems using finite elements in the late fifties. A further decade
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must have gone by before the first papers, in which contact problems solved by FEM,
appeared [12].

FEM can be classified into three main groups with respect to the type of refine-
ment: h-, p-, and hp-extension. In the case of h-extension the size of the elements
are decreased, while the p-extension increases only the polynomial degree of shape
functions in order to give more accurate results. In recent years the interest in high
order finite elements has been increased.

It was proved by Szabó and Babuška [13] that even in the case of singularities
in the exact solution, the p-extension in combination with a proper mesh ensure an
exponential rate of convergence in energy norm. If the mesh is aligned to points or
lines of singularity, from practical point of view an adequate accuracy can be obtained.
It was examined by Páczelt et al. in [14, 15] for two-dimensional examples of normal
and frictional contact problems.

As the problem investigated in this paper is restricted to contact between convex
bodies bounded by C2 surfaces, and assuming small displacements and deformations,
in this case of 3D contact problems the resulting contact domain is not a line, like in
2D, but a single-connected surface, which is bordered by a smooth closed curve. To
ensure precise numerical results for 3D contact problems using p-extension elements,
the determination of the contact zone or its three-dimensional contour is the key
question of our investigation.

Article [16] examines the problems of elasto-plasticity with adaptive p-FEM. The
present paper describes also an adaptive mesh modification technique which uses
an interpolating spline curve. For an excellent and comprehensive treatment of B-
splines from the numerical analyst’s point of view, de Boor has served as the standard
reference for close to 30 years [17]. A good introduction to Non-Uniform Rational B-
splines, referred to as NURBS, can be found in [18]. A key advantage of using NURBS
is the ability to represent conic sections and quadratic surfaces, such as ellipse, circle
and cones [19]. Moreover, the free-form curves and surfaces are all a special case of
the NURBS since the constant function 1 is a perfectly respectable spline, and can
be used as the denominator in a rational representation.

During the last ten years, research activities have been focused on adaptive tech-
niques that provide a discretization which is accurate and reliable. Adaptive tech-
niques rely on indicators or estimators, which are able to predict the error of the
approximated solution [13].

In the present article a solid and a linear elastic body’s contact problem will be
examined with adaptive p-extension FEM. Numerical examples show the convergence
of the solution and the connection between the polynomial degree of shape functions
and the relative error of the numerical results.

2. The problem of elasticity

The considered mechanical system consists of two three-dimensional homogenous
and isotropic elastic bodies. Only the mechanical interactions between them will be
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examined. It is supposed that the displacements and deformations are small, and
deformations evolving from external loads are only elastic, i.e. the task to be solved
is in the frame of linear elasticity.

The examined contacting bodies (shown in Figure 1) have the volume V α and outer
boundary Sα, in which α = 1, 2 marks the referred particle. The outer boundary is
separeted into three parts: on surface Sαu the displacements uα0 are given; on surface
Sαp the surface traction p̃α is prescribed; while the surface Sαc is the supposed zone of
contact.

S2
u

S1
c

S2
c

S1
p

2

1

S1
u

p̃2

S2
p

u1
0

p̃1

Figure 1. The examined contacting bodies

According to problem of elasticity the equilibrium equation is

σα · ∇+ bα = 0 ∀ rα ∈ V α (2.1)

in which bα is the body force, σα = σα (rα) is the stress tensor, ∇ is the nabla
operator. Strains are calculated as

εα =
1

2
(uα ◦ ∇+∇ ◦ uα) ∀ rα ∈ V α, (2.2)

where εα = εα (rα) is the strain tensor. The constitutive equation is

σα = Dα · · εα ∀ rα ∈ V α, (2.3)

in which Dα is the fourth order elasticity tensor.

In equation (2.1) scalar product is denoted by a dot, double dots indicate the scalar
product between two tensors in equation (2.3), and in equation (2.2) the circle denotes
the dyadic (tensorial) product according to Lurje [20].

The natural and essential boundary conditions are defined as

σα · nα = p̃α ∀ rα ∈ Sαp , uα = uα0 ∀ rα ∈ Sαu . (2.4)

The above equations (2.1)-(2.4) must be complemented with the conditions of
contact-separation which are valid on Sαc in order to fullfill all the requirements of
the contact problem of linear elasticity.
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2.1. Contact and separation. The outer normal of body α is denoted by nα. In
the domain of the supposed zone of contact Sαc the contact normal is defined as
nc = −n2 = n1. Before loading, the distance h between the bodies is measured along
the normal nc. h is decreased to the distance between the bodies after deformation
is

d = d (u) = u2
n − u1

n + h ∀ rα ∈ Sαc , (2.5)

which is shown in Figure 2. The normal components of the displacements are calcu-
lated as uαn = uα · nc.

Q2
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u2
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τ
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τ
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τ
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Figure 2. Contact and separation of two bodies

The normal components of the stresses on domain Sαc can be determined as follows

σαn = nα · σα · nα ∀ rα ∈ Sαc . (2.6)

The contact pressure pn is defined through the normal stress

pn = −σ1
n = −σ2

n ∀ rα ∈ Sαc , (2.7)

and the tangential stress vectors

pατ = σα · nα − σαnnα, pτ = p1
τ = −p2

τ . (2.8)

Summarising the statements written above the following conditions for contact and
separation can be achieved.

(a) conditions of contact

d = 0, pn > 0 ∀ r ∈ Ωp, (2.9a)

(b) conditions of separation

d > 0, pn = 0 ∀ r ∈ Ω0, (2.9b)

(c) complementary conditions

d ≥ 0, pn ≥ 0, pn d = 0 ∀ r ∈ Sc = Ωp ∪ Ω0. (2.9c)

The formulas (2.9a – 2.9c), called Hertz-Signonirini-Moreau conditions, give
the basis of the solution of frictionless normal contact problems.
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2.2. Stick and slip. Tangential stresses in the case of Coulomb-type friction are

||pατ || = ||σα · nα − σαnnα|| ≤ µ pn. (2.10)

The tangential relative velocity is u̇τ = u̇2
τ − u̇1

τ . The effects of friction are treated
analogously to plasticity according to Michalowski and Mróz [21], i.e.

u̇τ = u̇(adh)
τ + u̇(slip)

τ (2.11)

u̇(adh)
τ =

ṗτ
cτ
, u̇(slip)

τ = ξ̇
∂φ

∂pτ
, φ = ||pτ || − µpn ≤ 0, (2.12)

where cτ is the stiffness of connections at the interface and φ is the slip surface, ξ̇ ≥ 0.

(a) With friction
(
Ωp = Ωap + Ωsp

)

• on stick zone:

u̇τ (r) = u̇2
τ (r)− u̇1

τ (r) = 0 and ||pατ || ≤ µ pn r ∈ Ωap, (2.13)

• on slip zone:

u̇τ (r) 6= 0, and pτ = µ pn
u̇τ (r)

||u̇τ (r)|| r ∈ Ωsp. (2.14)

(b) Without friction

pατ = 0. (2.15)

Using the plasticity analogy the conditions for adhesion and slip are as follows

• in the adhesion (stick) zone

φ < 0, ξ̇ = 0 (2.16)

• in the slip zone

φ = 0, ξ̇ > 0 (2.17)

which ensures that φ ξ̇ = 0.

Therefore the tangential stress can be expressed as

ṗτ = cτ u̇τ − cτ u̇(slip)
τ = cτ u̇τ − cτ ξ̇

∂φ

∂pτ
. (2.18)

The quasi-static problem is treated by the backward Euler time-discretization tech-
nique. So the time integration of (2.18) on the interval from t to t+ ∆t gives

t+∆tpτ = p∗τ − cτ∆ξ

[
∂φ

∂pτ

]t+∆t

= p∗τ − cτ∆ξ

[
∂φ

∂pτ

]∗
= p∗τ − p∗τ,m0

(2.19a)

where the predicted shear stress is

p∗τ = tpτ + cτ
(
t+∆tuτ −tuτ

)
, (2.19b)

and

φ∗ = ||p∗τ || − µ t+∆tp,

[
∂φ

∂pτ

]∗
=

p∗τ
||p∗τ ||

(2.19c)

and p∗τ,m0
is calculated by the well-known return mapping algorithm [10, 22].
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2.3. The basis of the solution technique. The solution of the frictional contact
problem is based on the principle of virtual power to ensure the normal contact
condition with penalty term pn = −cn d

∑

α





∫

V α

δε̇ · · t+∆tσ dV −
∫

V α

δu̇ · t+∆tb dV −
∫

Sαp

δu̇ · t+∆tp̃dS




−

−
∫

t+∆tSc

δ
(
u̇2
n − u̇1

n

) (
−cn d( t+∆tu)

)
dS −

∫

t+∆tSc

δ
(
u̇2
τ − u̇1

τ

)
· t+∆tpτ dS = 0.

(2.20)

Using the
t+∆t∫
t

Ẋ dt̃ = ∆X notation where t denotes the dimensionless loading

parameter for integration of (2.20) gives the following variational equation

∑

α





∫

V α

(δ∆ε) · · t+∆tσ dV −
∫

V α

(δ∆u) · t+∆tbdV −
∫

Sαp

(δ∆u) · t+∆tp̃dS




−

−
∫

t+∆tSc

δ
(
∆u2

n −∆u1
n

) (
−cn d( t+∆tu)

)
dS−

−
∫

t+∆tSc

δ
(
∆u2

τ −∆u1
τ

)
· t+∆tpτ dS = 0. (2.21)

Applying the partial derivation and integral theorem for the variation equation
(2.21), the following formula is written for the normal stress in the contact zone Sc,

t+∆tσ1
n =t+∆tσ2

n = cnd(t+∆tu) (2.22)

and for the tangential stress

t+∆tpτ =t+∆t pτeτ ,
t+∆tpτ = eτ ·t+∆tσ1 · n1 = −eτ ·t+∆tσ2 · n2. (2.23)

Of course, the tangential stress t+∆tpτ must satisfy the conditions (2.13) and (2.14),
too.

2.4. Decomposition of mechanical quantities. Assuming small time steps, the
mechanical quantities are decomposed into known values at time t and their incre-
ments

t+∆tσ =tσ + ∆σ, t+∆tb =tb+ ∆b, t+∆tpn =tpn + ∆pn,

t+∆tu =tu+ ∆u, t+∆tp̃ =tp̃+ ∆p̃, t+∆tpτ =tpτ + ∆pτ

d(t+∆tu) =t+∆t (u2
n − u1

n + h) =t(u2
n − u1

n + h) + ∆u2
n −∆u1

n + ∆h ≡
≡td+ ∆d.

(2.24)
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Subtracting the virtual powers – written in t and t + ∆t time – from each other
the basic functional for numerical calculations is

∑

α





∫

V α

(δ∆ε) · ·∆σ dV −
∫

V α

(δ∆u) · ∆bdV −
∫

Sαp

(δ∆u) · ∆p̃dS




−

+

∫

t+∆tSc

δ
(
∆u2

n −∆u1
n

) (
−cn(td+ ∆u2

n −∆u1
n + ∆h)

)
dS−

−
∫

t+∆tSc

δ
(
∆u2

τ −∆u1
τ

)
·∆pτ dS = 0, (2.25)

where ∆pτ must be determined in different ways on adhesion and on slip subregions:

• in the adhesion subregion

∆pτ = cτ (∆u2
τ −∆u1

τ ) = cτ∆uτ (2.26)

i.e., the bodies are connected by distributed elastic springs with coefficient cτ .
• in the slip subregion

∆pτ = µ t+∆tpn
∆uτ
||∆uτ ||

−tpτ = µt+∆tpn
p∗τ
||p∗τ ||

−tpτ (2.27)

i.e., the bodies are loaded by tangential traction which computed according to
the Coulomb friction.

3. FE discretization with approximated increments

The increments in displacements are approximated in the usual form

∆uα = Nα ∆qα, α = 1, 2 (3.1)

where the shape functions in matrix Nα consists of nodal modes, side modes and
internal modes, ∆qα is the vector of increments in displacement parameters [14].
Increments of strains

∆εα → ∆εα = Bα ∆qα (3.2)

and stresses

∆σα → ∆σα = DαBα ∆qα (3.3)

are calculated in the usual way. Here Dα is the constitutive, and Bα is the strain–
displacement matrix. Normal and tangential displacements in the contact surface are
approximated as follows

∆uαn = Lα∆qα, ∆uατ = Lατ∆qα. (3.4)

where Lα and Lατ are contains only the localized shape functions of matrix Nα for
the contact domain as follows

Lα = nαT Nα(ξ, η, ζ = 1), Lατ = PαNα(ξ, η, q, ζ = 1), (3.5)
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using the normal nα and the tangential tαξ , tαη vectors of contact domain.

nα → nα, tαξ =
∂rα

∂ξ
, tαη =

∂rα

∂η
→ Pα. (3.6)

The vector of total displacement parameters is t+∆tqα =tqα + ∆qα.

Substituting these vectors into equation (2.25) the task is to solve the following
system of equations

∑

α

{
δ∆qeT

[∫

V α

BTDB dV

︸ ︷︷ ︸
Kα

∆qα −
∫

V α

NT∆b dV −
∫

Sαp

NT∆p̃ dS

︸ ︷︷ ︸
∆fαE

]}

+ δ∆qT [Cn + Cτ ] ∆q− δ∆qT fc = 0, (3.7)

in which the contact stiffness matrices are

Cn =

∫

t+∆tSc

[
−L1T

L2T

]
cn
[
−L1 L2

]
dS, Cτ =

∫

t+∆tS
(adh)
c

[
−L1T

τ

L2T
τ

]
cτ
[
−L1

τ L2
τ

]
dS.

(3.8)
Introducing the notations for the quasi-triangular stiffness matrix K

K =

[
K1 1
0 K2

]
, (3.9)

and vector of load on the contact surface

f (k−1)
c =

∫

t+∆tSc

[
−L1T

L2T

]
(−cn∆h)dS −

∫

t+∆tSc

[
−L1T

L2T

]
cn

tddS+

∫

t+∆tS
(slip)
c

[
−L1T

τ

L2T
τ

]
(µ t+∆tp(k−1)

n

p∗τ
|p∗τ |

−t pτ )dS, (3.10)

the final equation is written as

[K + Cn + Cτ ]
(k)

∆q(k) = ∆fE + f (k−1)
c (3.11)

which is solved by iterational technique. The solution process is controlled by the
change in the adhesion/slip subdomains iteratively until the constraints in equations
(2.10)-(2.17) are satisfied on the integration points of the contact domain. It means
that on all contact elements the local condition of stick and slip is fullfilled.

4. Interpolation with closed spline

In the present investigation it is supposed that the border curve of the resulting
contact domain is a closed, smooth and continuous one. Thus it can be interpolated
by a parametric spline curve. In geometric modeling and mechanical design para-
metric curves like B-spline curves and their rational generalization, i.e. Non-Uniform
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Rational B-spline curves or shortly NURBS, are frequently used because of their ca-
pability for defining new object, or describing existing curves and borders. They also
have a usefull property, that is the ease of changeability.

To define a NURBS a simple data structure must be given in advance, which
consists of three parts: the control points vi, the vector of knot values u and the
weight factors wi which are associated with the control points. When one deals with
non-rational B-splines the last mentioned weights are missing. Hereby a NURBS can
be modified through one of the three above mentioned structure elements.

In this section only a short summary is provided about the interpolation with
closed NURBS, more details can be found in the book of Piegl and Tiller [18].

A NURBS curve is defined so that

cr (t) =

n∑

i=1

Rqi (t)vi (4.1)

in which

Rqi (t) =
Nq
i (t)wi

n∑
j=1

Nq
j (t)wj

(4.2)

where n is the number of sample points, vector vi stores the coordinates of the control
point, wi denotes the weight factor of the ith control point, Nq

i is the ith normalized
B-spline basis function of order q (degree q − 1), and cr (t) gives the position of a
point on the curve. The basis functions are obtained through a knot vector, which
defines the functions’ break positions.

Consider the problem of closed NURBS interpolation to a sequence of points di
(i = 1, . . . , m) of a closed polygon, where (q−1) constraints are additionally imposed
to satisfy C(q−2) continuity at the endpoints of a resulting curve. It is an assumption
that no two consecutive vertices on the polygon are the same.

When a cyclic knot vector [23] is applied, the required constraints are the following

vdie =

{
vi if 1 ≤ i ≤ m,
vi mod (m+1)+1 if m < i ≤ m+ q − 1,

(4.3)

in which the operation (i mod j) gives the residuum of the quotient i
j . This results

in overlapped control points, i.e. v1 = vm+1, . . . , vq−1 = vm+q−1.

To determine the control points the following linear equation must be solved

di = cr (ti) =

n∑

k=1

Rqk (ti)vdke 1 ≤ i ≤ m. (4.4)

Rewriting equation (4.4) in matrix form using equations (4.2) and (4.3) leads to

NqV = D, (4.5)
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in which

Nq =
1

n∑
j=1

Nq
j (ti)wj




w1N
q
1 (t1) + wm+1N

q
m+1 (t1) . . . wmN

q
m (t1)

w1N
q
1 (t2) + wm+1N

q
m+1 (t2) . . . wmN

q
m (t2)

...
w1N

q
1 (tm) + wm+1N

q
m+1 (tm) . . . wmN

q
m (tm)


 (4.6)

where it is required to make summation in the first few (q − 1) columns because of
the overlapped control points and

V =




v1x v1y v1z

v2x v2y v2z

...
vmx vmy vmz


 , D =




d1x d1y d1z

d2x d2y d2z

...
dmx dmy dmz


 . (4.7)

Finally, a square coefficient matrix Nq with size m ×m is obtained. Thus the m
interpolation points determine n control points since the m+1th, m+2th, . . . , control
points are the same as the 1st, 2nd, . . . control points.

4.1. Choosing the parameters. The first step during interpolation is to assign
parameters to different interpolation points, which are on the resulting parametric
curve. It means that the parameters ti (i = 1, . . . , m) are chosen in a way that the
following equation holds true

di = cr (ti) 1 ≤ i ≤ m. (4.8)

In Figure 3 the curve must pass over five given interpolation points, i.e. five
parameters t1, . . . , t5 are needed to be chosen in the first step.

d5

t1 t2 t3 t5t4

d1

d2

d3 d4

Figure 3. Relationship between the interpolation points and the parameters

Several techniques exist for making this assignment between the interpolation
points and the parameters, see Refs.[18, 19, 23]. In this paper the parameters are
chosen according to the chord length.

If the interpolating curve is closed, i.e. d1 = dm+1, the polygon – given by di
(i = 1, . . . , m) different interpolation points – is also closed. The parameters are
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chosen by chord length with the following assumptions: Parameter t1 = 0 is assigned
to d1, while parameter tm+1 = 1 is assigned to the imagined point dm+1.

Other parameters ti (i = 2, . . . , m) can be computed with the help of chord lengths

t1 = 0, tm+1 = 1,

ti =
1

Lc

i∑

j=2

|dj − dj−1| 1 < i < m+ 1,
(4.9)

where Lc is the length of the closed polygon

Lc =
m+1∑

i=2

|di − di−1|. (4.10)

4.2. Generating the knot vector. After choosing the parameters, the next im-
portant step for creating an interpolation curve is to generate the knot vector u =
[u1, . . . , ul] which is needed to obtain the normalized B-spline basis functions.

Since the knot vector is searched for a closed interpolating curve the parameters
t1, t2, . . . , tm are known. The number of control points which can be calculated from
equation (4.5) is n = m+q−1, therefore the number of knot values, which are written
in the knot vector u, is l = m+ 2q − 1, see. [23].

In this way there exist no such a knot value which has k > 1 multiplicity. For
generating the knot values the following term is applied, which is partially based on
Ref. [23]

u−k = u1−k + un−q−k+2 − un−q−k+3 k = 1, . . . , q − 1,

u1 = 0, un−q+2 = 1

ui =
1

2z + 1

i+z∑

j=i−z
sj i = 2, . . . , n− q + 1,

un−q+2+k = un−q+1+k + uk+1 − uk k = 1, . . . , q − 1

(4.11)

in which z = b q−1
2 c, bxc means the greatest integer which is not greater than x. For

calculating sj (j = −(z + 2), . . . , m+ z) refer to the following rules

sj =





u1 + tm+1+j − tm+1 if − (z − 1) ≤ j ≤ −1,

tj if 1 ≤ j ≤ (m+ 1),

un−q+2 + tj−m−1 if (m+ 2) ≤ j ≤ (m+ z)

(4.12)

where un−q+2 = tm+1 = 1.

For better understanding of the above formulation let us see a numerical example
to generate the knots for a fourth order (q = 4) interpolation spline. There are m = 8
interpolation points given, and the aim is to create a closed spline which crosses all
the interpolation points d1, . . . , d8. The parameters t1, . . . , t8 are also calculated,
according to the chord length, and listed in Table 1.
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Table 1. Parameters for (m = 8) interpolation points

t1 t2 t3 t4 t5 t6 t7 t8 t9

0 1
8

2
8

3
8

4
8

5
8

6
8

7
8

1

The task is to generate the cyclic knot vector u. The number of control points is
n = m + q − 1 = 11, therefore the number of knot values is l = n + q = 15. The
parameters for the cyclic knot vector u are u1 = 0 and un−q+2 = u9 = 1 while the rest
can be obtained by means of equations (4.11) and (4.12). The results are summarised
in Table 2.

