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nomics, Műegyetem rkp. 3, 1111 BUDAPEST,
Hungary, gaspar@ep-mech.me.bme.hu

Robert HABER, Department of Theoretical and Ap-
plied Mechanics, University of Illinois at Urbana-
Champaign, 216 Talbot Lab., 104 S. Wright Str.,
URBANA, IL 61801, USA,
r-haber@uiuc.edu
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Gábor HALÁSZ, Department of Hydraulic Machines, Budapest University of Technology and Economics,
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Abstract. The present paper is concerned with the stability problems of a thin solid circular
plate and some annular plates, each stiffened by a cylindrical shell on the external boundary.
Assuming an axisymmetric dead load and non-axisymmetric deformations we determine the
critical load in order to clarify what effect the stiffening shell has on the critical load. Using
Kirchhoff’s theory of thin shells and plates the paper presents the governing equations both
for the circular plate and for the cylindrical shell, where the displacement field of the shell
is obtained from a Galerkin function. The deflection of the plate and the Galerkin function
are expanded into Fourier series and consequently all physical quantities in the structural
elements as well. The boundary- and continuity conditions and last but not least numerical
results are also presented.

Mathematical Subject Classification: 74K20, 65L15
Keywords: Buckling, stability problem, shell-stiffened circular plates, cylindrical shell,
Galerkin function

1. Introduction

Stability investigations of engineering structures look back on a long history. As re-
gards the stability problem of circular plates, we mention that the first paper devoted
to this issue was published in 1890 [1]. Since then a number of papers have been de-
voted to this problem. Without aiming at completeness here we cite some important
papers [2–11].

There are various methods for increasing the resistance of a circular plate to buck-
ling. For example, one can apply an internal ring support, which can be either rigid
or elastic. Thevendran and Wang have examined the buckling problem of annular
plates which are simply supported with elastic rotational restraints at the inner or
outer boundary [12]. Laura et al. have investigated the buckling of circular, solid and
annular plates with an intermediate circular support under the assumption of axisym-
metric deformations [13]. By the use of the Kirchhoff-Love plate theory [14, 15] and
the Mindlin–Reissner theory [16] Wang and his co-authors studied the same structure
under the assumption of non-axisymmetric deformations. Rao and Rao have analysed
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the buckling of circular plates which are supported along concentric rings. The sup-
ports applied are simple or translational and/or torsional elastic restraints [17–20].
The authors have also investigated a circular plate with elastic foundation [21].

Another method to increase stability of a circular plate is the use of stiffeners.
If these are applied densely, their effect can be averaged and smeared out by using
orthotropic plates. The theoretical background of this technique can be found in the
book written by Troitsky [22]. Buckling of such stiffened plates has been examined
among others by Simitses and Blackmon [23] and Srinivasan and Thiruvenkatachari
[24].

We can also use discrete stiffeners. The effect on stability of a ring stiffener on
the boundary of a circular plate is investigated by Phillips and Carney [25]. A ring
stiffened circular plate is investigated in a paper by Turvey and Der Avanessien [26].
The paper cited is concerned among others with experimental results. However, the
stability issues are left out of consideration. A further paper by Turvey and Salehi [27]
deals with an annular plate stiffened by a single diameter stiffener. The stability
problem is, however, again left out of consideration. A further paper by Golmakani
and Mehrabian deals with deflection analysis of axisymmetric ring-stiffened circular
and annular laminated plates subjected to a transverse uniform load [28].

Rossettos and Miller have investigated symmetric and asymmetric buckling of a
circular plate which is stiffened by a ring at an internal radius [29, 30]. The axial
rigidity of the stiffening ring has been ignored. Frostig and Simitses have examined
a similar structure but they have not used the simplifications of the aforementioned
article [31,32]. The stiffening ring is modeled as a curved beam.

Szilassy dealt with the stability of circular and annular plates stiffened by a cylin-
drical shell on its outer boundary in his PhD. thesis [33] and in a further article [34].
It was assumed that (i) the load is an in-plane axisymmetric dead one and (ii) the
deformations of the annular plate and the cylindrical shell are also axisymmetric. For
solving the corresponding eigenvalue problem, he used the solution of a differential
equation set up for the rotation field while the solution for the cylindrical shell is
based on the theory of thin shells.

The present paper deals with the non-axisymmetric buckling of circular and annular
plates which are stiffened by a cylindrical shell on the outer boundary. The paper
outlines the basic assumptions, the governing equations as well as the boundary and
continuity conditions. Numerical results are also shown. These represent the influence
of shell geometry on buckling load. As regards the cylindrical shell we shall utilize
some results from Vlasov [35] and Jezsó [36].

2. Problem formulation

The cross section of the shell-stiffened structure we are concerned with is shown in
Figure 1. It consists of either a solid circular plate or an annular one – the latter is
shown in Figure 1 – and a cylindrical shell, which stiffens the plate on its external
boundary. The inner radius of the plate is denoted by Ri, the radius of the intersection
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line of the middle surfaces of the plate and the shell by Re. If the plate is a circular
one then Ri = 0. The shell is symmetric with respect to the middle plane of the plate.
Its height is 2h. We shall assume that Re coincides with the external radius of the
plate. The thicknesses of the plate and shell are denoted by bp and bs, respectively.
The structure is loaded by radial distributed forces with a constant intensity fo acting
in the middle plane of the plate. The load is a dead load.

2Ri

2Re

bp
h

bs

fo R

z x

ζ

h

Figure 1. The structure and its load

We shall assume that the plate and the shell are thin, consequently we can use the
Kirchhoff theory of plates and shells. It is also assumed that the problem is linear
with regard to the kinematic equations and material law. Heat effects are not taken
into account. The plate and the shell are made of homogeneous isotropic material for
which Ep, Es and νp, νs are Young’s modulus and Poisson’s ratio for the plate and
the shell respectively.

Figure 2 shows the various tasks which can be investigated. Figure 2a. is the inner
part of a solid circular plate and subfigures b.-d. are supports that can be applied on
the inner boundary of an annular plate.

a. b. c. e.d.

Figure 2. Possible supports

Our main goal is to determine (a) the critical load of the structure and (b) the
effect of the stiffening shell on the critical load under the assumption of small, non-
axisymmetric and linearly elastic deformations.

The shell and the plate are divided mentally. The cylindrical coordinate system
(R,ϕ, z) is used for the equations of the plate – the plane z = 0 coincides with the
middle surface of the plate. Figure 3a. shows the corresponding coordinate curves on
the circle with radius Re. The displacements on the middle surface in the directions
R, ϕ and z are denoted by u, v and w respectively.
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For the cylindrical shell the coordinate system (ζ, ϕ, ξ) is applied. The coordinate
surface ξ = z, ζ = 0 coincides with the middle surface of the shell with radius Re.
The polar angle ϕ is the same in the two coordinate systems. The coordinate curves
on the middle surface of the shell are also shown in Figure 3b. The displacements on
the middle surface of the shell in the directions ζ, ϕ, ξ are denoted by uζ , uϕ and uξ,
respectively.

In the mathematical formulations we use the dimensionless coordinates ρ = R/Re
and ξ = x/Re. The dimensionless coordinates on the boundaries are denoted by
ρi = Ri/Re and ξh = h/Re.

Re

Rϕ

z
u

v
w

O

ϕ

uζ
uϕ uξ

O

x

ζ

a. b.

Figure 3. Coordinate curves in the coordinate systems

3. Governing equations

3.1. In-plane loads and forces. Figure 4 shows the separated parts of the struc-
ture with the inner forces acting in the middle plane of the plate between the two
elements. The load is axisymmetric, consequently the equations governing the pre-
buckling (membrane) state for each part are axisymmetric as well.

a.

fo ζ

x

fof f

uζ

f R

z

f

b.

u

w

Figure 4. Free body diagram for plate and shell
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The distributed load f exerted on the plate by the shell can be obtained from
the axisymmetric deformations of the shell and by utilizing the continuity condition
between the shell and the plate:

u (ρ = 1) = uζ (ξ = 0) = − νo
2Es

(
Re
bs

) 3
2 cos 2hβ + cosh 2hβ + 2

sin 2hβ + sinh 2hβ︸ ︷︷ ︸
α

(fo−f) = −α (fo−f) .

(3.1)

where νo = 4
√

3(1− ν2s ) and α is defined by the above relation – for details see [37].

Due to the axisymmety of the in-plane loads, the inner forces in the plate depend
only on the radial coordinate ρ. The inner forces due to f take the form

NR = fNR = f

(
−A+

B

ρ2

)
, (3.2a)

Nϕ = fNϕ = f

(
−A− B

ρ2

)
, (3.2b)

NRϕ = NϕR = fNRϕ = 0 (3.2c)

where the constants A and B depend on the boundary conditions. It follows from the
axisymmetry that NRϕ vanishes. If the plate is a solid one – see Figure 2a – then

A = 1 and B = 0 . (3.3a)

If the inner boundary is free and f is the distributed load on the outer boundary –
see Figure 2b. and c. – then the constants are as follows:

A =
1

1− ρ2i
and B =

ρ2i
1− ρ2i

. (3.3b)

If the radial displacement vanishes on the inner boundary – see Fig. 2 d. and e. –
then

A =
1 + νp

1 + νp + ρ2i (1− νp)
and B = − ρ2i (1− νp)

1 + νp + ρ2i (1− νp)
. (3.3c)

The radial displacement on the inner boundary can be calculated by using the relations

u (ρ = 1) = −KRe
bp

f

Ep
, (3.4)

where the constant K depends on the boundary conditions

K = 1− νp if ρi = 0 , (3.5a)

K =
1− νp + ρ2i (1 + νp)

1− ρ2i
if NR (ρ = ρi) = 0 , (3.5b)

K =

(
1− ν2p

) (
1− ρ2i

)
1 + νp + ρ2i (1− νp)

if u (ρ = ρi) = 0 . (3.5c)
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3.2. Deformation of the annular plate, equations for the displacement field
after stability loss. The buckling equation can be given in the form [32]

∆∆w − F

[
NR

∂2w

∂ρ2
+Nϕ

(
1

ρ

∂w

∂ρ
+

1

ρ2
∂2w

∂ϕ2

)]
= 0 (3.6)

where

F = f
R2
e

I1pE1p
(3.7)

is the dimensionless load parameter wherein

I1p =
b3p
12

, E1p =
Ep

1− ν2p
(3.8)

and

∆ =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂ϕ2
(3.9)

is the Laplace operator in the polar coordinate system (ρ, ϕ) .

The physical quantities which appear in the boundary conditions, such as the
rotation, the shear force and the bending moment can all be given in terms of the
solution for w as follows

ϑ = − 1

Re

dw

dρ
, (3.10a)

MR = −I1pE1p

R2
e

[
∂2w

∂ρ2
+
νp
ρ

(
∂w

∂ρ
+

1

ρ

∂2w

∂ϕ2

)]
, (3.10b)

QR = I1pE1p
1

R3
e

∂

∂ρ
(∆w)− NR

Re

∂w

∂ρ
− 1

ρRe

∂MRϕ

∂ϕ
. (3.10c)

For non axisymmetric deformations we expand the solution giving the deflection
w in a Fourier series of the form

w = wo +

1∑
m=0

∞∑
n=1

m
wn (ρ) cos

(
nϕ−mπ

2

)
(3.11)

and substitute it into (3.9). We obtain that the amplitudes wo(ρ) and
m
wn(ρ) should

fulfill the following differential equations:

∆n∆n
m
wn − F

[
NR

∂2
m
wn
∂ρ2

+Nϕ
(

1

ρ

∂
m
wn
∂ρ
− n2

ρ2
m
wn

)]
= 0 (3.12)

m = 0, 1 ; n = 1, 2, . . .

where

∆n =
d2

dρ2
+

d

ρdρ
− n2

ρ2
. (3.13)

If the plate is a circular one, than NR = Nϕ = 1, and equations (3.12) have a
closed form solution:

m
wn(ρ) = c1Z1 + c2Z2 + c3Z3 + c4Z4 , (3.14a)
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Z1 = ρn , Z2 = ρ−n , Z3 = Jn(
√
Fρ) , Z4 = Yn(

√
Fρ) , (3.14b)

where c1, c2, c3 and c4 are integration constants. Otherwise, if the plate is an annular
one we use a numerical algorithm (for example the Runge-Kutta method) in the
solution procedure – see [37] for details.

The physical quantities in the plate can also be expanded into a Fourier series
similarly to the deflection. Thus we get

ϑ = ϑo +

1∑
m=0

∞∑
n=1

m

ϑn cos
(
nϕ−mπ

2

)
, (3.15a)

for the rotation field,

MR = MRo +

1∑
m=0

∞∑
n=1

m

MRn cos
(
nϕ−mπ

2

)
, (3.15b)

for the bending moment, and

QR = QRo +

1∑
m=0

∞∑
n=1

m

QRn cos
(
nϕ−mπ

2

)
(3.15c)

for the shear force.

It can be shown that the amplitude functions of the rotation ψϕ, the bending
moment MR and the shear force QR can all be given in terms of the amplitudes of w
as follows:

m

ϑn = − 1

Re

d
m
wn
dρ

, (3.16a)

m

MRn = −I1E1p

R2
e

[
d2mwn
dρ2

+
ν

ρ

(
d
m
wn
dρ
− n2

ρ

m
wn

)]
(3.16b)

m

QRn =
I1pE1p

R3
e

[
d3mwn
dρ3

+
1

ρ

d2mwn
dρ2

−
(

1

ρ2
(
1 + 2n2 (1− ν)

)
+ FNR

)
d
m
wn
dρ

+
3n2

ρ3
m
wn

]
.

(3.16c)

3.3. Governing equations for the cylindrical shell.

3.3.1. Field eqations for the shell. The kinematic quantities which describe the de-
formations of the shell can be calculated by the displacements uϕ, uξ and uζ . Using
the coordinate ξ the rotations can be obtained from the relations

ψϕ =
1

Re

∂uζ
∂ξ

, (3.17a)

ψx =
1

Re

(
∂uζ
∂ϕ
− uϕ

)
. (3.17b)
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The deformations on the middle surface of the shell are also characterized by the
axial strains

exx =
1

Re

∂uξ
∂ξ

, (3.18a)

exϕ =
1

2Re

(
∂uξ
∂ϕ

+
∂uϕ
∂ξ

)
, (3.18b)

eϕϕ =
1

Re

(
∂uϕ
∂ϕ

+ uζ

)
(3.18c)

and by the elements of the curvature tensor:

κxx = − 1

R2
e

∂2uζ
∂ξ2

, (3.19a)

κϕϕ = − 1

R2
e

∂2uζ
∂ϕ2

, (3.19b)

κxϕ = κϕx = − 1

R2
e

∂2uζ
∂ξ∂ϕ

. (3.19c)

Using these kinematic quantities the corresponding inner forces are obtained from
Hooke’s law:

Nxx = E1sbs (exx + νeϕϕ) , (3.20a)

Nϕϕ = E1sbs (eϕϕ + νexx) , (3.20b)

Nϕx = E1sbs (1− ν) exϕ . (3.20c)

The elements of the internal moments tensor are given by the relations below:

Mxx = E1sI1s (κxx + νκϕϕ) , (3.21a)

Mϕϕ = E1sI1s (κϕϕ + νκxx) , (3.21b)

Mxϕ = E1sI1s (1− ν)κxϕ . (3.21c)

Note that the internal moment tensor is assumed to be symmetric, i.e. Mxϕ = Mϕx.

The shear forces on the middle surface of the shell are denoted by Qxζ and Qϕζ .
The above equations are associated with the equilibrium equations

1

Re

∂Nxx
∂ξ

+
1

Re

∂Nϕx
∂ϕ

+ px = 0 , (3.22a)

1

Re

∂Nϕx
∂ξ

+
1

Re

∂Nϕϕ
∂ϕ

+
1

Re
Qϕζ + pϕ = 0 , (3.22b)

− 1

Re

∂Qxζ
∂ξ

− 1

Re

Qϕζ
∂ϕ
− 1

Re
Nϕϕ + pζ = 0 , (3.22c)

1

Re

∂Mxx

∂ξ
+

1

Re

∂Mϕx

∂ϕ
+Qxζ = 0 , (3.22d)

1

Re

∂Mxϕ

∂ξ
+

1

Re

∂Mϕϕ

∂ϕ
+Qϕζ = 0 (3.22e)
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in which px, pϕ and pζ are the intensities of the distributed loads exerted on the
middle surface of the shell.

Observe that we have as many equations as there are unknowns (nineteen equations
(3.17)-(3.22) in nineteen unknowns).

3.3.2. The Galerkin function. For px = pϕ = 0 the fundamental equations (obtained
after we have eliminated the intermediate variables) set up for the displacement co-
ordinates uxi, uϕ and uζ will be fulfilled identically if we calculate the displacement
coordinates in terms of the Galerkin function φ(ξ, ϕ) using the relations [35,36]

uξ =
∂3φ

∂ξ∂ϕ2
− νs

∂3φ

∂ξ3
, (3.23a)

uϕ = −∂
3φ

∂ϕ3
− (2 + νs)

∂3φ

∂ξ2∂ϕ
, (3.23b)

uζ = ∇2∇2φ (3.23c)

in which φ should satisfy the differential equation

∇2∇2∇2∇2φ+ 4β̂4
∂4φ

∂ξ4
=

4β̂4R2
e

Esbs
pζ (3.24)

where

4β̂4 = 12
(
1− ν2s

) R2
e

b2s
(3.25a)

and

∇2 =
∂2

∂ξ2
+

∂2

∂ϕ2
. (3.25b)

Every physical quantity appearing in the boundary conditions can be written in terms
of the Galerkin function φ if we substitute the displacements (3.23) into equations
(3.17)-(3.22). Omitting the formal transformations we get:

ψϕ =
1

Re

∂

∂ξ
∇2∇2φ , (3.26a)

Nxx =
Esbs
Re

∂4φ

∂ξ2∂ϕ2
, (3.26b)

Nϕx = −Esbs
Re

∂4φ

∂ξ3∂ϕ
, (3.26c)

Mxx = −Esbs
4β̂4

[
∂2

∂ξ2
+ νs

∂2

∂ϕ2

]
∇2∇2φ , (3.26d)

Mxϕ = −Esbs (1− νs)
4β̂4

∂2

∂ξ∂ϕ
∇2∇2φ , (3.26e)

Qxζ =
1

Re

Esbs

4β̂4

∂

∂ξ
∇2∇2∇2φ . (3.26f)
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3.3.3. Solution for the Galerkin function. Let us expand the function φ(ξ, ϕ) into a
Fourier series similarly to the deflection w. We can write

φ = φ (ξ, ϕ) = φo (ξ) +

∞∑
n=1

1∑
m=0

m

φn (ξ) cos
(
nϕ−mπ

2

)
. (3.27)

Substituting the series (3.27) into differential equation (3.24) we obtain that the

coefficients
m

φn of the series should satisfy the ordinary differential equations

d8
m

φn
dξ8

− 4n2
d6
m

φn
dξ6

+ 6n4
d4
m

φn
dξ4

− 4n6
d2
m

φn
dξ2

+ n8
m

φn + 4β̂4 d4
m

φn
dξ4

=
4β̂4R2

e

Ebs

m
pζ n (3.28)

m = 0, 1 ; n = 0, 1, 2, . . .

where the coefficients
m
pζ n on the right side are those of the Fourier series that belongs

to the load exerted on the middle surface of the shell:

pζ (ξ, ϕ) = pζ o (ξ) +

∞∑
n=1

1∑
m=0

m
pζ n (ξ) cos

(
nϕ−mπ

2

)
(3.29)

In the investigated problem this load is zero, consequently the solutions of differential
equations (3.28) have only a homogeneous part.

