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Economics, Műegyetem rkp. 3, 1111 BUDAPEST,
Hungary, kurutzm@eik.bme.hu

Herbert MANG, Institute for Strength of Materials,
University of Technology, Karlsplatz 13, 1040 VI-
ENNA, Austria, Herbert.Mang@tuwien.ac.at

Sanjay MITTAL, Department of Aerospace Engi-
neering, Indian Institute of Technology Kanpur,
UP 208 016, India, smittal@iitk.ac.in

Zenon MRÓZ, Polish Academy of Sciences, Insti-
tute of Fundamental Technological Research, Swi-
etokrzyska 21, WARSAW, Poland
zmroz@ippt.gov.pl
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Barna SZABÓ, Department of Mechanical Engineer-
ing and Materials Science, Washington University,
Campus Box 1185, ST. LOUIS, MO 63130, USA,
szabo@wustl.edu
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PREFACE

1. Introduction

The present issue of JCAM is dedicated to two excellent scientists: Professor Barna
Szabó, who turned 80 in 2015 and Professor Imre Kozák, who is 85 this year. For
political reasons Professor Szabó had to leave Hungary in 1956 – he was a student of
the University of Miskolc between 1954 and 1956. He has made a scientific carreer
and did and still does his best to provide help and support to the University of
Miskolc, more precisely to the Institute of Applied Mechanics (which was called the
Department of Mechanics until 2014).

Professor Kozák graduated from the University of Miskolc in 1954 and has been
working for the university since then. He chaired the Department of Mechanics from
1971 till 1993 and had a vey significant influence on the scientific activity of the
department in various ways: as a scientific leader of promising young PhD students
and by starting a separate track in applied mechanics.

Further information about their scientific and educational activities are presented
in Sections 1 and 2 of this Preface.

With this and the next issue their former and present students, co-workers and
friends wish them many more productive years in good health.

2. A professional life dedicated to Computational Mechanics
Professor Barna Szabó 80 years old

Barna Szabó was born in Martonvásár, Hungary in 1935. Af-
ter graduating from the Franciscan High School in Esztergom
in 1954, he was admitted to the Faculty of Mining Engineer-
ing of the Technical University of Heavy Industry in Miskolc
(now University of Miskolc). Following the failed Hungarian
uprising in 1956 he emigrated to Canada, where he resumed
his undergraduate studies at the University of Toronto.

He was employed as Mining Engineer by the International
Nickel Company of Canada (INCO) in Thompson, Manitoba
between 1960 and 1962. In 1962 he joined H. G. Acres Ltd., a
large civil engineering firm located in Niagara Falls, Ontario,
where he was employed in the Department of Applied Mechanics. He worked on the
design of major hydroelectric power stations, such as the Jean-Lesage Generating
Station in Quebec and the Churchill Falls Generating Station in Labrador, as well as
on a variety of interdisciplinary projects. In the following year he began part-time
studies at the State University of New York at Buffalo where he received the degree
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Master of Science in Civil Engineering in 1966. Recognizing that digital computers
would play an increasingly important role in the practice of engineering, he decided
to continue his graduate studies in that area. He received his Ph.D. degree in 1968.

From 1968 until his retirement in 2014 he was a member of the Faculty of Engi-
neering and Applied Science of Washington University in St. Louis, Missouri. He was
named The Albert P. and Blanche Y. Greensfelder Professor of Mechanics in 1975
and appointed Director of the Center for Computational Mechanics in 1977.

From the very beginning his research activities were guided by the idea that engi-
neering decisions cannot be based on computed information unless procedures for the
estimation and control of the errors of approximation are available.

An experimental computer code, called COMET-X, was developed under his direc-
tion at the Center for Computational Mechanics. The distinguishing feature of this
code was that converging sequences of finite element solutions could be generated
based on hierarchic sequences of finite element spaces. This allowed investigation of
the convergence characteristics of what is known today as the p-version of the finite
element method.

He observed that increasing the polynomial degree of elements on a fixed mesh re-
sults in a rate of convergence in energy norm that is faster than if fixed p and uniform
or quasi-uniform mesh refinement, known as the h-version, were used, even when the
solution being approximated contained singular points. This result was surprising
because it contradicted the then generally accepted interpretation of a key mathe-
matical theorem concerning the asymptotic rate of convergence of the finite element
method. This contradiction was demonstrated in a paper published 1978 [1].

The practical importance of the early results obtained by Szabó and his research
team was recognized by the Istituto Sperimentale Modelli e Stutture (ISMES) in
Bergamo, Italy, where the first industrial-scale implementation of the p-version was
undertaken with the goal to perform numerical simulation of the mechanical response
of arch dams in the Italian Alps as part of a safety monitoring system mandated by
the government of Italy. The justification for early adoption of the new methodology
was based on the fact that solution verification was a technical requirement which
could not be met by conventional methods. The code developed at ISMES is called
FIESTA.

The term “p-version of the finite element method" first appeared in a publica-
tion 1981 [2] in which the theoretical foundations were established of a discretization
strategy whereby the finite element mesh is fixed and the polynomial degree p of the
elements is progressively increased. The results presented in this paper motivated
research in the applied mathematics community on the properties of high order finite
element methods, which continues to this day.

Today the distinction between the h- and p-versions exists primarily for historical
and theoretical reasons. Conceptually the h-version is a subset of the p-version, in
the sense that any implementation of the p-version can be used in such a way that p
is fixed and the mesh is progressively refined. In practical applications the design of
the mesh and the choice polynomial degrees are both important. In fact, it is possible
to realize exponential rates of convergence when the p-version is used in combination
with proper mesh design. This point was first discussed from the engineering per-
spective [3] and from the theoretical perspective [4] in 1986. Details are available in
a textbook published in 1991 [5].

The first industrial-scale implementation of the p-version in the United States was
undertaken by Noetic Technologies Corporation in St. Louis in 1984, which produced
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the FEA software PROBE. The first release of PROBE (1985) featured a number of
innovations, which included posteriori error estimation, the realization of exponential
convergence rates and superconvergent extraction of stress intensity factors. The first
applications of PROBE were in the aerospace industry in support of mechanical fa-
tigue and damage tolerance modeling. Other large implementations of the p-version
were MECHANICA1 by the Rasna Corporation in 1987 and STRIPE by the Aero-
nautical Research Institute of Sweden2 in 1988.

Szabó recognized that while solving mathematical problems by approximate meth-
ods, subject to estimation and control of the errors of approximation, was funda-
mentally important, it is also of fundamental importance from the engineering and
scientific perspectives to formulate mathematical problems that simulate some spe-
cific aspects of a physical reality with sufficient reliability to justify basing engineering
decisions on them. He outlined the concept of hierarchic sequences of mathematical
models with reference to structural plates and shells at a conference in 19863 which
was published two years later [6]. In this view any mathematical model is understood
to be a special case of a more comprehensive model, one with fewer limitations im-
posed by the assumptions incorporated in the model. Szabó published a textbook,
co-authored by Professor Ivo Babuška, on the formulation, verification and validation
of mathematical models in 2011 [7]. The Chinese translation of this book was pub-
lished in 2013.