Table 2. Cyclic knot vector (q = 4, m = 8)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
u−3 u−2 u−1 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

− 3
8
− 2

8
− 1

8
0 1

8
2
8

3
8

4
8

5
8

6
8

7
8

1 9
8

10
8

11
8

4.3. Numerical example. A simple Fortran code is developed to interpolate a set of
points which are chosen by the contact search algorithm, i.e. the points are all along
the contact-separation border. Now let us consider a 2D interpolation across (m = 8)
points di, (i = 1, . . . , 8) which are in the same plane (see Figure 4. ).

Table 3. Coordinates of interpolation points

di x y z di x y z

d1 −
√

2 −
√

2 5.0 d5

√
2 + 0.2

√
2 + 0.2 5.0

d2 −2.0 0.0 5.0 d6 2.0 0.0 5.0

d3 −
√

2− 0.2
√

2 + 0.2 5.0 d7

√
2 −

√
2 5.0

d4 0.0 3.0 5.0 d8 0.0 −2.0 5.0

It is obvious, that the number of control points belonging to the closed interpolation
spline curve is (n = 11). Since the order of the B-spline basis function is chosen
for q = 4, the first and last three control points are overlapped. The calculated

Table 4. Coordinates of control points

vi x y z vi x y z

v8 0.0 −2.21321 5.0 v4 0.0 3.69991 5.0

v1 = v9 −1.58342 −1.57357 5.0 v5 1.72789 1.75406 5.0

v2 = v10 −2.16753 0.06703 5.0 v6 2.16753 0.06703 5.0

v3 = v11 −1.72789 1.75406 5.0 v7 1.58342 −1.57357 5.0
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Figure 4. Interpolation with a spline curve generated numerically.

coordinates of the control points vi, (i = 1, . . . , 11) are illustrated in Figure 4. For
the sake of simplicity, here the weights wi are prescribed to 1. The parameters for
the interpolation points are generated according to chord lengths.

The resulting two-dimensional NURBS curve is drawn in Figure 4 which is gener-
ated by the calculated control points. For drawing the spline, 303 points are deter-
mined along the curve and between the points a line segments are used.

5. Example for 3D contact

Here the contact of two bodies is considered (shown in Figure 5). The upper
body is a rigid sphere and the lower one is an elastic block with the geometrical data
R = 800 mm, a = 5 mm, b = c = 10 mm. The material parameters are the modulus
of elasticity E1 =∞, E2 = 2.1 · 105 MPa and the Poisson-ratio ν2 = 0.3. The contact
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problem is investigated in frictional case as well. Here three different coefficients of
friction are applied for tree different computations, µ1 = 0.08, µ2 = 0.1, µ3 = 0.12.
The upper body is loaded on its top by a prescribed displacement w0 = 5.0 ·10−3 mm.

c
x y

z

a

b

d = 2R

2

1

w0

Figure 5. Geometry of the contacting bodies.

Two types of contact problems are investigated. Firstly, a normal contact problem
is analysed in order to make a comparison between the solution achieved by the Hertz-
theory and the finite element computation. Secondly, frictional contact is examined
to get to know more about the stick and slip zones with the use of different friction
coefficients.

Approximating the analytical solution according to the Hertz–theory [1] the fol-
lowing formulae are used

a0 = 3

√
3

4
F k

R1R2

R1 +R2
, p0 =

3
√

6

π
3

√
F

k2

(
R1 +R2

R1R2

)2

(5.1)

in which F is the applied compression force, a0 is the size of the contact domain, p0

is the maximal contact pressure, R1 and R2 are the radii of the upper and the lower
body, respectivelly. Here the lower contacting body is a brick therefore R2 =∞ i.e.

R1 +R2

R1R2
=

1

R1
and

R1R2

R1 +R2
= R1 , (5.2)
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and since the upper body is rigid

k =
1− ν2

2

E2
.
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6 1
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a.) b.)

Figure 6. Applied FE meshes without friction.

In all our numerical investigations p-extension finite elements are used. The applied
FE meshes are shown in Figure 6 and Figure 7. In case of the normal contact problem
the aim is to identify the border of contact zone. Therefore only 9 elements are applied.
Figure 6a illustrates the mesh which was used only for test reasons and as an initial
point for computations. Naturally, it cannot be expected accurate results using such
a coarse mesh for a problem in which a rigid spherical intender is used. Therefore the
mesh was modified according to Figure 6b where the borders of elements 1, 2, 3, 4 are
interpolated by properly chosen splines.
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Figure 7. Applied FE meshes with friction.
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In frictional case not only the contact border but also the stick and slip zones are
investigated. It means that two subdomains exist in the real contact surface and
between them the algorithm must identify also a smooth well-defined border. Here
more elements are used to distinguish the sticking and slipping elements and to ensure
smooth stress distributions on these zones.

5.1. The search of border points. Determining the points on contact-separation
or stick-slip borders is a key task before making the interpolation. Figure 8 shows the
points which must be identified. The code developed uses eight different directions
along which the search is performed. These directions chosen follow the edges of
elements and the integration points in the middle of each contact elements.

Figure 8. Directions on which the points are to be identified.

The search of border points are based on the computed results determined in
previous step. In the integration points of each directions the contact pressure is
produced and before the supposed border point all the pressure values have the same
sign. See the illustration in Figure 9.
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r
(i)
G

p
(i)
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r
(i)
P
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r

p
(i)
n,P

r
(i+1)
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Figure 9. Linear approximation of a border point.
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The border point can be identified after some finite steps, using the following linear
iteration schema

r
(i+1)
P = r

(i)
P +

p
(i)
n,P

p
(i)
n,P − p

(i)
n,G

(
r

(i)
G − r

(i)
P

)
. (5.3)

According to equation (5.3) the eight points of the border are determined which
are interpolated with a single closed B-spline. The advantage of this procedure can be
easily noticable for non-symmetrical identation problems where the resulting contact
zone is a priory not known .

5.2. Results for normal contact. Two types of meshes are applied. In the first
case straight bordered elements are used. The results for these computations are
illustrated in Figures 10 and 11.

Figure 10. Oscillation in (−σz) normal stress distribution.

On Figure 11 the normal pressure is drawn as a function of x coordinates. The
polynomial degree is increased from 4 to 8. The normal pressure can be computed from
the penalty term (−cN · d−) and the derivatives of displacements (−σz), respectively.
Results shown in Figure 11 are not acceptable because it cannot describe the smooth
pressure distribution along the axis x. Hence the application of straight bordered
elements are not adequate.

In the second case spline bordered elements are applied. Computations show
smoother pressure distribution, as can be seen in Figures 12 and 13. This shows



142 A. Baksa, I. Páczelt and T. Szabó
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Figure 11. Contact pressure calculated by straight element borders.

Figure 12. Oscillation free results in case of (−σz).

the analytical results coming from equations (5.1) and the numerical results, respec-
tively. In numerical cases the applied polynomial degree is also varied from 4 to
8.
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Figure 13. Contact pressure compared with the Hertzian result.

Table 5. Results of normal contact with spline border elements w = −0.005 mm

p a0 [mm] pn [MPa]

Hertz 2.000 367.28

FEM 4 2.100 491.76

5 2.111 462.24

6 2.139 423.66

7 2.157 401.34

8 2.161 395.96

The discrepancy between the analytical and the numerical results – see Tab. 5 –
can be explained by the different assumptions used for the boundary value problem
in the theoretical and numerical approaches, i.e. the lower body has finite dimensions
in all directions.

If one makes a comparison between these numerical results, it will be obviously
seen that the application of positioning elements [14] with spline borders is suitable.
Figure 14 draws the relative error in energy norm in three different computation series:
straight bordered elements with and without remeshing, and elements bounded by a
positioning spline curve.

5.3. Results for frictional contact. Here, friction is taken into account. After
the solution of the normal contact problem the effects of friction are also applied.
Therefore it is computed with an iterational procedure.
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Figure 14. Relative errors without friction.
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Figure 15. Contact pressure and shear stress with µ = 0.10.

As is known, in the case of frictional contact there are two additional domains
inside the contact zone. These are the stick and slip domains which are distinguished
according to the relation between shear and the normal stresses. The size of the
adhesion zone is radh = 0.96 mm, while the slip zone is 0.96 mm ≤ rslip ≤ 2.16 mm
which can be identified from Figure 15.
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Results computed with µ = 0.10 are illustrated in Figure 15 where τRz means the
shear stress.

Figure 16 shows the effects of the friction coefficient on relative energy norm. The
polynomial order of shape functions is increased from 4 to 8 in order to see the
convergence in the solution.

1000 2000 4000 6000 10000

−2

10

−1

10

0

10

1

10

2

10

3

10

��
��
��
�
�
��
��
�
�	
�	
��


�
	
�
��

[%
]


�
���� �� ����
�� N

µ = 0.08

µ = 0.10

µ = 0.12

Figure 16. Relative errors with different friction coefficients.

Using the spline border positioning process the error in energy norm is smaller
comparing to meshes without spline interpolation.

6. Conclusions

Unilateral contact problems have been solved by p-extension of the finite element
method with the following assumptions:

• the contact region is single connected,
• the border of the contact region is a smooth curve, and the border curve of the

stick and slip zones is also smooth.

In order to achieve high accuracy, the treatment of weak singularities along the
border of the contact region and along the border curve of the stick and slip zones are
needed. The positiong of the spline to the contact border and to the stick-and-splip
zone proved to be an efficient method.

The border curves related to the contact zones are interpolated by B-splines using
only a couple of design parameters. The localization of the border curve of the stick
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and slip zones requires more iteration steps than to find the border of the contact
region.
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mechecs@uni-miskolc.hu

Kornél Dluhi
Hewlett-Packard Hungary Ltd.

H–1117, Budapest, Aĺız u. 1., Hungary
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Abstract. By using the Timoshenko type beam theory a simple solution is obtained for
the bending–tension–shearing problem of non-homogeneous prismatic bars. Within this
framework the elastic moduli can vary arbitrarily over the bar’s cross section. Vector formulas
for normal stress, shear flow and strain variables such as longitudinal strain and curvature
for arbitrary cross section are derived. A vector–tensor formulation of the first-order shear
deformation theory for thin-walled beams is presented. Applications of formulas obtained
are illustrated in the case of thin-walled open and closed cross section deriving the formulas
of shear centre and shear rigidity tensor.

Mathematical Subject Classification: 05C38, 15A15
Keywords: Bending, Non-homogeneous, Shear centre, Shear rigidity, Thin-walled, Timo-
shenko type beam

1. Introduction

This report is concerned with the tension (compression), bending and shearing of
non-homogeneous prismatic bars. The analysis of the present report is based on the
Timoshenko type beam theory in which the strain field is equivalent to assuming that
plane transverse sections of prismatic bars remain plane after bending, shearing and
tension (compression). The material of the bar is linearly elastic, non-homogeneous
and isotropic. The material and geometrical properties do not depend on the axial
coordinate z. The bar has non-homogeneity only in its cross section. It means that
the Young’s modulus E and shear modulus G may depend on the cross-sectional
coordinates x and y. This type of non-homogeneity is called cross-sectional non-
homogeneity. The definition of the cross-sectional non-homogeneity includes cases
when the bar is a composite of different homogeneous materials, so that E and G
are piecewise constants on the cross section. Types of these bars are the compound

c©2014 Miskolc University Press
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and reinforced bars. Their discontinuities in material properties should not affect the
presented analysis.

A paper by Wang [1] presents the vectorial formulation of bending and shear-
ing of homogeneous prismatic beams with arbitrary cross section. Wang [1] gives a
new form of some known relationships changing the component (scalar) formulas by
more compact vector formulas. For homogeneous and non-homogeneous beams the
governing equations of pure bending are written in coordinate-free invariant forms
by Stokes [2, 3]. In the paper by Stokes [4] a matrix formulation is developed to
analyse the thermoelastic effect in pure bending of non-homogeneous prismatic bars.
The formulation of Wang [1] and Stokes [2, 3] is based on the Bernoulli–Euler type
beam theory, where the effect of the shear force to the deformations is neglected, it
is assumed that the shear strains vanish.

The analysis of shear deformability of thin-walled beam is a coordinate free version,
based on the shear factor tensor, is developed by Romano et al. [5]. Formulae of the
position of shear centre derived in the present paper are different from them obtained
by Romano et al. [5]. Our formulae are explicit expressions for the centre of shear,
while paper by Romano et al. [5] gives implicit formulae for location of centre of shear
in general case. Romano et al. [5] did not deal with the determination of the deflection
curve of shear deformable thin-walled beams.

2. Formulation of tension (compression) and bending

Consider a prismatic bar of arbitrary cross section. The longitudinal direction of
the bar is denoted by the unit vector ez. The cross section of the bar is a connected
planar domain A orthogonal to vector ez. Under the action of axial force N and
the bending moment which is represented by vector M in the cross section the axial
deformation of the bar according to the Timoshenko type beam theory can be written
as

εz = ε0 + κη. (2.1)

In equation (2.1), εz is the normal strain in direction z at point P (x, y) and ε0 is the
value of εz at the origin O and κ is the “rate of rotation with respect to z” of the
cross section about axis ξ. In the case of the Bernoulli–Euler type beam theory κ is
the curvature of the deformed longitudinal fibre for which x = y = 0. The positions of
axes ξ and η are unknown (Figure 1), they depend on the loading parameters which
are the axial force and the bending moment vector.

Application of Hooke’s law gives the formula of normal stress:

σz = E(x, y) εz = E(x, y) [ε0 + κ η(x, y)] . (2.2)

Here, the function E = E(x, y) may be continuous or discontinuous.

The relationship between the coordinates x, y and ξ, η is (Figure 1)
−−→
OP = R = x ex + y ey = ξ n + η m, (2.3)

where n, m = ez × n are unit vectors, in which cross denotes the vectorial product
according to Lurje [6] and Malvern [7].
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Figure 1. Non-homogeneous bar subjected to axial force and bending moment

The definition of the normal stress vector is as follows

tz = σz ez = Eε0 ez + Eκ n×R, (2.4)

since n×R = η ez.

The axial force vector can be computed as

N = N ez =

∫

A

tz dA = ez ε0

∫

A

E dA+ κ n×
∫

A

E R dA. (2.5)

The following designations will be used

S =

∫

A

E(x, y) dA, Q =

∫

A

E(x, y) R dA. (2.6)

It is evident that
N = ε0S + κ n · (Q× ez), (2.7)

where the dot denotes the scalar product of two vectors [6, 7, 8].

The expression of the bending moment vector can be derived from the equation

M =

∫

A

R× tz dA. (2.8)

A simple calculation gives

M = ε0 Q× ez + J · κn. (2.9)

In equation (2.9) the E-weighted moment of inertia tensor of the cross section A about
point O is introduced by the following definition

J =

∫

A

E(x, y)
[
1R2 −R ◦R

]
dA. (2.10)

In equation (2.10), the dyadic (tensorial) product of two vectors is denoted by a circle
and 1 is the second order two-dimensional unit tensor [6, 7, 8]. It is clear, that J is
a positive definite symmetrical second order two-dimensional tensor. The validity of
this statement follows from equation (2.10).

The principal values of J are J1 ≥ J2 > 0 and the corresponding principal direc-
tions of J are given by unit vectors e1 and e2. We have

e1 · e2 = 0 and detJ = J1J2. (2.11)
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The spectral decomposition of J and its inverse J−1 can be written as

J = J1e1 ◦ e1 + J2e2 ◦ e2, J−1 =
1

J1
e1 ◦ e1 +

1

J2
e2 ◦ e2. (2.12)

By the use of the equation written above an identity for J is derived which will be
used later on. A simple computation gives

ez × J−1 × ez = −
[

1

J1
e2 ◦ e2 +

1

J2
e1 ◦ e1

]
(2.13)

where the following identities have been used for any dyad a ◦b with arbitrary c and
d vectors [6, 7, 8]

c× (a ◦ b)× d = (c× a) ◦ (b× d).

The combination of equation (2.11) with equation (2.13) yields

ez × J−1 × ez = − J

detJ
. (2.14)

The aim is to get the relationship between the loading parameters N , M and strain
variables ε0, κn. Let the origin O be the E-weighted centre C of the cross section
which is defined as (Figure 1)

∫

A

E(x, y) R dA = 0, R =
−−→
CP. (2.15)

In this case from equations (2.5) and (2.9) it follows that

ε0 =
N

S
, κn = J−1 ·M . (2.16)

Combination of equation (2.2) with equation (2.16) yields the formula of normal
stress

σz = E(x, y)

[
N

S
+ M · J−1 · (R× ez)

]
. (2.17)

Formula (2.17) in the case when N = 0 can be considered as a generalisation of the
classical bending (flexure) formula [9].

3. Shear loading of non-homogeneous bars

Figure 2 shows a bar segment which is loaded at its end cross sections so that N =
0 (0 ≤ z ≤ L). The cylindrical surface of the non-homogeneous bar is traction-free
and there are no body forces. Equations of equilibrium of this bar element are as
follows (Figure 2)

dF

dz
= 0,

dM

dz
+ ez × F = 0. (3.1)

Here, F is the internal force and M is the couple

F =

∫

A

τ z dA, M =

(∫

A

σR dA

)
× ez. (3.2)



Vector formulae for non-homogeneous prismatic bars 153

z = 0 z = L

−M1

−F1

A2

A1

ey

y
ex

F2

M2

z ez

R = xex + yey

N =
∫
A

σzdA = 0 (O ≡ C)
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Figure 2. Bending and shear of a non-homogeneous bar

τ z = τxzex+τyzey is the shear stress vector, ex and ey are unit vectors in the direction
of axes x and y, respectively. It should be noticed that the applied loads at the end
cross sections A1 and A2 satisfy the global conditions of equilibrium (Figure 2)

F2 − F1 = 0, M2 −M1 + Lez × F2 = 0, (3.3)
∫

A2

R× τ z(x, y, L) dA−
∫

A1

R× τ z(x, y, 0) dA = 0. (3.4)

According to the equation of equilibrium the following can be written [6, 7]

∂τxz
∂x

+
∂τyz
∂y

+
∂σz
∂z

= 0 (x, y) ∈ A 0 < z < L, (3.5)

τxznx + τyzny = 0 (x, y) ∈ ∂A 0 < z < L. (3.6)

Here, ∂A is the boundary curve of A and n = nxex + nyey is the unit normal vector
of boundary curve ∂A.

Consider the part A∗ of the cross section A which is bounded by the line segment
HK and the boundary segment ∂A∗ (Figure 3). From equation (3.5) it follows that

∫

A∗

(
∂τxz
∂x

+
∂τyz
∂y

)
dA = −

∫

A∗

∂σz
∂z

dA. (3.7)

By using Stokes’s theorem and the stress boundary condition it can be proved

∫

A∗

(
∂τxz
∂x

+
∂τyz
∂y

)
dA =

∫

∂A∗
(τxznx + τyzny) ds+

∫

HK

(τxznx + τyzny) ds

=

∫

HK

τ z ·m ds. (3.8)

In equation (3.8) s is an arc-length defined on ∂A∗ ∪HK and m is the unit normal
vector to line segment HK (Figure 3). The shear flow acting on the line segment HK
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Figure 3. A sketch to the computation of shear flow

is denoted by VHK and it can be computed as

VHK =

∫

HK

τ z ·m ds = −
∫

A∗

∂σz
∂z

dA. (3.9)

Note, that the unit of VHK is force/length. Assuming that O ≡ C and the flexure
formula is valid, from equation (2.17) with N = 0 follows

∂σz
∂z

= E
dM

dz
· J−1 · (R× ez). (3.10)

Substitution of equation (3.10) into equation (3.9) gives

VHK = −(F× ez) · J−1 · (QHK × ez), (3.11)

where

QHK =

∫

A∗
E(x, y)R dA. (3.12)

Here, equation (3.1) has been used. The combination of equation (2.14) with equa-
tion (3.11) gives the final form of shear flow as

VHK = F ·
(
ez × J−1 × ez

)
·QHK = −F · J ·QHK

detJ
. (3.13)

4. Shear centre and shear rigidity of a thin-walled beam with open
cross section

The thin-walled beam of open cross section is loaded by a single force F = Fxex +
Fyey at the end cross section A2, while the end cross section A1 at z = 0 is fixed
(Figure 4). The centre line of the profile is denoted by c and the thickness of the
profile is indicated by t = t(s), where s is an arc-length coordinate defined on c.
The origin of the cross-sectional coordinate system Oxy is the E-weighted centre of
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Figure 4. Thin-walled beam with open cross section

the cross section, that is O ≡ C. Let ξ denote the thickness coordinate, and Ē is
introduced by the definition

Ē(s) =
1

t(s)

∫ t/2

−t/2
E dξ. (4.1)

The equation of the centre line of the open profile is

−−→
OP = R(s) = X(s) ex + Y (s) ey. (4.2)

It is clear, that the E-weighted second moment of inertia tensor has the form

J = Jxex ◦ ex − Jxy(ex ◦ ey + ey ◦ ex) + Jyey ◦ ey, (4.3)

where

Jx =

∫

c

ĒY 2t ds, Jy =

∫

c

ĒX2t ds, Jxy = Jyx =

∫

c

ĒXY t ds. (4.4)

The E-weighted first moment of the shaded area about point O is as follows (Figure 4)

Q(s) =

∫
_
P0P

ĒRt ds, 0 ≤ s ≤ Lc. (4.5)

It follows that Q(0) = Q(Lc) = 0 since O ≡ C.