The solution of equation (3.28) is sought in the form

m

φn = eλnξ . (3.30)

After substituting it into equation (3.28) we get the characteristic polynomial for
the (m,n)-th differential equation:(

λ2n − n2
)4

= −4β̂4λ4n (3.31)

By introducing the notations

bn =
β̂

2

√√√√√
1 + 4

(
n

β̂

)4

+ 2

(
n

β̂

)2

, (3.32a)

an =
β̂

2

√√√√√
1 + 4

(
n

β̂

)4

− 2

(
n

β̂

)2

, (3.32b)

and

βn1 = bn +
β̂

2
, (3.33a)

βn2 = bn −
β̂

2
, (3.33b)

αn1 =
β̂

2
+ an , (3.33c)
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αn2 =
β̂

2
− an (3.33d)

it can be shown that the roots of equation (3.31) are as follows:

λn1 = −βn2 + iαn2 , (3.34a)

λn2 = −βn1 + iαn1 , (3.34b)

λn3 = −βn2 − iαn2 , (3.34c)

λn4 = −βn1 − iαn1 , (3.34d)

λn5 = −λn1 , (3.34e)

λn6 = −λn2 , (3.34f)

λn7 = −λn3 , (3.34g)

λn8 = −λn4 . (3.34h)

Substituting solution (3.34) into (3.30) and making some manipulations we get the
real part of the solution for the Galerkin function:

m

φn =

2∑
j=1

{
m

Knj sinh (βnjξ) sin (αnjξ) +
m

Mnj sinh (βnjξ) cos (αnjξ) +

+
m

Pnj cosh (βnjξ) sin (αnjξ) +
m

Snj cosh (βnjξ) cos (αnjξ)

}
(3.35)

where
m

Knj ,
m

Mnj ,
m

Pnj and
m

Snj constitute eight undetermined integration constants.

The Fourier series of the physical quantities in the shell can be written in a form
similar to the series (3.11):

uξ = uξ o +

∞∑
n=1

1∑
m=0

m
uξ n cos

(
nϕ−mπ

2

)
, (3.36a)

uϕ = uϕo +

∞∑
n=1

1∑
m=0

m
uϕn sin

(
nϕ−mπ

2

)
, (3.36b)

uζ = uζ o +

∞∑
n=1

1∑
m=0

m
uζ n cos

(
nϕ−mπ

2

)
, (3.36c)

ψϕ = ψϕo +

∞∑
n=1

1∑
m=0

m

ψϕn cos
(
nϕ−mπ

2

)
, (3.36d)

Nxx = Nxx o +

∞∑
n=1

1∑
m=0

m

Nxxn cos
(
nϕ−mπ

2

)
, (3.36e)

Nϕx = Nϕx o +

∞∑
n=1

1∑
m=0

m

Nϕxn sin
(
nϕ−mπ

2

)
, (3.36f)



14 D. Burmeister

Mxx = Mxx o +

∞∑
n=1

1∑
m=0

m

Mxxn cos
(
nϕ−mπ

2

)
, (3.36g)

Mxϕ = Mxϕ o +

∞∑
n=1

1∑
m=0

m

Mxϕn sin
(
nϕ−mπ

2

)
, (3.36h)

Qxζ = Qxζ o +

∞∑
n=1

1∑
m=0

m

Qxζ n cos
(
nϕ−mπ

2

)
. (3.36i)

Utilizing relations (3.23) and (3.26), which provide the physical quantities on the
middle surface of the shell in terms of the Galerkin function, the coefficients in the

series (3.36) can also be given in terms of the coefficients
m

φn of the Galerkin functions

m
uξ n = −

n2 d
m

φn
dξ

+ ν
d3
m

φn
dξ3

 , (3.37a)

m
uϕn =

−n3mφn + n (2 + ν)
d2
m

φn
dξ2

 , (3.37b)

m
uζ n =

n4mφn − 2n2
d2
m

φn
dξ2

+
d4
m

φn
dξ4

 , (3.37c)

m

ψφn = − 1

Re

n4 d
m

φn
dξ
− 2n2

d3
m

φn
dξ3

+
d5
m

φn
dξ5

 , (3.37d)

m

Nxxn = −Esbs
Re

n2
d2
m

φn
dξ2

, (3.37e)

m

Nϕxn = −Esbs
Re

n
d3
m

φn
dξ3

, (3.37f)

m

Mxxn = −Esbs
4β̂4

n4 d2
m

φn
dξ2

− 2n2
d4
m

φn
dξ4

+
d6
m

φn
dξ6

− νn2
n4mφn − 2n2

d2
m

φn
dξ2

+
d4
m

φn
dξ4

 ,

(3.37g)

m

Mxϕn =
(1− ν)Esbs

4β̂4

n5 d
m

φn
dξ
− 2n3

d3
m

φn
dξ3

+ n
d5
m

φn
dξ5

 , (3.37h)

m

Qxζ n =
1

Re

Esbs

4β̂4

−n6 d
m

φn
dξ

+ 3n4
d3
m

φn
dξ3

− 3n2
d5
m

φn
dξ5

+
d7
m

φn
dξ7

 . (3.37i)
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Substituting equation (3.35) into the above relations we obtain the Fourier coeffi-
cients of the physical quantities appearing in the boundary conditions in terms of the
coordinate ξ. For the sake of brevity these are omitted here.

3.4. Boundary- and continuity conditions. A solution for the amplitude of the
displacement field on the middle surface of the plate contains four, while a solution

for
m

φn involves eight integration constants. The stiffening shell is mentally divided
in two separate shells at the intersection line of the middle surfaces of the plate and
the shell. Therefore we need two solutions for each of the two parts of the shell,
consequently we have to determine altogether twenty integration constants.

In what follows we shall present the boundary- and continuity conditions which
provide the integration constants. We begin with the free boundaries of the shell,
where the following conditions should be satisfied:

m

Nxxn(ξ = ±ξh) = 0 , (3.38a)
m

Nxϕn(ξ = ±ξh) + n
m

Mxϕn(ξ = ±ξh)/Re = 0 , (3.38b)
m

Mxxn(ξ = ±ξh) = 0 , (3.38c)
m

Qxζ n(ξ = ±ξh)− n
m

Mxϕn(ξ = ±ξh)/Re = 0 . (3.38d)

These are altogether eight equations.

The shell and plate deform together on the intersection line of the middle surfaces of
the shell and the plate, which results in the following kinematic continuity conditions:

m
uξ n (ξ = ±0) =

m
wn (ρ = 1) , (3.39a)

m

ψϕn (ξ = ±0) =
m

ϑn (ρ = 1) , (3.39b)
m
uζ n (ξ = ±0) =

m
un (ρ = 1) = 0 , (3.39c)

m
uϕn (ξ = ±0) =

m
vn (ρ = 1) = 0 , (3.39d)

n 6= 0

Here the two sides of the plate at ξ = 0 are designated by ξ = +0 and ξ = −0. Observe
that conditions (3.39c,d) reflect the fact that the plane stress problem is axisymmetric,

i.e. condition (3.1) together with (3.4), furthermore
m
v o(ρ = 1) =

m
uϕo(ξ = 0) holds if

n = 0. The kinematic continuity conditions provide eight independent equations.

For the shear force
m

Qxζ n we can not prescribe any condition, since
m
uζ n (ξ = 0) = 0.

Since
m
uϕn (ρ = 1) = 0 we can not prescribe continuity conditions for the inner forces

m

NRϕ n and
m

Nxϕ n. However the axisymmetric parts of these quantities are also equal
to zero.

It follows from the global equilibrium of the structure that the axisymmetric part
of the shear force should meet the condition QRo = 0. Otherwise the continuity
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condition
m

QRn (ρ = 1) +
m

Nxxn (ξ = +0)−
m

Nxxn (ξ = −0) = 0 (3.40)

should be fulfilled – see Figure 5 a.

m

QRn(ρ = 1)

x

ζ, R

m

Nxxn(ξ = +0)

z

m

Nxxn(ξ = −0)

h

x

ζ

Mxxn (ξ = x+ 0)

Mxxn (ξ = x− 0)

MRn (ρ = 1)

a. b.

Figure 5. Forces and moments between the two elements

As regards the bending moments, equation

m

MRn (ρ = 1) +
m

Mxxn (ξ = +0)−
m

Mxxn (ξ = −0) = 0 (3.41)

is the continuity condition for the coefficients of the Fourier series – see Figure 5b.

The boundary conditions on the inner boundary of the plate depend on the supports
applied. It is clear that two boundary conditions can be prescribed on the inner
boundary. Consequently the boundary- and continuity conditions provide altogether
twenty homogenous equations for the twenty integration constants. These equations
involve F as a parameter. Therfore the critical value of F can be determined from the
condition that the system determinant should vanish.

4. Numerical results

4.1. Circular plate. If the plate has no hole in it then the displacement
m
wn and its

derivatives (i.e. the rotation
m

ψϕn) have to be finite:

m
wn = finite , (4.1a)

m

ψϕn = finite . (4.1b)



Buckling of circular plates with shell-stiffening on the boundary 17

A code has been written in Fortran 90 to solve the non-linear equation for Fcr and
compute Fo cr. The calculations were made with the material and thickness properties
taken as the same (E = Ep = Es = 200 GPa, ν = νp = νs = 0.3, b = bp = bs) and
the thickness to radius ratio had a fixed value (b/Re = 0.01). The computational
results are presented in Figure 6 for the first 4 members of the Fourier-series and
for axisymmetric deformations (n = 0). It is clear from the graphs that the height
of the plate does not affect the critical load if the height is larger than a certain
value. One can see that the lowest value of the critical load belongs to the case of
the axisymmetric deformation; the only exception is the critical load if n = 2 and the
shell height (i.e. the h

Re
ratio) is small.

0.2 0.4 0.6 0.8 1
0

20

40

60

80

Fo cr b/Re = 0.01

n = 0
n = 1
n = 2
n = 3
n = 4

h

Re

Figure 6. Critical load for a circular plate

4.2. Annular plate with simple support. Consider a stiffened annular plate with
simple support on its inner boundary –see Figure 2 c. The boundary conditions at
the inner edge are as follows:

m
wn(ρ = ρi) = 0 , (4.2a)

m

MRn(ρ = ρi) = 0 . (4.2b)

Figure 7 shows the buckling load parameter F versus the h
Re

height of the shell in
three diagrams if the inner radii are ρi = 0.25, ρi = 0.5 and ρi = 0.75. The other
data were the same as in the previous problem. The curves are all asymptotic in a
different measure. The smallest critical load belongs to axisymmetric deformations,
but if the height is relatively small the curve belonging to n = 2 has smaller values.
This curve has also the slowest convergence. The range where asymmetric mode gives
the buckling load increases if the inner radius becomes greater.
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Figure 7. Critical load of simply supported annular plates
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Figure 8 shows the critical load against ρi and h
Re

for the modes n = 1, . . . , 4. The
axis Fo cr is a logarithmic one.
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Reρi

F
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d. n = 4

Figure 8. Critical load against ρi and h/Re

4.3. Annular plate with clamped inner boundary. If (a) the radial displacement
is not prescribed on the inner boundary but (b) the rotation is zero (in contrast to
the previous problem) – see Fig. 2b. for further details – then the equation

m

ϑn(ρ = ρi) = 0 (4.3)

together with equation (4.2a) are the boundary conditions on the inner boundary.

Figure 9 shows the critical load Fo cr against the height of the shell (i.e. h
Re

). The
curves in the diagrams have a similar progress to the ones presented in the previous
problem. AS the inner radius is getting greater, the interval where asymmetric de-
formations give the lowest critical load increases. Doing the calculations for higher
numbers of n also the asymptotic values of the critical load approach values belonging
to axisymmetric deformations. In some cases its even smaller – see Figure 10, where
the critical load is shown against the inner radius ρi. The height of the stiffening shell
is kept constant ( h

Re
= 2).
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Figure 9. Critical load of plates with clamped inner boundary
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Figure 10. Critical load versus inner radius

5. Concluding remarks

The present paper has established the equations that can be used to determine the
critical load of circular and annular plates stiffened on the outer edge by a cylindrical
shell under the assumption of non-axisymmetric deformations. We have clarified what
the continuity conditions are between the two separate elements of the structure. We
have also presented the solutions for the critical load of circular and annular plates
with two different types of support assuming axisymmetric and non-axisymmetric
deformations. It is obvious from the results that the stiffening significantly increases
the critical load.It has been observed that buckling load belongs to axisymmetric
mode if the plate is circular. Non-axisymmetric buckling modes can be observed if
the geometric properties (inner radius, shell height) are in a certain range.
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Abstract. The present paper gives analytical solutions for shear deformable two-layer beams
with weak shear connections. Timoshenko’s kinematic assumptions are applied to both layers
with different cross-sectional rotations. A linear constitutive equation is used between the
horizontal shear force and the interlayer slip. The applied loads act in the plane of symmetry
of a two-layered beam and the material-geometrical properties do not depend on the axial
coordinate. For simply supported beam closed form solutions are derived for the deflection,
slip and cross-sectional rotations. The eigenfrequencies of a simply supported beam are
determined and compared with the solutions obtained by the applications of Euler-Bernoulli
and Euler-Bernoulli-Rayleigh beam models.
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1. Introduction

Layered beams made of different elastic materials are frequently used in construction
and they have created a growing interest in the different engineering sectors where
both high strength-to-weight and stiffness-to-weight ratio are desired. There are many
ways to form a connection between layers made of different materials. In some cases
it occurs that the connection is weak in shear permitting only a relative slip, but
preserving the contact in normal direction. The problem of layered beams with de-
formable shear connections has been studied for a long time. The first theories for
these composite beams were developed by Granholm [1], Pleskov [2], Stüssi [3] and
Newmark et al. [4]. The static analysis done by Newmark et al. [4] is based on the
Euler-Bernoulli beam theory and has become a basis for investigating layered beam
systems with interlayer slip [5–22]. Today the analytical and numerical FEM solution
are refined [5–26]. Several studies [5–8,13] present FEM solutions for multilayer beams
with weak shear connections using the Euler-Bernoulli beam theory. Exact first and
second order static analyses for composite beam-columns with partial shear interac-
tion subjected to transverse and axial loads are given by Girhammar and Gopu [9].
By using variational methods Girhammar and Pan [10] derive ordinary differential

c©2015 Miskolc University Press
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equations for the deflections and set up the corresponding boundary conditions for
partially composite Euler-Bernoulli beams and beam-columns. A simplified analysis
and design method for composite members with partial shear interaction that pre-
dicts the deflections and stresses has been proposed by Girhammar [11]. In [16,17,20]
researchers developed FEM formulations for composite beams with deformable shear
connection. The derived stiffness matrix takes the effects of interface slip and shear
deformations into account. In [20] it is assumed that the cross-sectional rotations are
not the same for the different beam components and the effect of shear connectors on
a composite beam element is described by two springs which are separately placed at
the two ends of the considered element.

Dynamic analysis of a composite beam with deformable shear connections based
on the Euler-Bernoulli beam theory is presented by Girhammar and Gopu [23]. They
consider free and forced vibrations. The governing differential equations and corre-
sponding boundary conditions are derived for partial-interaction composite members
and exact analytical solution for simply supported boundary conditions is presented
in [25]. In paper [24] an analytical solution for free vibrations of shear-deformable
two-layer beams with interlayer slip and axial load is developed. The effect of trans-
verse shear flexibility of two layers is taken into account in a general way. Each layer
behaves as a Timoshenko beam.

The present paper deals with two-layer beams with interlayer slip and gives ana-
lytical solutions for deflection, slip and cross-sectional rotations in the case of a static
equilibrium problem. By introducing the inertia forces into the equilibrium equations
we derive the equations of free vibrations as well. Applications of the equations we
have established are illustrated via numerical examples.