In order to make development of a computational framework designed to support
hierarchic modeling and discretization strategies possible, it was necessary to assem-
ble a professional team of engineers and programmers. To this end Szabó co-founded
a company, called Engineering Software Research and Development, Inc. (ESRD)
in 1989. The mission of this company is “to create and market software tools for
the advancement of the quality, reliability and timeliness of information that serves
the engineering decision-making process4". ESRD produces and markets the software
StressCheck, which is the only finite element analysis software tool designed to meet
the technical requirements of simulation governance [8]. It is used primarily in the
aerospace sector. ESRD received the Boeing Gold Performance Excellence Award in
2014.

Szabó has published over 150 papers and two textbooks. He is a founding member
and Fellow of the US Association for Computational Mechanics. Among his honors
are election to the Hungarian Academy of Sciences as External Member in 1995 and
Doctor Honoris Causa, University of Miskolc in 1998.

Szabó was honored on the occasion of his 65th birthday by an international con-
ference held in St. Louis in 20005. Two journals issued special editions in connection
with that conference6, 7.

1Now called Creo Simulate.
2Now called the Aeronautics Division of the Swedish Defense Research Agency.
3The Impact of Mathematical Analysis on the Numerical Solution of Engineering Problems.

University of Maryland, College Park, MD September 17-–19, 1986.
4www.esrd.com
5International Conference on p and hp Finite Element Methods: Mathematics and Engineering

Practice.
6Int. J. Numer. Meth. Engng. 53(1) (2002), Guest Editors: Z. Yosibash and M. Suri
7Computers and Mathematics with Applications, 46(1), (2003), Guest Editors: Z. Yosibash and

M. Suri.
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The Council of his hometown, Martonvásár, awarded him honorary citizenship in
2015.
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3. A professional life dedicated to Mechanics of Solid Bodies
Professor Imre Kozák 85 years old

Imre Kozák was born in Gór, a small village in Western Hun-
gary, in 1930. After graduating from the grammar school Nagy
Lajos in Szombathely in 1949 he was admitted to the Fac-
ulty of Mechanical Engineering of the Technical University of
Heavy Industry in Miskolc – today’s University of Miskolc.
In 1953 he obtained an M.Sc. degree in Mechanical Engi-
neering. He began his graduate studies at the Department of
Mechanics of the same university with the then Department
Head István Sályi as his scientific supervisor, in 1953. This
work later culminated in a Ph.D. thesis entitled Small elastic
plastic deformations of a thin walled cylindrical shell subjected

to internal pressure. This thesis was the first in which the Prandtl-Reuss equations
were applied to bent cylindrical shells. The main difficulty of the problem raised lay
in the fact that the solution required large amounts of computations before the ad-
vent of computers [1]. He was awarded his Ph.D. degree in 1961 and was appointed
Associate Professor at the Department of Mechanics.

In 1967 he took part in the organization of the first Colloquium on Plasticity held
in Miskolc in honor of Professor Endre Reuss, who was a well-known specialist in
this field. This was the first scientific meeting of mechanical nature in Hungary after
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World War II.
From 1967 to 1970 he was the Prorector responsible for scientific matters.
In 1968 Kozák was appointed Full Professor. Three years later, in 1971 he took

over leadership at the Department of Mechanics and held the post of Head of Depart-
ment till 1993.

Since 1971 the Hungarian Conference on Engineering Mechanics has been organized
at the University of Miskolc every four years. He has taken part in the preparations
and organization of the conferences on each occasion.

From 1966 to 1969 he greatly contributed in cooperation with Professor Béda
(Technical University of Budapest) and Professor Sályi to a new initiative by launch-
ing academic programs for mechanical engineers specialized in theoretical and applied
mechanics. The students who chose the new program of theoretical and applied me-
chanics graduated from the university with an M.Sc. degree. He took part in designing
the new curriculum and gave lectures, for the first time in the academic programs for
mechanical engineers in Hungary on such subjects as Theory of Shells, Mechanics of
Continua, Differential Geometry with Indicial Notations etc. It is worthy of mention
that eight of his former students are Full Professors today.

In the years 1972 to 1978 he was appointed General Prorector of the University of
Miskolc. After office hours he devoted time to updating the materials of the funda-
mental courses of engineering mechanics (Statics, Strength of Materials, Dynamics,
Theory of Vibration).

In 1978 he received the Gold Medal of the Order of Labor.
As regards his research, his aim was to work out a linear shell theory in terms of

stresses. Because of the unresolved problems in connection with the compatibility
of strain fields – what the independent, necessary and sufficient conditions are the
strains should meet in order to be compatible if the displacements are not variables
of the governing equations, what the solution to the Southwell paradox is8, – he had
to do some supplementary research.

As regards his results, it is worthy of mention that he modified and supplemented
the dual formulation of linear elasticity and the system of dual variational principles
by solving the aforementioned Southwell paradox, i.e., by pointing out that only three
of the six Saint-Venant compatibility conditions are independent, provided that the
so-called compatibility boundary conditions are satisfied, and showing that the inde-
pendent compatibility conditions and independent stress functions should be chosen
according to the same rule [2, 3, 4]. Based on these results he was able to establish
a general theory of shells in dual system regarding the stresses as fundamental vari-
ables [5]. This work led to the thesis Theory of thin shells in terms of stresses. After
its defense the Committee of Scientific Qualifications at the Hungarian Academy of

8It was Southwell (1936, 1938) who first derived the compatibility conditions from the principle
of minimum complementary energy as a variational principle. He pointed out that, by utilizing
Maxwell’s (1870) and Morera’s (1892) solutions, only three of the six Saint-Venant compatibility
conditions follow from the principle of minimum complementary energy. Since any stress condition
can be given in terms of three stress functions chosen appropriately, he arrived at a contradiction,
because for the displacements to be single-valued all the six Saint-Venant compatibility conditions
should be satisfied. This contradiction was named Southwell’s paradox after him. After Southwell’s
papers the following problems remained unresolved. Is it sufficient for the strains to satisfy three
Saint-Venant compatibility equations? If so, which three? If so, are there further conditions to
satisfy?
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Sciences awarded him the degree Doctor of Science in 1981.
From 1980 to 1983 he was again the Prorector responsible for scientific matters.
Between 1983 and 1985 Kozák wrote the textbooks Continuum Mechanics (in Hun-

garian)] and Mechanics of Elastic Bodies [6] (in Hungarian)] with co-authors. The
book Continuum Mechanics contains his most important results concerning the in-
vestigations he carried out in a dual system.

In the late 80s Kozák began to deal with the relative motion of continua. By
relative motion we mean the motion of a solid body (continuum) with respect to an
arbitrary curvilinear coordinate system, which is also in motion and therefore is ca-
pable of deformation (one can regard it as if it were a fictitious body). This motion is
distinguished from the motion of the solid body (continuum) relative to an arbitrary
but fixed curvilinear coordinate system (absolute motion). Within the framework of
these investigations he set up the necessary formalism. In headwords: relative and
absolute velocity fields, relative and absolute deformations, deformation gradients,
strain tensors, volume and surface elements, material time derivatives (for the de-
formation gradients, volume and surface elements), some questions of the physically
objective material time derivatives of the strain tensors, principle of virtual power
and work in each configuration with special regard to the case of follower loads. One
of his major results was the derivation of some new and known materially objective
(invariant under any coordinate transformation) time derivatives with a systematic
method [7, 8, 9].