In equations (4.5) Lc is the length of the middle curve c.
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An equivalent force–couple system at point O to the shear flow

V (s) = −F · J ·Q(s)

detJ
(4.6)

is

F =

∫

c

V (s)m(s) ds, (4.7)

T =

∫

c

R(s)×m(s)V (s) ds =

∫

c

V (s)R(s)× dR, (4.8)

since

m(s) =
dR

ds
. (4.9)

According to Figure 4

R× dR = R×m ds = R× (ez ×N) ds =

= ez(R ·N) ds−N(R · ez) ds = RNez ds, (4.10)

where

RN = R ·N. (4.11)

Introducing equation (4.6) into equation (4.8) yields

T = ez

∫

c

V (s)RN ds = −F · J ·
∫
c
Q(s)RN ds

detJ
ez. (4.12)

Integration by parts gives the result
∫

c

Q(s)RN (s) ds = [Q(s)ω(s)]
Lc

0 −
∫

c

dQ

ds
ω(s) ds = −

∫

c

ĒRω ds (4.13)

since

ω(s) =

∫
_
P0P

RN ds,
dQ

ds
= Ē(s)Rt (4.14)

and Q(0) = Q(Lc) = 0. A new cross-sectional property Qω is introduced as

Qω =

∫

c

Ē(s)R(s)ω(s)t(s) ds. (4.15)

From equation (4.10) and (4.14) follows that

T =
F · J ·Qω

detJ
ez. (4.16)

It is very easy to show that

F× (ez × (J ·Qω)) = ez(F · J ·Qω), (4.17)

since F · ez = 0.

By the application of equation (4.17) a new form of the couple (torque) vector T
can be derived

T = F×
[

ez × J ·Qω

detJ

]
. (4.18)
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The shear flow is caused by the shear force F whose point of application is the
shear centre Sc. It is clear, that T can be computed as

T =
−−→
OSc × F. (4.19)

Comparing two expressions of T which are given by equations (4.18) and (4.19) a
vector formula can be obtained to determine the position of the shear centre

−−→
OSc = −ez × J ·Qω

detJ
, (O ≡ C). (4.20)

For homogeneous beams, the scalar version of formula (4.20) is identical to which can
be found in Vlasov’s book [10].

The derivation of the shear stiffness of the open profile is based on the expression of
shear strain energy. The shear strain energy per unit length of the non-homogeneous
beam is [10, 11]

Us =
1

2

∫

c

∫ t/2

−t/2

τ 2
z

G
dξ ds =

1

2

∫

c

τ2

Ḡ
t ds =

1

2

∫

c

[V (s)]
2

Ḡt
ds. (4.21)

Here, Ḡ(s) is introduced by the next definition

t(s)

Ḡ(s)
=

∫ t/2

−t/2

dξ

G
. (4.22)

A simple computation shows that

V 2 =

[
F · J ·Q(s)

detJ

]2

=
F · J · (Q ◦Q) · J · F

(detJ)
2 . (4.23)

Defining the tensor W as

W =

∫

c

Q(s) ◦Q(s)

Ḡ(s)t(s)
ds (4.24)

and using equation (4.23) it follows that

Us =
1

2
F ·Hs · F, (4.25)

where Hs is the shear flexibility tensor

Hs =
J ·W · J
(detJ)

2 . (4.26)

The shear rigidity tensor Cs is the inverse of Hs, that is

Cs = H−1
s . (4.27)

The principal directions of bending are the principal axes of E-weighted second
moment of inertia tensor computed to point C. The principal directions of shear
deformation are the principal axes of the shear rigidity (flexibility) tensor. From
equation (4.26) it follows that in general, the principal directions of bending defor-
mation and the principal directions of shear deformation have different orientations.
The principal directions of bending and shear deformations coincide only if J and
W have the same eigenvectors. In the case of symmetric cross sections this latter
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Figure 5. Thin-walled beam with closed cross section

statement is valid, that is the principal directions of bending and shear deformations
coincide.

5. Shear centre and shear rigidity of a thin-walled beam with closed
cross section

For a single cell closed thin-walled tube shown in Figure 5 the shear flow V = V (s)
at any point s is

V (s) = V0 −
F · J ·Q(s)

detJ
, (5.1)

where V0 is the value of V at s = 0 and s is an arc-length coordinate measured along
the centre line c. In order to find the shear flow caused by the shear force F, it is
necessary to determine V0. In the literature of thin-walled beams it is customary to
define the torsion-free bending of the tube as one in which the value of V0 is chosen
so, that the strain energy stored in the tube is minimal [11]. This condition leads to
the equation ∫

c

V (s)

Ḡt
ds = 0. (5.2)

From equations (5.1) and (5.2) the following can be derived

V0 =
F · J ·

∫
c
Q(s)
Ḡt

ds

detJ
∫
c

ds
Ḡt

. (5.3)

Note, that the thin-walled tube is axially homogeneous, i.e. all material and geomet-
rical properties do not change in the direction of axis z.

The derivation of the next identity is based on integration by parts
∫

c

Q(s)

Ḡt
ds = −

∫

c

(∫ s

0

dλ

Ḡt

)
ĒRt ds. (5.4)



Vector formulae for non-homogeneous prismatic bars 159

The point of application of the end load F, at which the twist is not developed, is
denoted by Sc. Point Sc is the shear centre of thin-walled beams with closed profile.
The torque about point O ≡ C obtained from F is

T =
−−→
OSc × F. (5.5)

The expression of the same torque in terms of shear flow in the case of torsion-free
bending is as follows

T = ez

∫

c

RN (s) V (s) ds. (5.6)

From equations (5.1), (5.3), (5.4) and from the comparison of the results formulated
in equations (5.5) and (5.6) follows

−−→
OSc = −ez × J ·QΩ

detJ
(O ≡ C), (5.7)

where

Ω(s) = ω(s)− 2Ac∫
c

ds
Ḡt

∫ s

0

dλ

Ḡt
, (5.8)

Ac is the area enclosed by the middle curve c,

QΩ =

∫

c

ĒRΩt ds. (5.9)

In order to get the expression of shear stiffness cs the expression of shear strain
energy per unit length of the non-homogeneous thin-walled tube is introduced, which
is [10, 11]

Us =
1

2

∫

c

[V (s)]
2

Ḡt
ds. (5.10)

Here,

[V (s)]
2

=

[
F · J · q(s)

detJ

]2

=
F · J · (q(s) ◦ q(s)) · J · F

(detJ)
2 , (5.11)

q(s) =

∫
c

Q
Ḡt

ds∫
c

ds
Ḡt

−Q(s). (5.12)

We introduce the tensor w as

w =

∫

c

q(s) ◦ q(s)

Ḡ(s)t(s)
ds. (5.13)

Inserting equations (5.11) and (5.13) into the formula of Us results in

Us =
1

2
F · hs · F, (5.14)

where hs is the shear flexibility tensor of the non-homogeneous thin-walled tube.
Expression of hs is

hs =
J ·w · J
(detJ)

2 . (5.15)

The shear rigidity tensor cs is the inverse of hs, that is

cs = h−1
s . (5.16)
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Following the discussion on the coincidence of principal directions of bending and
shear deformations given at the end of Section 4 the next statement can be formulated.
The principal directions of bending and shear deformations for the non-homogeneous
thin-walled tube will be the same only if J and w have the same eigenvectors.

6. Remark to the computation of the centre of shear

6.1. Open cross section. Here, a new formula is derived to obtain the position of
the centre of shear Sc relative to an arbitrary point D. According to Figure 4 and
formula (4.12)

−−→
DSc × F = −F · J ·

∫
c
Q(s) RDN (s) ds

detJ
ez, (6.1)

where RDN =
−−→
DSc ·N. From equation (6.1) it follows that

F ·
{

ez ×
−−→
DSc +

J ·
∫
c
Q(s) RDN (s) ds

detJ

}
= 0. (6.2)

Combination of equation (6.2) with the next identity

(ez ×
−−→
DSc)× ez =

−−→
DSc (6.3)

gives

−−→
DSc =

ez × J ·
∫
c
Q(s) RDN (s) ds

detJ
. (6.4)

6.2. Closed cross section. In the case of closed profile a new formula can be derived
by the same method to determine the position of the centre of shear Sc relative to an
arbitrary point D. Here, equations (5.1) and (5.3) are used. A detailed computation
yields the next result (Figure 5)

−−→
DSc =

ez × J ·
∫
c
Q(s) RDN (s) ds

detJ
−

ez × J ·
∫
c
Q(s)
Ḡt

ds

detJ

2Ac∫
c

ds
Ḡt

. (6.5)

Note, that in equations (6.4) and (6.5) J and Q = Q(s) refer to the E-weighted
centre of the cross section.

7. Deflection curve of shear deformable thin-walled
non-homogeneous beams

It is assumed that the displacements and strains are small and the form of the
displacement field is

u(x, y, z) = U(z) + [w0(z) + (ez ×ψ(z)) ·R] ez, (7.1)

where U(z) = U(z) ex + V (z) ey is the transverse displacement vector of the E-
weighted centre of the cross section and w0 = w0(z) is the axial displacement of the
E-weighted centre of the cross section while ψ = ψx(z) ex + ψy(z) ey describes the
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“rigid” rotation of cross sections according to Timoshenko’s beam theory. From the
strain–displacement relationships of the linearized theory of elasticity [6, 7, 8] follows

εx = εy = γxy = 0, εz =
∂w0

∂z
+

(
ez ×

dψ

dz

)
·R, (7.2)

γxz =
dU

dz
+ (ez ×ψ) · ex, γyz =

dV

dz
+ (ez ×ψ) · ey. (7.3)

The shear strain vector γz is introduced as

γz = γxz ex + γyz ey =
dU

dz
+ ez ×ψ. (7.4)

It follows from the obtained strain components that the displacement field formulated
in equation (7.1) satisfies the requirements of Timoshenko’s beam theory, i.e. the cross
sections remain planes and the shear strains do not vanish. The shear strain vector on
a cross section is constant, since it depends only on axial coordinate z. According to
this statement the beam theory based on the displacement field (7.1) is a first-order
shear deformation beam theory [12]. It should be emphasised that axis z is the centre
line of the non-homogeneous beam, that is it connects the E-weighted centre of the
cross sections. Internal forces in a cross section can be decomposed into two parts as

F = S + ezN, S · ez = 0, (7.5)

where N is the axial force and S is the shear force vector. According to equation (7.5)
the applied distributed load is resolved as

f = s + ezn, s · ez = 0. (7.6)

Force equilibrium equations can be written in the form

dN

dz
+ n = 0,

dS

dz
+ s = 0 0 < z < L. (7.7)

Next, it is assumed that n(z) = 0 (0 < z < L) and N(0) = 0, that is N(z) = 0
(0 ≤ z ≤ L).

The moment of internal forces about point Sc is M = M(z). It is assumed that
there is no torsional load present, that is

M · ez = 0 and m · ez = 0. (7.8)

In equation (7.8) m = m(z) is the moment of the applied distributed transverse load
about point Sc. The moment equilibrium equation has the form

dM

dz
+ ez × S + m = 0. (7.9)

From equations (2.1) and (7.2) it follows that

εz = ε0 + κη = ε0 + (ez × κn) ·R =
dw0

dz
+

(
ez ×

dψ

dz

)
·R, (7.10)

that is

ε0 =
dw0

dz
, κn =

dψ

dz
. (7.11)
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On the other hand, the following holds

ε0 =
N

S
= 0 0 ≤ z ≤ L (7.12)

in the present case. According to equations (7.11) and (7.12), without the loss of
generality it can be assumed that

w0(z) = 0 0 ≤ z ≤ L. (7.13)

Expression of M in terms of ψ is as follows

M = J · dψ

dz
. (7.14)

In order to get the relationship between shear force S and shear strain γz the expres-
sion of shear strain energy per unit length of non-homogeneous beams is considered

Us =
1

2

∫

A

τ z · γz dA =
1

2
S · γz =

1

2
S ·H · S. (7.15)

For open cross section H = Hs, and for closed cross section (tube) H = hs. equa-
tion (7.15) yields

γz = H · S or S = C · γz, (7.16)

where C = H−1 is the shear rigidity tensor.

Here, we note, that the shear strain vector γz represented by equation (7.4) is
constant on the cross section, from this it follows that the shear stress vector τ z
will also be constant. The discrepancy between the stress state compatible with the
equilibrium equations (formula (3.13)) and the constant stress state of the first order
shear deformation theory can be overcome approximately by introducing the shear
rigidity tensor to obtain the shear strain vector γz according to equation (7.16).

From equation (7.9) it follows that

d

dz
(ez ×M)− S + ez ×m = 0. (7.17)

Integration of equations (7.7) and (7.17) gives

S = −
∫ z

0

s(ξ1) dξ1 + c1, (7.18)

ez ×M = −
∫ z

0

∫ ξ2

0

s(ξ1) dξ1 dξ2 −
∫ z

0

ez ×m(ξ1) dξ1 + c1z + c2. (7.19)

Here, c1 and c2 are the constants of integration (c1 · ez = c2 · ez = 0). A new
kinematical quantity φ = φ(z) is introduced as

φ(z) = ez ×ψ(z). (7.20)

It is evident, that

ψ(z) = −ez × φ(z). (7.21)

A simple calculation shows that

ez ×M(z) = ez × J ·
dψ

dz
= −(ez × J × ez) ·

dφ

dz
= (detJ) J−1 · dφ

dz
. (7.22)
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Here, equation (2.14) has been used for “J−1”. Inserting equation (7.22) into equa-
tion (7.19) yields

dφ

dz
=

J

detJ
·
{
−
∫ z

0

∫ ξ2

0

s(ξ1) dξ1 dξ2 −
∫ z

0

ez ×m(ξ1) dξ1 + c1z + c2

}
. (7.23)

Integrating equation (7.23) with respect to z results in

φ(z) =
J

detJ
·
{
−
∫ z

0

∫ ξ3

0

∫ ξ2

0

s(ξ1) dξ1 dξ2 dξ3 −
∫ z

0

∫ ξ2

0

ez ×m(ξ1) dξ1 dξ2

+
c1

2
z2 + c2z

}
+ c3. (7.24)

From equations (7.4), (7.16) and (7.18) the next equation can be derived

H · S = H ·
(
−
∫ z

0

s(ξ1) dξ1 + c1

)
=

dU

dz
+ φ. (7.25)

Substituting φ = φ(z) in equation (7.25) and integrating it once more with respect
to z results in

U(z) = − J

detJ
·
{
−
∫ z

0

∫ ξ4

0

∫ ξ3

0

∫ ξ2

0

s(ξ1) dξ1 dξ2 dξ3 dξ4

−
∫ z

0

∫ ξ3

0

∫ ξ2

0

ez ×m(ξ1) dξ1 dξ2 dξ3 +
1

6
c1z

3 +
1

2
c2z

2

}
− c3z + c4

+H ·
(
−
∫ z

0

∫ ξ2

0

s(ξ1) dξ1 dξ2 + c1z

)
. (7.26)

The transverse deflection vector U = U(z) consists of two parts, U = UB + US ,
where the bending part UB is

UB =
J

detJ
·
{∫ z

0

∫ ξ4

0

∫ ξ3

0

∫ ξ2

0

s0(ξ1) dξ1 dξ2 dξ3 dξ4

+

∫ z

0

∫ ξ3

0

∫ ξ2

0

ez ×m(ξ1) dξ1 dξ2 dξ3 −
1

6
c1z

3 − 1

2
c2z

2

}
− c3z + c4 (7.27)

and the shear part of U is US

US = H ·
(
−
∫ z

0

∫ ξ2

0

s(ξ1) dξ1 dξ2 + c1z

)
. (7.28)

The bending part UB = UB(z) is the same that can be derived from the classical
Euler–Bernoulli’s beam theory. When the shear stiffness tends to infinity, the shear
strain vector γz goes to zero vector, that is

ez ×ψ = φ = −dU

dz
. (7.29)
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e

z = L

SC

(a) Supported by one roller.

z = L

SC

e1

e2

(b) Supported by two rollers.

Figure 6. Simply supported end cross sections (a = L)

If equation (7.29) is valid, the Timoshenko’s beam theory reduces to the classical
Euler–Bernoulli’s beam theory [12].

Associated boundary conditions to equations (7.18), (7.19), (7.24) and (7.26) are
as follows

• for fixed support: U(a) = 0, φ(a) = 0 (a = 0 or a = L);

• for loaded end cross section: M(a) = M̃, S(a) = S̃ (a = 0 or a = L), here

M̃ and S̃ are prescribed;
• for free end cross section: M(a) = 0, S(a) = 0 (a = 0 or a = L);
• for simply supported end cross section by one roller as shown in Figure 6(a):

U(a) · e = 0, M(a) = 0, (ez × S(a)) · e = 0 (a = 0 or a = L);
• for end cross section supported by two rollers as shown in Figure 6(b): U(a) =

0, M(a) = 0. The common point of lines of action of rollers is the centre of
shear of considered end cross section.

8. Numerical examples

8.1. Shear centre and shear rigidity of a slitted rectangular tube. The thick-
ness of cross section shown in Figure 7 is uniform but the walls are made of different
materials. Using data given in Figure 7 results in

−−→
DC =

(
0.065
0.098

)
m, J =

(
721046 -50597.6

-50597.6 798352

)
Nm2,

−−→
DSc =

(
0.219
-0.053

)
m.

A simple computation gives

Hs =

(
1.216E-07 7.633E-08
7.633E-08 1.066E-07

)
1

N
, Cs =

(
1.491E+07 -1.067E+07
-1.067E+07 1.702E+07

)
N.

The principal directions of bending deformation (eigenvectors of J) are

b1 =

(
-0.896398
-0.44325

)
, b2 =

(
-0.44325
0.896398

)
.
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P2

P4
x̄c =

0.5a(E2+E4)+aE3

E1+E2+E3+E4

ȳc =
0.5a(E1+E3)+aE4

E1+E2+E3+E4

t = constant

y

C(x̄c, ȳc)
x

ȳ

D ≡ P1

P0 P3

E4, G4

E1, G1

E3, G3

E2, G2
x̄

Figure 7. Slitted rectangular thin-walled tube. Data: a = 160 mm,
t = 2 mm, E1 = E4 = 2.1 × 105 MPa, E2 = 0.7 × 105 MPa, E3 =
1.05 × 105 MPa, G1 = G4 = 0.8 × 105 MPa, G2 = 0.27 × 105 MPa,
G3 = 0.39× 105 MPa, P0P1 = P1P2 = a

The principal directions of shear deformation (eigenvectors of Cs) are

S1 =

(
-0.741031
-0.67147

)
, S2 =

(
0.67147

-0.741031

)
.

In this example the principal directions of bending and shear deformations are
significantly different.

8.2. Shear centre and shear rigidity of a closed rectangular tube. The middle
curve of the closed tube is the same as above (Figure 7), but P0 ≡ P4, i.e. there is no
cut at point P0. By the use of data given in Figure 7 the next results are obtained

−−→
DSc =

(
0.054
0.123

)
m, hs =

(
3.775E-08 -1.841E-09
-1.841E-09 3.381E-08

)
1

N
,

cs =

(
2.655E+07 1.446E+06
1.446E+06 2.965E+07

)
N.

The principal directions of bending deformation for open and closed cross sections are
the same. The principal directions of shear deformation (eigenvectors of cs) are

s1 =

(
-0.930169
0.367131

)
, s2 =

(
-0.367131
-0.930169

)
.