2. Governing equations

In the reference configuration a composite beam with two components occupies the
cylindrical region B = A × [0, L] generated by translating its cross-section A with
a regular boundary ∂A along a rectilinear axis, normal to the cross-section. The
cross-section A is divided into two parts A1 and A2 by the curve ∂A12 describing the
positions of continuous connection such that (see Figure 1)

Bi = Ai × (0, L) , (i = 1, 2) , A = A1 ∪A2, B = B1 ∪B2, (2.1)

∂Ai = ∂Ai0 ∪ ∂A12, (i = 1, 2) , ∂A = ∂A10 ∪ ∂A12. (2.2)

Here L is the length of the beam. A point P in B̄ = B ∪ ∂B (∂B is the boundary
surface of B) is indicated by the position vector r = xex + yey + zez, where x, y, z
and em (|em| = 1,m = x, y, z) refer to a rectangular coordinate system Oxyz. The
equation of the common boundary surface of the beam components B1 and B2 is
y = 0, 0 ≤ z ≤ L (see Figure 1). The center of Ai is denoted by Ci (i = 1, 2).
The plane yz is the plane of symmetry for the geometrical and material properties
and loading conditions. According to Timoshenko’s beam theory, which is valid for
each homogeneous layer, the deformation of the beam is described by the following
displacement field (see Figure 2)
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Figure 1. A composite beam with weak shear connection
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Figure 2. Kinematical model for a composite beam with interlayer slip

u = u (x, y, z) ex + v (x, y, z) ey + w (x, y, z) ez, (2.3)

where

u = 0, v = v (z) , w (y, z) = wi (z) + yφi (z) , (x, y, z) ∈ Bi, (i = 1, 2) . (2.4)

In Figure 2 C ′i (i = 1, 2) denotes the center of Ai in the deformed configuration of the
considered cross-section. On the common boundary of the beam component the axial
displacement w has a jump which is called an interlayer slip. From equation (2.4)
and the definition of interlayer slip s it follows that

s (x, y, z) = w1 (z)− w2 (z) , y = 0, 0 ≤ z ≤ L. (2.5)
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Application of the strain displacement relationships of the linearized theory of elas-
ticity yields [27,28]

εx = εy = γxy = γxz = 0, (2.6)

εz =
dwi
dz

+ y
dφi
dz

, (x, y, z) ∈ Bi, (i = 1, 2) , (2.7)

γyz =
dv

dz
+ φi, (x, y, z) ∈ Bi, (i = 1, 2) , (2.8)

where εx, εy, εz and γxy, γxz, γyz are the axial and shearing strains. From Hooke’s law
we get the normal stress σz and the shearing stress τyz in terms of strains as

σz = Ei

(
dwi
dz

+ y
dφi
dz

)
, (x, y, z) ∈ Bi, (i = 1, 2) , (2.9)

τyz = Gi

(
dv

dz
+ φi

)
, (x, y, z) ∈ Bi, (i = 1, 2) . (2.10)

In equations (2.9), (2.10) Ei is the Young modulus and Gi is the shear modulus. We
introduce the following section forces and section moment

Ni =

∫
Ai

σzdA = AiEi

(
dwi
dz

+ yi
dφi
dz

)
, yi =

1

Ai

∫
Ai

ydA, (i = 1, 2) , (2.11)

Mi =

∫
Ai

yσzdA = AiEi

(
yi

dwi
dz

+ g2
i

dφi
dz

)
, g2

i =
1

Ai

∫
Ai

y2dA, (i = 1, 2) , (2.12)

Vi = κiAiGi

(
dv

dz
+ φi

)
, (i = 1, 2) , (2.13)

where κi is the shear factor of the cross-section Ai (i = 1, 2) [29]. The analysis of the
composite beam with interlayer slip is restricted to the case of absent axial force N ,
that is, we have

N = N1 +N2 = A1E1

(
dw1

dz
+ y1

dφ1

dz

)
+A2E2

(
dw2

dz
+ y2

dφ2

dz

)
= 0. (2.14)

From equations (2.5), (2.14) it follows that

dw1

dz
=
A2E2

〈AE〉
ds

dz
− y1

A1E1

〈AE〉
dφ1

dz
− y2

A2E2

〈AE〉
dφ2

dz
, (2.15)

dw2

dz
= −A1E1

〈AE〉
ds

dz
− y1

A1E1

〈AE〉
dφ1

dz
− y2

A2E2

〈AE〉
dφ2

dz
. (2.16)
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Figure 3. Equilibrium condition in the direction z for a small beam element

Here

〈AE〉 = A1E1 +A2E2. (2.17)

It is obvious that

N1 = 〈AE〉−1

[
ds

dz
+ y1

dφ1

dz
− y2

dφ2

dz

]
, (2.18)

N2 = 〈AE〉−1

[
−ds

dz
− y1

dφ1

dz
+ y2

dφ2

dz

]
, (2.19)

M1 = 〈AE〉−1

[
y1

ds

dz
+ c1

dφ1

dz
− y1y2

dφ2

dz

]
, (2.20)

M2 = 〈AE〉−1

[
−y2

ds

dz
− y1y2

dφ1

dz
+ c2

dφ2

dz

]
, (2.21)

where
1

〈AE〉−1

=
1

A1E1
+

1

A2E2
, (2.22)

c1 =
A1E1

〈AE〉−1

g2
1 − y2

1

A1E1

A2E2
, (2.23)

c2 =
A2E2

〈AE〉−1

g2
2 − y2

2

A2E2

A1E1
. (2.24)

Application of the equilibrium condition for the axial forces in the beam component
B1 yields (see Figure 3)

dN1

dz
− T = 0. (2.25)

In equation (2.25) T is the interlayer shear force. It is assumed that T is a linear
function of the interlayer slip, that is

T = ks, (2.26)
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Figure 4. Shear force and vertical load on a small beam element
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Figure 5. Shear forces and bending moments on beam elements ∆B1

and ∆B2

where k is the slip modulus. From Figures 4 and Figure 5 we have the following
equilibrium equations:

dV

dz
+ fy = 0, V = V1 + V2, (2.27)

dM1

dz
− V1 = 0, (2.28)

dM2

dz
− V2 = 0. (2.29)

In order to formulate the possible boundary conditions we shall consider the vir-
tual work of the section forces and section moments on a kinematically admissible
displacement field

ũi = ṽ (z) ey +
(
w̃i (z) + yφ̃i (z)

)
ez, (x, y, z) ∈ Bi, (i = 1, 2) . (2.30)

A detailed computation results in

W =

∫
A1

σzw̃1 (z) dA+

∫
A2

σzw̃2 (z) dA+

∫
A1

yσzφ̃1 (z) dA+

∫
A2

yσzφ̃2 (z) dA+
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Table 1. Classical boundary conditions

Type Boundary condition
y

z

fixed end

v = 0, s = 0, φ1 = 0, φ2 = 0 (kinematical boundary
conditions)

y

z

free end

N1 = 0, V = 0, M1 = 0, M2 = 0 (forced boundary
conditions)

y

z

simply supported
end

v = 0, N1 = 0, M1 = 0, M2 = 0 (mixed boundary
conditions)

y

z

guided end

s = 0, φ1 = 0, φ2 = 0, V = 0 (mixed boundary
conditions)

+

∫
A

τyz ṽ (z) dA = N1w̃1 +N2w̃2 +M1φ̃1 +M2φ̃2 +V ṽ = N1s̃+M1φ̃1 +M2φ̃2 +V ṽ

(2.31)

where

s̃ = w̃1 (z)− w̃2 (z) . (2.32)

From equation (2.31) we obtain the possible combinations of the boundary conditions
at the end cross-section

V or v may be prescribed, (2.33)

N1 or s may be prescribed, (2.34)

M1 or φ1 may be prescribed, (2.35)

M2 or φ2 may be prescribed. (2.36)
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We remark that some classical boundary conditions are listed on the basis of equations
(2.33–2.36) in Table 1. It can be checked by utilizing equations (2.18) and (2.20) that
the boundary conditions for a simply supported end and a free end are

ds

dz
= 0,

dφ1

dz
= 0,

dφ2

dz
= 0. (2.37)

The combination of equations (2.13), (2.18), (2.20), (2.21), (2.26) with equations
(2.25), (2.27), (2.28), (2.29) yields a system of linear differential equations for the
functions v = v (z), s = s (z), φ1 = φ1 (z) and φ2 = φ2 (z)

d2s

dz2
+ y1

d2φ1

dz2
− y2

d2φ2

dz2
− k

〈AE〉−1

s = 0, (2.38)

y1
d2s

dz2
+ c1

d2φ1

dz2
− y1y2

d2φ2

dz2
− κ1

G1A1

〈AE〉−1

(
dv

dz
+ φ1

)
= 0, (2.39)

− y2
d2s

dz2
− y1y2

d2φ1

dz2
+ c2

d2φ2

dz2
− κ2

G2A2

〈AE〉−1

(
dv

dz
+ φ2

)
= 0, (2.40)

κ1G1A1

(
d2v

dz2
+

dφ1

dz

)
+ κ2G2A2

(
d2v

dz2
+

dφ2

dz

)
= −fy (z) . (2.41)

3. Solution for a simply supported beam

For a simply supported beam we look for the solution of the ordinary differential
equation system (2.38–2.41) in the following form:

v (z) =

∞∑
j=1

vj sin j
π

L
z, s (z) =

∞∑
j=1

sj cos j
π

L
z , (3.1a)

φ1 (z) =

∞∑
j=1

φ1j cos j
π

L
z, φ2 (z) =

∞∑
j=1

φ2j cos j
π

L
z . (3.1b)

fy (z)

y

z

L

Figure 6. Simply supported beam

These functions satisfy the boundary conditions

v = 0, N1 = 0, M1 = 0, M2 = 0 (3.2)
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for arbitrary values of vj , sj , φ1j , φ2j , (j = 1, 2, ...) at both ends of the beam. Sub-
stitution of v = v (z), s = s (z), φ1 = φ1 (z) and φ2 = φ2 (z) into the ODE system
(2.38–2.41) results in a system of linear equations for vj , sj , φ1j , φ2j , (j = 1, 2, ...).
This can be written as

Cjxj = fj , (j = 1, 2, . . .) (3.3)

where

Cj = [cjpq] , (p, q = 1, 2, 3, 4) , (3.4)

cj11 = −
(
j
π

L

)2

− k

〈AE〉−1

, cj12 = −y1

(
j
π

L

)2

, cj13 = y2

(
j
π

L

)2

, cj14 = 0, (3.5)

cj21 = −y1

(
j
π

L

)2

, cj22 = −c1
(
j
π

L

)2

+
κ1G1A1

〈AE〉−1

,

cj23 = y1y2

(
j
π

L

)2

, cj24 = −κ1G1A1

〈AE〉−1

j
π

L
, (3.6)

cj31 = y2

(
j
π

L

)2

, cj32 = y1y2

(
j
π

L

)2

,

cj33 = −c2
(
j
π

L

)2

+
κ2G2A2

〈AE〉−1

, cj34 = −κ2G2A2

〈AE〉−1

j
π

L
, (3.7)

cj41 = 0, cj42 = −κ1G1A1j
π

L
, cj43 = −κ2G2A2j

π

L
,

cj44 = − (κ1G1A1 + κ2G2A2)
(
j
π

L

)2

, (3.8)

xTj = [sj , φ1j , φ2j , vj ] , (3.9)

fTj = [0, 0, 0, fj ] . (3.10)

In formula (3.10) fj is defined as

fj =
2

L

∫ L

0

fy (z) sin j
π

L
zdz, (j = 1, 2, . . .) . (3.11)

Assume that the beam is subjected to the load

fy (z) = −f
[
H

(
z − L

2
+
l

2

)
−H

(
z − L

2
− l

2

)]
(3.12)

where H = H (z) is the Heaviside function. The type of applied load given by equation
(3.12) and the meanings of f and l (0 ≤ l ≤ L) are shown in Figure 7. For this load
the Fourier coefficients fj are given by the following equation:

fj = −4f

jπ
sin

(
jπ

2

)
sin

(
jπ

2

l

L

)
, (j = 1, 2, . . .) . (3.13)
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Figure 7. Illustration of applied load

4. Free vibrations of a simply supported beam

To formulate the governing equations of the free vibrations we introduce the inertia
forces into equations (2.27), (2.28) and (2.29). It is obvious that all physical quantities
depend on time t too, that is v = v (z, t), s = s (z, t), φ1 = φ1 (z, t), φ2 = φ2 (z, t),
etc. Assuming free vibrations we obtain

v = v̄ (z) sinωt, s = s̄ (z) sinωt, φ1 = φ̄1 (z) sinωt, φ2 = φ̄2 (z) sinωt, (4.1)

where ω is a natural frequency and v̄(z), . . . , φ̄2(z) are the unknown amplitude func-
tions. The inertia force from the vertical motion is of the form

fy (z, t) = − (ρ1A1 + ρ2A2)
∂2v

∂t2
= ω2 (ρ1A1 + ρ2A2) v̄ (z) sinωt . (4.2)

The inertia couples from the cross-sectional rotations are

m1 (z, t) = −ρ1I1
∂2φ1

∂t2
= ω2ρ1I1φ̄1 (z) sinωt, (4.3)

m2 (z, t) = −ρ2I2
∂2φ2

∂t2
= ω2ρ2I2φ̄2 (z) sinωt. (4.4)

In equations (4.2–4.4) ρi (i = 1, 2) is the mass density and

Ii =

∫
Ai

y2dA, (i = 1, 2) . (4.5)

Upon substitution of equation (4.2) into equation (2.27) we obtain

κ1G1A1

(
dv̄

dz
+ φ̄1

)
+ κ2G2A2

(
dv̄

dz
+ φ̄2

)
+ ω2 (ρ1A1 + ρ2A2) v̄ = 0. (4.6)

Combination of equations (2.28) and (2.29) with equations (4.3) and (4.4) yields the
following two equations:

y1
d2s̄

dz2
+ c1

d2φ̄1

dz2
− y1y2

d2φ̄2

dz2
− κ1G1A1

〈AE〉−1

(
dv̄

dz
+ φ̄1

)
+ ω2 ρ1I1

〈AE〉−1

φ̄1 (z) = 0, (4.7)
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− y2
d2s̄

dz2
− y1y2

d2φ̄1

dz2
+ c2

d2φ̄2

dz2
− κ2G2A2

〈AE〉−1

(
dv̄

dz
+ φ̄2

)
+ω2 ρ2I2

〈AE〉−1

φ̄2 (z) = 0. (4.8)

We introduce the mass matrix M by the following definition

Mj = [mjpq] , (p, q = 1, 2, 3, 4) , i = 1, 2, . . . , (4.9)

mj11 = mj12 = mj13 = mj14 = 0, (4.10)

mj21 = mj23 = mj24 = 0, mj22 = − ρ1I1
〈AE〉−1

, (4.11)

mj31 = mj32 = mj34 = 0, mj33 = − ρ2I2
〈AE〉−1

, (4.12)

mj41 = mj42 = mj43 = 0, mj44 = (ρ1A1 + ρ2A2) . (4.13)

Further let

XT
j =

[
s̄j , φ̄1j , φ̄2j , v̄j

]
. (4.14)

For the free vibrations of simply supported composite beams with weak shear con-
nection we assume that

v̄ (z) =

∞∑
j=1

ṽj sin j
π

L
z, s̄ (z) =

∞∑
j=1

s̃j cos j
π

L
z, (4.15)

φ̄1 (z) =

∞∑
j=1

φ̃1j cos j
π

L
z, φ̄2 (z) =

∞∑
j=1

φ̃2j cos j
π

L
z. (4.16)

A comparison with equations (3.1) shows that the boundary conditions (3.2) are again
satisfied. By repeating the line of thought resulting in equation (3.3) the eigenvalue
problem for the free vibrations of simply supported two-layer beams with flexible
shear connection can be formulated as(

Cj + ω2Mj

)
Xj = 0, (j = 1, 2 . . .) . (4.17)

For each j we have three different natural frequencies. The smaller value of ω2
j corre-

sponds to the bending deformation mode and the other two values of ω2
j correspond to

the shear deformation modes. For the Euler-Bernoulli and Euler-Bernoulli-Rayleigh
beams we have only bending deformation mode and the natural frequencies can be
obtained – see [26] – from the following equation

Ω2
j =

〈IE〉
[(

jπ
L

)4
+
(
jΓ
L

)2
] (

jπ
L

)2
[
m+ Im

(
jπ
L

)2] [ k
〈AE〉−1

+
(
jπ
L

)2] , (4.18)

where

〈IE〉 = Ei

∫
Ai

(y − yi)2
dA, (i = 1, 2) , m = ρ1A1 + ρ2A2, (4.19)

Γ2 =
k {IE}

〈AE〉−1 〈IE〉
, {IE} = 〈IE〉+ (y1 − y2)

2 〈AE〉−1 , (4.20)

Im = 0 (Euler-Bernoulli beam) , (4.21)
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Im =

2∑
i=1

[
ρi

∫
Ai

(y − yi)2
dA+ y2

i ρiAi

]
(Euler-Bernoulli-Rayliegh beam) . (4.22)

5. Numerical examples

5.1. Simply supported beam loaded by uniform distributed force. This ex-
ample is taken from paper [18] by Schnabl et al. The simply supported beam, its
cross-section and the applied load are shown in Figure 8. The following data are used
h1 = 0.2 [m], h2 = 0.3 [m], b = 0.3 [m], E1 = 1.2× 1010 [Pa], E2 = 1.2× 1010 [Pa],
G1 = 8 × 108 [Pa], G2 = 1.2 × 109 [Pa], f = 5 × 104 [N/m], k = 2.43 × 106 [Pa],
L = 2.5 [m], κ1 = κ2 = 5/6. The functions v = v (z) and s = s (z) are shown in
Figures 9 and 10. The functions φ1 = φ1 (z) and φ2 = φ2 (z) are also presented in
graphical format – see Figure 11. A comparison of the deflection v

(
L
2

)
and the slip

s (0) with the results obtained by Schnabl et al. [18] is given in Table 2.

fy = −f

y

z

L

y

x

h1

h2

C1

C2

A1

A2

b

Figure 8. Simply supported composite beam with uniform load

Table 2. Comparison of deflection and slip

paper [18] (FEM) present paper

v (L/2) [m] −0.00271026 −0.0027082964
s (0) [m] −0.00077293 −0.0007713293

Figure 9. The plot of v (z)
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Figure 10. The plot of s (z)

Figure 11. The plots of φ1 (z) and φ2 (z)
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Figure 12. The shear force functions

For completeness Figure 12 shows the shear force

VE (z) = f

(
z − L

2

)
. (5.1)

The shear force function V = V (z) is computed from the deflection and the cross-
sectional rotation by utilizing equations (2.13), (2.27)1

V (z) = κ1G1A1

(
dv

dz
+ φ1

)
+ κ2G2A2

(
dv

dz
+ φ2

)
. (5.2)

This function is also shown in Figure 12. The curves VE (z) and V (z) coincide and
this fact is evidence for the accuracy of the presented solutions.

5.2. Natural frequencies of the free vibrations. The data for this example
are the same as those in Example 5.1. The densities should also be given: ρ1 =

5000
[
kg/m

3
]
, ρ2 = 7000

[
kg/m

3
]
. The results we have obtained for the natural

frequencies are listed in Table 3.

Table 3. Natural frequencies

j Euler-Bernoulli Euler-Bernoulli- Timoshenko
Rayleigh Bending Shear Shear

1 155.290664 152.6194487 151.4225922 2338.54532 8394.253453
2 622.4043575 582.6170364 504.1041551 2901.662787 3724.202344
3 1400.929022 1220.369015 941.8521016 3635.127974 4202.393801
4 2490.863793 1991.111501 1414.604281 4451.987908 4779.655958
5 3892.20856 2836.587389 1902.205348 5291.520318 5444.286196

6. Conclusions

In this paper an analytical model has been developed to analyse the deformation of
composite beams with weak shear connections. Timoshenko beam theory is used,
assuming that the layers have different cross-sectional rotations. Analytical solutions
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for deflection, slip and cross-sectional rotations are derived. The eigenfrequencies
of free vibrations of a simply supported beam are also computed. The presented
solutions are based on the representations of applied load, deflection, slip and cross-
sectional rotations by Fourier series. The numerical results we have obtained are
compared with a FEM solution and good agreement has been found.
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Abstract. The present paper deals with the development of the two-dimensional J-integral
for large strains. The line of thought is based on a continuum mechanical approach by using
elastic or elastic-plastic bodies and presents some numerical examples.

1. Introduction

The phenomenon of failure caused by catastrophic crack propagation in structural
materials poses problems of design and analysis in many fields of engineering. Cracks
are present to some degree in all structures. They may exist as basic defects in the
constituent materials or they may be induced in construction or during service life.