In 1988 he won the Apáczai Csere János Prize. In 1990 and 1993 he was awarded
the medals Pro Unversitate and Pro Urbe of Miskolc.

The graduate education that leads to the degree of Doctor of Philosophy had ear-
lier been controlled formally by the Hungarian Academy of Sciences (Russian system)
but was taken over by the hungarian universities in 1990. He took part in establishing
new curricula for the graduate students at the Faculty of Mechanical Engineering of
the University of Miskolc.

A revised and supplemented English edition of his book Continuum Mechanics
[10] was published in 1995. This edition contains, among others, Kozák’s method of
deriving materially objective time derivatives.

He was elected corresponding member of the Hungarian Academy of Sciences in
1995. He gave his inaugural lecture with the title Continuum Mechanics and Geom-
etry at the Seat of the Miskolc Committee of the Hungarian Academy of Sciences in
1996.

In 1996 the City Council of Miskolc awarded Kozák honorary citizenship.
In the ’90s he proceeded with his research in continuum mechanics. The results

are applicable to investigating geometrically non-linear static stability problems and
postcritical equilibrium paths. Some of the results are listed below very briefly:

• The incremental form of the principle of virtual displacements for follower loads
and the derivation of the formulae for the Newton–Raphson iteration procedure that
solves the corresponding non-linear problem. When applying a finite element dis-
cretization it is reasonable to introduce, in addition to the usual linear and geometric
stiffness matrices, the load-correction stiffness matrix which is symmetric if the fol-
lower loads have a potential and is asymmetric if the follower loads have no potential.
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• The Newton-Raphson iteration can be initiated not only from an equilibrium con-
figuration under the given load but from an arbitrary non-equilibrium configuration
provided that the latter is appropriately chosen, independently of the loads. In this
way both fundamental equilibrium paths and bifurcation paths as well as complemen-
tary paths and limit points can be investigated. The critical load can be determined
by the path following method and the determinant search algorithm. The equilibrium
surfaces due to the geometrical imperfections and the load parameter(s), their stable
and unstable regions and the critical loads can be determined numerically [8].

• It has been shown that linear eigenvalue problems for follower loads cannot be inves-
tigated properly if the load correction matrix is left out of consideration.

In 1999 Kozák won, together with his colleague István Páczelt, the Széchenyi Prize
which is the highest scientific award in Hungary.

He was elected an ordinary member of the Hungarian Academy of Sciences in 2001.
He gave his inaugural lecture with the title 3D Stability Analysis of the Equilibrium
States of Solid Bodies for Deformation Dependent Loads at the Seat of the Miskolc
Committee of the Hungarian Academy of Sciences in the same year.

Since 2000 he has been working for the Institute of Applied Mechanics as a pro-
fessor emeritus.

In 2013 he was awarded the Hungarian Decoration With Cross.
Kozák participated actively in the work of a number of scientific associations and

societies. Since 1966 he has been a member of the today’s Committee of Theoretical
and Applied Mechanics of the Hungarian Academy of Sciences. Since 1973 he has
also been a member of the Hungarian National Committee of the International Union
of Theoretical and Applied Mechanics. From 1984 to 1996 he was a member of the
Committee of Scientific Qualifications at the Hungarian Academy of Sciences.

Kozák has been taking part in the work of the Miskolc Committee of the Hungar-
ian Academy of Sciences since it came into existence in 1979. Since its foundation he
has been a member of the Expert Committee of Mechanical Engineering. Between
1984-96 he was the Chair of the Club Council. In 1990 he was elected a member
of the Committee. From 1993 to 1996 he was the vice chairman of the Committee.
From 1996 till 2002 he was the Chairman of the Committee.

Kozák has visited a number of foreign cities (Vienna, Graz, Leoben, Prague, Brno,
Bratislava, Kosice, Cracow, Berlin, Magdeburg, Dresden, St. Petersburg, Moscow,
Kharkov, Frunze, Detroit, Algir, Oran, Constantine).

He is an excellent lecturer. He has the gift to present very complicated things –
relationships, lines of thoughts – in an elegant and simple manner and to make his
audience understand what at first seems difficult. Those who have had the privilege
to attend his courses will remember these lectures fondly.

He has written altogether 17 university textbooks for his students on Statics,
Strength of Materials, Dynamics, Elasticity, Plasticity, Theory of Shells etc. These
books came out in Hungarian.

He has published a total of 61 scientific papers so far.
Kozák has been the scientific supervisor of 8 Ph.D. dissertations and a number

of M.Sc. theses. Four of his PhD students (Edgár Bertóti, Béla Csizmadia, György
Szeidl and Károly Váradi) are full professors.
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Abstract. The paper generalizes the classical Sakiadis problem for non-Newtonian power
law fluids. Applying the similarity method the governing partial differential equations are
transformed to one ordinary differential equation. The resulting boundary value problem is
solved by Chebyshev spectral collocation on a truncated domain. The effect of the power-law
exponent on the numerical solutions is investigated.
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1. Introduction

The study of a flow generated by a moving surface in an otherwise quiescent fluid
plays a significant role in many material processing applications such as hot rolling,
metal forming and continuous casting (see e.g., Altan et al. [1], Fisher [2], Tadmor and
Kline [3]). Boundary layer flow induced by the uniform motion of a continuous plate
in a Newtonian fluid has been analytically studied by Sakiadis [4] and experimentally
by Tsou et al. [5]. A polymer sheet extruded continuously from a die travelling
between a feed roll and a wind-up roll was investigated by Sakiadis [6], [4]. For the
laminar velocity field of a Newtonian fluid Tsou et al. [5] showed in their analytical
and experimental study that the obtained analytical results are in excellent agreement
with the measured data, therefore it proves that the mathematical model for boundary
layer on a continuous moving surface describes a physically realizable flow.

Recently, a number of researchers are motivated to investigate the problem of
boundary layer flow due to its application in engineering processes. Flows along a
continuously moving surface are encountered in several processes, for example the
thermal and moisture treatment of materials, particularly in processes involving con-
tinuous pulling of a sheet through a reaction zone, in metallurgy, the paper industry,
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and in the manufacture of polymeric sheets. Fluids for which the relationship be-
tween the shear stress and the rate of strain is non-linear at given temperature and
pressure are said to be non-Newtonian. Most fluids such as molten plastics, artifi-
cial fibres, petroleum, blood and polymer solutions are considered as non-Newtonian
fluids. Schowalter [7] introduced the concept of the boundary layer in the theory of
non-Newtonian power-law fluids. Acrivos, Shah and Petersen [8] have investigated
the steady laminar flow of non-Newtonian fluids over a plate.

Our aim is to examine the solutions to the boundary layer problem of a power-law
non-Newtonian fluid along an impermeable flat surface moving with a constant veloc-
ity in an otherwise quiescent fluid environment. In the absence of an exact solution
in closed form, numerical solutions for the velocity distribution in the boundary layer
for different power-law exponents will be presented, and the dependence of the skin
friction parameter and the boundary layer thickness on the power-law exponent n are
examined.