8.3. Deflection curve of a cantilever thin-walled beam with open cross sec-
tion. Consider a cantilever beam of length L fixed at z = 0 (Figure 8). The data of
the “L” shape cross section is obtained from the data of the cross section shown in
Figure 7. Here, a = 160 mm, t = 2 mm, E1 = 2.1 × 105 MPa, E2 = 0.7 × 105 MPa,
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y

C x

F0 = F0eF

SC

y

M0

F0

L

z

M0 = M0eM

Figure 8. Cantilever thin-walled beam with open profile

E3 = E4 = 0, G1 = 0.8 × 105 MPa, G2 = 0.27 × 105 MPa, G3 = G4 = 0. The
determination of the deflection vector U = U(z) and the vector φ = φ(z) is based on
equations (7.18), (7.19), (7.24), (7.27) and the associated boundary conditions

U(0) = 0, φ(0) = 0, S(L) = F0, M(L) = M0. (8.1)

It is clear, that in the present problem s = 0 and m = 0. A detailed computation
gives the next results:

c1 = F0eF , c2 = ez × eMM0 − LF0eF , c3 = 0, c4 = 0; (8.2)

φ(z) =
J

detJ
·
{
F0

(
z2

2
− Lz

)
eF +M0zez × eM

}
, (8.3)

U(z) = − J

detJ
·
{
F0

(
z3

6
− Lz2

2

)
eF +

M0z
2

2
ez × eM

}
+ zF0H · eF . (8.4)

Table 1 illustrates the effect of shear to the end displacement of the cantilever
thin-walled non-homogeneous beam with open profile.

8.4. Deflection curve of a fixed-fixed thin-walled beam with open cross
section. Figure 9 shows the fixed-fixed supported thin-walled beam and its load.
The applied load is acting on the whole length of the thin-walled beam. The intensity
of the applied load is

s(z) = f0 = f0ef , (f0, ef are constants). (8.5)

For a fixed-fixed end beam the boundary conditions are as follows

U(0) = 0, φ(0) = 0, U(L) = 0, φ(L) = 0. (8.6)

Application of equations (7.24), (7.27) and the first two of the boundary conditions
mentioned above gives

φ(z) =
J

detJ
·
{
−f0z

3

6
ef +

c1

2
z2 + c2z

}
, (8.7)
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Table 1. End deflection of the cantilever beam caused by a single
force (M0 = 0, eF = cosαex + sinαey, L = 2 m)

α U(L)/F0 [m
N ] UB(L)/F0 [m

N ] US(L)/F0 [m
N ]

0

(
2.47073E-05
1.0477E-05

) (
2.44088E-05
1.04606E-05

) (
2.98525E-07
1.6429E-08

)

π
6

(
2.66356E-05
1.66851E-05

) (
2.63689E-05
1.66151E-05

) (
2.66745E-07
7.00265E-08

)

π
3

(
2.1427E-05
1.84224E-05

) (
2.12635E-05
1.83176E-05

) (
1.6349E-07
1.04861E-07

)

π
2

(
1.0477E-05
1.52235E-05

) (
1.04606E-05
1.51119E-05

) (
1.6429E-08
1.11597E-07

)

5π
6

(
-1.61586E-05
-1.4616E-06

) (
-1.59083E-05
-1.50318E-06

) (
-2.50316E-07
4.15707E-08

)

2π
3

(
-3.28028E-06
7.94544E-06

) (
-3.14525E-06
7.85701E-06

) (
-1.35035E-07
8.84316E-08

)

y

L

z

SC

y

C x

f0 = f0eff

Figure 9. Uniform load on a fixed-fixed supported thin-walled beam
with open profile

U(z) =
J

detJ
·
{
f0z

4

24
ef −

c1

6
z3 − c2

2
z2

}
+H ·

{
−f0z

2

2
ef + c1z

}
. (8.8)

In the present problem c3 = c4 = 0. From the boundary conditions U(L) =
φ(L) = 0 it can be deduced

c1 =
f0L

2
ef , c2 = −f0L

2

12
ef . (8.9)

In Table 2 the deflection vector U(L/2) is listed for different values of α (ef =
cosαex + sinαey).
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Table 2. Deflection vector of the midpoint of a fixed-fixed thin-walled
non-homogeneous beam with open profile

α U(L/2)/f0 [m2

N ] UB(L/2)/f0 [m2

N ] US(L/2)/f0 [m2

N ]

0

(
-5.64617E-06
-2.44759E-06

) (
-5.7208E-06
-2.4517E-06

) (
7.46312E-08
4.10724E-09

)

π
6

(
-6.11352E-06
-3.87665E-06

) (
-6.18021E-06
-3.89416E-06

) (
6.66862E-08
1.75066E-08

)

π
3

(
-4.94276E-06
-4.26697E-06

) (
-4.98363E-06
-4.29318E-06

) (
4.08726E-08
2.62151E-08

)

π
2

(
-2.44759E-06
-3.51395E-06

) (
-2.4517E-06
-3.54185E-06

) (
4.10724E-09
2.78993E-08

)

5π
6

(
3.66593E-06
3.62699E-07

) (
3.72851E-06
3.52307E-07

) (
-6.25789E-08
1.03927E-08

)

2π
3

(
7.03408E-07
-1.81938E-06

) (
7.37167E-07
-1.84149E-06

) (
-3.37586E-08
2.21079E-08

)

9. Conclusions

It has been shown that the governing formulas of bending and shear can be written in
a coordinate-free invariant form for arbitrary non-homogeneous cross sections. New
coordinate-free expressions are derived for the location of the centre of shear of thin-
walled beams with open and closed profiles. Explicit coordinate-free formulas of
shear rigidity tensors have been presented for thin-walled cross sections with open
and closed profiles. Numerical examples illustrate that the principal directions of
bending and shear deformations may not be the same. A vector–tensor formulation
of the first-order shear deformation theory for non-homogeneous thin-walled beams
is also presented.
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Abstract. The nonlinear in-plane stability of shallow arches with cross-sectional inhomo-
geneity is investigated. It is assumed that a central concentrated load is exerted at the crown
of the arch and the supports are uniform rotationally restrained pins at the endpoints with
constant stiffness. The effects of the springs on the stability is investigated. It is found that
such arches may buckle in an antisymmetric bifurcation mode with no strain increment at
the moment of the stability loss, and in a symmetric snap-through mode with an increased
strain. The effects of the springs are notable on the bucking ranges and also on the critical
(buckling) loads. If the spring stiffness is zero we get back the results valid for pinned-pinned
arches and as the stiffness of the rotational restraints tends to infinity the results become
consistent with those for fixed-fixed arches. The results computed are compared with finite
element calculations.

Mathematical Subject Classification: 74G60, 74B15
Keywords: Heterogeneous arch, stability, snap-through, bifurcation, rotational restraint

1. Introduction

Arches are widely used in many engineering applications. Let us mention, for in-
stance, their role in arch bridges and roof structures. It is naturally important to be
aware of the behavior of such structural members. An early scientific work on the me-
chanical behavior of such arches was published in the 19th century by Bresse [1], who
derived the connection between the displacements and the inner forces. Regarding the
stability, Hurlbrink [2] was the first to work out a model for the determination of the
buckling load assuming the inextensibility of the centerline. The model of Chwalla
and Kollbrunner [3] accounts for the extensibility of the centerline. Results by Timo-
shenko and Gere [4] are also of importance. Since the 1960s, work on stability issues
became more intensive. Schreyer and Masur provided an analytical solution to arches
with rectangular cross-section in [5]. DaDeppo [6] showed first in 1969 that quadratic
terms in the stability analysis should be taken into account. Dym in [7] and [8] derives
results for shallow arches under dead pressure. The thesis by Szeidl [9] determines
the Green’s function matrices of the extensible pinned-pinned and fixed-fixed circular

c©2014 Miskolc University Press
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beams and determines not only the natural frequencies but also the critical loads
given that the beam is subjected to a radial dead load. Finite element solutions are
provided by e.g., Noor [10], Calboun [11], Elias [12] and Wen [13] with the assump-
tion that the membrane strain is a quadratic function of the rotation field. A more
accurate model is established by Pi [14]. Analytical solutions for pinned-pinned and
fixed-fixed shallow circular arches under a central load are provided by Bradford et
al. in [15], [16].

In the open literature there can hardly be found account for elastic supports when
investigating the buckling behavior of arches. However, as structural members are
often connected to each other, they can provide elastic rotational restraints. This
can, in one way, be modeled by applying pinned supports with torsional springs,
which impede the end rotations of the arch. Such a hypothesis is used by Bradford
et al. in [17] for symmetric supports and a central load and in [18], where the spring
stiffnesses are different at the ends. The authors have come to the conclusion that the
springs have a significant effect on the in-plane elastic buckling behavior of shallow
arches. Stiffening elastic supports for sinusoidal shallow arches are modeled in [19]
by Plaut.

Within the frames of the present article a new geometrically nonlinear model is
introduced for the in-plane elastic buckling of shallow circular arches with cross-
sectional inhomogeneity. Nonlinearities are taken into account through the rotation
field. The loading is a concentrated force, normal in direction and exerted at the
crown point. The principle of virtual work is used to get the equilibrium equations.
Uniform, rotationally restrained pinned supports are considered at the ends by using
torsional springs with constant stiffness. The effects of the elastic restraints on the
buckling types and buckling loads are studied. Special cases when the spring stiffness
is zero and when it tends to infinity coincide with the earlier results in [20], [21] valid
for pinned-pinned and for fixed-fixed supports. The solution algorithm is based on
the one presented in [17]. However, the current model uses less neglects and is also
valid for nonhomogeneous materials. In addition, more accurate predictions for not
strictly shallow arches are also a benefit.

The paper is organized in seven Sections. Section 2 presents the fundamental
hypotheses and relations for the pre- and post-buckling states. The differential equa-
tions, which govern the problem are derived in Section 3. Solutions to these are
provided in Sections 4 and 5. Numerical evaluation of the results is presented in
Section 6. The article concludes with a short summary, which is followed by the
Appendix and the list of references.

2. Fundamental relations

2.1. Pre-buckling state. Figure 1 shows the rotationally restrained arch and the
applied curvilinear coordinate system, which is attached to the E-weighted centerline
(or centerline for short). The former has a constant initial radius ρo. The right-
handed local base is formed by the unit vectors eξ (tangent to the centerline), eη
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(perpendicular to the plane of the centerline) and eζ (normal to the centerline) –
eη = eζ × eξ.



e 

e 

  0

 P

f

k kr

Figure 1. Rotationally restrained arch.

Under cross-sectional heterogeneity is meant that the material parameters – the
Young’s modulus E and the Poison’s number ν – are functions of the cross-sectional
coordinates η and ζ (that is, these are independent of ξ): E(η, ζ) = E(−η, ζ),
ν(η, ζ) = ν(−η, ζ). Otherwise, the material of the arch is isotropic. The cross-
section is uniform and symmetric with respect to the coordinate plane (ξ, ζ). The
E-weighted centerline, along which the coordinates ξ = s are measured, is assumed
to remain in the coordinate plane (ξ, ζ). The position of the point at which the
E-weighted centerline intersects the cross-section is obtained from the condition

Qeη =

∫
A

E(η, ζ) ζ dA = 0, (1)

in which the integral is the E-weighted first moment with respect to the axis η – this
quantity is denoted by Qeη. We assume that the displacement vector at an arbitrary
point of the cross-section prior to buckling has the form

u = uo + ψoηζeξ = woeζ + (uo + ψoηζ)eξ , (2)

where uo is the displacement vector of the centerline and ψoη is the rigid body rotation
there – Euler-Bernoulli beam theory is considered. The rotation can be determined
in terms of the displacements as

ψoη = −1

2
(u×∇)|ζ=0 · eη =

uo
ρo
− dwo

ds
, ∇ =

ρo
ρo + ζ

∂

∂s
eξ +

∂

∂η
eη +

∂

∂ζ
eζ . (3)

Nonlinearities are taken into account by keeping some nonlinear terms in the Green-
Lagrange strain tensor, that is

E = EL+EN , EL =
1

2
(u ◦ ∇+∇ ◦ u) , EN =

1

2
(∇ ◦ u)·(u ◦ ∇) ' 1

2
Ψ ·ΨT . (4)

Here Ψ is the tensor of small rotations and, for shallow arches, it is dominant compared
to the other quadratic components [15]. Consequently

εξ = eξ ·
1

2
(u ◦ ∇+∇ ◦ u) ·eξ +eξ ·

1

2

(
ΨT · Ψ

)
·eξ =

ρo
ρo + ζ

(εoξ + ζκo)+
1

2
ψ2
oη (5)
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is the axial strain at an arbitrary point, where

εoξ =
duo
ds

+
wo
ρo

, κo =
dψoη
ds

=
1

ρo

duo
ds
− d2wo

ds2
and εm = εoξ +

1

2
ψ2
oη . (6)

Here εoξ and εm are the linear and the nonlinear axial strain on the centerline, further
κo is the curvature there.

It is assumed that σξ is much greater than any other element of the second Piola-
Kirchhoff stress tensor. Under this condition σξ = Eεξ is the constitutive equation.
The E-weighted reduced area AeR, the E-weighted reduced moment of inertia IeR
and the E-weighted reduced first moment QeR are defined as

AeR =

∫
A

ρo
ρo + ζ

E(η, ζ) dA '
∫
A

E(η, ζ) dA = Ae , (7a)

IeR =

∫
A

ρo
ρo + ζ

E(η, ζ)ζ2 dA '
∫
A

ζ2E(η, ζ)dA = Ieη , (7b)

QeR =

∫
A

ρo
ρo + ζ

E(η, ζ)ζ dA ' 1

ρo

∫
A

ζ2E(η, ζ) dA = −Ieη
ρo
. (7c)

With the aid of these quantities and by recalling the kinematic relations (5)-(6), we
get the axial force and the bending moment:

N =

∫
A

Eεξ dA = AeRεoξ +QeRκo +Ae
1

2
ψ2
oη ≈ Aeεm −

Ieη
ρo
κo , (8)

M =

∫
A

Eεξζ dA =

∫
A

E
ζ

1 + ζ
ρo

dA︸ ︷︷ ︸
QeR'−

Ieη
ρo

εoξ +

∫
A

E
ζ2

1 + ζ
ρo

dA︸ ︷︷ ︸
IeR'Ieη

κo +

∫
A

Eζ dA︸ ︷︷ ︸
Qeη=0

1

2
ψ2
oη =

= −Ieη
(

d2wo
ds2

+
wo
ρ2o

)
. (9)

With the knowledge of the bending moment we can check – by utilizing (8) and (6)2,3
– that

N =
Ieη
ρ2o

(
Aeρ

2
o

Ieη
− 1

)
εm −

M

ρo
≈ Aeεm −

M

ρo
. (10)

2.2. Post-buckling state. Quantities denoted by an asterisk belong to the post-
buckling equilibrium state, while the change (increment) between the pre- and post-
buckling equilibrium is denoted by a subscript b. (The change from the initial con-
figuration to the pre-buckling state is not denoted specifically.) Making use of this
convention, similarly as before, we can derive the rotation field and the change of
curvature as

ψ∗oη = ψoη + ψoη b , ψoη b =
uob
ρo
− dwob

ds
, κ∗o = κo + κo b , κo b =

1

ρo

duob
ds
− d2wob

ds2
.

(11)
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As regards the strain increment (assuming
∣∣∣ 12ψ2

oη b

∣∣∣ � |ψoηψoη b|, which is generally

accepted in the literature) we have

ε∗ξ =
ρo

ρo + ζ

(
ε∗oξ + ζκ∗o

)
+

1

2

(
ψ∗oη
)2

= εξ+εξ b, εξ b '
ρo

ρo + ζ
(εoξ b + ζκo b)+ψoη bψo η ;

(12a)

εoξ b =
duob
ds

+
wob
ρo

, εmb ' εoξ b + ψoη bψo η . (12b)

Recalling (7), (8), (10) and (12) we can write

N∗ =

∫
A

Eε∗ξ dA = N +Nb , Nb = Aeεmb −
Ieη
ρo
κob . (13)

In the same way we obtain the increment in the bending moment as

M∗ =

∫
A

Eε∗ξζ dA = M +Mb , Mb = −Ieη
(

d2wob
ds2

+
wob
ρ2o

)
. (14)

Let us assume that

Aeρ
2
o/Ieη − 1 ≈ Aeρ2o/Ieη = (ρo/ie)

2 = m , ie =
√
Ieη/Ae . (15)

Here ie is the E-weighted radius of gyration and m is the slenderness ratio of the arch.
The latter (heterogeneity) parameter is of particular importance as the computational
results will significantly depend on it.

With the knowledge of the increment in the bending moment we can check, in the
same way as we did for equation (10), that

Nb =
Ieη
ρ2o

(
Aeρ

2
o

Ieη
− 1

)
εmb −

Mb

ρo
≈ Aeεmb −

Mb

ρo
. (16)

It should be pointed out that Bradford et al. have assumed ρo/(ρo + ζ) = 1 when
expressing the axial strain and the strain increment at an arbitrary point. They
have also neglected the terms M/ρo and Mb/ρo in their corresponding article when
expressing the axial force and its increment – compare (10) and (16) with (15) and
(47) in [17]

We shall change derivatives with respect to s to derivatives with respect to ϕ by
using the following equation:

dn(. . .)

dsn
=

1

ρno

dn(. . .)

dϕn
= (. . .)

(n)
, n ∈ Z. (17)

This transformation is carried out, where necessary without a remark.

3. Governing equations

3.1. Equations of the pre-buckling equilibrium. Assuming symmetric loading
and support conditions Figure 1 shows the centerline in the initial configuration (con-
tinuous line) and in the pre-buckling equilibrium (dashed line). We shall assume in
a more general approach that the arch with a central angle of 2ϑ is subjected to the
concentrated force Pζ at the crown as well as to the arbitrary distributed line load
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f = fteξ + fneζ . Moreover, the [left] (right) end of the arch is rotationally restrained
by torsional springs with spring stiffness [kγ`] (kγ r). The principle of virtual work is
given by∫

V

σξδεξ dV = −Pζ δwo|s=0 − kγ`ψoηδψoη|s(−ϑ) − kγrψoηδψoη|s(ϑ) +

+

∫
L

(fnδwo + ftδuo) ds, (18)

where the virtual quantities are preceded by the symbol δ. After substituting the
kinematic equations (5) and (6) in terms of the virtual quantities and applying then
formulae (8) and (9) established for the inner forces, the integration by parts theo-
rem leads to a form of the principle of virtual work from which, with regard to the
arbitrariness of the virtual quantities, we get the equilibrium equations

dN

ds
+

1

ρo

[
dM

ds
−
(
N +

M

ρo

)
ψoη

]
+ ft = 0 ,

d

ds

[
dM

ds
−
(
N +

M

ρo

)
ψoη

]
− N

ρo
+ fn = 0 .

(19)

It also follows from the principle of virtual work that boundary conditions can be
imposed on

N |s(±ϑ) or uo|s(±ϑ) , (20a)[
dM

ds
−
(
N +

M

ρo

)
ψoη

]∣∣∣∣
s(±ϑ)

or wo|s(±ϑ) , (20b)

(M ± kγψoη)|s(±ϑ) or ψoη|s(±ϑ) , (20c)

where it is assumed that kγ` = kγ r = kγ . In addition, the discontinuity condition[
dM

ds
−
(
N +

M

ρo

)
ψoη

]∣∣∣∣
s=+0

−
[

dM

ds
−
(
N +

M

ρo

)
ψoη

]∣∣∣∣
s=−0

− Pζ = 0 (21)

for the shear force at the crown point should also be fulfilled.

In the sequel we assume ft = fn = 0. Upon substitution of equation (6) into
equation (19)1 we get

d

ds
(Aeεm)− 1

ρo
(Aeεmψoη) = 0 . (22)

Let us now neglect the quadratic term εmψoη. Consequently, we arrive at

dεm
ds
' dεoξ

ds
= 0 → εm ' εoξ = constant, (23)

which shows, depending on which theory is applied, that the nonlinear/linear strain
on the centerline is constant.

If we introduce (3) and (6)1,3 into the expression ρoεm

(
1 + ψ

(1)
oη

)
we arrive at the

following result (the quadratic term is neglected when that is compared to the others):



In-plane buckling of heterogeneous shallow arches 177

ρoεm

(
1 + ψ(1)

oη

)
= ρoεm

[
1 +

1

ρo

(
u(1)o − w(2)

o

)]
=

= ρoεm

[
1 +

1

ρo

(
ρoεm − wo −

1

2
ψ2
oηρo − w(2)

o

)]
≈

≈ ρoεm(1 + εm)︸ ︷︷ ︸
≈1

− εm
(
wo + w(2)

o

)
≈ ρoεm − εm

(
w(2)
o + wo

)
. (24)

Substitute now formulae (9) and (10) into (19)2 and take equations (23) and (24) into
account. After some manipulations we have

W (4)
o +

(
χ2 + 1

)
W (2)
o + χ2Wo = χ2 − 1 , χ2 = 1−mεm . (25)

Here and in the sequel Wo = wo/ρo and Uo = uo/ρo are dimensionless displacements.
Equation (25) can be compared with the equation Bradford et al. have used in their
series of articles published recently on stability problems of shallow arches. This
equation is of the form

W (4)
o + (χ2 − 1)W (2)

o = χ2 − 1. (26)

Equation (25) includes less neglects than that derived by Bradford et al. – see, e.g.,
[15], [17].