Using the finite element method, a lot of papers deal with the calculation of stress
intensity factors for two- and three-dimensional models of solid bodies which contain
cracks of different shapes and are subjected to various loading conditions. In order
to increase the accuracy of the results, special singular and transition elements have
been used. These are described together with the methods that are used to deter-
mine the stress intensity factors from the results computed. The methods mentioned
include the displacement substitution method, J-integral and the virtual crack exten-
sion technique.

Over the past decades the finite element technique has become firmly established
as a useful tool for numerical solution of engineering problems. In order to be able to
apply the finite element method to the efficient solution of fracture problems, appro-
priate adaptations and/or further developments must be made.

At the vicinity of a crack tip the strains are not always small, sometimes they may
be large ones, too. The J-integral can also be applied to characterize the cracks in
elastic or elastic-plastic bodies under the assumption of finite strains.

In the literature there are only a few papers dealing with the J-integral for large
strains. For example Lau at al. [1, 2] presented a revised J-estimation method
under large plastic deformation. May and Kobayashi [3] investigated plane stress
stable crack growth and J-integral using Moire interferometry. Boothman at al.
[4] developed the J- and Q-estimation schemes for homogeneous plates. Jackiewicz
[5] applied a hybrid model of steel cracking. Bouchard at al.[6] demonstrated their
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two-dimensional local approach finite element study compared with conventional J-
estimation schemes and cracked body J-integral analysis. Saczuk at al. [7] presented
a continuum model with inelastic material behaviour and a generalization of the J-
integral.

The aim of the present paper is a further development of the two-dimensional J-
integral based on continuum mechanics assuming large strains and elastic or elastic-
plastic material behavior: computation of the J-integral is made by using the finite
element method and the numerical results show the efficiency of the procedure we
have developed.

2. Fundamental concepts and notations

Continuum mechanics is the part of mechanics that deals with the mechanical motion
of bodies using continuum models. The general theory of continuum mechanics ap-
plies to 3-dimensional models. It is, in general, supposed that the continuum (in the
present case the solid body considered) has a deformation and stress-free initial state
referred to as initial configuration for which t = t0 = 0. At time t (when we perform
our investigation) the state of continuum is referred to as present configuration.

The mechanical motion of a continuum is analyzed in a reference coordinate sys-
tem which is usually the cartesian coordinate system (xyz). An arbitrary point of

the moving continuum is denoted by P̂ . The position of this point is P o in the initial
configuration and P in the present configuration. In the coordinate system (xyz) the
coordinates of the point P o are xo, yo, zo, the corresponding base vectors are denoted
by e o

x , e o
y and e o

z . The coordinates of the point P are x, y, z. For the sake of making
a difference the base vectors in the present configuration are denoted by ex, ey and ez
[e o

m = em (m = x, y, z)]. In accordance with what has been said above the quantities
in the initial configuration are designated by the superscript o.

Scalar quantities are typeset in mathematical italic letters, e.g. U , s. Boldface
letters stand for vector quantities: e.g. u, E. Tensors of order two are denoted by
slanted boldface letters, e.g. T , F .

When using indicial notation in the cartesian coordinate system (a) 1, 2 and 3
correspond to x, y, z; (b) all the indices are subscripts, (c) summation over repeated
indices is implied. The other notational conventions are the same as before.

The inverse of a tensor is denoted by the superscript −1, the notation for a trans-
posed tensor is the superscript T . Scaler and double scaler multiplications are denoted
by a dot, or a double-dot (energy product of two tensors of the second order).

We remark that the Lagrangian description will be used throughout the present
paper.

3. Description of the J-integral

Figure 1 shows a line integral path which encloses the crack tip and has initial and
end points which lie on the two crack faces. It has been shown independently by Rice
[8] and Cherepanov [9] that the following integral quantity is path independent when
taken along any path, which satisfies the above conditions:
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J =

∫
Γ

(
Unx − Ti

∂ui
∂x

)
ds . (1)

In this formula U is the strain energy density, Ti is the traction vector on a plane
defined by the outward normal, ni, ui is the displacement vector, ds is the arc element
along the path, Γ. For a closed path not containing the crack tip, J = 0 [8].

ds

n

Γ

σ

σ

x

 y

Figure 1. Contour path for J-integral evaluation

Knowles and Sternberg [10] noted that this expression could be considered as the
first component of a vector:

Jk =

∫
Γ

(
Unk − Ti

∂ui
∂xk

)
ds , k = 1, 2. (2)

This integral is also path independent provided that the contour touches each surface
of the crack at the tip. As x1 = x and x2 = y, applying formulae nx = dy/ds and
ny = −dx/ds, by means of (2) we can write the two components of the J-integral in
the following form:

Jx =

∫
Γ

(
Udy − Ti

∂ui
∂x

ds

)
, Jy = −

∫
Γ

(
Udx+ Ti

∂ui
∂y

)
. (3)

For elastic-plastic bodies the strain energy density consists of two parts:

U = Ue + Up . (4)

Ue is given by

Ue =
1

2
σij (εij)e , (5)

where σij is the stress tensor and (εij)edenotes the elastic components of strains. The
plastic work contribution is given by
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Up =

∫ εp

0

σ dεp . (6)

In this expression σ and εp are the effective stress and effective plastic strain, respec-
tively:

σ =

[
3

2

(
σ,
ij σ

,
ij

)]1/ 2

, (7)

in which σ,
ij denotes the components of the deviatoric stress tensor and

d εp =

{
2

3

[
(d εij)p (d εij)p

]}1/ 2

, (8)

where (d εij)p denotes the plastic part of the strain tensor increment.

Figure 2 represents the motion of a continuum with the initial and the present
configurations.

 

 

 
r

 

 

 

 

 

 

 

 
ex

ey
y

x

Present configuration

z

e z

ro

V o

Poxo,yo,zo

u  uo
Px,y,z

P

P

V

Initial configuration

Figure 2. Motion of the continuum in the reference coordinate system (xyz)

Let us suppose that equation (2) is valid in the present configuration for large strains.
As the initial configuration is known, it is necessary to express the quantities in the
integrand in terms of the Green-Lagrange strain tensor (E 0) and the second Piola-
Kirchhoff stress tensor (T 0). For elastic applications it can be proved that instead of
the strain energy density U one can use the following formula:

Uo =
1

2
E o · ·T o. (9)

For two-dimensional problems equation (9) assumes the form:

Uo =
1

2

(
E o

xx T
o
xx + 2E o

xy T
o
xy + E o

yy T
o
yy

)
. (10)

The arc element is
ds = dsoλs = dso

√
1 + 2 eo ·E o · eo , (11)
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where dso and eo are the arc element and the tangent vector to the curve Γ in the
initial configuration and λs is the stretch.

For manipulating the traction vector t =T · n into a suitable form we shall need
the relations:

T =
1

J
F · T o · F T , (12)

J = det |F | , (13)

where F = r ◦ ∇o is the deformation gradient, J is the Jacobian and ∇o is the nabla
operator in the initial configuration.

Applying the formula dA = JF −T · dAo between the surface elements, the trac-
tion vector can be expressed as:

t =
1

λA
F · T o · no =

1

J

√
no · (2E o + I)

−1 · no

F · T o · no , (14)

where I is the unit tensor, no is the outward unit normal to Γ in the initial configu-
ration, dA is the vectorial surface element in the present configuration, dAo is the
vectorial surface element in the initial configuration, λA = dA/dAo is the ratio of
the scalar surface element [11].

It can be seen from Figure 2 that r = r o + u o, therefore we can write

dy =
∂y

∂xo
dxo +

∂y

∂yo
dyo = dyo +

∂uoy
∂xo

dxo +
∂uoy
∂yo

dyo , (15)

dx =
∂x

∂xo
dxo +

∂x

∂yo
dyo = dxo +

∂uox
∂xo

dxo +
∂uox
∂yo

dyo . (16)

As u = u o, the derivatives of the displacement vector are as follows:

∂uo

∂x
=
∂uox
∂x

eox +
∂uoy
∂x

eoy =

(
∂uox
∂xo

∂xo

∂x
+
∂uox
∂yo

∂yo

∂x

)
eox +

(
∂uoy
∂xo

∂xo

∂x
+
∂uoy
∂yo

∂yo

∂x

)
eoy ,

(17)
∂uo

∂y
=
∂uox
∂y

eox +
∂uoy
∂y

eoy =

(
∂uox
∂xo

∂xo

∂y
+
∂uox
∂yo

∂yo

∂y

)
eox +

(
∂uoy
∂xo

∂xo

∂y
+
∂uoy
∂yo

∂yo

∂y

)
eoy .

(18)
Since r = ro + uo, it follows that

x = xo + u o
x , y = yo + u o

y . (19)

Making use of (19) for the deformation gradient F , the inverse deformation gradient
F −1 and the Jacobian determinant J we obtain

[F ] =

 ∂ x
∂ xo

∂ x
∂ yo

∂ y
∂ xo

∂ y
∂ yo

 =

 1 +
∂ uo

x

∂ xo

∂ uo
x

∂ yo

∂ uo
y

∂ xo 1 +
∂ uo

y

∂ yo

 , (20)

[
F −1

]
=

 ∂ xo

∂ x
∂ xo

∂ y

∂ yo

∂ x
∂ yo

∂ y

 =
1

J

 1 +
∂ uo

y

∂ yo − ∂ uo
x

∂ yo

− ∂ uo
y

∂ xo 1 +
∂ uo

x

∂ xo

 , (21)
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J = det |F | =

(
1 +

∂ u o
x

∂ x o

)(
1 +

∂ u o
y

∂ y o

)
− ∂u o

x

∂ y o

∂u o
y

∂ x o
. (22)

Utilizing equations (20), (21) and (22), we can rewrite equations (17) and (18) in
other form:

∂uo

∂x
=

1

J

[(
1 +

∂uoy
∂yo

)
∂uox
∂xo
− ∂uox
∂yo

∂uoy
∂xo

]
eox +

1

J

[(
1 +

∂uoy
∂yo

)
∂uoy
∂xo
−
∂uoy
∂yo

∂uoy
∂xo

]
eoy ,

(23)

∂uo

∂y
=

1

J

[(
1 +

∂uox
∂xo

)
∂uox
∂yo
− ∂uox
∂xo

∂uox
∂yo

]
eox +

1

J

[(
1 +

∂uox
∂xo

)
∂uoy
∂yo
−
∂uoy
∂xo

∂uox
∂yo

]
eoy .

(24)
Substituting (10) - (24) into (3) we obtain the components of J-integral for large
strains in two dimensions:

Jx =

∫
(Γ)

[
Uo

(
dyo +

∂uoy
∂xo

dxo +
∂uoy
∂yo

dyo
)
− t

∂uo

∂x
λsds

o

]
(25)

Jy =

∫
(Γ)

[
−Uo

(
dxo +

∂uox
∂xo

dxo +
∂uox
∂yo

dyo
)
− t

∂uo

∂y
λsds

o

]
(26)

For elastic-plastic bodies the strain energy density also has two parts:

Uo = Uo
e + Uo

p , (27)

where Uo
e is given in equation (9) and Uo

p is similar to (6):

Uo
p =

∫ E
o
p

o

T
o
dE

o

p . (28)

In this expression T
o
and E

o

p are the effective stress and effective plastic strain in the
initial configuration.

 

X0 

Y0 

x0 
y0 

β 2a 

Figure 3. Coordinate systems in the initial configuration

For inclined cracks two coordinate systems and the corresponding transformation
formulae are necessary – see Figure 3.
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When one applies the finite element method the integration in equations (25) and
(26) should be performed numerically.

4. Path-independence of the J-integral

Rice has already investigated the problem of path-independence [8]. We remark that
other researchers have also examined this question, e.g. Atluri [12], Brocks and Schei-
der [13] and Wang at al. [14].

y 0

x 0

Γ1

Γ2

Γ +

Γ −

n0

Figure 4. Closed contour for J-integral evaluation

Henceforth the path-independence of (25), (26) is proved for large strains and two
dimensional problems. The following assumptions have been made:

– The material of the body is homogeneous.
– There are no body forces.
– The stress and strain fields depend on two coordinates (xo, yo).
– The crack is straight.
– The stress-free crack borders are parallel to coordinate axis xo.

Figure 4 shows a closed integral path which does not contain the crack tip.
The closed contour Γ does not include a singularity:

Γ = Γ1 ∪ Γ + ∪ Γ2 ∪ Γ−. (29)

Then J = 0 along a closed contour Γ for large strains, too. Let us examine the
component Jx along the path Γ.

Jx = 0 =

∫
Γ2

�

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
+
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+

∫
Γ1

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
+

+

∫
Γ +

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
+

+

∫
Γ −

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
. (30)

The integrals on Γ+ and Γ− differ from each other in sign only. Therefore they can
be dropped. In this way we get

Jx = 0 =

∫
Γ2

�

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
+

+

∫
Γ1

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
. (31)

We get a useful expression if the integration on contour Γ2 is performed counterclock-
wise: ∫

Γ2

�

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
=

= −
∫

Γ2

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
. (32)

Substituting (32) into equation (31) we obtain the following formula:

0 = −
∫

Γ2

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
+

+

∫
Γ1

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
. (33)

Rearrangement of (34) results in∫
Γ2

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
= +

= +

∫
Γ1

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
. (34)

which shows the path independence of the first component of the vector J . This holds
for the other component, too.

5. Applicability of special isoparametric elements

Consider a one-dimensional element that may form a side of a 2D or 3D nth-order
isoparametric element (see Figure 5).
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1

ξ

l

α1l α2l αkl αn-2l αn-1l l

0

singular point

… …

… …

n-11 2 3 k+1 n n+1

0

x

1 2 3 k+1 n-1 n n+1

2

- 1 - 1+ 2

n

- 1+ 2 2

n

2

n
- 1+ k 2

n
- 1+ (n - 2) 2

n

- 1+ (n - 1)

Figure 5. Element coordinate mapping

The above transformation is accomplished by means of the usual isoparametric
mapping technique [15]. Without entering into details we obtain the following ex-
pressions:

xo =
`

2m
(1 + ξ)

m
, (35)

ξ = −1 + 2

(
xo

`

)1/m

. (36)

For an isoparametric element the displacement uox takes the form

uox = b0 + b1ξ + b2 ξ
2 + · · ·+ bn ξ

n , n = 2. (37)

from where
∂uox
∂ξ

= b1 + 2b2ξ + 3b3ξ
2 + · · ·+ nbnξ

(n−1). (38)

This expression can be manipulated further by inserting (36)

∂uox
∂ξ

= b1 + 2b2

[
−1 + 2

(
xo

`

)1/m
]

+ 3b3

[
−1 + 2

(
xo

`

)1/m
]2

+ · · ·+ (39)

+ nbn

[
−1 + 2

(
xo

`

)1/m
](n−1)

.

The strain in the xo-direction is then

Eo
xx =

duox
dxo

+
1

2

(
duox
dxo

)2

. (40)

Utilizing equation (37) the axial strain (40) can be rewritten

Eo
xx =

duox
dξ

dξ

dxo
+

1

2

(
duox
dξ

dξ

dxo

)2

. (41)
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Substituting (39) and the derivative of (36) into (41) we obtain

Eo
xx = A1 (xo)

1−m
m +A2 (xo)

2−m
m +A3 (xo)

3−m
m + · · ·+

+An (xo)
n−m
m +An+1 (xo)

2(1−m)
m +An+2 (xo)

2(1−m)+1
m + · · ·+ (42)

+A(3n−1) (xo)
2(n−m)

m ,

where

A1 = C (b1 − 2b2 + 3b3 − · · · ± nbn) ,

A2 =
C

`1/m
2 [2b2 − 6b3 + 12b4 − · · · ± (n− 1)nbn] ,

...

An =
C

`(n−1)/m
2(n−1)nbn ,

A(n+1) =
C2

2
[b21 + 4b22 + · · ·+ n2b2n − 4b1b2 + 6b1b3 − · · · ± 2nb1bn ± · · ·±

± 2 (n− 1)nb(n−1)bn] ,

A(n+2) =
C2

2

22

`1/m
[2b1b2 − 6b1b3 + 18b2b3 − 4b22 − 18b23 − · · ·±

± n2 (n− 1) b(n−1)bn − (n− 1) (nbn)
2
] ,

...

A(3n−1) =
C2

2

22(n−1)

`2(n−1)/m
(nbn)

2
,

C =
2

m

1

`1/m
.

Equation (42) clearly shows that the strain is singular at xo = 0 (ξ = −1). The

leading strain term is of order (xo)
1−m
m . Therefore when xo → 0, the type of the

strain singularity is (xo)
(1−m) /m

(m ≥ 2).

6. Numerical example

The author has developed a Fortran program by means of Microsoft Developer
Studio 97 to compute the J-integral numerically for small and large strains. For a
real physical problem the strains can be either small or large depending on the loading
of the body. As regards the present example both kind of strains are computed so that
one can see what the difference is between the two kind of strains. When computing
elastic-plastic problems the Von Mises yield criterion, the Newton-Raphson iteration
technics and the Euler-Cauchy incremental method are applied.
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100 MPa

100

 50

10
integral pathes

Figure 6. Finite element mesh

The example considered is that of a plate under tension which contains a crack of
length 20 mm perpendicular to the direction of loading. The width of the plate is
100 mm and the thickness is assumed to be unity. The length of the plate is 200
mm. For the first computations the material is linear elastic with the properties
E = 2× 105 MPa and ν = 0.3. The applied tensile traction is p = 100 MPa. Because
of the symmetrical properties of the problem the finite element mesh represents only
a quarter of the body considered – see Figure 6. The finite element mesh contains
singular and transition elements as well.

Theoretically Jy is zero for this problem. Figure 7 shows the values computed for
the J-integral.

For the second series of computations the material of the plate is a linear elastic
linear hardening material for which H ′ = 0, 1E and the yield stress is σF = 100
MPa. The loading is applied in incremental steps. The increments are 0.1 p = 10
MPa, 1.0 p = 100 MPa, 0.3 p = 30 MPa. Figure 8 shows the values computed for the
J-integral both for small strains and for large strains.