In this paper, we apply a spectral method for the solution to the boundary value
problem (BVP). Spectral methods were first applied in the 1970s but their mathemat-
ical foundation were endowed by Gottlieb and Orszag in 1977. By the 1990s, spectral
methods had become attractive tools for scientists dealing with fluid mechanics and
meteorological modeling [9]. In contrast to the finite difference or the finite element
methods which are local in character, spectral methods are global methods. With the
advent of the spectral element method, complicated domains can be handled. In spite
of being mainly used in fluid mechanics, nowadays, they are more and more frequently
utilized in biomechanics, astrophysics and the study of electromagnetic waves.

The text is organized into four sections. In Section 2 the governing equations
describing the phenomenon are introduced. In Section 3 a BVP of nonlinear ordi-
nary differential equations is derived by applying the similarity method. Section 4 is
devoted to the numerical solution of the BVP using a spectral collocation method.
Finally, we summarize the consequences of our investigations in Section 5.

2. Governing Equations

Consider a steady, two-dimensional, laminar boundary layer flow of viscous, incom-
pressible power-law fluid past a continuously moving plate passing through with con-
stant velocity Uw in an otherwise quiescent fluid. The x-axis extends parallel to the
plate and the y-axis is perpendicular to the x-axis. The flat surface is placed at
y = 0. The boundary layer equations for a flow over a flat plate neglecting pressure
gradient and body forces can be described by the following continuity and momentum
equations [5]:

∂u

∂x
+
∂v

∂y
= 0, (2.1)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂τyx
∂y

, (2.2)
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where u and v denote the horizontal and vertical fluid velocity component, respec-
tively, and τyx is the shear stress. Hereafter, we apply the Ostwald–de Waele power-
law constitutive equation for the non-Newtonian model [10]:

τyx = K

∣∣∣∣∂u∂y
∣∣∣∣n−1

∂u

∂y
, (2.3)

where K is the consistency and n is the power-law exponent. If n < 1, the fluid is
pseudoplastic, if n > 1 it is dilatant while the fluid is Newtonian for n = 1. Substitut-
ing Eq. (2.3) into (2.2), the fundamental equation is obtained for the velocity field.
Equation (2.1) can identically be satisfied when the stream function ψ is introduced
as u = ∂ψ/∂y, v = −∂ψ/∂x. Then from (2.3) we get a third order nonlinear partial
differential equation:

ψyψyx − ψxψyy = γ
(
|ψyy|n−1ψyy

)
y
, (2.4)

where γ = K/ρ and the subscripts denote the partial differentiation with respect to
the appropriate variable. The wall is impermeable and no-slip boundary condition
is supposed. Furthermore, the ambient fluid velocity is zero and we suppose that
the plate is moving at a constant velocity; therefore the boundary conditions can be
formulated as follows:

u(x, 0) = Uw, v(x, 0) = 0, lim
y→∞

u(x, y) = 0. (2.5)

3. Similarity solution

The similarity method is applied for the transformation of (2.4) to an ordinary dif-
ferential equation. Let us introduce similarity variables η and f(η) as

η = a
y

xβ
, ψ = bx−αf(η), (3.1)

where a, b, α, β are constants, which will be determined from the invariance condition
for the differential equation and the three boundary conditions. Substituting (3.1)
into Eq. (2.4) one obtains

a2b2x−2α−2β−1
[
aff ′′ − (α+ β)f ′2

]
= γ(a2b)nx(−α−2β)n a

xβ
[
|f ′′|n−1f ′′

]′
,

where the primes denote differentiation with respect to η. One can observe that the
differential equation remains invariant if

(2n− 1)β + (n− 2)α = 1 (3.2)

and

a2b2 = γ(a2b)na (3.3)

hold.
Rewriting the boundary conditions by applying the stream function, one may establish
other connections among the parameters. According to (3.1), in the third condition
of (2.5) if y →∞, i.e. η →∞, for fixed x we get

lim
y→∞

ψy(x, y) = lim
η→∞

f ′(η) = abx−α−βf ′(η) = 0.
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Let us choose f ′(∞) = lim
η→∞

f ′(η) = 0, then

α+ β = 0. (3.4)

At η = 0 setting
f ′(0) = 1

implies
ab = Uw (3.5)

from the first condition in (2.5). On the other hand, from Eq. (3.2) and from Eq.
(3.4) it follows that

β = −α =
1

n+ 1
.

The second condition in (2.5) is expressed as

−ψx(x, 0) =
b

n+ 1
x−

n
n+1 [η f ′(η)− f(η)] = 0,

which is satisfied for η = 0 if
f(0) = 0.

Consequently, the parameter values are the following:

α = − 1

n+ 1
, β =

1

n+ 1
,

a = γ−
1

n+1Uw
2−n
n+1 , b = γ

1
n+1Uw

2n−1
n+1 .

The connection among the dimensionless similarity variables and the original velocity
is

u(x, y) = Uw f
′(η), (3.6)

v(x, y) =
Uw
n+ 1

Re
− 1
n+1

x (η f ′(η)− f(η)), (3.7)

η = Re
1

n+1
x

y

x
, Rex =

U2−n
w xn

γ
, (3.8)

where Rex is the local Reynolds number. Instead of the BVP of partial differential
equations (2.1), (2.2), (2.3) and (2.5) we obtained by the similarity analysis the BVP
of a nonlinear ODE (3.9) and (3.10)(

|f ′′|n−1
f ′′
)′

+
1

n+ 1
ff ′′ = 0 (3.9)

f(0) = 0, f ′(0) = 1, lim
η→∞

f ′(η) = 0. (3.10)

Since the velocity field can be calculated from f(η) using (3.6)-(3.7), our goal is to
determine the solution to (3.9)–(3.10). We also want to examine the boundary layer
thickness and f ′′(0). The latter one is necessary for computation of the drag coefficient

CD = (n+ 1)
1

n+1Re−
n
n+1 (−f ′′(0))

n
(3.11)

and the wall shear stress

τw(x) =

[
%nKUw

3n

xn

]
(−f ′′(0))

n
. (3.12)
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4. Numerical Solution

We use a spectral method for the determination of the solution to (3.9)–(3.10). Spec-
tral methods are able to provide very accurate results when the solution is smooth
enough. More precisely, if the solution is differentiable to all orders, an exponential
(or infinite order or spectral) convergence is achieved. However, if the solution is
m-times continuously differentiable, the rate of convergence is algebraic: O(k−m),
where k is the k-th expansion mode [11]. Superior convergence can be achieved for
entire functions. For periodic problems, Fourier spectral methods are straightforward;
however, in our case the domain is non-periodic, therefore we are going to use the
Chebyshev method. All three versions of spectral methods (collocation, Galerkin and
tau) belong to the method of weighted residuals and the main classification is carried
out according to the type of trial functions used. Trial functions in the Galerkin
method are the same as the weight functions and satisfy some of the boundary con-
ditions. In spectral collocation, trial functions are Dirac-delta functions located at
the collocation points while the tau method, similarly to the Galerkin method, oper-
ates in the weak form but the trial functions generally do not satisfy the boundary
conditions [9]. In our calculations the collocation method is used. During collocation
we determine the function values of the interpolating polynomial at the collocation
points (nodal approximation) as opposed to the other two methods, which give results
for the coefficients of the truncated approximating series (modal approximation). For
other aspects of the method, we refer to [9].