3.2. Equations of the post-buckling equilibrium. The principle of virtual work
for the buckled equilibrium configuration assumes the form∫

V

σ∗ξδε
∗
ξ dV = −P ∗ζ δw∗o |s=0 − kγ`ψ

∗
oηδψ

∗
oη

∣∣
s(−ϑ) − kγrψ

∗
oηδψ

∗
oη

∣∣
s(ϑ)

+

+

∫
L

(f∗nδw
∗
o + f∗t δu

∗
o) ds . (27)

By repeating the line of thought leading to (19),(20) and taking into account that (a)
the principle of virtual work should be fulfilled in the pre-buckling state; (b) Pζb = 0
and kγ` = kγ r = kγ the principle of virtual work yields

dNb
ds

+
1

ρo

dMb

ds
− 1

ρo

(
N +

M

ρo

)
ψoη b −

1

ρo

(
Nb +

Mb

ρo

)
ψoη b + ftb = 0 , (28a)

d2Mb

ds2
− Nb
ρo
− d

ds

[(
N +Nb +

M +Mb

ρo

)
ψoη b +

(
Nb +

Mb

ρo

)
ψoη

]
+ fnb = 0,

(28b)

which govern the post-buckling equilibrium. For the buckled configuration, boundary
conditions can be prescribed on the following quantities:

Nb|s(±ϑ) or uob|s(±ϑ) ,

(29a)[
dMb

ds
−
(
N +Nb +

M +Mb

ρo

)
ψoη b −

(
Nb +

Mb

ρo

)
ψoη

]∣∣∣∣
s(±ϑ)

or wob|s(±ϑ) ,

(29b)
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(Mb ± kγψoη)|s(±ϑ) or ψoη b|s(±ϑ) .
(29c)

In the forthcoming it is assumed that ftb = fnb = 0. Observe that, apart from
the last but one term, (28a) formally coincides with (19)1. However, since the term
mentioned is quadratic in the increment, it can be neglected with a good accuracy.
Therefore repeating now a similar line of thought leading to (23), we obtain that the
strain increment is constant:

d

ds
(Aeεmb)−

1

ρo
(Aeεmψoηb)︸ ︷︷ ︸

it can also be neglected

= 0 ⇒ εmb ' εoξ b = constant . (30)

If we (a) take into account that ε
(1)
m = ε

(1)
mb = 0; (b) substitute Mb from (14) and

(c) utilize that

mρoεmb

(
1 + ψ(1)

oη

)
' mρoεmb

[
1− 1

ρo

(
w(2)
o + wo

)]
= mρoεmb −mεmb

(
w(2)
o + wo

)
(this relation can be set up in the same way as (24)) then, after some manipulations,
(28b) results in

W
(4)
ob + (χ2 + 1)W

(2)
ob + χ2Wob = mεmb

[
1−

(
W (2)
o +Wo

)]
. (31)

This equation is again comparable with the outcome derived by Bradford et al. –
e.g., [15], [17] – that is

W
(4)
ob + (χ2 − 1)W

(2)
ob = mεmb

[
1−W (2)

o

]
. (32)

4. Solution for the pre-buckling state

The general solution satisfying (25) for the dimensionless normal displacement is of
the form

Wo(ϕ) =
χ2 − 1

χ2
+A1 cosϕ+A2 sinϕ− A3

χ2
cosχϕ− A4

χ2
sinχϕ, (33)

in which Ai (i = 1, . . . , 4) are integration constants. Since all the geometry, the loa-

Table 1. Boundary conditions for the rotationally restrained arch.

Boundary conditions

Crown point Right end

ψoη |ϕ=+0 = 0→ W
(1)
o

∣∣∣
ϕ=+0

= 0 Wo|ϕ=ϑ = 0[
−dM

ds
+
Pζ
2

]
ϕ=+0

= 0→ W
(3)
o

∣∣∣
ϕ=+0

= P
ϑ

[M + kγψo η ]|ϕ=ϑ= 0→
[
W

(2)
o + SW (1)

o

]∣∣∣
ϕ=ϑ

= 0

ding and the supports are symmetric, it is sufficient to consider a half of the arch as the
pre-buckling shape is also symmetric. To determine the integration constants, we shall
use the boundary conditions (BCs) presented in Table 1 – P = −Pζρ2oϑ/2Ieη is the
dimensionless load and S = ρokγ/Ieη is the dimensionless stiffness of the restraints.
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For the sake of brevity let us introduce the constant

a =
(
χ2 − 1

)
cosϑ cosχϑ− S (sinϑ cosχϑ− χ cosϑ sinχϑ) . (34)

Solution (33) satisfies the boundary conditions if

A1 = A11 +
P
ϑ
A12 =

(
1− χ2

)
(χ cosχϑ+ S sinχϑ)

χa
+

+

(
1− χ2

)
sinϑ cosχϑ− S (cosϑ cosχϑ+ χ sinϑ sinχϑ− 1)

(χ2 − 1) a

P
ϑ
, (35a)

A2 =
1

(χ2 − 1)

P
ϑ

= A22
P
ϑ

; (35b)

A3 = A31 +
P
ϑ
A32 =

cosϑ+ S sinϑ

−a
+

+
χ
[(
χ2 − 1

)
cosϑ sinχϑ− S (sinϑ sinχϑ+ χ cosϑ cosχϑ− χ)

]
− (χ2 − 1) a

P
ϑ
, (35c)

A4 =
χ

(χ2 − 1)

P
ϑ

= A42
P
ϑ
. (35d)

If [S = 0] (S → ∞) we get back the results valid for [pinned-pinned] (fixed-fixed)
arches – see [20], [21]. The radial displacement for the whole arch is given by

Wo =
χ2 − 1

χ2
+A11 cosϕ− A31

χ2
cosχϕ+

+

(
A12 cosϕ+A22H sinϕ− A32

χ2
cosχϕ− A42

χ2
H sinχϕ

)
P
ϑ

; (36)

in which H = H(ϕ) = 1 if ϕ > 0 and H = H(ϕ) = −1 if ϕ < 0. The rotation field
(by neglecting the effects of the tangential displacement due to the shallowness) is

ψoη ' −W (1)
o = B11 sinϕ+B31 sinχϕ+

+ (B12 sinϕ+B22H cosϕ+B32 sinχϕ+B42H cosχϕ)
P
ϑ

; (37)

where the new constants are

B11 = A11 , B12 = A12 , B22 = −A22 , B31 = −A31

χ
, B32 = −A32

χ
, B42 =

A42

χ
.

Because the strain on the centerline is constant, based on (23), the mathematical
average of the strain, i.e., the strain itself, is given by

εm =
1

ϑ

∫ ϑ

0

εmdϕ =
1

ϑ

∫ ϑ

0

(
εoξ +

1

2
ψ2
oη

)
dϕ =

1

ϑ

∫ ϑ

0

(
U (1)
o +Wo +

1

2
ψ2
oη

)
dϕ;

(38)
where

1

ϑ

∫ ϑ

0

U (1)
o dϕ = Uo|ϑ0 = 0. (39)
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Equation (38) results in the

I2P2 + I1P + I0 − εm = 0 , Ij(m,ϑ, χ,S) ∈ R, j = 0, 1, 2 (40)

quadratic formula for the dimensionless force, in which the coefficients Ij can be
obtained in a closed form – see Appendix A.1 for details.

5. Solutions for the post-buckling state

5.1. Differential equations, which govern the problem. Substitution of the
solution (36) into the post-buckling equilibrium equation (31) yields

W
(4)
ob + (1 + χ2)W

(2)
ob + χ2Wob = −mεmb

1− χ2

χ2

(
1

1− χ2
+A3 cosχϕ+A4 sinχϕ

)
.

(41)
In general, there are two possibilities regarding the buckled equilibrium of the arch
[15]. When the strain increment εmb is constant but not equal to zero, the problem
is governed by the above relation and the buckled shape is symmetric. However,
it is also possible that the arch buckles antisymmetrically with no strain increment
(εmb = 0). Then the phenomenon is described by the

W
(4)
ob + (1 + χ2)W

(2)
ob + χ2Wob = 0 (42)

homogeneous differential equation. The mathematical average of the strain incre-
ment, that is, the strain increment itself can be determined by using the kinematical
equations (3), (10) and (12b) under the assumption that the effect of the normal
displacement is again negligible when calculating the rotation increment:

εmb '
1

2ϑ

∫ ϑ

−ϑ
(εoξ b+ψoη bψoη) dϕ=

1

2ϑ

∫ ϑ

−ϑ

[
U

(1)
ob +Wob+

(
Uob−W (1)

ob

)(
Uo−W (1)

o

)]
dϕ ≈

≈ 1

2ϑ

∫ ϑ

−ϑ

(
Wob +W

(1)
ob W

(1)
o

)
dϕ. (43)

It will later be shown that antisymmetric shape belongs to bifurcation buckling, while
in the case of a snap-through (or limit point) buckling the shape of the arch is always
symmetric.

Figure 2. Antisymmetric and symmetric buckling shapes.
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In Figure 2 the continuous lines show the centerline in the initial configuration, the
dashed lines represent the pre-buckling equilibrium state and the dotted lines illustrate
the buckled arch shapes for antisymmetric and symmetric buckling.

5.2. Antisymmetric buckling. The solution to the homogeneous equilibrium equa-
tion (42) is sought for the whole arch as

Wob(ϕ) = C1 cosϕ+ C2 sinϕ+ C3 sinχϕ+ C4 cosχϕ , (44)

where Ci (i = 1, . . . , 4) are integration constants. It is paired with the homogeneous
BCs gathered in Table 2.

Table 2. Boundary conditions in terms of Wob.

Boundary conditions

Left end Right end

Wob|ϕ=−ϑ = 0 Wob|ϕ=ϑ = 0(
−W (2)

ob + SW (1)
ob

)∣∣∣
ϕ=−ϑ

= 0
(
W

(2)
ob + SW (1)

ob

)∣∣∣
ϕ=ϑ

= 0

Upon substitution of solution (44) into the boundary conditions, we arrive at a ho-
mogeneous equation system for which solution different from the trivial one exists if
the determinant of the coefficient matrix vanishes:

D =
[(
χ2 − 1

)
sinϑ sinχϑ+ S (cosϑ sinχϑ− χ sinϑ cosχϑ)

]
×

×
[(
χ2 − 1

)
cosϑ cosχϑ+ S (χ cosϑ sinχϑ− sinϑ cosχϑ)

]
= 0 . (45)

Vanishing of the first factor in (45) results in the transcendental equation

Sχ tanϑ

S + (χ2 − 1) tanϑ
= tanχϑ. (46)

Some numerical solutions for F = χϑ in terms of the ϑ are plotted in Figure 3. When
[S = 0](S → ∞) this characteristic equation coincides with that valid for [pinned-
pinned](fixed-fixed) arches – see [20], [21].

Recalling (25)2, we get the critical strain for antisymmetric buckling:

εmcr anti =
1− χ2

m
=

1

m

[
1−

(
F(ϑ,S)

ϑ

)2
]
. (47)

If we now substitute the solution (46) back to the boundary conditions, it follows
that C1 = C4 = 0 and C2 = −C3sinχϑ/sinϑ. Consequently, recalling the general
solution (44), we get that the shape of the arch is antisymmetric:

Wob(ϕ) = C3

(
sinχϕ− sinχϑ

sinϑ
sinϕ

)
= C3

(
sin

F

ϑ
ϕ− sinF

sinϑ
sinϕ

)
. (48)
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Figure 3. Some solutions to F(ϑ,S).

Vanishing of the second factor in (45) yields(
χ2 − 1

)
+ S (χ tanχϑ− tanϑ) = 0 . (49)

After solving the above equation for G = χϑ, we find that a symmetric buckling
shape is the solution for the radial displacement with C2 = C3 = 0 and C1 =
C4 cosχϑ/ cosϑ:

Wob(ϕ) = C4

(
cosχϕ− cosχϑ

cosϑ
cosϕ

)
= C4

(
cos

G

ϑ
ϕ− cosG

cosϑ
cosϕ

)
. (50)

5.3. Symmetric snap-through buckling. The general solution to the inhomoge-
neous equation (41) is

Wob(ϕ) = D1 cosϕ+D2 sinϕ+D3 sinχϕ+D4 cosχϕ−

− mεmb

2χ3

(
2

χ
+A3ϕ sinχϕ−A4ϕ cosχϕ

)
. (51)

Since now the buckled shape is symmetric, the BCs collected in Table 3 are valid for
the right half-arch.

Table 3. Boundary conditions for symmetric buckling.

Boundary conditions

Crown point Right end

W
(1)
ob

∣∣∣
ϕ=0

= 0 Wob|ϕ=ϑ = 0

W
(3)
ob

∣∣∣
ϕ=0

= 0 W
(2)
ob + SW (1)

ob

∣∣∣
ϕ=ϑ

= 0



In-plane buckling of heterogeneous shallow arches 183

Upon substitution of solution (51) into the boundary conditions, we get a system of
linear equations from which

D1 = εmb

(
D̂11 + D̂12

P
ϑ

)
=

= εmb
m

χ3a

{
A31

[
χ cos2 χϑ+ 0.5S (ϑχ+ cosχϑ sinχϑ)

]
+ (χ cosχϑ+ S sinχϑ)

}
+

+ εmb
m

2χ3 (1− χ2) a

{
A32

(
1− χ2

) [
2χ cos2 χϑ+ S (ϑχ+ cosχϑ sinχϑ)

]
+

+A42

[
2χ
(
1− χ2

)
(sinχϑ− χ sinϑ) cosχϑ+

+S
(
2χ2 cosϑ cosχϑ+ 2χ3 sinϑ sinχϑ− 3χ2 + 1 +

(
χ2 − 1

)
cos2 χϑ

)]}P
ϑ
, (52a)

D2 = εmbD̂22
P
ϑ

= εmb
mA42

(χ2 − 1)χ

P
ϑ
, D3 = εmbD̂32

P
ϑ

= εmb
A42m

(
3χ2 − 1

)
2χ4 (1− χ2)

P
ϑ
,

(52b)

D4 = εmb

(
D̂41 + D̂42

P
ϑ

)
=

= εmb
m cosϑ

−2χ4a

{
2 (1 + S tanϑ) +A31χ

[
2χ− ϑ

(
χ2 − 1

)
tanχϑ +

+ S (ϑ tanϑ tanχϑ+ tanχϑ+ χϑ)] cosχϑ

}
+

+ εmb
m

2χ4 (χ2 − 1) a

{
A32χ

(
1− χ2

) [(
2χ− ϑ

(
χ2 − 1

)
tanχϑ

)
+

+S (ϑ tanϑ tanχϑ+ tanχϑ+ χϑ)] cosϑ cosχϑ+

+A42

[(
1− χ2

)2
(tanχϑ− χϑ) cosϑ cosχϑ+ S

[
2χ3 (1− cosϑ cosχϑ) +

+
(
1− χ2

)
ϑχ (χ tanχϑ− tanϑ) cosϑ cosχϑ+

(
1− 3χ2

)
sinϑ sinχϑ

] ]}P
ϑ

(52c)

are the integration constants Di (i = 1, . . . , 4). We remark that the constants D̂11,

D̂12, D̂22, D̂32, D̂41 and D̂42 can be read off equations (52).

For the sake of brevity, we manipulate the particular solution to (51) into the
following form:

Wob part = −εmb
m

2χ3

[
2

χ
+

(
A31 +A32

P
ϑ

)
ϕ sinχϕ−A42ϕ cosχϕ

P
ϑ

]
=

= εmb

[
−m
χ4
− A31m

2χ3
ϕ sinχϕ+

(
−A32m

2χ3
ϕ sinχϕ+

A42m

2χ3
ϕ cosχϕ

)
P
ϑ

]
=

= εmb

[
D̂01 + D̂51ϕ sinχϕ+

(
D̂52ϕ sinχϕ+ D̂62ϕ cosχϕ

) P
ϑ

]
, (53a)



184 L. Kiss

where

D̂01 = −m
χ4

, D̂51 = −A31m

2χ3
, D̂52 = −A32m

2χ3
, D̂62 =

A42m

2χ3
. (53b)

With the knowledge of the integration constants

Wob(ϕ) = εmb

[
D̂01 + D̂11 cosϕ+ D̂41 cosχϕ+ D̂51ϕ sinχϕ+

+
(
D̂12 cosϕ+ D̂22H sinϕ+ D̂32H sinχϕ+ D̂42 cosχϕ+

+D̂52ϕ sinχϕ+ D̂62Hϕ cosχϕ
) P
ϑ

]
(54)

is the solution for the complete arch. The increment in the rotation field for shallow
arches is given by

− ψoη b 'W (1)
ob = εmb

[
E11 sinϕ+ E41 sinχϕ+ E51ϕ cosχϕ+

+ (E12 sinϕ+ E22 cosϕ+ E32 cosχϕ+ E42 sinχϕ+

E52ϕ cosχϕ+ E62ϕ sinχϕ)
P
ϑ

]
, (55)

where

E11 = −D̂11 , E41 = D̂51 − D̂41χ , E51 = D̂51χ , E12 = −D̂12 , E22 = D̂22H ,

E32 = D̂32Hχ+ D̂62H , E42 = D̂52 − D̂42χ , E52 = D̂52 , E62 = −D̂62H .

(56)
We can now calculate the mathematical average of the strain increment for the right
half arch on the basis of (43). We get

1 =
1

ϑεmb

∫ ϑ

0

(
U

(1)
ob +Wob +W (1)

o W
(1)
ob

)
dϕ = J2P2 + J1P + J0, (57)

where the right side is also independent of εmb. Formulae for the coefficients (integrals)
J0, J1 and J2 are presented in Appendix A.1. Though the corresponding integrals
can be given in a closed form, these are very long and are therefore omitted.

6. Computational results

6.1. What to compute? In this section results are presented for four different mag-
nitudes of the parameter m. At first, we investigate how the spring stiffness affects
the endpoints of the typical buckling intervals. Then the critical loads are calculated.
The results are comparable with those obtained by Bradford et al. in [15] and [17]
using more neglects but, due to this fact, arriving at analytical solutions. When
S = 0 and S → ∞ our results – since they are based on a similar mechanical model –
coincide with those valid both for pinned-pinned [20] and for fixed-fixed [21] arches.
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6.2. Limits for the characteristic buckling intervals. There are four intervals of
interest regarding the buckling behavior of symmetrically supported shallow arches.
For a given ϑ, the endpoints of these intervals are functions of m, χ(εm) and S.
The lower limit of antisymmetric buckling can be obtained from the condition that
the discriminant of (40) should be real when the antisymmetric critical strain (46) is
substituted, consequently inequality[

I21 − 4I2(I0 − εmcr anti)
]∣∣
χϑ=F

≥ 0 (58)

should be fulfilled. We remark that when the spring stiffness is zero – i.e. the arch is
pinned-pinned – instead of using the exact solution we assumed that F = π−10−4. It
is also possible in certain cases that a real antisymmetric solution vanishes, so there is
an upper limit also in the investigated ϑ = 0 . . . 1.5 range. The upper limit is obtained
by using an algorithm which monitors at what value of S there exists no real solution
any longer if χϑ = F.

When evaluating the critical antisymmetric and symmetric buckling loads against
the geometry of the arch, we find that these two curves sometimes intersect each other.
This intersection point varies with S. There is a switch between the symmetric and
antisymmetric buckling modes at the intersection point as it is shown in Section 6.4.
Prior to the intersection, the symmetric buckling shape governs. However, after this
intersection, the bifurcation point is located before the limit point of the corresponding
primary equilibrium path, which means that antisymmetric buckling occurs first. (To
better understand the meaning of limit point see Figure 12). This switch can be found
when (40) and (57) are equal at χϑ = F with all the other parameters being the same:[

I2P2 + I1P + I0 − εm
]∣∣

F,m,S,P =
[
J2P2 + J1P + J0

]∣∣
F,m,S,P . (59)

Finally, the lower endpoint for symmetric buckling, below which there is no buck-
ling at all, is obtained by substituting the lowest symmetric solution (49) into the
pre-buckling averaged strain (40) when the discriminant is set to zero:[

I21 − 4I2(I0 − εmcr sym)
]∣∣
χϑ=G

= 0. (60)

Now we turn the attention to the evaluation. Choosing m = 1 000, Figure 4 shows
the effects of the dimensionless spring stiffness in terms of the semi-vertex angle.
When S = 0, we get back the results valid for a pinned-pinned arch. Thus, when
ϑ ≤ 0.347 there is no buckling – see the range denoted by (I). Then, up until ϑ = 0.5,
only symmetric limit point buckling can occur at the right loading level (II). Even
though a bifurcation point (and therefore the possibility of antisymmetric buckling)
appears when further increasing ϑ (III), still the symmetric shape is the dominant
up until the intersection point of the symmetric and antisymmetric buckling curves
at ϑ = 0.553. At this point the buckling loads and strains are the same for symmetric
and antisymmetric buckling and it holds a switch between the buckling types since
above it (IV ) the bifurcation point is located on the stabile branch of the primary
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Figure 4. Typical buckling ranges when m = 1 000.

equilibrium path as it will be shown later. Apart from the range limits, there are no
any other differences as long as S ≤4.2. Passing this value results in the disappearance
of the intersection point of the buckling curves, therefore antisymmetric buckling is
only possible after symmetric buckling. Another limit of importance is S = 7.6, since
above that, the bifurcation point vanishes. It can also be seen that as S approaches to
infinity from below – i.e. the arch becomes fixed – the switch between no buckling and
symmetric buckling can be found at ϑ = 0.606. The results when [S = 0] (S → ∞)
are in a complete accord with what have been achieved in [20], [21]. This statement
is valid for all the forthcoming results as well.