Figure 9 depicts the plastic zones for the third load increment. Figure 10 shows
the von Mises stresses for the third load increment.
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Small strains Large strains

Figure 9. Plastic zones for the third load increment

Small strains Large strains

Figure 10. Von Mises stresses for the third load increment



54 Ágnes Horváth

7. Conclusions

This paper proves the formulations and applicability of the J-integral for large
strains under the assumption of elastic and elastic-plastic material behaviour. The J-
integral values are higher for large strains, as can be seen from the numerical examples
we have solved. This fact means that the safety of the cracked body increases from the
aspect of service life. The path independence of the two-dimensional J-integral is also
proved for large strains – the numerical results confirm the validity of this statement.
The paper presents the mapping and applicability of special isoparametric elements
for the finite element meshes. Using these elements the type of the strain singularity

is
(
x0
)(1−m) /m

(m ≥ 2) at the crack tip. The application of the special isoparametric
elements gives good results for relatively coarse finite element meshes, too.
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Gábor L. Szepesi - Zoltán Siménfalvi
Institute of Energy Engineering and Chemical Machinery, Dept. of Chemical Machinery

University of Miskolc
H-3515 Miskolc-Egyetemváros, Hungary
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Abstract. This paper presents a measurement and calculation method to determine the
stress relaxation function parameters of a flange gasket which has a viscoelastic behavior. It
is so important, because it has a strong connection to the vessels leakage.
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1. Introduction

Operation of closed systems often cause isolation problems. In this case the air con-
taminant may leak into the working area or into the environment. The flange-gasket
untightness is the source of the leaking most times. This paper points out the main
cause of the leakage of soft PTFE (Polytetrafluoroethylene) covered textile gasket
between flange joints. An investigation unit has been created to examine the PTFE
covered gaskets. With the help of this investigation unit, the stress and deformation
in the gasket can be measured.

2. Gasket investigation unit

The investigation unit has been created for gasket measuring is shown in Figure 1.
The main parts of the investigation unit are:

1. tension tester (load capacity: 25 kN),
2. load cell,
3. flange,
4. gasket,
5. displacement transmitter,
6. A/D converter,
7. computer.

c©2015 Miskolc University Press
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During the measurements the flange gasket is pressed by the tension tester. The
compression-stress and the gasket deformation (compressive strain) recorded by the
A/D logger-converter. When the stress reaches the maximum, the increment of the
stress is stopped. With this procedure we can simulate a flange-joint gasket deforma-
tion and stress relaxation.

6


7


1


3


4


3


2


5


Figure 1. The investigation unit

If the gasket is not working properly leaking can occur. This happens if the gasket
parameters are not correct or the gasket is damaged. If the gasket stress can not
reach the required value or the stress is reduced below the required value a leaking
process can start. Due to the leakage, the air contaminant mass flow spilling into the
atmosphere is determinable[1].

3. Mechanical model of flange connection

The simplified mechanical model of flange connection is showed on Figure 2. The
base load of the flange is the bending momentum. This load arise from the bolt force,
the inner pressure force and the gasket force. The flange and the gasket forces are
different in case of operation state and assembling state. The inner pressure forces
are zero in case of assembling state. In the present case the gasket force is higher
then another state. The minimum bolt force in assembling state can calculate by:

WA = πbGy, (1)

where b is the effective gasket width, G is the diameter of the gasket center line, y is
the minimal gasket stress.

If the applied bolt force is lower than WA (calculated with (1)) the gasket is not
working acceptably and it cause leaking.
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In case of operational state the bolt force has to be higher then assembling state.
This force can calculate with this equation:

WOP =
π

4
G2 P + 2πGmP, (2)

where P is the pressure, m is the gasket parameter. This gasket parameter depends
on the material of the gasket. The table shows the gasket parameter and the minimal
gasket stress in case of different type of gaskets:

Table 1. Typical gasket parameters and minimal stresses

Type of the gasket Gasket parameter, m Gasket minimal stress, y, MPa
Rubber 0.5 - 1 0 - 1.4

PVC 1.5 1.2
PTFE 2 - 2.75 1.2 - 1.6

Rubber with textile 1.25 2.75
IT sheet 2.25 - 2.75 15 - 25

Wawed seal 2.5 - 3.5 25 - 52

The effective gasket stress is depends on the bolt force, the gasket parameter,
the gasket minimal stress and of course the geometry of the flanged connection. If

Figure 2. General mechanical model of flange connection
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the gasket material shows viscoelastic or viscoplastic property, the gasket stress also
depends on the time.

4. Generalized Maxwell Model

The material of the PTFE covered textile gasket shows viscoelastic property. The
viscoelastic material-model is described by rheological elements. The Generalized
Maxwell model[2], shown in Figure 3 is used for describing the material behavior of
the gasket.

Figure 3. Generalized Maxwell Model

Assuming that gasket deformation is only in axial direction, there is no radial
deformation. Consequently, only volumetric stresses occur in the gasket. This linear
viscoelastic behavior is commonly using the Boltzmann superposition integral[4]:

σ(τ) =

∫ τ

0

K(τ − τ ′) ∂ε
∂τ ′

∂τ ′, (3)

where K is the relaxation function, τ is the time, ε is the deformation. The
relaxation function is approximated with the following formula:

K(τ) = K∞ +K0

m∑
k=1

wke
− τ
τk . (4)

The σ(τ) stress-function approximated with:

fk(t) = A+B

m∑
j=1

wje
−t/τk , (5)

where A is the residual stress, B is the relaxation factor, wj is the weighting coefficient,
m is the number of the Maxwell elements, τk is the relaxation time of the one of the
Maxwell element.

According to the investigation results, in case of m = 3, the approximation is
suitable. The least squares method is used in the approximation process:
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F =

n∑
i=1

(fki − fmi)2 → min, (6)

where n is the number of the measuring points, fki the approximated stress-
function, fmi is the measured stress values.

Derivative of function (6) with respect to the variable A:

∂F

∂A
= 2

n∑
i=1

(fmi − fki). (7)

Derivative of function (6) with respect to the variable B:

∂F

∂B
= 2

n∑
i=1

(fmi − fki).
m∑
j=1

(wje
− ti
τj ). (8)

Derivative of function (6) with respect to the variable wk, where k=1,2,3:

∂F

∂wk
= 2

n∑
i=1

(fmi − fki)
[
Be−ti/τk

]
. (9)

Derivative of function (6) with respect to the variable τk, where k=1,2,3:

∂F

∂τk
= 2

n∑
i=1

(fmi − fki)
[
Bwk

ti
τ2k
e−ti/τk

]
. (10)

The eight nonlinear equation involves eight unknown parameters. These param-
eters give to the approximation-function unknown values. The nonlinear equation
systems in reduced form is the following:

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

]
= 0. (11)

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

]
= 0.

(12)

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
Be−

ti
τ1

]
= 0. (13)

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
Be−

ti
τ2

]
= 0. (14)
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n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
Be−

ti
τ3

]
= 0. (15)

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
Bw1

ti
τ21

]
= 0. (16)

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
Bw2

ti
τ22

]
= 0. (17)

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
Bw3

ti
τ23

]
= 0. (18)

If this equation system is solved, we get the approximation-functions’ parameters.
During this minimization method, the following equations should be satisfied:

k∑
j=1

wk − 1 = 0→ h(X) = 0, (19)



−A
−B
−w1

−w2

−w3

τ1
τ2
τ3


≤ 0→ g(X) ≤ 0. (20)

The following constrained-extremum problem should be solved in order to simplify:

F (X)→ min,
h(X) = 0,
g(X) ≤ 0.

(21)

Relevant mathematical literature offers a lot of methods to solve (21). A penalty-
function technique [3] is used to solve the problem. The following penalty function is
used in the procedure:

Θ(X,σ) = F (X) + σ

r∑
q=1

h2q(X) + σ

c∑
y=1

(max(gy(X), 0))2. (22)

The constrained-extremum problem (21) can be converted to an unconditional ex-
tremum problem with the help of the penalty function. The Nelder-Mead procedure,
which is implemented in MATLAB, is used to solve the problem. For the σ sequence:
σk = 10k−1.
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Figure 4 shows one of the approximated results.
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Figure 4. The measured and calculated stress

Measurements are made in different maximal gasket stress states. Summary of the
approximation results are shown in the tables.

Results for 3 MPa gasket loading:

No. A B w1 w1 w1 τ1 τ1 τ1 A/σmax

1 2.03 0.58 0.37 0.28 0.35 19.9 556 7454 0.77
2 1.94 0.49 0.35 0.27 0.38 40.1 634 7388 0.77
3 1.96 0.57 0.3 0.33 0.37 37 408 3765 0.74

Results for 6 MPa gasket loading:

No. A B w1 w1 w1 τ1 τ1 τ1 A/σmax

1 4.96 1.62 0.35 0.27 0.38 72.4 918 11359 0.72
2 5.17 1.64 0.35 0.29 0.36 41.7 740 9902 0.72

Results for 13 MPa gasket loading:

No. A B w1 w1 w1 τ1 τ1 τ1 A/σmax

1 11.36 2.34 0.41 0.26 0.33 43.9 717.5 8571 0.79
2 11.62 2.49 0.42 0.25 0.32 45.3 907 11042 0.79
3 10.7 2.31 0.41 0.27 0.33 64.3 930.3 9836 0.79
4 11.12 2.47 0.38 0.26 0.36 47.5 736.5 9137.8 0.78
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In the tables the last columns show that how many percent the maximal gasket
stress decreased after the relaxation process. In the case of the worst (often in engi-
neering) the residual stress is 70 % of the maximal gasket stress. If this value does
not reach the minimal stress of the gasket, leaking may happen.

5. Conclusion

The presented calculation and measuring method is suitable to describe the vis-
coelastic type gasket time-stress function and determine the residual gasket stress on
account of the stress relaxation process. In the future the effects of the re-loading for
the relaxation properties will be investigated.
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Abstract. In this paper the boundary contour method in the dual system of plane elasticity
is developed further by clarifying the issue of how to apply the method to mixed boundary
value problems on simply and multiply connected regions. In contrast to [1], [2] in which
the contour is divided into two arcs on which tractions and displacements are imposed,
respectively, here we shall allow the contour to be divided into an even number of arcs
(the number of arcs should be at least four) assuming that tractions and displacements are
prescribed on the subsequent arcs. This means that the equations of the boundary contour
method set up in [2] are not sufficient to solve these mixed boundary value problems since
they do not involve the supplementary conditions of single valuedness which should be kept
in order for obtaining correct solutions. This paper presents the supplementary conditions of
single valuedness and shows how to add them to the solution algorithm. Numerical examples
prove the efficiency of this technique.
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1. Introduction

The paper presents a procedure which makes possible the application of the boundary
contour method in the dual system of the plane elasticity to a class of the mixed
boundary value problems.

The first paper devoted to the boundary contour method (BCM) in the primal
system of two-dimensional linear elasticity was published in 1994 by A. Nagarjan at
al. [3]. By observing that the integrand vector of the boundary element integrals
without body forces is demonstrably divergence free in the primal system of the two
and three-dimensional elasticity theory, the authors of [3] came to the conclusion
that the numerical solution of three-dimensional problems requires the calculation
of line integrals instead of surface integrals [4], while for planar problems evaluation
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of functions should be performed instead of calculating line integrals. The stress
calculation established by this method is probably more accurate in many cases than
that applied by the conventional boundary element method (BEM). This technique
was developed further both for more 2D and for some 3D problems [5]. With this
technique one can compute stresses and can solve shape optimization problems in
two dimensions [6]. By using a hypersingular formulation, the accuracy of the stress
components can be further increased at points on the contour [7].

The boundary integral equations of the direct method in the dual system of plane
elasticity was formulated in [8] and [9]. In the dual system the first-order stress func-
tion and the rigid body rotation are the unknown functions, in contrast to the primal
system of plane elasticity in which the fundamental variable is the displacement. The
choice of first-order stress functions provides advantages in the stress computation and
if the tractions are not continuous on the region’s boundary. For multiply-connected
regions or if there are two (or more) arcs subjected to tractions, supplementary con-
ditions of single valuedness should be prescribed and satisfied – in this respect details
are given in [10].

The boundary contour method in the dual system of plane elasticity is published
in [1,2]. The divergence freedom in the dual system is based on the fact that the stress
functions of order one and the rigid body rotation (the unknowns of problem) satisfy
the field equations of plane elasticity. As a consequence of this condition, potential
functions exist. Papers [1] and [2] publish the proof of the divergence freedom, present
the appropriate potential functions assuming linear and quadratic approximations for
the shape functions, and set up the discretized equations to prepare an algorithm for
the numerical computations. Consequently, the greatest advantage of BCM in the
dual system is that the computation of stresses on the boundary elements requires
derivations only, that is, unlike conventional BEM, one can avoid the computation of
singular integrals.

The present paper is organized into six sections. Section 2 is devoted to some
preliminaries in which the direct method in the dual system of plane elasticity and the
corresponding boundary conditions are shown assuming simple connected regions. In
addition we have determined the corresponding shape functions in Section 3, provided
that the approximation is quadratic. Section 4 deals with the issue of how to extend
the dual boundary contour method for the class of boundary value problems in which
the boundary is divided into even number of arcs (the number of arcs should be at
least four) provided that displacements or tractions are prescribed on the subsequent
arcs. We shall clarify that the integrand in the conditions of single valuedness is
also divergence free in the dual system of plane elasticity and shall determine the
corresponding shape functions assuming quadratic approximation. In addition we
present the conditions of single valuedness in a form discretized appropriately for the
algorithm of computations. Section 5 contains some simple numerical examples. The
last section is the conclusion. Some earlier results which are utilized in the paper are
gathered in the Appendix.
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2. Preliminaries

Throughout this paper xρ are rectangular Cartesian coordinates referred to an origin
O. Greek subscripts are assumed to have the range (1, 2). In accordance with the
notations introduced δρλ is the Kronecker symbol, ∂ρ stands for the derivatives with
respect to xρ and ερπ3 is the permutation symbol.

Consider a simply connected inner region Ai and its supplementary exterior region
Ae. The common contour Lo of the regions can be divided into two parts denoted by
Lt and Lu. We shall assume that [Lt] {Lu} is the union of those arcs on which [stress
functions (arcs subjected to tractions)] {strain boundary conditions (derivatives of
displacements with respect to the arc coordinate)} are imposed. If the number of
arcs on the boundary is four they are denoted by Lt1, Lt3 and Lu2, Lu4, respectively.
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Figure 1. The inner region Ai and the exterior region Ae

Let Q and M be two points in the region Ai or Ae (the source point and the point
of effect). We shall assume temporarily that the point Q is fixed.

The integral equation (the second dual Somigliana formula) to be solved is of the
form:

cκλ(Q)uλ(Q) = ũκ(Q) +

∮
Lo

Uκλ(M,Q)tλ(M) ds−
∮
Lo

Tκλ(M,Q)uλ(M) ds

Q, M ∈ Lo , (2.1)

where uλ(Q) is the stress function vector, tλ(M) stands for the derivative −duλ/ds
(uλ denotes the displacements, s is the arc coordinate on the contour Lo), the points
Q and M are taken on the contour Lo, ũκ(Q) is the stress function vector that gives
a constant stress state at infinity, Uκλ(M,Q) and Tκλ(M,Q) are the fundamental
solutions of order one and two – see Appendix A and [9] for details – and cκλ(Q) =
δκλ/2 if the contour is smooth at Q, otherwise it depends on the angle formed by
the tangents to the contour at Q. The above integral equation is that of the direct
method in the dual system of elasticity with unknowns uλ(M) on Lu and tλ(M) on
Lt. We remark that the two line integrals in (2.1) should be taken in principal value.
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As the distance between the points Q and M tends to zero, weak (logarithmic)
and strong singularity appear in the integrands of formula (2.1). We can avoid com-
putation of strongly singular integrals if we assume that uλ(Q) = uλ(M) = constant
on the whole boundary. Under this condition tλ(M) = 0. In other words there are
no stresses due to constant stress functions. On the basis of all that has been said
equation (2.1) yields

cκλ(Q)uλ(Q) =

∮
Lo

Tκλ(M,Q)uλ(Q)ds Q, M ∈ Lo . (2.2)

Subtracting equation (2.2) from (2.1), we obtain the regularized form

0 = ũκ(Q)+

∮
Lo
{Uκλ(M,Q)tλ(M)− Tκλ(M,Q)[uλ(M)− uλ(Q)]} ds︸ ︷︷ ︸

Iκ(Q)

Q, M ∈ Lo .

(2.3)
In this way we have eliminated the tensor cκλ(Q) and the strong singularity from
equation (2.1).

We have proved [1] that the integrand in formula (2.3) is divergence free. Conse-
quently there exists a potential function φκ(M,Q). After factoring out the outward
normal nρ(M) from the integrand on the right-hand side in (2.3), the coefficient of
nρ(M) is denoted, for brevity, by Pκρ(M,Q). Let M1 and M3 be two points on the
contour for which s1 < s3. Taking now the line integral between the points M1 and
M3 and making use of the above results we have∫ M3

M1

Pκρ(M,Q)nρ (M) ds = φκ(M3, Q)− φκ(M1, Q) . (2.4)

Assume that the contour Lo is divided into nbe boundary elements. We regard the
points M1 and M3 if they were the two extremities of an element on the boundary.
Then integrating element by element we get

Iκ(Q) =

nbe∑
e=1

[φeκ(M3, Q)− φeκ(M1, Q)] , (2.5)

where the superscript e shows that φκ is taken on the e-th element.

If the region under consideration is the exterior one Ae, the regularized integral
equation (2.3) assumes the form

0 = ũκ(Q) + Iκ(Q) . (2.6)

The results considered above make it possible to establish the boundary contour
method in the dual system of plane elasticity by using linear and quadratic approxi-
mations [1, 2].

Equation (2.3) should be associated with appropriate boundary conditions. One
can readily check that the stress function vector (the dual displacement vector) on
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the arcs Lti is of the form

ûρ(s) =

∫ s

Pti

t̂ρ(σ)dσ s ∈ Lti i = 1, 3 , (2.7)

where a hat on the letters denotes the values prescribed. Consequently, equation

uρ(s) = ûρ(s) + C(ti)
ρ s ∈ Lti i = 1, 3 (2.8)

is equivalent to the traction boundary condition. Observe that the quantities C
(ti)
ρ in

this equation are undetermined constants of integration.

The strain boundary conditions on the arcs of Lui have the following form:

dûλ
ds

= nρ[ερπ3eπλ − δρλϕ3] s ∈ Lui i = 2, 4 , (2.9)

where ûλ (s) is the displacement vector prescribed on Lui, the in-plane components
of strain are denoted eκλ and ϕ3 stands for the rigid-body rotation.

If tractions (stress functions) are imposed on the whole contour Lo (Lt ≡ Lo) the
compatibility condition in the large∫

Lo
nρ[ερπ3eπλ − δρλϕ3]ds = 0 (2.10)

should also be satisfied. If tractions (stress functions) are imposed only on the arcs
Lt1, Lt3 of the contour Lo, the supplementary conditions of single valuedness to be
satisfied assume the form∫

Lti
nρ[ερπ3eπλ − δρλϕ3]ds− ûλ|

Pt,i+1

Pti
= 0 i = 1, 3 , (2.11)

where the extremities of the arc Lti are denoted by Pti and Pt,i+1, respectively.