The n-th order Chebyshev polynomial of the first kind, Tn(x̄) is defined on [−1, 1]
and can be expressed by the recursion

T0(x̄) = 1, T1(x̄) = x̄, Tn(x̄) = 2x̄Tn−1(x̄)− Tn−2(x̄), n > 1.

The modal approximation of a function w(x̄) is

INw(x̄) =

N∑
j=0

ajTj(x̄), (4.1)

where aj are the Chebyshev coefficients. The nodal approximation of w(x̄) can be
evaluated in the Lagrange base as

pNw(x̄) =

N∑
j=0

wj`j(x̄), (4.2)

where `j are the Lagrange basis polynomials. The spectral differentiation for Cheby-
shev polynomials can be carried out either by a matrix-vector product or by using
the Fast Fourier Transform (FFT). We implement the matrix-vector multiplication
method because of the relatively low number of collocation points. The first derivative
of w is approximated as

w′(x̄i) ≈
N∑
j=0

Dijwj , i = 0, . . . , N,
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where D is the first differentiation matrix. Similarly, the p-th order derivative is
calculated as

dpw(x̄i)

dx̄p
≈

N∑
j=0

D
(p)
ij wj , i = 0, . . . , N, (4.3)

with D(p) standing for the p-th differentiation matrix. For D and D(2) exact formulas
exist.

One of the methods for solving a BVP on an infinite or semi-infinite interval is the
so-called domain truncation [11]. Performing the truncation and the linear mapping
we have

η ∈ [0,∞) −→ ξ ∈ [0, L]
ζ= ξ

L−−−→ ζ ∈ [0, 1]
x̄=2ζ−1−−−−−→ x̄ ∈ [−1, 1]. (4.4)

Introducing f̄(x̄) = f(η(x̄)), BVP (3.9)–(3.10) reads

8

L3
f̄ ′′′ − 1

n(n+ 1)

(
4

L2

)2−n

f̄ |f̄ ′′|2−n, (4.5)

f̄(−1) = 0, f̄ ′(−1) = L/2, f̄ ′(1) = 0. (4.6)

After the discretization of f̄ , N +2 number of algebraic equations are at our disposal.
The differential equation (4.5) is approximated at the N − 1 inner nodes and the
three boundary conditions (4.6). However, the number of unknowns are only N + 1,
therefore the resulting system is overdetermined. One possible solution is to take an
interpolant that already satisfies some of the boundary conditions [12]. Let us seek
function g such that

f̄(x̄) = P (x̄)g(x̄), P (x̄) = ax̄2 + bx̄+ c.

In case of P (−1) = 0, P ′(−1) = L/2 and P ′(1) = 0 are satisfied, a, b, c are obtained
as

a = −L/8, b = L/4, c = 3L/8.

Now the differential equation is reformulated by

8

L3

[
6ag′ + (6ax̄+ 3b)g′′ + (ax̄2 + bx̄+ c)g′′′

]
− 1

n(n+ 1)

(
4

L2

)2−n

(ax̄2 + bx̄+ c)g∣∣2ag + (4ax̄+ 2b)g′ + (ax̄2 + bx̄+ c)g′′
∣∣2−n = 0 (4.7)

under boundary conditions

g(−1) = 1, g′(1) = 0. (4.8)

The BVP (4.7)–(4.8) can be solved with the Chebyshev spectral technique.

After the discretization of g(x̄) and its derivatives according to (4.2) and (4.3), the
resulting system of nonlinear equations is solved by the Levenberg–Marquardt algo-
rithm in Matlab. Table 1 contains the essential values of f ′′(0) for various number
of collocation points and for different interval length L and power-law exponent n.

The numerical results for different power-law exponents are depicted in Fig. 1,
where f ′(η) is shown which is proportional to u(x, y) (see Eq. (3.6)). The figure
shows that with larger values of n the boundary layer thickness decreases and shorter
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Table 1. Values of f ′′(0) for different power-law exponents

n = 0.5 n = 0.7 n = 0.8 n = 1
(L = 30, N = 23) (L = 25, N = 25) (L = 20, N = 20) (L = 20, N = 30)

f ′′(0) -0.468917 -0.443623 -0.441151 -0.443748

n = 1.1 n = 1.3 n = 1.5
(L = 10, N = 20) (L = 6, N = 20) (L = 6, N = 10)

f ′′(0) -0.447283 -0.45624 -0.466919

interval is enough for the truncation. Because f ′′(0) < 0, both the drag coefficient in

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

η

f ′

n = 0.5
n = 0.7
n = 0.8
n = 1
n = 1.1
n = 1.3
n = 1.5

Figure 1. Velocity profiles for different values of n

Eq. (3.11) and the wall shear stress in Eq. (3.12) are influenced by (−f ′′(0))
n

and
this is described in Fig. 2.

Table 2 collects the calculated function values for some n.

Error estimation is based on the monotonic decrease of the absolute value of the
Chebyshev coefficients aj . Namely, if the coefficients before aN tend to aN smoothly
in absolute value, then the solution is supposed to be correct [11]. The last retained
coefficient aN in (4.1) is proportional to the truncation error. We also performed the
calculations for different numbers of collocation points. For the calculated values of
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n

|f ′′(0)|n

Figure 2. The values of |f ′′(0)|n for n ∈ [0.5, 1.5]

Table 2. The values of |f ′′(0)|n for some values of n

n 0.5 0.7 0.8 1

|f ′′(0)|n 0.684775 0.566122 0.519601 0.443763

n 1.1 1 1.5

|f ′′(0)|n 0.412706 0.360538 0.319053

n, using the values of L and N given in Table 1, the worst estimated error is obtained
for n = 0.5 as 1.55e-6 and the best one is 3.70e-11 for n = 1.

5. Conclusions

The paper deals with the solutions to the generalized Sakiadis problem for non-
Newtonian power-law fluids. The boundary layer assumption is taken into account,
then a similarity transformation is used in order to solve an ordinary differential
equation instead of the system of partial differential equations. Chebyshev spectral
collocation is applied after domain truncation and the appropriate treatment of the
boundary conditions. From the solutions achieved, we found that the boundary layer
thickness decreases as the power-law exponent increases, while the drag coefficient
and the wall shear stress increase with larger n exponents.
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Abstract. Analytical and numerical comparisons of a primal-mixed, a dual-mixed and a
consistent primal-dual mixed finite element formulation are presented for cylindrical shells
using the lowest possible order, constant and linear, polynomial approximations within the
framework of the Naghdi shell model. The stiffness matrices and the load vectors of the
mixed elements are explicitly derived and compared to each other and to that of the standard
displacement-based shell element for axisymmetric deformations. It is pointed out that the
stiffness matrices of the dual-mixed and the primal-dual mixed elements can be related to
that of the standard shell element through two geometry-, material- and mesh-dependent
coefficients. One of these coefficients turns out to be a reliable shear locking indicator
which can be used to transform the standard displacement-based shell element into a shear
locking-free dual-mixed one, independently of the thickness and the loading of the shell. The
numerical comparisons indicate that the dual-mixed element is the only element that gives
second-order rates of asymptotic convergence for all the variables, including the bending
moment and shear force computations.
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1. Introduction

Reliable numerical analysis of structural shells represents one of the biggest challenges
in computational mechanics. During the past decades, a large variety of shell formula-
tions and shell finite element models have been developed, investigated and analyzed,
both numerically and analytically. Due to the enormously huge number of publica-
tions on shell formulations and shell finite elements, it is almost impossible to give
a brief overview within a short introduction, even on the most significant contribu-
tions. The reader is rather referred to the excellent review of [1] and the textbooks of
[2, 3, 4, 5]. Among the current possibilities, the higher-order displacement-based shell
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elements and the low-order mixed shell finite elements seem to be the most reliable
ones for thin shells [5, 6, 7].