Figure 5. Typical buckling ranges when m = 10 000.

The behavior of arches with m = 10 000 is very similar to the former description
– see Figure 5. This time an intersection point can be found up until S = 6.6 and
an upper limit for antisymmetric buckling until S ≤ 33.3. So these points show an
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increase in S as m is increased. It is also noticeable that increasing m yields a decrease
in all the typical buckling endpoints in ϑ.

Figure 6. Typical buckling ranges when m = 100 000.

More complex are the results in Figure 6 obtained for m = 100 000, since the
presence of an upper limit for antisymmetric buckling is experienced above S(ϑ <
1.5) = 2.83. Therefore, if S = 0 . . . 2.83 there is a range in which there is no buckling
(I). It is followed by the range of symmetric buckling only (II). Then antisymmetric
buckling comes after symmetric buckling (III). After that, for all included angles,
the antisymmetric shape governs. However, for S = 2.83 . . . 11.2 after range (IV )
the symmetric shape becomes again the dominant (II), since the possibility of an-
tisymmetric buckling vanishes. A further increase in the spring stiffness yields the
vanishing of the intersection point, so above range (I) the symmetric shape governs.

The characteristics of the curves valid for m = 1 000 000 in Figure 7 are very similar
to that described in relation with m = 100 000. So an increase in m results in a slight
increase in the upper limit for antisymmetric buckling and a decrease in all other
limits expressed in ϑ.
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Figure 7. The typical buckling ranges when m = 1 000 000.

6.3. Buckling curves. In what follows, the governing buckling curves are drawn
for four magnitudes of m. In each of these graphs, curves are presented for S = 0
(pinned-pinned arch); S = 1020 (fixed-fixed arch with a very good accuracy) and
S = 1 (rotationally restrained arch) with the restriction that when both symmetric
and antisymmetric shape is possible only the one, which comes prior in the load-
deflection curve is plotted, since that is the dominant – see Section 6.4.

Antisymmetric buckling can be evaluated upon substitution of the critical strain for
antisymmetric buckling from (47) into the averaged pre-buckling strain (40), therefore

P =
−I1 ±

√
I21 − 4(I0 − εmcr anti)I2

2I2

∣∣∣∣∣
χϑ=F

. (61)

Here we get two solutions for the load but only the one in relation with the first
bifurcation point is presented.
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As for symmetric buckling we have two unknowns – the force and the critical strain.
We also have two equations – one obtained from the averaged pre- (40) and one from
the averaged post-buckling strain (57). Solving these simultaneously[

I2P2 + I1P + I0 − εm
]∣∣
χ,ϑ,S,m =

[
J2P2 + J1P + J0

]∣∣
χ,ϑ,S,m (62)

leads to the lowest buckling load. In Figure 8, m = 1 000. The lower limits for
symmetric buckling are ϑ(S = 0) = 0.346; ϑ(S = 1) = 0.371 and ϑ(S = 1020) = 0.606.
This buckling type is dominant for fixed-fixed arches throughout the whole interval
while for the other two cases an intersection point was found with the corresponding
antisymmetric curve at ϑ(S = 0) = 0.553 and ϑ(S = 1) = 0.590. Above these the
antisymmetric buckling governs. It can therefore be seen that increasing the value of
S results that the lower limit of symmetric buckling and the intersection point moves
to the right in the scale with increasing corresponding buckling loads. It is also clear
that arches with rotationally restrained ends can bear such loading levels, which are
between the critical loads for pinned-pinned and fixed-fixed arches. It is generally
quite a notable range in P so account for such restraints seems inevitable.

Figure 8. Buckling loads versus the semi-vertex angle when m = 1 000.

Setting m to 10 000 yields what is shown in Figure 9. Now the lower endpoints for
symmetric buckling are ϑ(S = 0) = 0.196; ϑ(S = 1) = 0.205 and ϑ(S = 1020) = 0.334
so the increase in m decreases this limit as it has already been pointed out in relation
with Figure 5. It turns out that the intersection point in ϑ increases as the spring
stiffness is increased: ϑ(S = 0) = 0.317; ϑ(S = 1) = 0.328. Above S = 6.6, this
point vanishes. It is also clear that the symmetric buckling curves of the two lowest
stiffnesses run quite close compared to m = 1 000. (This is the reason why this part
is enlarged on the top part of the figure.) Above ϑ = 0.3, they almost coincide. The
critical load for any S is generally greater this time compared to the results when
m = 1 000.
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Figure 9. Buckling loads versus the semi-vertex angle when m = 10 000.

In Figure 10, m is 100 000. The lower limit of symmetric buckling happens to
decrease further but slowly: ϑ(S = 0) = 0.111; ϑ(S = 1) = 0.113 and ϑ(S = 1020) =
0.187, while the intersection points occur at ϑ(S = 0) = 0.179; ϑ(S = 1) = 0.182.
This time the symmetric curves are again closer to each other and the starting points
of all the curves are closer to the origin.

With m = 1 000 000, we find that ϑ(S = 0) = 0.062; ϑ(S = 1) = 0.063 and
ϑ(S = 1020) = 0.105 are the lower limits for symmetric buckling and ϑ(S = 0) =
0.101; ϑ(S = 1) = 0.102 for the intersection point. This intersection point exists until
S = 19.7. The symmetric buckling curves for the two lowest stiffnesses coincide with
a very good accuracy in their quite narrow interval in ϑ. Generally, the differences
compared to m = 100 000 are not that relevant when moving from m = 1 000 to
m = 10 000.
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Figure 10. Buckling loads versus the semi-vertex angle when m = 100 000.

It is clear from the corresponding figures that the presence of the springs have a
huge effect on the buckling load. For instance, if m = 1 000 000 and ϑ = 1 the critical
dimensionless load varies between 5.4 and 7.5. This range becomes greater when the
central angle is greater as it turns out.

The results of the new model for symmetric buckling are verified by finite element
computations using Abaqus 6.7. The cross-section considered is rectangular with
0.01 [m] width and 0.005 [m] height and the Young’s modulus is 2 ·1011 [Pa]. B22 (3-
node quadratic Timoshenko) beam elements and the Static,Riks step have been used
to draw the load-deflection diagrams. Results are gathered in Table 4. It can be seen
that the greatest differences (4.4%) are experienced when m = 106 and ϑ = 1.366, so
predictions of the new model for not so shallow arches also seem to be quite good.
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This new model, anyway, generally yields lower critical loads except when m = 103

and ϑ = 0.641.

Figure 11. Buckling loads versus the semi-vertex angle when m = 1 000 000.

Table 4. Some control results regarding the symmetric buckling loads.

S m ϑ PAbaqus PNew model

0/10/1020 103 0.641 4.98 / 5.03/5.09 5.23 / 5.26 / 5.29
0/10/1020 103 1.052 6.78 / 6.83 / 6.99 6.70 / 6.86 / 7.09
0/10/1020 103 1.416 7.48 / 7.51 / 7.71 7.36 / 7.43 / 7.62
0/100/1020 106 0.289 6.75 / 7.20 / 7.38 6.69 / 7.14 / 7.32
0/10/1020 106 0.782 6.98 / 7.18 / 7.52 6.76 / 6.99 / 7.42
0/10/1020 106 1.366 7.58 / 7.70 / 7.98 7.26 / 7.39 / 7.64
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6.4. The primary equilibrium paths and the load-strain relationships. In
Figure 12 on the horizontal axis, the dimensionless displacement of the crown point
WoC is plotted against the dimensionless load P for arches with m = 100 000. The
former quantity is obtained by dividing the displacement (36) at ϕ = 0 by the rise of
the arch:

WoC =
−Wo|ϕ=0

1− cosϑ
. (63)

There are four central angles picked to represent the different path types when S = 1
(continuous lines in the forthcoming figures). Results for S = 0 (fine dashed lines),
S = 15 (dotted lines) and S = 1020 (dashed lines) are also included. When ϑ = 0.113,
the slope is always positive and there is neither limit point nor bifurcation point for
the spring supported arches. This is also true for the fixed-fixed arch with, of course,

Figure 12. Dimensionless crown point displacement versus dimen-
sionless load, m = 100 000.

less displacement under the same load. However, for a stiff pin support, there appears
a limit point. Increasing ϑ to 0.16 results in the appearance of a limit point for all
but the fixed arch and the corresponding critical loads increase with S. The fixed
arch still has a positive tangent throughout but this curve generally runs closer to
the others up until the first limit point on the curves for the restrained arches. At
ϑ = 0.17, there can be found a bifurcation point also but on the descending branch of
the corresponding load-deflection curve for the pinned and restrained arches. Finally,
for ϑ = 0.2, there is a limit point in all four curves and these are quite close to each



194 L. Kiss

other as well as all the first stabile branches. This time, and above this central angle,
the two picked rotationally restrained and the pinned arches buckle antisymmetrically
first, as the bifurcation point is located on the stabile branch, while fixed arches might
still buckle symmetrically only.

Figure 13. Typical load-strain relationships for m = 100 000.

For S = 1, the load-strain curves are drawn in Figure 13. On the horizontal axis the
strain - critical strain ratio for antisymmetric buckling is measured. When ϑ = 0.113,
there are two different branches to which always a different P belongs. If ϑ = 0.16,
the branches intersect each other and a limit point also appears at which symmetric
snap-through buckling occurs. However, the εm/εmcr = 1 ratio is not reached, so
there is no bifurcation. Increasing ϑ to 0.17, we experience that a bifurcation point
appears after the limit point. Finally, if ϑ is greater or equal with 0.2, the bifurcation
point comes prior to the limit point, so the antisymmetric buckling shape dominates
for such shallow arches under a central load. It is also remarkable that every time
there are two branches. The first one always starts at the origin, while the second one
commences around 3.3 − 3.5 in P, depending on the angle. There is an intersection
point at εm/εmcr ≈ 0.27 to which a loading level of P ≈ 1.75 belongs.

7. Conclusions

For rotationally restrained shallow arches with cross-sectional heterogeneity, a geo-
metrically nonlinear model for the buckling analysis has been presented, partly on
the basis of [17]. Nonlinearities were taken into account assuming the dominance
of the rotation field. By using the principle of virtual work, we have derived the
governing differential equations both for the pre-buckling and post-buckling state for
arches under a central concentrated load and an arbitrary distributed load. Based
on this achievement, the pre-buckling axial strain, as well as the post-buckling strain
is constant on the centerline, when only a concentrated load is exerted at the crown



In-plane buckling of heterogeneous shallow arches 195

point. Heterogeneity appears in the formulation through the parameter χ(m). The
equations of static equilibrium posses less neglects than the model derived and solved
by Bradford et al. – see e.g., [15]; [17]. For this reason, the results computed by using
the current model are more accurate even for greater central angles as well when they
are compared to the previously cited articles. It should also be mentioned that for the
rotation field the effect of the tangential displacement is neglected, which can cause
erroneous predictions for deeper arches.

The evaluation process of the results are based on what Bradford et al. have used
in their series of articles. We have presented how the different buckling limits and
ranges are affected by the spring stiffness. It turns out that symmetrically supported
shallow arches under a central load can buckle in an antisymmetric bifurcation mode
with no strain increment at the moment of the stability loss, and in a symmetric
snap-through mode, when there is a buckling strain. We have found, in an agreement
with the earlier results, that an increase in S results in an increase of the typical
buckling limits for any fixed m. However, as m increases, those limits show a decrease.
Evaluation of the critical loads for three different spring stiffness is carried out. If
S = 0 and S → ∞, we retrieved the results valid for pinned-pinned and fixed-fixed
arches – see [20], [21]. The rotational restraints can have a considerable effect on the
critical load a shallow arch can bear. For the same arches, but with different spring
stiffnesses, the maximum difference between the critical loads can reach up to 25%
when ϑ ≤ 0.8 and up to 57% for greater central angles. The load-deflection curves
are also affected by the rotational restraints as it has been presented.
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Appendix A.1. Detailed manipulations

Calculation of the pre-buckling averaged strain. Integral (38) is divided into two parts. The
first part is

1

ϑ

∫ ϑ

0

Wo dϕ = Ia + IbP,

where

Ia =
1

ϑ

∫ ϑ

0

(
χ2 − 1

χ2
+A11 cosϕ− A31

χ2
cosχϕ

)
dϕ =

χ2 − 1

χ2
+A11

sinϑ

ϑ
− A31

χ3

sinχϑ

ϑ
,

(A.1)

Ib =
1

ϑ2

∫ ϑ

0

(
A12 cosϕ+A22 sinϕ− A32

χ2
cosχϕ− A42

χ2
sinχϕ

)
dϕ =
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=
1

ϑ2

(
A12 sinϑ−A22 cosϑ−A32

sinχϑ

χ3
+A42

cosχϑ

χ3
+A22 −

A42

χ3

)
. (A.2)

The other part is of the form

1

ϑ

∫ ϑ

0

1

2
ψ2
oηdϕ = Ic + IdP + IeP2 . (A.3)

Here

Ic =
1

2ϑ

∫ ϑ

0

(B11 sinϕ+B31 sinχϕ)2 dϕ =
−1

8ϑχ (1− χ2)
×

×
[
B2

11χ (sin 2ϑ−2ϑ)+
8B11B31χ (sinχϑ cosϑ−χ sinϑ cosχϑ)

(1−χ2)
+B2

31 (sin 2χϑ− 2ϑχ)

]
.

(A.4)

To simplify the calculation it is advisable to decompose Id:

Id =
1

ϑ2

∫ ϑ

0

B11 sinϕ (B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ) dϕ+

+
1

ϑ2

∫ ϑ

0

B31 sinχϕ (B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ) dϕ = Id1 + Id2 ,

(A.5)

where

Id1 =
−B11

4ϑ2 (1− χ2)

{
B12

(
1− χ2) (sin 2ϑ− 2ϑ) +B22

(
1− χ2) (cos 2ϑ− 1) +

+ 4B32 [sinχϑ cosϑ− χ cosχϑ sinϑ] + 4B42 [cosϑ cosχϑ+ χ sinϑ sinχϑ− 1]} (A.6a)

and

Id2 =
B31

4χϑ2 (1− χ2)
{4χB12 [χ sinϑ cosχϑ− sinχϑ cosϑ] +

+ 4χB22 [sinϑ sinχϑ+ χ cosϑ cosχϑ− χ] +B32

(
1− χ2) [2ϑχ− sin 2χϑ] +

+B42

(
1− χ2) [1− cos 2χϑ]

}
. (A.6b)

Moving on now to the calculation of Ie in (A.3), it is again worth decomposing the factor in
question as

Ie =
1

ϑ3

∫ ϑ

0

(B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ) B12 sinϕdϕ+

+
1

2ϑ3

∫ ϑ

0

(B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ)B22 (cosϕ) dϕ+

+
1

2ϑ3

∫ ϑ

0

(B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ)B32 (sinχϕ) dϕ+

+
1

2ϑ3

∫ ϑ

0

(B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ)B42 (cosχϕ) dϕ =

= Ie1 + Ie2 + Ie3 + Ie4 .

(A.7)

The four terms in this sum are

Ie1 =
B12

8ϑ3 (1− χ2)

{
B12

(
1− χ2) [2ϑ− sin 2ϑ] +B22

(
1− χ2) [1− cos 2ϑ] +

+ 4B32 (χ sinϑ cosχϑ− cosϑ sinχϑ) +4B42 [1− cosϑ cosχϑ− χ sinϑ sinχϑ]} , (A.8a)
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Ie2 =
−B22

8ϑ3 (χ2 − 1)

{
B12

(
χ2 − 1

)
(cos 2ϑ− 1)−B22

(
χ2 − 1

)
(sin 2ϑ+ 2ϑ) +

+ 4B32 [χ cosϑ cosχϑ+ sinϑ sinχϑ− χ] + 4B42 [sinϑ cosχϑ− χ cosϑ sinχϑ]} , (A.8b)

Ie3 =
B32

8χϑ3 (1− χ2)
{4B12χ [χ sinϑ cosχϑ− cosϑ sinχϑ] +

+ 4B22χ [sinϑ sinχϑ+ χ cosϑ cosχϑ− χ] +

+B32

(
1− χ2) [2ϑχ− sin 2χϑ] +B42

(
1− χ2) [1− cos 2χϑ]

}
(A.8c)

and

Ie4 =
B42

8ϑ3χ (χ2 − 1)
{4B12χ [cosϑ cosχϑ+ χ sinϑ sinχϑ− 1] +

+ 4B22χ [χ cosϑ sinχϑ− sinϑ cosχϑ] + 2B32

(
χ2 − 1

)
sin2 χϑ+

+ 2B42

(
χ2 − 1

)
[χϑ+ sinχϑ cosχϑ]

}
. (A.8d)

With the knowledge of the previous integrals

I0 = Ia + Ic , I1 = Ib + Id and I2 = Ie (A.9)

are the coefficients in (40).

Calculation of the averaged strain increment. Integrals Ja and Jb in

1

εmbϑ

∫ ϑ

0

Wobdϕ = Ja + JbP (A.10)

are given below in closed forms:

Ja =
1

ϑ

∫ ϑ

0

(
D̂01 + D̂11 cosϕ+ D̂41 cosχϕ+ D̂51ϕ sinχϕ

)
dϕ =

=
1

χ2ϑ

[
χ2
(
D̂01ϑ+ D̂11 sinϑ

)
+ D̂41χ sinχϑ+ D̂51 (sinχϑ− χϑ cosχϑ)

]
, (A.11a)

Jb =
1

ϑ2

∫ ϑ

0

(
D̂12 cosϕ+ D̂22 sinϕ+ D̂32 sinχϕ+ D̂42 cosχϕ+ D̂52ϕ sinχϕ+

+D̂62ϕ cosχϕ
)

dϕ =
1

χ2ϑ2

[
χ2
(
D̂12 sinϑ+ (1− cosϑ) D̂22

)
+ D̂52 sinχϑ+

+ (cosχϑ− 1) D̂62+ +χ
(

(1− cosχϑ) D̂32 + D̂42 sinχϑ− D̂52ϑ cosχϑ+ D̂62ϑ sinχϑ
)]

.

(A.11b)

As for the third integral in (57), let us recall formulae (37) and (55). Consequently, we get

1

ϑεmb

∫ ϑ

0

W (1)
o W

(1)
ob dϕ = J2P2 + JdP + Jc, (A.12)

in which

Jc = − 1

ϑ

∫ ϑ

0

(E11 sinϕ+ E41 sinχϕ+ E51 ϕ cosχϕ) (B11 sinϕ+B31 sinχϕ) dϕ , (A.13a)

Jd = − 1

ϑ2

∫ ϑ

0

(B11 sinϕ+B31 sinχϕ)×

× (E12 sinϕ+ E22 cosϕ+ E32 cosχϕ+ E42 sinχϕ+ E52ϕ cosχϕ+ E62ϕ sinχϕ) dϕ−
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− 1

ϑ2

∫ ϑ

0

(E11 sinϕ+ E41 sinχϕ+ E51 ϕ cosχϕ) (B12 sinϕ+B22 cosϕ+

+B32 sinχϕ+B42 cosχϕ) dϕ , (A.13b)

J2 = − 1

ϑ3

∫ ϑ

0

(B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ)×

× (E12 sinϕ+ E22 cosϕ+ E32 cosχϕ+ E42 sinχϕ+ E52ϕ cosχϕ+ E62ϕ sinχϕ) dϕ .
(A.13c)

Observe that

J0 = Ja + Jc; J1 = Jb + Jd.

We would like to emphasize that the above integrals can all be given in closed forms. We
omit them from being presented here as these are very complex. Any mathematical software,
like Maple 16 or Scientific Work Place 5.5 can calculate these constants.
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Abstract. The steady incompressible magneto-hydrodynamic (MHD) flow past a circular
cylinder with an aligned magnetic field is studied for the Reynolds number (Re) up to 40,
using the Hartmann number, M as the perturbation parameter. The multigrid method with
defect correction technique is used to achieve the second order accurate solution of complete
nonlinear Navier-Stokes equations. The magnetic Reynolds number is assumed to be small.
It is observed that as M is increased the volume of the separation bubble decreases and drag
coefficient increases. The graphs of streamlines, vorticity lines, surface pressure, surface
vorticity and drag coefficient are presented and the effect of the magnetic field is discussed.
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1. Introduction

In the plane flow of an incompressible, viscous, electrically conducting fluid over a
solid body, the presence of a normal magnetic field at the surface has the effect of
alleviating an adverse pressure gradient. One might expect that separation of the
boundary layer would be delayed as a result. Indeed, since the degree to which the
unfavorable pressure gradient is alleviated depends on the strength of the magnetic
field, it is conceivable that separation could be completely suppressed. In a two
dimensional flow of a liquid with small magnetic Reynolds number under the influence
of an applied magnetic field, it has been proved that if the field is strong enough and
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has the appropriate orientation, then separation of a viscous boundary layer can be
prevented even up to rear stagnation point.