If the compatibility field equations

εκρ3eλκ∂ρ + ϕ3∂λ = εκρ3 (eλκ − ελκ3ϕ3) ∂ρ = 0 (2.12)

are fulfilled then the supplementary compatibility conditions (2.11) are not indepen-
dent – one can be omitted [11].

In this way we have as many independent conditions of single valuedness (2.11) as

there are undetermined integration constants C
(ti)
ρ in the traction boundary condition

(2.8). We can also set two constants (one vector C
(ti)
ρ ) to zero since no stresses belong

to constant stress functions – see [10, 11] for details. Papers [1, 2] deal with simply
connected regions assuming that the contour is divided into two arcs: displacements
are prescribed in one arc and tractions on the other. For this reason there is no need
to imply the supplementary conditions of single valuedness into the model. If there
are, however, more than two arcs subjected to tractions, we have no choice but to
involve the supplementary conditions of single valuedness in the equations system to
make it determined.
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3. Shape and potential functions

Assume that the contour Lo is divided into nbe boundary elements and a boundary
element e has five nodal points. The first, third, and fifth nodal points are denoted
by M1, M2 and M3 the second and fourth by K1 and K2. Over the element and its
neighborhood we shall approximate the fundamental variables uλ and ϕ3. Observe
that, according to the strain boundary conditions (2.9), the displacement derivative
tλ(M) in equation (2.3) requires the knowledge of the rotation ϕ. In order to obtain

appropriate approximations, the vector of the fundamental variables [ul]
T

= [u1 | u2 |
ϕ3] should satisfy the basic equation (see equation (3.3) in [9] for details). We have
selected the approximation u1

u2
−ϕ3

e =

 ae1 + ae2x1 + ae3x2 − 2ae7x1x2 + ae8x
2
1 + ae9x

2
2

ae4 + ae5x1 − ae2x2 + ae7x
2
2 − 2ae8x1x2 + ae10x

2
1

ae6 +Kae7x2 +Kae8x1 +Kae9x1 +Kae10x2

 , (3.1)

where K = (1− ν) /µ. This approximation satisfies the basic equation. The constants

[ae]
T

=
[
ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 ae9 ae10

]
(3.2)

in (3.2) are related to the ten physical quantities

[pe]
T

=
[
uM1
1 | uM1

2 | tK1
1 | tK1

2 | uM2
1 | uM2

2 | tK2
1 | tK2

2 | uM3
1 | uM3

2

]
(3.3)

taken on the element e via the equation

pe︸︷︷︸
(10×1)

= Te︸︷︷︸
(10×10)

ae︸︷︷︸
(10×1)

, (3.4)

where the transformation matrix Te – see Appendix B.2 in [12] for details – depends
only on the nodal coordinates and the outward unit normals at K1 and K2. It can
be proved that transformation (3.4) is one to one if the nodal points are different.

A new local coordinate system (η1, η2) centered at the point M1 is introduced and
its axes (η1, η2) are parallel to the global ones. If we approximate the vector uk in
equation (3.1) in the local coordinate system (η1, η2) by quadratic functions over the
elements we get the following vector: u1

u2
−ϕ3

e =

 âe1 + âe2η1 + âe3η2 − 2ae7η1η2 + ae8η
2
1 + ae9η

2
2

âe4 + âe5η1 − âe2η2 + ae7η
2
2 − 2ae8η1η2 + ae10η

2
1

âe6 +Kae7η2 +Kae8η1 +Kae9η1 +Kae10η2

 , (3.5)

in which

âe1 = ae1 + ae2x1 + ae3x2 − 2ae7x1x2 + ae8x
2
1 + ae9x

2
2, â

e
2 = ae2 − 2ae7x2 + 2ae8x1 , (3.6a)

âe3 = ae3 − 2ae7x1 + 2ae9x2, â
e
4 = ae4 + ae5x1 − ae2x2 + ae7x

2
2 − 2ae8x1x2 + ae10x

2
1 , (3.6b)

âe5 = ae5 − 2ae8x2 + 2ae10x1, â
e
6 = ae6 +Kae7x2 +Kae8x1 +Kae9x1 +Kae10x2 . (3.6c)

By

[âe]
T

=
[
âe1 âe2 âe3 âe4 âe5 âe6 ae7 ae8 ae9 ae10

]
(3.7)
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we denote the vector of constants in the local system. For the relation between a and
â one can write

âe︸︷︷︸
(10×1)

= BM1︸︷︷︸
(10×10)

ae︸︷︷︸
(10×1)

, (3.8)

where the transformation matrix BM1 depends only on the coordinates x1 and x2 of
the point M1 – see [1, 2] for details. Consequently we obtain a relation of the form

âe︸︷︷︸
(10×1)

= BM1︸︷︷︸
(10×10)

(Te)
−1︸ ︷︷ ︸

(10×10)

pe︸︷︷︸
(10×1)

(3.9)

which relates the physical quantities to the weight parameters.

After approximating vector uk in the local coordinate system (η1, η2) over an ele-
ment we arrive at a linear combination of the linearly independent shape vectors[

1uk
]T

=
[

1 0 0
]
,

[
6uk
]T

=
[

0 0 1
]
,[

2uk
]T

=
[
η1 −η2 0

]
,

[
7uk
]T

=
[
−2η1η2 η22 Kη2

]
,[

3uk
]T

=
[
η2 0 0

]
,

[
8uk
]T

=
[
η21 −2η1η2 Kη1

]
, (3.10)[

4uk
]T

=
[

0 1 0
]
,

[
9uk
]T

=
[
η22 0 Kη1

]
,[

5uk
]T

=
[

0 η1 0
]
,

[
10uk

]T
=
[

0 η21 Kη2
]
,

which satisfies the basic equation in [9]. Later on, it will be advantageous to choose
always the current source point Q for the center of the local coordinate system.

By substituting these shape vectors into

iφκ(η1, η2) =

∫
ερπ3

{
Uκλ(η1, η2) itλρ(η1, η2)− Tκλρ(η1, η2) iuλ(η1, η2)

}
dηπ

i = 1, . . . , 10 (3.11)

and performing the integrals for each shape function one can set up the corresponding
potential functions iφκ in a closed form. The matrix Tκλρ(η1, η2) in equation (3.11)
is given in Appendix A. The potential functions iφκ which belong to the regularized
dual Somigliana formula (2.3) are also presented in Appendix B.

Fulfillment of the boundary element equations is enforced only at the points M1,
M2 and M3 of the elements. Assume that the collocation point Q coincides with the
first nodal point of the h-th element. Further for the stress functions at this point we
introduce the notations u1(Q) = âh1 and u2(Q) = âh4 in the local coordinate system.
With these notations, we can write

[ue (M)]− [uh (Qj)]︸ ︷︷ ︸
(2×1)

= Ue (η1, η2)︸ ︷︷ ︸
(2×10)

ãe︸︷︷︸
(10×1)

, (3.12)

where [ue (M)]
T

= [ue1 (M) | ue2 (M)] is the vector of stress functions at the point
M of the e-th element and the columns of the matrix Ue (η1, η2) are constituted by
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the vectors iuκ (i = 1, . . . , 10). In this way the vector of constants ãe can now be
rewritten as:

[ãe]
T

=
[
βe1 âe2 âe3 βe4 âe5 âe6 ae7 ae8 ae9 ae10

]
,

βe1 = âe1 − âh1 , βe4 = âe4 − âh4 .
(3.13)

The potential functions φ11 and φ24 have singularity if the point of effect M ap-
proaches the source point. In this case âe1 = âj1 and âe4 = âj4, therefore βe1 = βe4 = 0,
and so the evaluation of these singular potential functions can be avoided. Fulfillment
of the regularized form of the boundary element equation (2.3) is enforced only at the
points M1, M2 and M3 of elements. Turning to global numbering we denote these
points by Qj where j = 1, . . . , 2nbe. Hereafter, the point Qj is called nodal point. As
is shown in [1, 2] the regularized dual Somigliana formula (2.3) can be rewritten into
the discretized form

nbe∑
e=1

Φje Bj (Te)
−1︸ ︷︷ ︸

Nje

pe = ũ(∞) j = 1, . . . , 2nbe , (3.14)

where Φje is a matrix with size (2× 10) that are formed by the differences of the
potential functions iφκ between the end points of the e-th boundary element, the
transformation matrix Te – in accordance with all that has been said so far – de-
pends only on the nodal coordinates and the outward unit normal at Kj and the
transformation matrix Bj depends only on the global coordinates Qj . If the region
under consideration is an exterior one, the right side is not zero but is equal to the
stress function representation ũ(∞) of the stresses at infinity. If the contour is di-
vided into only two arcs on which tractions and displacements are imposed, then the
equation system (3.14) is solvable, otherwise too many undetermined constants of
integration remain in (2.8).

4. Compatibility conditions in discretized form

This means that the equations of the boundary contour method in the dual system
[1, 2] are to be supplemented with further conditions of single valuedness which are

needed for determining the integration constants C
(ti)
ρ . However, as has already been

mentioned, one supplementary condition of single valuedness should not be fulfilled

since two constants (one of the vectors C
(ti)
ρ ) can be set to zero. In this section we

shall show how to add the necessary supplementary conditions of single valuedness to
the solution algorithm.

One can prove with ease that the integral in the compatibility conditions (2.10,
2.11) is divergence free if the stress function vector uλ(M) and the corresponding
rotation ϕ3(M) fulfill the field equations. This means that these quantities are derived
from the fundamental solution. It is also clear that the tensor eκπλ(M,Q) – which is
in fact a strain tensor – is obtained from the fundamental solution of order one via
the dual kinematic equation

tκλ = εκρ3uλ∂ρ +
o
tκλ (4.1)
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(the particular solution, denoted by
o
tκλ, is equal to zero if there are no body forces.)

and Hooke’s law

eκλ =
1

2µ
(tκλ − νtψψδκλ) (4.2)

(µ is the shear modulus of elasticity, ν is the Poisson number), in a such way that we
substitute the tensor Uκλ(M,Q) for the vector uλ(M) and the corresponding rotation
ϕ3(M) for Uκ3(M,Q) as follows:

eκπλ(M,Q) =
1

2µ
(επρ3Uκλ∂ρ − νεψρ3Uκψ∂ρδπλ) . (4.3)

After substitution of equation (4.3) in the compatibility condition in the large (2.10),
we get the following line integral:∫

Lo
nρ(M)[ερπ3eκπλ(M,Q)− δρλUκ3(M,Q)]ds = 0 Q, M ∈ Lo . (4.4)

If we apply Gauss’s theorem, the integral on the left hand side can be transformed
into an integral taken over Ai:∫

Ai

M

∂ ρ[ερπ3eκπλ(M,Q)− δρλUκ3(M,Q)]dA = 0 . (4.5)

Observe that the term in square brackets in equation (4.5) is nothing but the dual
balance equation since the quantities are derived from the fundamental solution
Uκλ(M,Q). Consequently, the derivative of the expression with respect to ηρ is iden-
tically equal to zero. By using this condition, we arrive at the potential functions

iψκ(η1, η2) =

∫
ερπ3

[
ερλ3

ieλκ(η1, η2)− δρκiϕ3(η1, η2)
]

dηπ , (4.6)

which belong again to the weight parameters ai. The corresponding potential func-
tions iψκ have been calculated by making use of equation (4.6) for each ieλκ and iϕ3

– the former two quantities can be calculated from the vectors iuk (i = 1, . . . , 10).
Hence we have set up the corresponding potential functions iψκ in a closed form. The
potential functions iψκ are given by:

1ψ1 = 0 , 1ψ2 = 0 , 6ψ1 = η2 ,
6ψ2 = −η1 ,

2ψ1 = − 1

2µ
η2 ,

2ψ2 = − 1

2µ
η1 ,

7ψ1 =
2− ν

2µ
η22 ,

7ψ2 =
ν

µ
η1η2 ,

3ψ1 =
1

2µ
(1− ν) η1 ,

3ψ2 = − ν

2µ
η2 ,

8ψ1 = −ν
µ
η1η2 ,

8ψ2 = −2− ν
2µ

η21 ,

4ψ1 = 0 , 4ψ2 = 0 , 9ψ1 =
1− ν
µ

η1η2 ,
9ψ2 = −1− ν

2µ
η21 ,

5ψ1 =
ν

2µ
η1 ,

5ψ2 = −1− ν
2µ

η2 ,
10ψ1 =

1− ν
2µ

η22 ,
10ψ2 = −1− ν

µ
η1η2 .

With the knowledge of the functions iψκ one can handle the line integrals in the
supplementary condition of single valuedness in the same way as the other line inte-
grals in the integral equation (2.1), i.e. by using potential functions. Let M1 and M3
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be two points on the contour for which s1 < s3. Considering now the line integral
between the points M1 and M3 and making use of the above results we have∫ M3

M1

nρ(M)[ερλ3eλκ(M,Q)− δρκu3(M)]ds = ψκ(M3, Q)− ψκ(M1, Q) M ∈ Lti .

(4.7)
The actual position of Q has no influence on the result of integral (4.7), however, it
is advised to choose the position of Q so that it should be out of the arc Lti.

The number of arcs on which tractions are prescribed is denoted by nt. It is
clear from Figure 1 that now we have two arcs (denoted by Lt1, Lt3) with prescribed
tractions. Hence nt = 2. Here and in the sequel the extremities of arcs Lt1, Lt3
are assumed to coincide with some nodal points on Lo. The regularized form of the
boundary conditions can be written on one of these two arcs as∑

e∈Lti

Ψ2nbe+j,e B2nbe+j (Te)
−1︸ ︷︷ ︸

M2nbe+j,e

pe = û2nbe+j j = 1, . . . , 2 (nt − 1) , (4.8)

where Ψje is a matrix with size (2× 10). The elements of this matrix are the dif-
ferences of the potential functions iψκ between the end points of the e-th boundary
element, while û2nbe+j (j = 1, 2) denotes the difference of displacements at the ex-
tremities of the arc Lti:

û2nbe+j=

[
û1(Pt,2i)
û2(Pt,2i)

]
−
[
û1(Pt,2i−1)
û2(Pt,2i−1)

]
i = 1 or 2 . (4.9)

Making use of equations (3.14) and (4.8) and exploiting that the stress functions are
continuous at the extremities of the elements, one can construct an equation system.
However, we eliminate the continuity of the stress functions at those points which
coincide with some extremities of the arcs Lt1, Lt3. Accordingly, the corresponding
columns in matrices Nje and Mje can be added to each other. The continuity con-
ditions that the elements of the matrices pe should meet are also to be taken into
account. Under these conditions, we obtain the equations

K f =

[
0
û

]
for the inner region and K f =

[
ũ
û

]
for the outer region .

(4.10)
Here K is a matrix with size (4nbe + 2 (nt − 1))× (8nbe + 2 (nt − 1)) and f denotes
the vector of physical quantities. The columns of the matrix K that are multiplied
by the prescribed quantities should be grouped on the right side of the equation in
order to obtain the equation system to be solved. As the approximation we have
chosen satisfies the basic equation in [9], the given displacement derivatives already

determine the integration constants C
(ti)
ρ in the traction boundary condition on each

curve separately.

After solving the equations system (4.10), we have the nodal values of the unknown
stress functions and the unknown displacement derivatives on the boundary curve,
that is, every element of the vector pe is known. The first dual Somigliana formula
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for the outer region to be solved is of the form:

uκ(Q) = ũκ(Q) +

∮
Lo

Uκλ(M,Q)tλ(M) ds−
∮
Lo

Tkλ(M,Q)uλ(M) ds Q ∈ Ae .

(4.11)
For an inner region, ũκ(Q) is zero in the previous equation. The formula (4.11) can
be rewritten – in accordance with that has been seen earlier – into a discretized form
with the notations introduced. In this way, one can compute the stress functions
uλ(Q) at an arbitrary point from the following equation:

u(Q) = ũ(∞) +

nbe∑
e=1

ΦQe BQ (Te)
−1

pe , (4.12)

where the transformation matrix BQ (see Appendix C for details) and ΦQe depend
on the coordinates of the source point position. Derivatives of the stress functions
follow from equation (4.12) taken at the source point Q. Hence

∂

∂xκ
u(Q) =

∂

∂xκ
ũ(∞) +

nbe∑
e=1

[
ΦQe (

∂

∂xκ
BQ)− (

∂

∂ηκ
ΦQe) BQ

]
(Te)

−1
pe . (4.13)

According to the dual kinematic equations (4.1) we can determine the stresses by
using the following equations:

σ11(Q) = σ11(∞) +
∂u1
∂x2

∣∣∣∣
Q

, σ22(Q) = σ22(∞)− ∂u2
∂x1

∣∣∣∣
Q

,

τ12(Q) = τ12(∞)− ∂u2
∂x2

∣∣∣∣
Q

= τ21(Q) = τ21(∞) +
∂u1
∂x1

∣∣∣∣
Q

.

(4.14)

5. Numerical examples

Problem 1. The first problem is a benchmark to test the discretized form of the sup-
plementary conditions of single valuedness in the calculation algorithm. We consider
a circular region with radius R = 10 mm. The material properties are µ = 8 ·104 MPa,
ν = 0.3. On the arcs AB (ϕ ∈ [0, π/2]) and CD (ϕ ∈ [π, 1.5π]) of the contour the nor-
mal stress is σo = 100 MPa and there is no shear stress. On the arcs BC (ϕ ∈ [π/2, π])
and DA (ϕ ∈ [1.5π, 2π]) of the contour

uo =
(1− 2ν)σoR

2µ

is the radial displacement and there is no displacement in the circumferential direction
– see Figure 2. The supplementary conditions of single valuedness are imposed on the
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Figure 2. Circular region with two arcs subjected to tractions

arc CD and the difference between the displacements at the extremities of this arc is
determined by the formula for the radial displacement. The exact solutions for this
problem are given by the equations

u1 = σor sinϕ , u2 = −σor cosϕ ,

t1 =
1− 2ν

2µ
σo sinϕ , t2 = −1− 2ν

2µ
σo cosϕ ,

where r and ϕ are polar coordinates. One can check with ease that these solutions
determine a homogeneous state of stress. At the internal points the exact solutions
for the stresses are as follows: σ11 = σ22 = σo = 100 [MPa], τ12 = 0 . Table 1 below
represents the numerical results obtained at various internal points.

Table 1: Solutions for stress components

x1 [mm] x2 [mm] σ11 [MPa] τ12 [MPa] σ22 [MPa]

-7.50 0.00 100.00 0.0000 100.00

-2.50 0.00 100.00 0.0000 100.00

0.00 0.00 100.00 0.0000 100.00

5.00 7.50 99.999 0.0000 100.00

9.00 1.00 100.00 0.0000 100.00

Problem 2. We consider an outer region which includes two circular holes with ra-
dius R = 10 mm and a constant stress state σ11(∞) = 100[MPa], τ12(∞) = τ21(∞) =
σ22(∞) = 0 is prescribed at infinity. The material parameters are the same as those
for the first problem.
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Figure 3. An outer region with two circular holes

In order to validate our numerical solutions for the stress distribution around the
two circular holes, we have set up a finite element (FE) model utilizing the symmetry
of the problem. The cross-hatched area in Figure 3 indicates the investigated area.