The appearance of, and the remedies for, the different types of locking phenomenon,
including shear and membrane locking, in finite element analyses of beams, plates and
shells have been the subject of many research papers as well. Regarding Naghdi-type
first-order shear deformation models for shells [8, 9, 10, 11], several shear locking-free
elements have been developed and different techniques for avoiding locking problems
have also been widely analyzed [12, 13, 4, 5].

Regarding mixed variational formulations and finite element models, the primal-
mixed elements with continuous displacement approximations and discontinuous sur-
face tractions are more popular than the dual-mixed elements, but they lead to the
same low-order rates of convergence for the stresses as the conventional displacement-
based models [14]. In contrast, the dual-mixed elements require surface traction
continuity at the element interfaces and apply discontinuous approximations for the
displacements, i.e., a standard stiffness matrix equation with conforming nodal dis-
placements cannot directly be derived from them. However, as the local equilibrium
of the surface tractions at the element interfaces is satisfied by the stress approxima-
tion of the dual-mixed elements, they result in better rates of asymptotic convergence
for the stress variables than those obtained by primal-mixed elements.

The locking-free property of a shell finite element is understood in the sense that
no degradation in the rates of convergences of the displacement and stress variables
appears when the thickness of the shell approaches zero. The analytical investigation
and explanation of the locking-free behavior of different, displacement-based or mixed,
shell elements would require explicit comparisons of their closed form stiffness matrices
and load vectors. This, however, seems to be rather hopeless for general shells, due
to the complexity of their geometry, the related variational formulations and finite
element models. In addition, the discontinuous approximation of the displacements in
dual-mixed finite element formulations makes their analytical comparisons to primal-
and primal-mixed elements rather difficult. This is true even for those cases when the
surface traction continuity at the element interfaces is enforced by applying the λ-
multiplier technique, a method often called hybridization [15, 16], as the λ-multipliers
usually correspond to non-conforming nodal displacements. Special exceptions to that
rule are the one-dimensional problems like beams and, regarding shells, the cylindrical
shell with axisymmetric deformations, where the λ-multipliers turn out to be the nodal
displacements. This fact enables direct analytical comparisons of the element stiffness
matrices and load vectors of the dual-mixed formulation to those obtained with the
displacement-based and the primal-mixed approaches.

The main goal of the present work is to perform analytical and numerical compar-
isons of different finite element formulations for cylindrical shells in the framework of
the dimensionally reduced Naghdi shell model. The formulations investigated in this
paper have much similarity and analogy to those presented for the Timoshenko beam
in [17]. The strong and the (Galerkin-type) weak formulations of the governing equa-
tions for axisymmetric deformations are summarized in Section 2. Among the several
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possibilities, a primal-mixed, a dual-mixed and a consistent primal-dual mixed formu-
lation are investigated in detail, deriving the corresponding stiffness matrices and load
vectors analytically, using the lowest possible order of polynomial approximations the
formulations permit.

The derivation and comparison of the stiffness matrices and the load vectors of
the different finite element models have been performed using the computer algebra
system Maple(TM) and the results are summarized in Section 3. The relationships
between the element stiffness matrices suggest the introduction of two geometry-,
material- and mesh-dependent coefficients denoted by Cm and Cs that can easily be
computed for each element in the mesh. To show and compare the approximation
capabilities of the formulations and elements considered, Section 4 presents a demon-
strative numerical example, a clamped-clamped shell subjected to uniform load. In
the concluding remarks a recipe is given for how the stiffness matrices of the standard
and primal-mixed formulations can be transformed, applying the shear locking indi-
cator Cs, to obtain shear locking-free finite element solutions with second-order rates
of asymptotic convergences in all the variables, i.e., in the displacements, bending
moments and shear forces, independently of the thickness of the shell.

2. Strong and weak formulations for the cylindrical shell model

A homogeneous circular cylindrical shell of length L and uniform thickness d is in-
vestigated in a Cartesian xyz coordinate system. The axis x coincides with the
axis of the shell, the middle surface of which is a cylinder of radius R (see Fig-
ure 1). The orthonormal basis vectors of the local cylindrical coordinate system,
attached to the middle surface, are denoted by ei, i = 1, 2, 3, the cylindrical co-
ordinates of an arbitrary point P on the middle surface are x1 ≡ x, x2 and x3,
each of them has a dimension of length. The middle surface of the shell is given by
S0 := {x |x ∈ (0, L), x2 ∈ [0, 2Rπ), x3 = 0}. We assume that the shell is loaded
axisymmetrically, i.e., all the variables used for describing the shell problem are in-
dependent of the coordinate x2. The torsion problem of the shell is not investigated.

2.1. Strong forms of the governing equations. Applying the main kinematical
assumptions of the Naghdi shell model [8, 5], the displacement field of the 3D shell is
approximated through the thickness as

u1(x, x3) = u(x) + φ(x)x3 , (2.1)

u3(x, x3) = w(x), (2.2)

where u(x) and w(x) are the displacements of the middle surface in axial and trans-
verse directions, respectively, and φ(x) ≡ φ2(x) is the (small) rotation of the normal
to the middle surface at x ≡ x1 around the local base vector e2. The displacement
component u2 is identically zero. The non-zero strain components of the shell are
given by

e11(x, x3) = ε11(x) + κ11(x)x3 , (2.3)
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Figure 1. Middle surface of the cylindrical shell

2e13(x, x3) = γ13(x), (2.4)

e22(x, x3) = ε22(x), (2.5)

where

ε11(x) = u,x , (2.6)

γ13(x) = w,x +φ , (2.7)

κ11(x) = φ,x , (2.8)

ε22(x) = w/R (2.9)

are, respectively, the axial membrane strain, the transverse shear strain, the curvature
of the middle surface in the x1 x3 plane and the circumferential membrane strain (a
comma followed by the index x in the subscript denotes differentiation with respect
to x ≡ x1). Relations (2.6)-(2.9) are the kinematic equations of the dimensionally
reduced shell model with Reissner-Mindlin-type kinematics. Note that (2.9) is not a
differential equation.