The problem of steady two-dimensional incompressible MHD flow past a circular
cylinder with an applied magnetic field parallel to the main flow was investigated
by Bramely [5] using the Oseen approximation. He later extended the problem to
full Navier-Stokes equations for low Reynolds numbers using the method of series
truncation [6]. Shanti Swarup and Sinha [22] investigated the steady flow of an
incompressible, viscous, electrically conducting fluid past a non-magnetic and non-
conducting circular cylinder for low Reynolds numbers [Re = O(Rm) and Rm �
M � 1], using the method of matched asymptotic expansions. Very recently, Sekhar
et al. [21] studied the MHD flow past a sphere in an aligned magnetic field using the
multigrid method.

In the absence of a magnetic field the present problem corresponds to the steady,
viscous flow past a circular cylinder which has been studied by several researchers,
including Dennis and Chang [8], Fornberg [9, 10], Kawamura and Kuwahara [15],
Braza et al. [7], Karniadakis and Triantafyllou [14], Ingham and Tang [11] and Baranyi
and Shirakashi [2]. Roshko [20], Bearman [4] and Norberg [16, 17] have studied the
flow past a cylinder experimentally and have provided invaluable data. It is well
known that the flow around a cylinder becomes unstable at Re ∼ 49 due to periodic
vortex shedding [25]. Bae et al. [1] investigated the conditions needed to facilitate the
suppression of Kármán vortex excitation of a circular cylinder by a second cylinder set
downstream in a cruciform arrangement. Baranyi [3] studied the unsteady momentum
and heat transfer from a fixed cylinder using the finite difference method. In this
paper, we discuss the flow of a conducting fluid past a circular cylinder for a range of
Reynolds numbers from 10 to 40 and for the intermediate values of Hartmann number
M using the finite difference method. The multigrid method with defect correction
technique is applied to obtain the second order accurate solution.

2. Mathematical modelling

The equations governing the steady MHD flow of an incompressible fluid (with finite
electrical conductivity σ) past a circular cylinder (of radius a) with uniform free-
stream velocity U∞ and an uniformly applied magnetic field H∞ at large distances
are, in non-dimensional form:
Momentum equation

Re

2
(q ·∇)q = −∇p+∇2q +

M2

2Rm
[(∇×H)×H] (1)

Ohm’s law

j = (∇×H) =
Rm
2

[E + q×H] (2)

Equation of continuity

∇ · q = 0 (3)
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where p is the pressure, q the fluid velocity, H the magnetic field, E the electric
field, j the current density. The Reynolds number is Re = 2ρU∞a/η and M =
µH∞a(σ/η)1/2 is the Hartmann number. The magnetic Reynolds number is given by
Rm = U∞aµσ. The viscosity, density and magnetic permeability of the fluid are η, ρ
and µ respectively. The following non-dimensional terms were substituted to obtain
the dimensionless differential equations:

q =
q′

U∞
, p =

a

ρνU∞
p′, r =

r′

a
, H =

H′

H∞

E =
E′

E∞
, j =

j′

j∞
where primed variables are dimensional quantities and ν is the kinematic viscosity, E∞
and j∞ are the magnitudes of electric field intensity and current density at infinity,
respectively. In order to satisfy equation (2.3), the dimensionless stream function
ψ(r, θ) is introduced such that

u =
1

r

∂ψ

∂θ
, v = −∂ψ

∂r
(4)

where u and v are the dimensionless radial and transverse components of fluid velocity.
Cylindrical polar coordinates (r, θ, z) are used in such a way that the flow is symmetric
about θ = 0o and θ = 180o. As the magnetic field and fluid flow are aligned at
infinity, the electric field can be assumed to be zero. The problem can be simplified
by assuming the magnetic Reynolds number to be small. The magnetic field must
not be so large that the flow develops into a slug flow. It should be large enough to
see the effect on separation but small enough for the flow to be a perturbation of the
potential flow with zero magnetic field. We use the low-Rm approximation and ignore
equation (2.2) as well as replace the magnetic field in all MHD equations by

H = (− cos θ, sin θ, 0), (5)

which will eliminate several nonlinear terms of unknown quantities in the governing
equations. After eliminating pressure from equation (2.1), we get

Re

2
[∇× (ω × q)] = ∇2ω +

M2

2Rm
[∇× {(∇×H)×H}] (6)

where

ω = ∇× q (7)

is the vorticity. Substitution of equation (2.2) in equation (2.6) gives

∇2ω =
Re

2
[∇× (ω × q)]− M2

4
[∇× {(q×H)×H}] (8)

Expanding equations (2.7) and (2.8) we get

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
= −ω (9)
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and

∂2ω

∂r2
+

1

r

∂ω

∂r
+

1

r2
∂2ω

∂θ2
− Re

2r

[
∂ψ

∂θ

∂ω

∂r
− ∂ψ

∂r

∂ω

∂θ

]
=
M2

4

[
ω sin2 θ +

sin 2θ

r

∂2ψ

∂r∂θ

− sin 2θ

r2
∂ψ

∂θ
− cos 2θ

∂2ψ

∂r2

]
(10)

Since major velocity gradients occur near the body, we used the transformations
r = eπξ and θ = πη to concentrate the mesh spacing near the body. Then equations
(2.9) and (2.10) can be written as

∂2ψ

∂ξ2
+
∂2ψ

∂η2
+ π2e2πξω = 0 (11)

and

∂2ω

∂ξ2
+
∂2ω

∂η2
− Re

2

[
∂ψ

∂η

∂ω

∂ξ
− ∂ψ

∂ξ

∂ω

∂η

]
=
M2

4

[
π2e2πξω sin2(πη) + sin 2(πη)

∂2ψ

∂ξ∂η

− π sin 2(πη)
∂ψ

∂η
− cos 2(πη)

∂2ψ

∂ξ2
+ π cos 2(πη)

∂ψ

∂ξ

]
(12)

in the vorticity-stream function form. Equations (2.11) and (2.12) must now be solved
subject to the following boundary conditions:

(1) On the surface of the cylinder; (r = 1), ξ = 0,

ψ =
∂ψ

∂ξ
= 0

ω = − 1

π2

∂2ψ

∂ξ2

(2) At large distances from the cylinder; (r →∞), ξ →∞,

ψ ∼ eπξ sin(πη)

ω → 0

(3) Along the axis of symmetry (η = 0, η = 1), ψ = 0 and ω = 0.

3. Numerical Method

The coupled nonlinear Navier-Stokes equations are solved by first applying finite dif-
ference method and the resulting algebraic equations are solved by using the multigrid
method. Here, a recursive multigrid procedure is employed in which the smoother is a
point Gauss Seidel iteration and the usual coarse grid correction is applied as follows
[23]. Let there be a sequence of computational grids G1, G2, . . ., Gl with Gk finer
than Gk−1. Let Uk → R be the space of grid functions on Gk, let P k : Uk−1 → Uk be
a prolongation operator and let Rk : Uk+1 → Uk be a restriction operator. Suppose
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we have a nonlinear (system of) partial differential equation(s), discretized on G1,
G2, . . . , Gl. On Gk, the algebraic problem to be solved is given by

Ak(uk) = fk

where, Ak is the matrix obtained by suitable discretization. If û is the approximation
to exact solution u, then, (û− u) represents the error e. Then, we have

Ae = −r = Aû− f (13)

where, r is called the residue. The coarse grid approximation ū of −e satisfies

Āū = Rr

where, Ā is the operator obtained by discretizing the original problem on a coarser
grid and R is the restriction operator. If the grid under consideration is coarsest, then
the above equation should be solved exactly. The coarse grid correction to be added
to û is Pū (where P is the prolongation operator) given by

û = û+ Pū

This represents one multigrid cycle. Solving on Gl−1 by γ multigrid iterations results
in the following recursive algorithm:

procedure MG(k, u, f)

begin if k = 1 then solve A1(u1) = f1 else

begin S1(k, u, f)

Choose ũk−1 ∈ Uk−1

f̃k−1 = Ak−1(ũk−1)

fk−1 = f̃k−1 +Rk−1(fk −Ak(uk))

for i := 1 step 1 until γ do MG(k − 1, u, f)

uk = uk + P k(uk−1 − ũk−1)

S2(k, u, f)

end

end MG

where, S denotes a smoother involving a small number of point Gauss Seidel iterations.

The initial solution is taken as ψ = 0 and ω = 0 at all inner grid points except for
ψ at ξ = ∞ where the boundary condition holds. In finding the solution for higher
values of Re and M , the solution obtained for lower values of Re and M are used as
starting solution. Among the two variables, ω and ψ, we first solved for ω and then
for ψ. Convergence is said to have been achieved when the difference between two
successive iterations m and m+ 1, at all interior grid points, is less than 10−5, i.e.,

|ψm+1 − ψm| < 10−5

and

|ωm+1 − ωm| < 10−5.
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The restriction operator Rk−1k transfers a fine grid function Uk to a coarse grid func-

tion Uk−1. On the other hand the prolongation operator, denoted as P kk−1, transfers

a coarse grid function Uk−1 to a fine grid function Uk. For the restriction operator,
the simplest form is ‘injection’ where by the values of a function in the coarse grid are
taken to be exactly the values at the corresponding points of the next fine grid i.e.,

(Rk−1k uk)i+1,j+1 = uk2i+1,2j+1.

We used the above injection operator throughout this study. For the prolongation
operator the simplest form is derived using linear interpolation. Prolongation by
linear interpolation introduces no ambiguity when the interpolated value is desired at
the mid points of the boundaries of a mesh cell. The following 9-point prolongation
operator defined by Wesseling [24] is used for the present study

(P kk−1u
k−1)2i+1,2j+1 = uk−1i+1,j+1

(P kk−1u
k−1)2i+2,2j+1 =

1

2

(
uk−1i+1,j+1 + uk−1i+2,j+1

)
(P kk−1u

k−1)2i+1,2j+2 =
1

2

(
uk−1i+1,j+1 + uk−1i+1,j+2

)
(P kk−1u

k−1)2i+2,2j+2 =
1

4

(
uk−1i+1,j+1 + uk−1i+2,j+1 + uk−1i+1,j+2 + uk−1i+2,j+2

)
.

The solution obtained by the above method is not second order accurate as we have
approximated all terms by second order central difference method except covective
terms which are approximated by first order upwind difference scheme to ensure
diagonal dominance. In order to achieve second order accurate solution, the defect
correction method is employed as follows. If B is the operator obtained, for example,
by first order upwind discretization and A is that obtained by second order accurate
discretization, then defect correction algorithm [12, 13] works as given below. At the
start of defect correction, ȳ is a solution that is not second order accurate, and at the
end of defect correction, ȳ is second order accurate.

begin Solve Bȳ = b

for i := 1 step 1 until n do

solve By = b−Aȳ +Bȳ

ȳ := y

od

end
Usually, in practice, it is sufficient to take n = 1 or 2.

4. Results and Discussions

Full, nonlinear Navier-Stokes equations for the MHD flow past a circular cylinder are
solved using the multigrid method with defect correction technique for the range of
Reynolds numbers from 10 to 40 and for different values of Hartmann number M ,
using 512 × 512 as the finest grid with 256 × 256, 128 × 128 and 64 × 64 as coarser
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grids. The finite difference method is applied to the grid shown in Figure 1. We
observed the separation at rear stagnation point for all Reynolds numbers considered
in the present study, in M = 0 case (Figures 2–7). The length of the wake (l/a)
and angle of the separation (θs) are found to increase with Re as observed by some
researchers [8, 9]. With no magnetic field (M = 0), both length of the wake and angle
of the separation values (Tables 1–3) are in good agreement with Dennis and Chang
[8]. We observed that as the magnetic field is increased, the Lorentz forces dominate
and produce a convective rate in a direction opposite to the flow resulting in the
decrease of wake length and separation angle, for all Re values (10 ≤ Re ≤ 40). A
similar phenomenon can be seen in the case of the translation of a sphere in a rotating
viscous fluid [18, 19] and MHD flow past a sphere [21]. For Re = 10 the separation
bubble disappeared completely at M = 3 (Figure 3). As the magnetic forces are
proportional to and resist the flow of fluid in any other direction than that of the
unperturbed magnetic field, near the cylinder, they produce changes in the pattern of
the vorticity lines. The length of standing vortex is reduced slightly and the strength
of the disturbance in front of the cylinder is increased with increasing magnetic field
(Figures 8-13). It can also be seen that the radial component (u) of fluid velocity near
the cylinder at θ = 90o is suppressed more compared to the transverse component
(v) as it (u) is not parallel to the magnetic field (Figures 16, 17). As the Hartmann
number increases, the thickness of the boundary layer adjoining the cylinder surface
decreases, indicating that it tends to zero for sufficiently large values of M (M � 1)
(Figure 16). This may be attributed to the enhanced velocity gradients required by
the viscous stresses to compete with the large magnetic forces.

The drag coefficients and surface pressure are calculated using the following rela-
tions:
Viscous drag coefficient

Cv = − 4π

Re

∫ 1

0

ωξ=0 sin(πη)d η (14)

Pressure drag coefficient

Cp =
4

Re

∫ 1

0

(
∂ω

∂ξ

)
ξ=0

sin(πη)dη (15)

Total drag coefficient

CD = Cv + Cp (16)

and surface pressure

P (0, η) = 1− 4

πRe

∫ ∞
0

(
∂ω

∂η

)
η=1

d ξ − 4

Re

∫ 1

η

(
∂ω

∂ξ

)
ξ=0

d η (17)

We found that as the thickness of the boundary layer decreases, the increased
velocity gradients at the surface will increase the pressure drop (Figure 14) necessary
to maintain the given flow rate. It can be seen from Figure 15 that the magnetic
field tends to suppress the surface vorticity behind the cylinder thereby competing
with the viscous diffusion of vorticity out from the surface. The observed flow field
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is in accordance with the assumption that the effect of magnetic field is the small
perturbation of zero field potential flow.

Table 1. Drag coefficient values for Re = 10

256 × 256 512 × 512
M Cv Cp CD Cv Cp CD θs P (0, 0) P (0, 1) (l/a)

0.00 1.23 1.57 2.80 1.24 1.58 2.82 29.40 -0.70 1.48 1.55
1.00 1.23 1.61 2.84 1.23 1.59 2.83 25.40 -0.73 1.48 1.34
2.00 1.23 1.70 2.93 1.23 1.70 2.93 14.06 -0.83 1.50 1.05
3.00 1.30 1.93 3.23 1.31 1.93 3.24 0 -1.06 1.53 0

Table 2. Drag coefficient values for Re = 20

256 × 256 512 × 512
M Cv Cp CD Cv Cp CD θs P (0, 0) P (0, 1) (l/a)

0.00 0.79 1.20 1.99 0.80 1.22 2.02 43.80 -0.53 1.26 2.81
3.00 0.79 1.26 2.05 0.79 1.26 2.05 34.71 -0.60 1.27 1.80
5.00 0.82 1.54 2.36 0.82 1.54 2.36 26.36 -0.87 1.30 1.40
7.00 0.89 1.90 2.79 0.89 1.90 2.79 21.72 -1.50 1.35 1.25

Table 3. Drag coefficient values for Re = 40

256 × 256 512 × 512
M Cv Cp CD Cv Cp CD θs P (0, 0) P (0, 1) (l/a)

0.00 0.51 0.97 1.48 0.51 0.97 1.48 53.59 -0.46 1.14 5.74
3.00 0.51 1.00 1.51 0.51 1.01 1.52 44.45 -0.47 1.14 3.81
5.00 0.53 1.15 1.68 0.53 1.15 1.68 36.01 -0.54 1.15 2.80
7.00 0.57 1.43 2.00 0.57 1.44 2.01 31.09 -0.68 1.15 2.30

Table 4. Drag coefficient values before and after defect correction for
M = 0

128 × 128 256 × 256 512 × 512
Re before DC after DC before DC after DC before DC after DC

10 2.7186 2.7280 2.7561 2.7683 2.8133 2.8221
20 1.8826 1.8901 1.9905 1.9941 1.9954 2.0180
40 1.3851 1.3928 1.4644 1.4723 1.4742 1.4805

Table 5. Comparison of Drag coefficient values for M = 0

Present Dennis and Fornberg Ingham and
Re results Chang [8] [9] Tang [11]

10 2.82 2.846 — —
20 2.02 2.045 2.000 1.995
40 1.48 1.522 1.498 —

In the case of M = 0, the drag coefficient values are in good agreement with the
earlier work [8, 9, 11]. The drag coefficient values before and after applying defect
correction (DC) in three different grids 128× 128, 256× 256 and 512× 512 are given
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in Table 4. The comparison of the drag coefficient values for M = 0 is given in Table
5 and the graph of drag coefficient versus Reynolds number is presented in Figure
18. It is observed that the effect of magnetic field decreases as Re increases up to the
range considered in this study.

Appendix A. Figures

Figure 1. Finite difference grid

Figure 2. Streamlines for Re = 10, M = 0

Figure 3. Streamlines for Re = 10, M = 3
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Figure 4. Streamlines for Re = 20, M = 0

Figure 5. Streamlines for Re = 20, M = 7

Figure 6. Streamlines for Re = 40, M = 0

Figure 7. Streamlines for Re = 40, M = 7
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Figure 8. Vorticity lines for Re = 10, M = 0

Figure 9. Vorticity lines for Re = 10, M = 3
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Figure 10. Vorticity lines for Re = 20, M = 0

Figure 11. Vorticity lines for Re = 20, M = 7
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Figure 12. Vorticity lines for Re = 40, M = 0

Figure 13. Vorticity lines for Re = 40, M = 7
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Figure 14. Surface pressure for Re = 40 at different M values

Figure 15. Surface vorticity for Re = 40 at different M values
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Figure 16. Radial component of velocity within boundary layer at
θ = 90◦

Figure 17. Transverse component of velocity within boundary layer
at θ = 90◦
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Figure 18. Drag coefficient versus Reynolds number at different M values
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Abstract. The objective of this paper is to analyze the free vibration and mode shapes of
straight beams where the coupling between the bending and torsion is induced by steady state
lateral loads. The governing differential equations and boundary conditions for the coupled
vibrations of Euler-Bernoulli-Vlasov beams are derived by using the virtual work principle
which includes the second order terms of finite beam rotations. Closed form solution is found
for the coupled frequencies and mode shapes of a symmetric beam with simply supported
ends under uniform bending. A finite element model with seven degrees of freedoms per
node is also presented. To illustrate the accuracy of this formulation, numerical solutions
are presented and compared with available solutions.
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1. Introduction

The determination of natural frequencies and modes is a significant problem in the dy-
namic analysis of thin-walled beams and it is of great importance in designing of beam
structures subject to dynamic loadings. For a beam having cross sectional symmetry
in two perpendicular directions the solution of independent bending and torsional free
vibration frequencies and mode shapes is well known (Bishop and Johnson, [1]). If
the shear center S and the centroid C are not coincident, coupling between bending
and torsion should be considered during free vibration.

A number of studies dealing with coupled vibrations of thin-walled beams were
developed and only a few is mentioned here. Dokumaci [2] derived the exact analytical
expression for the solution of the bending-torsion equations and his results were later
extended by Bishop et. al. [3] to include torsional warping which is important for thin-
walled section beams. Afterwards, Tanaka and Bercin [4] and then Arpaci and Bozdag
[5] extended the approach to triply coupled vibrations of thin-walled beams and Prokić
[6] analysed the fivefold coupled vibrations of Timoshenko beams. Banerjee and
Williams took into account the effect of axial load [7]. In Ref. [8] Kollár presented
the analysis of the natural frequency of composite beams. A dynamic transfer matrix
method has been presented by Li et al. [9]. Recently Chen and Hsiao [10] investigated
the coupled vibration induced by the boundary conditions.

c©2014 Miskolc University Press
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In the most general case the coupling between different vibration modes is induced
not only by the eccentricity of geometry but by the steady state lateral loads and
internal stress resultants. The investigation presented in this paper is motivated
by the fact that for dynamic structural analyses that are sensitive to the modal
vibration properties small errors in the natural frequencies and mode shapes may
produce sizable errors in the modal time history and associated structural response
(e.q., earthquake response). A literature survey on the subject has revealed that
studies of this kind of couplings are limited.

The important points presented in this study are summarized as follows:

The potential energy of nonsymmetric beams subjected to initial loads and stress
resultants based on semitangential rotations and moments is firstly derived.

Next, the finite element model is defined by introducing seven nodal parameters.