Figure 4. Normal stress σ11, shear stress τ12 and normal stress σ22
distributions around the upper hole

The finite element analysis results of ADINA can be seen in Figure 4, where only
the stress distributions around the upper circle are presented.
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Table 2: Solutions for stress components along the axes x1, x2

x1 [mm] x2 [mm] σ11 [MPa] τ12 [MPa] σ22 [MPa]
0.00 20.00 121.26 (122.87) 0.00 (0.47) 27.97 (30.03)
0.00 15.00 150.31 (153.27) 0.00 (0.16) 36.53 (37.21)
0.00 10.00 298.60 (303.20) 0.00 (-1.57) 0.63 (1.75)

0.00 -10.00 301.02 (302.43) 0.00 (1.42) 0.57 (-0,19)
0.00 -15.00 157.68 (154.15) 0.00 (0.28) 42.26 (39.06)
0.00 -20.00 127.17 (126.91) 0.00 (0.10) 36.76 (35.66)
0.00 -25.00 117.85 (117.46) 0.00 (0.11) 31.85 (29.36)
0.00 -30.00 115.55 (115.25) 0.00 (0.15) 30.23 (27.74)
0.00 -35.00 117.84 (117.46) 0.00 (0.11) 31.85 (29.36)
0.00 -40.00 127.16 (126.91) 0.00 (0.10) 36.76 (35.66)
0.00 -45.00 157.68 (154.15) 0.00 (0.28) 42.26 (39.06)
0.00 -50.00 300.91 (302.43) 0.00 (1.42) 0.55 (-0,19)

10.00 0.00 0.58 (0.65) 0.028 (-1.27) -96.85 (-93.14)
20.00 0.00 49.88 (48.04) 3.32 (1.7) 5.46 (5.16)
50.00 0.00 92.92 (94.62) 0.58 (0.73) -0.099 (-0. 025)
100.00 0.00 97.85 (97.77) -0.66 (-0.84) -0.87 (-0.84)

The numerical results in Table 2 are in good agreement with those of the finite
element analysis results which appear in round brackets.

6. Concluding remarks

In contrast to the conventional boundary element method, there is a possibility for
considering plane problems in a dual formulation. Then the equation system to be
solved involves the representation of stresses in terms of stress functions of order one,
Hooke’s law and the compatibility equations. If the region is multiply connected
and/or there is more than one arc on the contour with traction boundary conditions
then the compatibility conditions are to be supplemented with further conditions of
single valuedness. These are referred to as supplementary compatibility conditions
(for single arcs) or compatibility conditions at large (for a whole contour). If the region
under consideration is a simply connected one then the boundary element method as
well as the boundary contour method have already been worked out in [1,2,9,13]. The
present paper is concerned with the generalization of the boundary contour method
for multiply-connected regions. For these regions the traction boundary conditions
in terms of stress functions of order one contain undetermined constants of integra-
tion which can be determined if and only if the field equations are associated with
the compatibility conditions at large and/or the supplementary compatibility condi-
tions. In this way one can ensure that the boundary value is determinate. To achieve
this goal, we also had to apply those mathematical parameters which are used in
the derivation of the BCM equations when giving the compatibility conditions in a
discretized form. Accordingly, the corresponding potential functions, which belong
to the supplementary conditions of single valueness or the compatibility conditions
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at large have been determined, provided that the approximation is quadratic. From
these potential functions, we have established the discretized forms of the supplemen-
tary conditions of single valuedness on the arcs, which are subjected to tractions and
the discretized forms of the compatibility condition at large. A program has been
developed in Fortran 90 for the numerical investigations. We have found that the
displacement derivatives could be replaced by the corresponding compatibility condi-
tions on closed boundary curves. The examples shown represent the applicability of
the algorithm to a simple and a bit more difficult problem.
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10/2/KONV-2010-0001 project in the framework of the New Hungarian Development Plan.
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Appendix A.

A.1. The fundamental solutions of order one and two.

[Ukl(M,Q)] =
µ

4π(1 − ν)


−2 lnR− 3 − 2

r2r2

R2
2
r1r2

R2

2
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0

 (A.1a)

[Tlλ(M,Q)] = D(R)


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,

(A.1b)
where D(R) = 1/ 8π(1 − ν)R2 and the normal nρ is taken at the point M . The distance between
the points M and Q is R, which is defined as absolute value of the vector rρ = xρ(M) − xρ(Q).

The matrix T1λρ is derived by factoring out the outward normal n1(M) from A.1b as follows:

[
T1λρ

]
= D(R)

 −2(3 − 2ν)η1 +
4η22η1

η21 + η22
−2(3 − 2ν)η2 +

4η32
η21 + η22

2(1 − 2ν)η2 −
4η21η2

η21 + η22
−2(1 − 2ν)η1 −

4η22η1

η21 + η22


The matrix T2λρ is also derived by factoring out the outward normal n2(M) from A.1b as follows:

[
T2λρ

]
= D(R)

 −2(1 − 2ν)η2 −
4η21η2

η21 + η22
2(1 − 2ν)η1 −

4η1η22
η21 + η22

−2(3 − 2ν)η1 +
4η31

η21 + η22
−2(3 − 2ν)η2 +

4η21η2

η21 + η22
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Appendix B.

B.1. Quadratic shape functions. If the approximation is quadratic, the shape functions are as

follows:
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Appendix C.

C.1. The transformation matrix BQ. If the approximation is quadratic, the matrix BQ is as

follows:

[BQ] =



1 x1 (Q) x2 (Q) 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 −x2 (Q) 0 1 x1 (Q) 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

− 2x1 (Q)x2 (Q) x21 (Q) x22 (Q) 0

− 2x2 (Q) 2x1 (Q) 0 0

− 2x1 (Q) 0 2x2 (Q) 0
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Abstract. This paper is concerned with the conceptual development of mathematical mod-
els suitable for reliable prediction of fatigue life in metallic mechanical and structural com-
ponents. Of particular interest is the prediction of the number of loading cycles to failure in
parts that contain irregularities in material properties, inclusions and surface features caused
by corrosion or other damage and are subjected to periodic loading.
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1. Introduction

Conceptual development of mathematical models is an inductive process that in-
volves expert opinion, virtual experimentation and calibration. The end product of
conceptualization is a mathematical model. This paper is concerned with aspects of
conceptual development of mathematical models designed to support condition-based
maintenance (CBM) and reliability-centered maintenance (RCM) decisions. The in-
tended use of such models are: (a) identification of maintenance problems early, when
they can be corrected at a relatively low cost and (b) scheduling maintenance only
when needed, thereby realizing increased asset utilization, extension of equipment life,
and reduction in operating costs.

Both CBM and RCM require mathematical models capable of predicting the re-
maining useful life of parts with a reasonably high degree of confidence. There are
two seemingly competing approaches to fatigue life management: Flaw tolerance and
damage tolerance. The purpose of flaw tolerance analysis is to evaluate the likelihood
of crack initiation from flaws, given some cyclic loading. The purpose of damage tol-
erance analysis is to estimate crack growth caused by cyclic loading. A comprehensive
overview of maintenance practices relating to military aircraft is presented in [1].

The conceptual development outlined in this paper is based on the idea that models
formulated for the prediction of crack nucleation, i.e., for the purpose of supporting

c©2015 Miskolc University Press
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flaw tolerance analysis, and models formulated for the prediction of crack growth, i.e.,
for the purpose of supporting damage tolerance analysis, are similar in the following
sense: In both cases the physical events of interest; crack nucleation and crack growth,
are highly nonlinear processes that occur on length scales that are typically less than
about 0.5 mm for aluminum alloys, titanium and steel. The sites of crack nucleation
and crack tip regions are called process zones (see, for example [2] and references cited
therein). Within the process zone the usual assumptions of infinitesimal strain and
small deformation do not hold. Nevertheless, as long as a process zone is completely
surrounded by material for which those assumptions hold, crack nucleation and crack
extension events occurring within the process zone should be predictable from the
solutions of mathematical models that incorporate the assumptions of infinitesimal
strain and small deformation only.

The paper is organized as follows: The classical approaches used for the prediction
of the effects of notches on the endurance limit and their relationship to linear elastic
fracture mechanics are summarized in Section 2. Procedures for the formulation and
testing of mathematical models for the prediction of fatigue damage accumulation
are outlined in Section 3. Experimental data obtained for twelve micro-machined test
specimens made of AF1410 steel are presented in Section 4. Recommendations for
a new family of models that account for size effects and removes difficulties associ-
ated with the application of linear elastic fracture mechanics in three dimensions are
presented in Section 5. A brief summary is presented in Section 6.

2. Classical models for damage accumulation

Failure initiation and crack propagation are inherently nonlinear processes that
occur on length scales over which the assumptions of infinitesimal strain and small
deformation do not hold. Nevertheless, computations based on mathematical models
that incorporate the usual infinitesimal strain and small deformation assumptions,
coupled with experimentation, have been proven to be useful for predicting crack
initiation events and crack propagation rates.

Mathematical models constructed for the prediction of damage accumulation caused
by cyclic loading are based on the following assumptions:

1. There exist one or more functionals, computable from the solution of math-
ematical models based on infinitesimal strain, small deformation theory, that
can be correlated with crack initiation events and crack propagation rates with
sufficient accuracy to suit the purposes of engineering decision-making.

2. There exist one or more procedures suitable for the generalization of the results
of fatigue experiments performed under a particular cyclic loading, character-
ized by a mean value and constant amplitude, to cyclic loading characterized
by arbitrary mean value and constant amplitude.

3. There exist one or more procedures suitable for correlating damage accumu-
lation with variable amplitude cyclic loading, such as loading that represents
flight spectra.
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This paper is concerned with the formulation of functionals pertaining to assump-
tion 1. The functionals are called driving forces for damage accumulation or simply
driving forces.

2.1. Notch sensitivity. Several approaches have been proposed for the quantifica-
tion of the effect of notches on the fatigue limit of machine components made of
various metallic alloys. Essentially these approaches distinguish between the geo-
metric stress concentration factor Kt and the effective stress concentration factor Ke

where 0 < Ke ≤ Kt.

Definition 1. Nominal stress, defined for notched machine elements subjected to
tension, bending and torsion, is understood in machine design to be the maximum
normal or shearing stress at a notch computed by formulas based on the assumption
that the strain distribution over the cross section is a linear function. Because this
definition cannot be generalized to arbitrary domains, unless stated otherwise, we will
understand nominal stress to mean the stress that would exist at the location of a
notch if the notch were not present. �

Definition 2. The geometric stress concentration factor, denoted by Kt, is the ratio
of maximum stress to the nominal stress. �

Definition 3. The notch sensitivity index (q) is defined as follows:

q =
Ke − 1

Kt − 1
· (2.1)

It is dependent on the notch radius % and a material property. Peterson [3], [4] defined
the notch sensitivity index as:

q =
1

1 + α/%
(2.2)

where α is an experimentally determined material constant. Peterson gave approx-
imate values for α for steels as a function of their ultimate tensile strength (UTS).
For UTS ranging between 345 and 1725 MPa the estimated range of α is 380 to 33
µm respectively. Although not stated explicitly, there has to be a lower bound on %.
The experimentally determined values of q for aluminum and steel published in [3]
indicate that % is greater than approximately α/4.

An alternative definition of q, based on Neuber’s work [5] is:

q̄ =
1

1 +
√
%′/%

(2.3)

where %′ is an experimentally determined material constant (in length units). It is
correlated with UTS in [6]: For UTS ranging between 345 and 1725 MPa the estimated
range of %′ is 430 to 0.9 µm respectively. �

Investigating notched machine elements subjected to tension, bending and torsion,
Neuber formulated the following hypothesis: The driving force for the accumulation of
fatigue damage is the elastic stress (shearing and tensile) at a notch tip averaged over a
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material-dependent small distance that has to be determined through experimentation
[5].

Neuber’s hypothesis and variants of his hypothesis proposed by other investigators
form the basis for flaw tolerance analysis. See, for example [8], a reference that
makes comparisons among the Neuber-Kuhn, Peterson, Heywood, Stieler-Siebel and
the Buch-Switek formulas, all proposed for the prediction of the effects of fillets,
characterized by a radius, and notches, characterized by a depth, a notch angle and
radius, on the fatigue limit.

Remark 1. Neuber’s work was concerned with the fatigue strength of notched ma-
chine elements. Averaging stresses over a material-dependent distance for notched
bars, shafts and beams can be understood also as averaging over an area or volume.
Therefore Neuber’s conceptualization admits alternative interpretations on general
domains. �

2.2. Linear elastic fracture mechanics. Linear elastic fracture mechanics (LEFM)
is based on the hypothesis that the driving force for crack propagation under cyclic
loading is the amplitude of the stress intensity factor.

Neuber’s hypothesis and LEFM may appear to be fundamentally different models
of damage accumulation. In reality LEFM can be viewed as a special case of Neuber’s
model in the following sense: Let us assume that a material-dependent critical distance
d exists which is independent of the geometric features or the magnitude of stress or
strain. Considering a two-dimensional domain with a crack, assuming that the crack
is along the x-axis, periodic loading of amplitude ∆Ty is applied in the direction of
the y-axis and the origin of the coordinate system is the crack tip, the driving force
is the average stress ∆σd induced by ∆Ty. By definition;

∆σd =
1

d

∫ d

0

∆σy(x, 0) dx. (2.4)

The periodic loading ∆Ty induces variations in the stress intensity factor ranging
between a minimum value (KI)min and a maximum value (KI)max where (KI)min ≥ 0.
Let ∆KI ≡ (KI)max − (KI)min and denote by (∆KI)th the threshold value of ∆KI

below which the crack will not grow. Therefore a crack will not propagate when the
amplitude of the average stress is

∆σd ≤
1

d

∫ d

0

∆KI√
2πx

dx = ∆KI

√
2

πd
· (2.5)

Equating ∆σd to the endurance limit ∆σ0, we have the following estimate for the
critical distance:

d =
2

π

(
(∆KI)th

∆σ0

)2

· (2.6)

If (∆KI)th and ∆σ0 are material properties then d is a material property also. One has
to bear in mind however that the endurance limit varies with the size of specimens:
When the size increases, the endurance limit decreases. Therefore d is a material
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property only if (∆KI)th varies with size in the same way as ∆σ0. However, for
reasons discussed in the following, it is not possible to determine (∆KI)th accurately.

Example 1. The threshold stress intensity factor for conventionally processed AF1410
steel is approximately 16.0 MPa m1/2 and its endurance limit is approximately 950
MPa. Therefore from eq. (2.6) we have (d = 180 µm). This is an ultra high strength
steel; its UTS is approximately 1670 MPa. This estimate of d is much larger than the
estimate given in [3] and [6]. Note: The ASTM grain size number1 of conventionally
heat treated AF1410 steel is approximately 10.8 [7]. This corresponds to an average
grain size of approximately 8.5 µm. �

It is not difficult to show that the stress intensity factor is proportional to σd
√
d:

σy(x, 0) =
KI√
2πx

→ KI = σd

√
πd

2
· (2.7)

There are two important advantages of using eq. (2.4) instead of eq. (2.7):

1. Equation (2.4) is defined for both cracks and notches whereas eq. (2.7) is
defined for cracks only.

2. Problems arise when attempting to interpret the results of physical experi-
ments. Calibration involves correlation of crack growth with load cycles using
the assumption that the stress distribution in the test articles very nearly sat-
isfy the conditions of planar elasticity. However the asymptotic expansion of
stresses in the neighborhood of a crack tip in two-dimensions is not applica-
ble in three dimensions. This is because asymptotic expansion has a different
character in the vicinity of the points where the crack front intersects a free
surface. When the specimen is thin then these points are in close proximity
and therefore tend to dominate the stress field ahead of the crack tip. When
the specimen is thick then the stress fields in the vicinity of these points are
usually ignored and the assumption is made that plane strain conditions exist.
In reality generalized plane strain conditions exist [9].

In practical situations, such as shown in Fig. 1 where a crack represented
by arc AB is originating at a countersunk fastener hole, there is substantial
epistemic uncertainty as to how crack growth is influenced by the stress field in
the vicinity of points A and B. Therefore it is not possible to justify application
of conventional LEFM methodology in such cases.

2.3. The theory of critical distances. The classical approaches proposed by Neu-
ber, Peterson and others were precursors to what is called today the theory critical
distances (TCD), see [10] - [13]. The line method of theory of critical distances states
that for notched components in tension or bending the driving force is:

GTCD =
1

2L

∫ 2L

0

σ1(s) ds (2.8)

1ASTM Standard E 112 - 96 (2004).
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A

B crack

plate

Figure 1. Crack originating at a countersunk hole.

where L is the critical distance, assumed to be a material property, σ1 > 0 is the first
principal stress, and the domain of integration is chosen such that GTCD is maximal.

Remark 2. The relationship between the critical distance d defined in eq. (2.6) and
the critical distance L defined in eq. (2.8) is L = d/2. See for example [10]. �

In the following example it is shown that Peterson’s definition of Ke can be under-
stood as an approximation to the ratio of the average normal stress, in the direction
of loading, over the distance α, to the nominal stress.

Example 2. We refer to the problem of a circular hole in an infinite plate subjected
to unidirectional tension. The notation is shown in Fig. 2. The classical solution for
σx is:

σx = σ∞

[
1− a2

r2

(
3

2
cos 2θ + cos 4θ

)
+

3

2

a4

r4
cos 4θ

]
(2.9)

where σ∞ is the nominal stress. The geometric stress concentration factor is Kt =
σmax/σ∞ = 3 where σmax = σx(a,±π/2). See, for example, [14].