Assuming linearly elastic and isotropic materials and identically zero transverse
normal stresses, i.e., σ33 = 0, the constitutive relations for the 3D shell are given by

σ11(x, x3) = E1(ε11 + νε22) + E1 κ11 x3, (2.10)

σ22(x, x3) = E1(ε22 + νε11) + νE1 κ11 x3, (2.11)

σ13(x, x3) = ks 2Gε13 = ksGγ13(x), (2.12)

where E1 = E/(1− ν2) with elasticity modulus E and Poisson ratio ν, G is the shear
modulus and ks is the shear correction factor. Introducing the stress resultants and
couples asN11(x)

N22(x)
N13(x)

 =

∫ +d
2

−d2

 σ11
σ22
σ13

 dx3,

{
M11(x)
M22(x)

}
=

∫ +d
2

−d2
x3

{
σ11
σ22

}
dx3, (2.13)
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the stress-strain relations of the shell model can be given in the form

N11(x) = E1d (ε11 + νε22), (2.14)

N22(x) = E1d (ε22 + νε11), (2.15)

N13(x) = ksGdγ13, (2.16)

M11(x) = E1I1 κ11, (2.17)

M22(x) = νE1I1 κ11, (2.18)

where I1 = d3/12. Due to the assumptions employed, the geometrical and material
parameters I1, E, G and ν, as well as ks are all constants. Note that the above
constitutive equations are uniquely invertible and the membrane strains, for example,
can be computed from the membrane forces according to the inverse stress-strain
relations

ε11(x) =
1

Ed
(N11 − νN22), (2.19)

ε22(x) =
1

Ed
(N22 − νN11). (2.20)

The equilibrium equations of the shell model are

N11,x + p1 = 0, (2.21)

N13,x −
1

R
N22 + p3 = 0, (2.22)

M11,x −N13 +m2 = 0, (2.23)

where p1(x), p3(x) and m2(x) are distributed (known) external loads. For thin shells,
the distributed moment load m2(x) is usually neglected, as we do so in this paper.

Displacement and stress boundary conditions can be prescribed for the variables
u, w, φ andN11, N13, M11, respectively, at both ends of the shell, x = 0 and x = L, by
paying attention to the fact that {u,N11}, {w,N13} and {φ,M11} are work-conjugate
variables.

2.2. Weak forms of the governing equations. In the subsequent analysis, the
constitutive equations (2.14)-(2.18) will be satisfied in a strong sense. In addition,
to simplify the finite element formulation and to obtain comparable 4 × 4 stiffness
matrices, the kinematic equation (2.6) and the equilibrium equation (2.21) will also
be satisfied in a strong sense. This means that the solution for the axial membrane
force N11(x) is obtained by direct integration from (2.21) as

N11(x) = N11(0)−
∫ x

ξ=0

p1(ξ) dξ, (2.24)

and the axial displacement u(x) will be obtained from (2.6) by integration as well:

u(x) = u(0) +

∫ x

ξ=0

ε11(ξ) dξ. (2.25)
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The computation of the strain component ε11(x) for (2.25) is based on (2.19), which
requires a solution for N22(x). The method of computing the membrane force N22(x)
depends on the weak formulation applied, as discussed in Section 3.

2.2.1. Kinematic equations. The first weak forms of the kinematic equations (2.7)-
(2.8) of the shell model are∫ L

0

(γ13 − w,x−φ) δN13 dx = 0, (2.26)∫ L

0

(κ11 − φ,x ) δM11 dx = 0, (2.27)

where δN13(x) and δM11(x) are arbitrary weighting functions (virtual shear force and
bending moment). The second weak forms of the kinematic equations are obtained
from (2.26)-(2.27) by applying the divergence theorem:∫ L

0

(γ13 δN13 + w δN13,x − φ δN13) dx−
[
w δN13

]L
0

= 0, (2.28)∫ L

0

(κ11 δM11 + φ δM11,x) dx−
[
φ δM11

]L
0

= 0. (2.29)

The kinematic equation (2.9) is not a differential equation, it has only one weak form:∫ L

0

(ε22 −
w

R
) δN22 dx = 0, (2.30)

where δN22(x) is an arbitrary weighting function (virtual membrane force).

2.2.2. Equilibrium equations. The first weak forms of the equilibrium equations (2.22)-
(2.23) are ∫ L

0

(N13,x −
1

R
N22 + p3) δw dx = 0, (2.31)∫ L

0

(M11,x −N13) δφdx = 0, (2.32)

where δw(x1) and δφ(x1) are arbitrary functions (virtual displacements and rotation).
The second weak forms of the equilibrium equations are obtained from (2.31)-(2.32)
by applying the divergence theorem:∫ L

0

(−N13 δw,x−
1

R
N22 δw + p3 δw) dx+

[
N13 δw

]L
0

= 0, (2.33)∫ L

0

(−M11 δφ,x −N13 δφ) dx+
[
M11 δφ

]L
0

= 0. (2.34)
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2.3. Variational formulations – a brief overview of the possibilities. Depend-
ing on which forms, strong or weak, of the governing equations in Sections 2.1 and 2.2
are selected, different types of variational formulations and finite element models for
the shell problem can be constructed, as shown in Table 1. The displacement bound-
ary conditions for w(x) and φ(x), as well as the stress/force boundary conditions for
N13(x) and M11(x) at x = 0 and/or x = L can be either essential or natural, depend-
ing on the formulation considered. The quality of the finite element solution, as is
well known, can largely depend on the variational formulation employed, especially
when low-order polynomial approximations are used.

Table 1. An overview of variational formulations

Variational formulation

primal primal-mixed dual-mixed dual

Kinematic equations strong 1st weak 2nd weak 2nd weak

Constitutive equations strong strong strong strong

Equilibrium equations 2nd weak 2nd weak 1st weak strong

Displacement b.c. essential essential natural natural

Stress/force b.c. natural natural essential essential

Note that there exist two other primal-dual mixed formulations for the shell prob-
lem that are not included in Table 1. They can be obtained by mixing the weak forms
of the governing equations in such a way that one of the kinematic equations is consid-
ered in its first weak form, the other in its second weak form, and the corresponding
equilibrium equations are taken into account in their second and first weak forms,
respectively. Out of the two possibilities, a consistent primal-dual mixed formulation
and the related shell finite element are presented in Section 3.4. Note also that ad-
ditional mixed variational formulations and finite element models can be constructed
by taking into account the constitutive equations in their weak forms.

3. Finite element formulations

In this section, the derivation of the stiffness matrices and the load vectors of one
shell element denoted by e will be summarized for displacement-based, primal-mixed,
dual-mixed and a consistent primal-dual mixed variational formulations, employing
Bubnov-Galerkin-type approximations of the lowest possible order.

The mapping between the master element ê := {ξ | − 1 ≤ ξ ≤ 1} and the actual
element e := {x |xa ≤ x ≤ xb} with nodal coordinates xa < xb is given by

x = x(ξ) = xaN1(ξ) + xbN2(ξ), (3.1)

where

N1(ξ) =
1

2
(1− ξ), N2(ξ) =

1

2
(1 + ξ) (3.2)
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are the standard linear interpolation functions. The Jacobian of the mapping (3.1) is
J = h/2 with element length h = xb − xa. All the symbolic computations presented
in this section have been performed using the computer algebra system MapleTM .