Equations of motion and the closed form solution are derived from the potential
energy principle for simply supported beam under uniform bending load.

Finally, numerical solution is presented for a cantilever under eccentric steady state
tip load.

Accordingly the main objective of the present paper is to develop an accurate
numerical procedure to account for static loads in linear dynamic analysis of spatial
beam structures with arbitrary cross-sections.

2. Formulation

2.1. Equations of the problem. In this work, the basic assumptions are as follows:
the beam member is straight and prismatic, the cross-section is rigid in its plane but is
subjected to torsional warping, rotations are large but strains are small, the material
is homogeneous, isotropic and linearly elastic. Figure 1 shows a straight, prismatic
beam member with an arbitrary cross-section.
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Figure 1. A beam element with local coordinate systems and eccentricities

The local axis x of the right-handed orthogonal system is parallel to the axis of
the beam and passes through the end nodes N1 and N2. The co-ordinate axes y and
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z are parallel to the principal axes, marked as r and s, respectively. The positions of
the centroid C and shear center S in the plane of the cross section are given by the
co-ordinates yNC , zNC and yCS , zCS . The external loads are applied along points P
located ySP and zSP from the shear center S.

Based on large rotation theory, the displacement vector consisting of two parts due
to the translational and rotational deformations is obtained as (Kim et al. [11], [12]):

u = U + U∗ (1)

where U and U∗ are the displacements corresponding to the linear and second order
terms of displacement parameters due to large rotation effects. In the explicit form
these components can be written as:

U =

 Ux
Uy
Uz

 =

 u+ ϑϕ
v
w

+

 β(s− zCS) − γ(r − yCS)
−α(s− zCS)
α(r − yCS)

 , (2)

U∗ =

 U∗x
U∗y
U∗z

 =
1

2

 αβ(r − yCS) + αγ(s− zCS)
−
(
α2 + γ2

)
(r − yCS) + βγ(s− zCS)

βγ(r − yCS) −
(
α2 + β2

)
(s− zCS)

 . (3)

Displacement parameters are defined at the shear center S as shown in Figure 2.
Accordingly, u, v, and w are the rigid body translations in the directions x, y, and z
and α, β and γ denote rigid body rotations about the shear center axes parallel to x, y
and z, respectively. The small out-of-plane torsional warping displacement is defined
by the ϑ(x) warping parameter and the warping function ϕ(r, s) is normalized with
respect to the shear center. In the following the warping function ϕ and the shear
center location are the same as in the case of free torsion. For thin-walled sections
ϕ = −ω, the sector area coordinate introduced in Vlasov’s model. When the shear
deformation effects are not considered, the Euler-Bernoulli and the Vlasov internal
kinematical constraints are adopted as:

β = −w′ , γ = v′ , ϑ = α′ (4)

in which the prime denotes differentiation with respect to variable x.

The stress resultants shown in Figure 2 are defined as follows:

N =

∫
A

σx dA , Vr =

∫
A

τxr dA , Vs =

∫
A

τxs dA ,

Mt =

∫
A

(rτxs − sτxr) dA , Mr =

∫
A

sσx dA , Ms = −
∫
A

rσxdA , B =

∫
A

ϕσx dA ,

M1 = Mt − VsyCS + VrzCS , M2 = Mr − zCSN M3 = Ms + yCSN ,

MW =

∫
A

(
(r − yCS)2 + (s− zCS)2

)
σx dA = Ni2p +Mrβr −Msβs +Bβω

(5)

where N is the axial force, Vr and Vs are the shear forces acting at the shear center,
M1, M2 and M3 are the total twisting and bending moments with respect to shear



222 G. Vörös

center, respectively, and B is the bimoment. The stress resultant MW is known as
the Wagner effect. Also, the sectional properties are defined as

Ir =

∫
A

s2 dA , Is =

∫
A

r2 dA , Iω =

∫
A

ϕ2 dA ,

Ip = Is + Ir +A
(
y2CS + z2CS

)
, i2p =

IpS
A

, J = Ir + Is −
∫
A

(
s
∂φ

∂r
− r

∂φ

∂s

)
dA ,

βr =
1

Ir

∫
A

s(r2 + s2) dA− 2zCS , βs =
1

Is

∫
A

r(r2 + s2) dA− 2yCS ,

βω =
1

Iω

∫
A

ϕ(r2 + s2) dA ,

(6)

where A denotes the cross sectional area.
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Figure 2. Definition of displacement parameters and stress resultants

The final form of the virtual work principle for the beam structure subjected to initial
stresses may be expressed as

δΠ = δ (ΠL + ΠGi − ΠGe) − δW = 0 (7)

where ΠL , ΠGi, ΠGe are the linear elastic strain energy, the energy change due
to initial stress resultants and the potential energy due to eccentric initial external
loads, respectively, and W is the work of external load increments on incremental
displacements.

The first two terms of total potential (6) can be written as:

ΠL =
1

2

∫ L

0

[
EA(ū′)2 + EIr(w

′′)2 + EIs(v
′′)2 + EIω(α′′)2 +GJ(α′)2

]
dx , (8)

where E and G are the Young’s and shear moduli, respectively, and

ΠGi =
1

2

∫ L

0

[
N
(
(v′)2 + (w′)2

)
+MW (α)′2 +

+M1 (v′′w′ − v′w′′) +M2 (v′′α− v′α′) +M3 (w′′α− w′α′) +

+ (Vrw
′ − Vsv

′)α− 2 (Vrv
′ + Vsw

′) (ū′ − v′′yCS − w′′zCS)] dx . (9)
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The new displacement parameter, i.e. the overall average ū of the axial displacement
Ux is defined as

ū =
1

A

∫
A

Ux dA = u+ yCSv
′ + zCSw

′ . (10)

It should be mentioned that energy functional (7) was consistently obtained cor-
responding to semitangential internal moments because equation (9) due to initial
bending and torsion moments was derived on the basis of including the second order
terms of semitangential rotations in equation (3). For a detailed derivation of ΠL and
ΠGi the reader is referred to - among others – Kim et al. [12], [13] and Vörös [14].

The third term of equation (7) is the incremental work of initial loads. Considering
conservative initial external forces Fx, Fy and Fz each acting at the material point
P(ySP , zSP ) of the i-th nodal section – see Figure 1 for the details – the incremental
work of these forces is

ΠGe =
[
FxU

∗
x + FyU

∗
y + FzU

∗
z

]
Pi

=

=
1

2

[
Fx (ySPβ + zSP γ)α+ Fy

(
zSPβγ − ySP

(
γ2 + α2

))
+

+ Fz
(
ySPβγ − zSP

(
β2 + α2

))]
i

(11)

For time dependent dynamic problems, according to the d’Alembert’s principle the
volume load increment q is the inertia force and the appropriate virtual work, ne-
glecting the second order terms, can be written in the following form

δW =

∫
V

qδu dV = −
∫
V

ρ
(
Ü + Ü∗

)
δ (U + U∗) dV ≈ −

∫
V

ρÜδU dV = δΠM

where ρ is the mass density per unit volume and dot denotes differentiation with
respect to time variable t. Substituting the linear displacements from equation (2)
and taking the definitions for the section properties from equation (6) into account
the following expression is obtained:

δΠM = −
∫ L

0

ρ [A¨̄uδū+A (v̈ + α̈zCS) δv +A (ẅ − α̈yCS) δw+

+A
(
v̈zCS − ẅyCS + α̈i2p

)
δα+ Isv̈

′δv′ + Irẅ
′δw′ + Iωα̈

′δα′
]
dx . (12)

2.2. Finite element discretisation. The derivation of finite element matrices is
based on the assumed displacement field. The nodal vector of seven local displacement
parameters is defined as

∆i =
[
ū v w α β γ ϑ

]T
i
, UE =

[
∆1

∆2

]
. (13)
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A linear interpolation is adopted for the axial displacement and a cubic Hermitian
function for the lateral deflections and twist:

ū (ξ) =ū1(1 − ξ) + ū2ξ ,

v (ξ) =v1F1 + γ1LF2 + v2F3 + γ2LF4 ,

w (ξ) =w1F1 − β1LF2 + w2F3 − β2LF4 ,

α (ξ) =α1F1 + ϑ1F2 + α2N3 + ϑ2LN4

(14)

where

F1 = 1 − 3ξ2 + 2ξ3 , F2 = ξ − 2ξ2 + ξ3 , F3 = 3ξ2 − 2ξ3 , F4 = ξ3 − ξ2 , ξ =
x

L
.

Substituting the shape functions into equations (8), (9), (11) and (12) and integrating
along the element length L, the elementary matrices obtained can be defined as:

δΠL =δUT
EkLUE , δΠGi =δUT

EkGiUE ,

δΠGe =δUT
EkGeUE , δΠM =δUT

EmUE .
(15)

The kL linear stiffness is the same as that published by Attard [15] and the exactly
integrated 14x14 element geometric stiffness and consistent mass matrices kGi, kGe
and m were presented by Vörös [14], [16]. In this study it is assumed that the Mr and
Ms initial bending moments are linearly varying along a beam element length, while
the other internal force components are uniform. In this case the uniform shear forces
can be approximated as Vs = (Mr2 −Mr1)/L and Vr = −(Ms2 −Ms1)/L, where 1
and 2 in the indices refer to the M1 and M2 nodal moments.

This procedure was implemented in a conventional finite element program called
VEM7 to obtain numerical results given in the following sections.

3. Free vibration of a simply supported beam

To study the effect of the initial bending on dynamic behaviour, consider a straight
beam under a uniform bending moment. Both end loads are quasitangential moments
and each moment is equivalent to a couple with a small rigid lever as shown in Figure
3. A quasitangential bending moment can be regarded as the simultaneous action
of two eccentric axial forces. Therefore, making use of equation (11) at first with
Fx = F , zSP = a/2 than Fx = −F , zSP = −a/2 at the x = L end and the same but
with opposite forces at the x = 0 end of the beam, the virtual work of quasitangential
moment under small spatial rotations can be evaluated as follows:

ΠGe = −1

2
[Faγα]x=L − 1

2
[−Faγα]x=0 = −1

2
M [γα]

L
0 , (16)

where M = Fa.
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Figure 3. Simply supported beam with quasitangential end moments

To derive a closed form solution for the simplest case, a doubly symmetric section is
taken and the only non zero initial stress resultant is the uniform bending moment.
Now applying the βr = 0 and M2 = Mr = M conditions in equation (9) and adopting
the internal constraints (5) in equation (16), the actual form of the virtual work
principle (7) is obtained as:

δΠ = δ

∫ L

0

1

2

(
EA(ū′)2 + EIrw

′′ + EIs(v
′′)2 + EIω(α′′)2 +GJ(α′)2

)
dx+

+

∫ L

0

ρ
[
A (¨̄uδū+ v̈δv + ẅδw) + Ipα̈δα+ Isv̈

′δv′ + Irẅ′δw
′ + Iωα̈′δα

′] dx+

+ δ

∫ L

0

1

2
M (v′′α− v′α′) dx+ −1

2
Mδ [v′α]

L
0 = 0 . (17)

It can be seen that due to the initial bending moment Mr = M the lateral dis-
placement v(x, t) and the torsional rotation α(x, t) are coupled. Neglecting the third
mixed derivative terms (effects of rotary and warping inertia) in the above principle
and focusing on the coupled parameters only from the variation of equation (17) with
respect to v and α the equations of motion and boundary conditions are derived as
follows:

EIsv
′′′′ +Mα′′ + ρAv̈ = 0

EIωα
′′′′ −GJα′′ +Mv′′ + ρIpα̈ = 0 .

(18a)

[(EIsv
′′′ −Mα′) δv]

L
0 = 0 , [(EIsv

′′) δv′]
L
0 = 0 ,

[(−EIωα′′′ +GJα′ −Mv′) δα]
L
0 = 0 , [(EIωα

′′) δα′]
L
0 = 0 .

(18b)

In the case of simply supports at each end (fork like supports which prevent torsional
rotation and allow free warping) the boundary conditions are:

x = 0 , x = L : v = 0 , α = 0 , v′′ = 0 , α′′ = 0 . (18c)

For free harmonic vibrations the boundary conditions are satisfied by taking the trial
solutions as

v (x, t) = v0 sin
(
i
π

L
x
)

sinωt , α (x, t) = α0 sin
(
i
π

L
x
)

sinωt , (19)
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where v0, α0 are the modal amplitudes and ω is the circular frequency. Substitut-
ing equation (19) into equation (18a) results in the following linear homogeneous
equations: (EIs (i πL)4 − ρAω2

)
−M

(
i πL
)2

−M
(
i πL
)2 (

EIω
(
i πL
)4

+GJ
(
i πL
)2 − ρIpω

2
) [ v0

α0

]
=

[
0
0

]
.

(20)
Obviously, if there is no moment load on the beam, that is M = 0, then the uncoupled
lateral bending and torsional frequencies are

ω2
bi =

(
i
π

L

)4 EIs
ρA

, ω2
ti =

(
i
π

L

)2 GJ
ρIp

[
1 +

(
i
π

L

)2 EIω
GJ

]
, i = 1, 2, . . . . (21)

Taking the solution of equation (20) in the static case for which ω = 0 the following
moment eigenvalues are obtained

M2
i =

(
i
π

L

)2
EGIs J

(
1 +

(
i
π

L

)2 EIω
GJ

)
, i = 1, 2, . . . ... (22)

and the smallest moment obtained for i = 1 is the critical bending load:

Mcr = M1 = ±π
L

√
EGIsJ

√
1 +

π2EIω
L2GJ

= ±L
2

π2
ρ
√
AIpωb1ωt1 . (23)

Introducing the steady state moment load factor as

µi = M/Mi (24)

and substituting equations (21) and (22) into equation (20) yields[
A
(
ω2
bi − ω2

)
−
√
AIpµi ωbiωti

−
√
AIpµi ωbiωti Ip

(
ω2
ti − ω2

) ] [
v0
α0

]
=

[
0
0

]
. (25)

The non-trivial solution is obtained by setting the determinant of the above system
equal to zero. For every i two natural frequencies can be calculated:

ω2
i,1,2 =

ω2
ti + ω2

bi

2
±

√(
ω2
ti − ω2

bi

2

)2

+ µ2
iω

2
tiω

2
bi . (26)

It can be seen from this result, that only the bending and torsion modes with the
same i index are coupled. Now if i = 1 and ωb1 < ωt1 then the first two coupled
frequencies are

ω2
1,1 =

ω2
t1 + ω2

b1

2
−

√(
ω2
t1 − ω2

b1

2

)2

+ µ2
1ω

2
t1ω

2
b1 , (27)

ω2
1,2 =

ω2
t1 + ω2

b1

2
+

√(
ω2
t1 − ω2

b1

2

)2

+ µ2
1ω

2
t1ω

2
b1 . (28)
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The corresponding diagrams of the bending moment and frequencies are shown in
Figure 4. From equations (27,b) the extreme values of the plots are:

M =0 , µ1 =0 , ω2
1,1 =ω2

b1 , ω2
1,2 =ω2

t1 ,

M = ±Mcr , µ1 = ± 1 , ω2
1,1 =0 , ω2

1,2 =ω2
t1 + ω2

b1 .
(29)

Once the natural frequencies are found, the modal amplitudes can be calculated in
the usual way. The ratio of first modal amplitudes, or the modal bending-torsion
mixing factor, from the first row of equation (25) is:

α0ip
v0

=
ω2
b1 − ω2

1,1

µ1ωb1ωt1
. (30)

The mixing factor-moment plot can also be seen in Figure 4. In a limit case, when
M = Mcr and µ1 = 1, the value of mode mixing factor is

α0ip
v0

=
ωb1
ωt1

. (31)

Briefly, the bending-torsion mixing factor of the lateral bending-torsion buckling mode
shape is proportional to the ratio of uncoupled natural frequencies.
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Figure 4. Change of first pair of coupled frequencies and mixing fac-
tor of the first mode

M (106 Nmm) µ1
FEM7 Eq.(27a) Eq.(27b) Eq.(29)

ω1.1 ω1.2 α0ip/v0 ω1.1 ω1.2 α0ip/v0

0 0 68.93 161.4 0 69.00 161.4 0
10 0.284 65.51 162.8 0.145 65.58 162.8 0.146
20 0.569 54.91 166.7 0.274 54.93 166.7 0.275
35 0.995 6.39 175.4 0.425 6.34 175.4 0.426

Table 1. Comparison of coupled frequencies (1/sec) and mode mixing factors

To examine the validity and accuracy of the proposed VEM7 model, numerical and
the closed form solutions are compared. Material and cross sectional properties used
in this example are listed in Figure 5, and the length of the simply supported beam
is L = 4 m. The first uncoupled lateral bending and torsional frequencies, using
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equation (21) are ωb1 = 69.00 sec−1, ωt1 = 161.4 sec−1 and the buckling moment
from equation (23) M1 = Mcr = ±35.18 × 106 Nmm. Table 1 shows that the FEM7
solutions using 10 elements are practically identical with the closed form solutions.

4. Cantilever with lateral load

In the following a straight cantilever beam of length L with a monosymmetric and
uniform cross section is considered. The beam is shown in Figure 5. The distance
between the centroid and shear center is denoted by zCS and the initial lateral load
F is applied at the cantilever right end with an eccentricity zSP .
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Figure 5. Cantilever beam with a tip load

Because the lateral bending in y direction and the torsional vibrations are coupled,
only the v(x, t) and α(x, t) increments are considered here. Applying the non zero
initial stress resultants M2 = Mr and Vs in equation (9) the final form of the virtual
work principle (7) is obtained as:

δΠ = δ

∫ L

0

1

2

(
EIs(v

′′)2 + EIω(α′′)2 +GJ(α′)2
)
dx+

+ δ

∫ L

0

1

2

[
Mr

(
βrα

2 + v′′α− v′α′
)
− Vsv

′α
]
dx+

+

∫ L

0

ρ [A (v̈ + zCSα̈) δv + (Ipα̈+AzCS v̈) δα+ Isv̈
′δv′ + Iωα̈

′δα′] dx+

+
1

2
δ
[
FzSPα

2
]
x=L

= 0 . (32)

Now, in due course, at first integrating by part the variation of equation (32) then
replacing the internal equilibrium equation dMr/dx = Vs the equations of motion can
be derived in the following form:

EIsv
′′′′ + (Mrα)

′′
+ ρA (v̈ + zCSα̈) − ρIsv̈

′′ = 0 ,

EIωα
′′′′ −GJα′′ − βr (Mrα

′)
′
+Mrv

′′ + ρIpSα̈+ ρAzCS v̈ − ρIωα̈
′′ = 0 .

(33a)

The corresponding boundary conditions with Mr(L) = 0 are

x = 0 : v = 0 , α = 0 , v′ = 0 , α′ = 0 ,

x = L : v′′ = 0 , −EIsv′′′ + ρIsv̈
′ = 0 ,

α′′ = 0 , −EIωα′′′ +GJα′ + ρIωα̈
′ + FzSPα = 0 .

(33b)
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It should be noted, that equation (33a) is coupled for the following two reasons:
asymmetry of the section (zCS , βr) and the internal stress resultant (Mr).

F (103 kN) ω1.1 (1/sec) ω1.2 (1/sec) α0ip/v0

0 98.21 150.1 0

±20 89.39 148.0 0.250

±30 76.07 145.8 0.373

±46 7.71 142.0 0.546

Table 2. Frequencies and mode mixing factor, zSP = 0 mm, Fcr =
±46.13 kN

F (103 kN) ω1.1 (1/sec) ω1.2 (1/sec) α0ip/v0

-22 19.70 107.4 1.311

0 98.21 150.1 0

+30 87.33 197.7 0.141

+65 9.30 204.9 0.215

Table 3. Frequencies and mode mixing factor, zSP = 100 mm, Fcr =
−22.38kN/+ 65.26 kN
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In general - even if the section is symmetric and the rotary and warping acceleration
terms are neglected - it is not possible to derive a closed form solution for the coupled
vibration of the cantilever, so numerical solutions by FEM7 model are presented here.

The first two coupled bending-torsion natural frequencies and the mode mixing
factor - defined in equation (30) - of the first mode shape are given in Tables 2 and 3
for various eccentricities. As can be seen in Figures 6 and 7 the load eccentricity has
a significant influence on the natural frequencies and particularly on the mode shapes
even if the section is symmetric. For example, if a vertical tip load of magnitude
F = −10 kN ≈ Fcr/2 pointing downwards acts on the top flange of IPE200 section
(zSP = 100 mm) the decrease of the first two frequencies approximately are 4% and
20% respectively, and 30% of the lateral displacement of the load point of action
comes from the torsional component of the first mode shape.

5. Conclusion

The paper presented a numerical method analysing the effect of steady state bend-
ing on the coupled bending torsional vibration and mode shapes of Bernoulli-Vlasov
beams. It was found that the initial bending moment has a significant effect on the
mode shapes. This prove the need of second order dynamics in structural analysis.
The FEM7 finite element approach can be advantageously extended to more complex
problems of spatial beam structures.
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