Figure 2. Circular hole in an infinite plate subjected to unidirec-
tional tension (σ∞). Notation.
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We will be interested in the value of σx averaged over the interval a ≤ y ≤ d. The

average value will be denoted by σ
(d)
x . Referring to eq. (2.9), we have

σ(d)
x =

1

d

∫ a+d

a

σx(r, π/2) dr =
σ∞
d

∫ a+d

a

(
1 +

1

2

a2

r2
+

3

2

a4

r4

)
dr

=σ∞

(
1 +

1

2

1

1 + d/a
+

3

2

1 + d/a+ d2/(3a2)

(1 + d/a)3

)
=σ∞

(
1 + 2

1

1 + d/a
− 3

2

d/a+ 2d2/(3a2)

(1 + d/a)3

)
=σ∞

(
1 + 2

1

1 + d/a
+O(d/a)

)
. (2.10)

Letting α = d, % = a in eq. (2.2) and using eq. (2.1) we have:

Ke =
σ

(d)
x

σ∞
= q(Kt − 1) + 1 (2.11)

which is the same as eq. (2.10) if we neglect the term of O(d/a) because (Kt− 1) = 2
for the infinite plate. Therefore Ke can be understood as an approximation of the ratio
of the average stress over length α and the nominal stress. The error of approximation
is explicitly given for the problem of the circular hole in an infinite plate. The relative
error The percent relative error defined by

er = 100
σ

(d)
x − (q(Kt − 1) + 1)σ∞

σ
(d)
x

where q =
1

1 + d/a

is shown in Fig. 3. The maximum relative error is 19.08 % which occurs at d/a = 1.39.
In other words, if the fatigue limit depends on the average normal stress over the
length d and Peterson’s formula would be used to estimate this average stress then
the error could be as large as 19.08 percent for the circular hole in the infinite plate.

3. Validation

The formulation and testing of mathematical models for the prediction of damage
accumulation due to fatigue under standard conditions, i.e., periodic loading charac-
terized by fixed amplitude and mean value, involves the following processes:

1. Conceptualization: (a) formulation of a mathematical model that establishes a
relationship between certain functionals of the stress or strain field and failure
initiation or crack propagation events, (b) virtual experimentation and (c)
calibration. The end product of conceptualization is a mathematical model.

2. Validation: Experiments performed to test the predictive capabilities of a
mathematical model. The quality of predictions is evaluated with reference
metrics and criteria formulated prior to the validation experiments. In the
case of models formulated for the prediction of damage accumulation caused
by metal fatigue, the metric is the number of cycles to failure. The formulation
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Figure 3. The relative error in Peterson’s formula applied to the
circular hole in an infinite plate.

of criteria is complicated by the fact that accumulation of fatigue damage is
inherently stochastic.

Examples of conceptualization were given in Section 2 and a general framework for
conceptualization is proposed in Section 5. It is now becoming standard practice to
perform validation experiments. Many papers and case studies have been published
on this subject see, for example, [15] - [20] and the references cited therein.

In principle, a model is rejected if it fails to meet established criteria. In practice
it is generally not possible to assign pass/fail scores to mathematical models on the
basis of the outcome of a limited number of experiments because statistical variabil-
ity in material properties, loading, constraints and geometric attributes complicates
comparisons of predicted and observed data. Nevertheless, it is possible to formu-
late a framework for quantifying a “degree of belief” in a mathematical model and
rank alternative models on the basis of accumulated experience with the accuracy of
predictions based on the models.

Two types of uncertainty are associated with damage accumulation models: Epis-
temic (cognitive) uncertainty and aleatory (statistical) uncertainty. The goal is of
validation is to minimize epistemic uncertainties through objective evaluation and
ranking of alternative models of damage accumulation.

4. Fatigue tests of micro-machined AF1410 steel specimens

In the course of investigation of the effects of small surface defects on the fatigue life
of aircraft components made of AF1410 steel one group of investigators recommended
fitting truncated ellipsoids to the surface features and using eq. (2.11):

Ke = q(Kt − 1) + 1 (4.1)
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with q defined by eq. (2.2) and the notch radius % determined from the truncated
ellipsoid. The truncated ellipsoid is characterized by three parameters; length, width
and depth. It was called “pit metric” to convey the assumption that all surface
features can be replaced for the purpose of fatigue life prediction with truncated
ellipsoids. No limit was placed on the size of the pit metric, even though the notch
radius in Peterson’s model has an implied lower bound, as noted in Section 2. The
implied assumption is that Peterson’s model is capable of predicting crack nucleation
events.

In order to test this assumption, twelve dog-bone specimens were machined from
AF1410 steel. For each specimen the thickness of the test section was 3.05 mm (0.120
in), the width was 25.4 mm (1.0 in). The test sections were hand-polished and six
features were micro-machined into the test section of nine specimens: Two ellipsoidal
features, two conical features, and two pill-shaped features. The features were located
at 60-degree intervals on the perimeter of a 12.7 mm (0.5 in) diameter circle, as shown
in Fig. 4(a). One of the ellipsoidal and one of the pill-shaped features were oriented
parallel with the direction of loading, the others were oriented perpendicular to it.
The features were sufficiently far apart so that interaction among the features can be
neglected. The remaining three specimens were tested without surface features.

R1

H

Rf

y

x

R2

pit metric

Cone 1 Ellipsoid 1

Pill 1

Cone 2Ellipsoid 2

Pill 2Load Load

(a) (b)

Figure 4. (a) Micro-machined features. The features lie on the
perimeter of a 12.7 mm (0.5 in) diameter circle. (b) Conical fea-
ture. Relationship between the ellipsoidal pit metric and the micro-
machined cone.

An example of replacement of a conical feature, characterized by four parame-
ters (R1 = 1.02 mm, R2 = 0.33 mm, H = 0.89 mm, Rf = 0.39 mm), with a pit
metric which in this case is characterized by only two parameters (R1, H) is shown
in Fig. 4(b). The radius of curvature of the pit metric in the point (0,−H, 0) is
%pm = R2

1/H = 1.17 mm. The ellipsoids are characterized by two radii R1 = 0.64
mm, R2 = 0.32 mm and the depth H = 0.32 mm. The pill-shaped features are com-
prised of a cylinder and two spherical caps of radius R = 0.18 mm, depth H = 0.18
mm and combined length L = 0.57 mm.
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The maximum applied stress was 1380 MPa (200 ksi) the minimum stress was 138
MPa (20 ksi). Therefore the ratio of minimum to maximum stress was R = 0.1. The
constant amplitude cyclic load was maintained at R = 0.1 for 1000 cycles then in each
marker band block groups of 400 cycles at R = 0.7 stress was followed by 8 cycles at
R = 0.1 stress.

The computed values ofKe, based on the nominal dimensions of the micro-machined
features, are shown in Table 1. According to Peterson’s model the first occurrence of
crack nucleation is expected at Ellipsoid 2, the long axis of which is oriented perpen-
dicular to the load direction.

Table 1. The values of Ke for the three micro-machined features
computed from Peterson’s formula using α = 0.064 mm.

Feature % (mm) α/% q Kt Ke

Cone 0.391 0.164 0.8593 2.477 2.269
Ellipsoid 2 0.635 0.101 0.9084 2.476 2.341
Pill 1 0.178 0.360 0.7355 2.492 2.097

Figure 5. (a) Typical failure across conical features. (b) Secondary
fatigue crack at a pill feature (specimen 598-2). (c) Secondary fatigue
crack at an ellipsoidal feature (specimen 598-2).

Fractographic examination found that for all micro-machined specimens failure
initiated at the conical features and the failure surface intersected the two conical
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features, a shown in Fig. 5(a). Secondary fatigue cracks developed at the ellipsoidal
and pill-shaped features that did not grow to critical size prior to failure. Typical
secondary cracks are shown in Fig. 5(b) and Fig. 5(c). The number of cycles to
initiation, which is defined as the first occurrence of a 0.254 mm (0.01 in) crack, is
shown in Table 2.

Table 2. Results of fractographic examination of micromachined
AF1410 dog-bone specimens. Number of R = 0.1 cycles to crack
initiation and total number of cycles. Maximum applied stress: 1379
MPa (200 ksi).

Specimen Surface
primary conic secondary conic
R = 0.1 Total R = 0.1 Total

598-4 smooth 25,467 83,467 - -
598-11 smooth 24,212 80,212 - -
598-14 smooth 14,974 49,374 - -
598-1 notched 1,767 6,567 1,800 6,600
598-2 notched 1,700 3,300 1,822 5,822
598-3 notched 1,968 4,368 1,971 4,371
598-5 notched 1,521 5,760 1,934 6,173
598-8 notched 1,418 4,209 1,869 4,660
598-9 notched 1,828 5,700 1,936 5,808
598-10 notched 1,500 3,100 1,833 3,433
598-12 notched 1,483 4,633 1,550 4,700
598-13 notched 1,790 6,502 1,970 6,682
Average 1,664 4,904 1,854 5,361
Standard deviation 179 1,218 124 1,053

We note that the predictions were based on the nominal dimensions of the surface
features. The actual dimensions were measured for only one of the specimens by means
of white light interferometry (WLI). The largest deviations were found in Rf = 0.33
mm (-15 %) for Cone 2 and L = 0.69 mm (+17 %) for Pill 1. Such deviations
notwithstanding, the results indicate a strong probability that Peterson’s model is not
capable of predicting crack initiation events for the conical feature. The reason for
this is that the stress distribution in the vicinity of the cones is qualitatively different
from the stress distribution in the vicinity of notches considered by Peterson and
Neuber. Arguably this was not a fair test of Peterson’s model because the assumptions
incorporated in that model were not satisfied by the test article. This could have
been determined through virtual experimentation prior to performing the physical
experiments.

We have seen in Section 2 that Peterson’s effective stress concentration factor
Ke can be understood as an approximation to the average stress over a material-
dependent distance α, which in two dimensions is equivalent to an area. The original
intent in the development of Ke was to estimate the fatigue life of machine elements
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with notches that are characterized by a dominant curvature, the radius of curvature
being larger than approximately α/4. In those cases Ke gives a reasonably good
approximation to the average stress. The underlying idea of using average stress over
a line, area or volume has no such restrictions however and can be implemented into
finite element analysis programs without difficulty.

The stress distribution in the vicinity of (a) the conical feature and (b) represen-
tation of the conical feature by the pit metric is shown in Fig. 6. It is seen that the
stress distribution at the conical feature is not related to a clearly defined curvature
but the stress distribution at the pit metric is. The same holds for the other surface
features as well. This indicates that the idea of replacing surface features with a pit
metric has to be rejected.

(a) (b)

Figure 6. Stress distribution in the vicinity of (a) the conical feature
and (b) representation of the conical feature by the pit metric. The
nominal stress is 1 MPa applied in the x - direction.

The values of σ
(d)
x /σ∞ for the three micro-machined features for various values of

the averaging interval d are shown in Table 3. The averaging intervals were chosen by
inspection so as to approximately maximize the average values. Examples of averaging
intervals are shown by the lines labelad AB in Fig. 6.

It is seen that for the averaging interval ranging between 0.05 mm and 0.5 mm

σ
(d)
x /σ∞ is largest for the conical features. Therefore a failure initiation model based

on σ
(d)
x would have correctly predicted that failure would begin at the conical features.

Furthermore it would have predicted that the ellipsoid would be the next site of failure
initiation, and the pill-shaped features would be last for any choice of d. This sequence
of events was confirmed by fractographic examination. It is therefore possible to
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Table 3. The values of σ
(d)
x /σ∞ for the three micro-machined features.

Feature 0.5 mm 0.25 mm 0.10 mm 0.05 mm
Cone 1.640 1.894 2.165 2.296
Ellipsoid 2 1.334 1.565 1.913 2.128
Pill 1 1.189 1.352 1.683 1.953

conclude that predictions based on σ
(d)
x are consistent with the results of experiments.

The model based on the theory of critical distances passed the validation test.

5. Generalization of classical models for damage accumulation

Examples of conceptualization were given in Sections 2. The conceptualization
attributed to Neuber and the theory of critical distances are based on the assumption
that a material constant, which has the dimension of length, exists and accumulation
of fatigue damage can be correlated with the average stress over a line, area or volume
characterized by that constant. This is contradicted by the experimental observation
that the endurance limit depends on the size of the specimens, therefore the dis-
tance d cannot be a material constant. Consequently there appear to be fundamental
problems with the classical models described in Section 2.

The classical models of driving force for damage accumulation exemplified by the
work of Neuber, Peterson, Buch and others were developed for the estimation of the
endurance limit of notched machine elements in tension, bending and shear. The
computational tools available at that time were limited. The geometric stress concen-
tration factors were determined mainly from classical solutions of the Navier-Lamé
equations and photoelastic studies. The nominal stress was computed from simple
formulae for bars, beams and shafts. Those limitations on computational tools no
longer exist and there is a need for generalization of the classical models of damage
accumulation to complicated parts, such as rotorcraft components, and small defects,
such as those caused by manufacturing processes, corrosion, impact and wear. In
this section the conceptual formulation of driving forces for damage accumulation
is outlined. For the sake of simplicity in presentation the domain is assumed to be
two-dimensional, unless otherwise noted, but the concept is not restricted to two
dimensions.

Consider the neighborhood of a sharp or blunt notch, called stress riser. It is
assumed in the following that the principles of continuum mechanics remain valid
everywhere within the body up to the failure initiation event. At the site of damage
accumulation the continuum model is likely to indicate strongly nonlinear behavior,
such as the formation of shear bands, large strain and large rotation. This is the
process zone, schematically indicated by the hatched area bounded by ΓPZ and Γ in
Fig. 7.
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Figure 7. Notation.

Let uPZ(x, t) = {ux(x, t) uy(x, t)}PZ be the solution of the general nonlinear
continuum mechanics problem that accounts for strongly nonlinear behavior as well
as heterogeneous material properties and let uSS(x, t) = {ux(x, t) uy(x, t)}PZ be
the solution of the continuum mechanics problem that accounts only for infinitesimal
strain, small deformation and homogeneous material properties. Both uPZ and uSS
are defined on the entire domain Ω and may be functions of time t. It is assumed that
there is a subdomain Ω?, bounded by ΓSS and Γ, such that outside of Ω? uPZ ≈ uSS .
Specifically:

‖uPZ(x, t)− uSS(x, t)‖max ≤ τ‖uPZ(x, t)‖max x ∈ (Ω− Ω∗) (5.1)

where τ is some small tolerance. On the domain outside of Ω∗ the usual infinitesimal
strain and small deformation assumptions of continuum mechanics are reasonable
representations of physical reality.

Implied in this assumption is that failure initiation, which depends on the solution
of the highly nonlinear problem inside the process zone, is related to the solution
of a linear or nonlinear problem of continuum mechanics for which the assumptions
of infinitesimal strain, small deformation hold, even though these assumptions are
violated inside the process zone. Consequently it should be possible to predict failure
initiation events on the basis of uSS . An important special case is when uSS can be
well approximated by models based on linear elasticity. In such cases uSS(x, t) can
be written as the product of a function of x and a function of t.

The key problem is identification of the driving force for damage accumulation,
given uSS(x, t). Infinitely many conceptualizations are possible. For example, the
following defines a family of possible definitions of driving force in terms of some
functional F (uSS) > 0 and a parameter α:

G(F, α, t, T ) =

∫
Ωα

F (uSS(x, t), T ) dV, x ∈ R3 (5.2)

where T represents temperature. The domain of integration Ωα depends on the
magnitude of F :

Ωα = {x |α ≤ F/Flim, 0 < α < 1}. (5.3)
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Various definitions of Flim > 0 are possible. The value of Flim may depend on the
yield stress, yield strain, the ultimate tensile stress or some other value. The choice
Ωα as a function of F is related to the experimentally observed fact that the larger
the volume subjected to elevated stress or strain, the greater the likelihood of failure.

Remark 3. In general, the solution uSS is not known, only an approximation to uSS ,
which will be denoted by uFE , is known. Replacement of uSS by uFE is permissible
only when ‖uSS − uFE‖max is sufficiently small on Ω − Ω?. This follows from the
inequality:

‖uPZ − uSS‖max ≤ ‖uPZ − uFE‖max + ‖uSS − uFE‖max. (5.4)

Numerical accuracy is essential because unless the accuracy of the computed data is
known it is not meaningful to compare experimental observations with predictions
based on a mathematical model. This is because it would not be possible to tell
whether the mathematical model is wrong or the numerical errors are too large, or
both. In some cases a large error in the mathematical model is nearly canceled by a
similarly large numerical error, leading to false conclusions [21].

Example 3. The region of integration Ωα is illustrated for the conical feature when
F = σ1, is defined as the first principal stress, Flim = σyld = 1517 MPa is defined as
the yield stress of AF1410 steel and α = 0.95 in Fig. 8.

Figure 8. Example 3. The region of integration Ωα is highlighted
for α = 0.95. Specifically, σ1 ≥ 0.95σyld over the dark grey region.

6. Closing remarks

Damage tolerance and flaw tolerance methods employed in the management of
mechanical and structural systems have a common conceptual basis: The highly
nonlinear processes of crack nucleation and crack propagation are typically controlled
by stress and strain fields that can be determined to a high degree of accuracy from
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the solutions of mathematical models based on small displacement and infinitesimal
strain theory.

Development of a predictive capability for crack nucleation and crack propagation
based on small displacement and infinitesimal strain theory involves the definition of a
driving force G(F, α, t, T ), see eq. (5.2), and interpretation of the outcome of calibra-
tion experiments designed for determination of the parameters in G. The definition
of G involves expert opinion, i.e., subjective judgment. Nevertheless it is possible
to rank alternative definitions objectively through the application of verification and
validation procedures. For example, the results of fatigue tests of the micro-machined
AF1410 steel specimens presented in Section 4 clearly indicate that G defined as av-
erage stress over lengths ranging between 50 to 200 µm is preferable to Peterson’s
definition of the driving force.

Neuber’s seminal work on the investigation of the fatigue limit of notched machine
elements should be understood as an attempt to define a particular driving force
G. Specifically, Neuber’s driving force was the average tensile or shear stress over
a length which he assumed to be a material property. This length was calibrated
for various metals and was shown to provide useful predictions for typical notch
configurations in machine elements. The notch radii in the calibration experiments
were greater than about 0.5 mm. Scatter in the measured data tend to increase with
decreasing notch radius. Furthermore, as seen in Section 4, not all surface features
can be characterized by a single notch radius. For example, the stress distribution in
the vicinity of the conical feature is not associated with a notch radius (see Fig. 6).
Therefore Neuber’s and Peterson’s estimate of Ke is not applicable to the conical
feature. Another difficulty is that the classical models do not account for the influence
of size on fatigue limit.

There are conceptual problems also with mathematical models based on linear elas-
tic fracture mechanics for the estimation of crack propagation rates. These problems
arise because coupon tests designed for the determination of material parameters that
characterize crack propagation are performed on test articles which do not meet the
conditions of planar elasticity: The stress field at the intersection of the crack front
with the surface of the test article is not the stress field assumed in LEFM and, fur-
thermore, the crack front is typically curved. These conditions are typically ignored
in the interpretation of calibration experiments, resulting in systematic errors when
the results of calibration are applied to general crack configurations.

The class of driving fores defined in equations (5.2) and (5.3) do not have such
limitations. Given the framework of verification and validation, it is possible to re-
interpret the results of fatigue and fracture experiments with the objective to identify
specific driving forces that have the best predictive capabilities, independent of notch
configuration and size. This will minimize systematic errors in the prediction of crack
nucleation and crack propagation events.
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