3.1. Displacement-based (primal) formulation. This is the simplest and most
known formulation, found in many textbooks and papers and reviewed briefly here
for notational reasons. The axial membrane force N11(x) is assumed to be known,
according to (2.24), and the membrane force N22(x) will be computed from the inverse
stress-strain relation (2.20):

N22(x) =
Ed

R
w(x) + νN11(x), (3.3)

where the kinematic equation (2.9) has also been used. Inserting (3.3), as well as
(2.16)-(2.17) in (2.33)-(2.34) and taking into account (2.7)-(2.8), the second weak
forms of the equilibrium equations for the shell element e can be written as∫ xb

xa

[
−ksGd (we,x +φe) δwe,x−

Ed

R2
we δwe + p̂ e3 δw

e
]
dx+

[
N13 δw

]xb

xa
= 0, (3.4)∫ xb

xa

[
−E1I1(φe,x δφ

e,x )− ksGd (we,x +φe) δφe
]
dx+

[
M11 δφ

]xb

xa
= 0, (3.5)

where p̂ e3 = pe3 − νNe
11/R. Employing linear approximation for both w(x) and φ(x)

on element e, we can write:

we(ξ) = waN1(ξ) + wbN2(ξ), (3.6)

φe(ξ) = φaN1(ξ) + φbN2(ξ), (3.7)

where wi = w(xi) and φi = φ(xi), i = a, b are the nodal displacements and rotations.
This is the lowest possible order (though inconsistent) C0-continuous approximation
for w(x) and φ(x). Introducing the matrix of nodal displacements

[ u ]T = [wa wb φa φb ] (3.8)

and approximating the weighting functions δwe(x) and δφe(x) by piece-wise linear
functions as well (Bubnov-Galerkin method), the principle of virtual work with vari-
ational equations (3.4)-(3.5) leads to the matrix equation

[KST] [ u ] = [FST], (3.9)

where

[KST] = [KST

m ] + [KST

b ] + [KST

s ] =
Ed

h

h2

R2


1/3 1/6 0 0
1/6 1/3 0 0
0 0 0 0
0 0 0 0



+
E1I1
h


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

+
ksGd

h


1 −1 −h/2 −h/2
−1 1 h/2 h/2
−h/2 h/2 h2/3 h2/6
−h/2 h/2 h2/6 h2/3

 (3.10)
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is the standard stiffness matrix of the shell element (indicated by the letters ST in
the superscript) and

[FST] =


F1

F2

F3

F4

 , Fj =
h

2

∫ +1

−1
p̂ e3 Nj(ξ) dξ + Q̃j ,

Fj+2 = M̃j , j = 1, 2

(3.11)

is its load vector with Q̃j and M̃j , j = 1, 2 representing known external loads (edge
forces and moments) at the nodes. For the sake of subsequent comparisons, the
stiffness matrix in (3.10) is given as the sum of three matrices: [KST

m ], [KST

b ] and [KST
s ]

are called, respectively, the membrane, bending and shear part of the stiffness matrix
of the shell element.

3.2. Primal-mixed formulation. In the primal-mixed formulation, the equilibrium
equations are considered in their second weak forms (2.33)-(2.34), just like in the pure
displacement-based formulation: the kinematic equations are, however, taken into
account in their first weak forms (2.26)-(2.27) and (2.30). This allows independent
approximations for the stress variables N22(x), N13(x) and M11(x). The membrane
force N11(x) is assumed to be known from (2.24). Taking into account the constitutive
relations (2.16)-(2.17) and (2.20), the corresponding variational equations for element
e read: ∫ xb

xa

(
1

ksGd
Ne

13 − we,x−φe) δNe
13 dx = 0, (3.12)∫ xb

xa

(
1

E1I1
Me

11 − φe,x ) δMe
11 dx = 0, (3.13)∫ xb

xa

[ 1

Ed
(Ne

22 − νNe
11)− we

R

]
δNe

22 dx = 0, (3.14)

∫ xb

xa

[
−Ne

13 δw
e,x−

1

R
Ne

22 δw
e + pe3 δw

e
]
dx+

[
N13 δw

]xb

xa
= 0, (3.15)∫ xb

xa

(−Me
11 δφ

e,x−Ne
13 δφ

e) dx+
[
M11 δφ

]xb

xa
= 0. (3.16)

As the displacement boundary conditions are still essential, the primal-mixed for-
mulation requires C0 continuous approximation for the displacement variables w(x)
and φ(x), and their lowest possible order approximation is linear. The stress bound-
ary conditions are still natural, there is no continuity requirement for the variables
N13(x) and M11(x), their lowest possible order approximation is constant. The mem-
brane force N22(x) is considered now as an independent variable and, as no boundary
condition exists for it, its lowest order approximation is constant:

we(ξ) = waN1(ξ) + wbN2(ξ), Ne
22(ξ) = N0, (3.17)

φe(ξ) = φaN1(ξ) + φbN2(ξ), Ne
13(ξ) = Q0, Me

11(ξ) = M0. (3.18)
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Introducing the matrices of nodal displacements wi = w(xi) and φi = φ(xi), i = a, b
and element stresses N0, Q0, M0, as

[ u ]T = [wa wb φa φb ], [ s0 ]T = [N0 Q0 M0 ] (3.19)

and applying the Bubnov-Galerkin method, i.e., δwe(x) and δφe(x) are approximated
by linear functions, while δNe

22(x) = δN0, δNe
13(x) = δQ0 and δMe

11(x) = δM0 are
arbitrary constants, the stress parameters in [ s0 ] can be eliminated at element level
and variational equations (3.12)-(3.16) lead to the matrix equation

[KPM] [ u ] = [FPM], (3.20)

where

[KPM] = [KPM

m ] + [KPM

b ] + [KPM

s ] =
Ed

h

h2

R2


1/4 1/4
1/4 1/4

0 0
0 0

0 0
0 0

0 0
0 0



+
E1I1
h


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

+
ksGd

h


1 −1
−1 1

−h/2 −h/2
h/2 h/2

−h/2 h/2
−h/2 h/2

h2/4 h2/4
h2/4 h2/4

 (3.21)

is the stiffness matrix of the primal-mixed element (indicated by the letters PM in the
superscript) and

[FPM] =


F1

F2

F3

F4

 , Fj =
h

2

∫ +1

−1

[
pe3Nj(ξ)−

ν

2R
Ne

11(ξ)
]

dξ + Q̃j ,

Fj+2 = M̃j , j = 1, 2

(3.22)

is its load vector with external nodal forces and moments Q̃j and M̃j , j = 1, 2.

Remark. If N22(x) is not considered as an independently approximated variable but
computed from (3.3), then variational equation (3.14) is identically satisfied and the
membrane part of the primal-mixed stiffness matrix will be equal to that of the
standard displacement-based element, and the equality of the load vectors holds true
as well, i.e.,

[KPM

m ] = [KST

m ] and [FPM] = [FST].

The shear part of the primal-mixed stiffness matrix does not change, i.e., [KPM
s ] is

computed according to (3.21) and, thus, it always differs from that of the standard
element, [KST

s ].

3.3. Dual-mixed formulation. In the dual-mixed formulation, the kinematic equa-
tions are taken into account in their second weak forms (2.28)-(2.29) and the equi-
librium equations are considered in their first weak forms (2.31)-(2.32). The axial
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membrane force N11(x) is assumed to be known, according to (2.24), and the mem-
brane force N22(x) will be computed from (3.3). Taking into account the constitutive
equations (2.16)-(2.17), the corresponding variational equations for element e read:∫ xb

xa

(
1

ksGd
Ne

13 δN
e
13 + we δNe

13,x − φe δNe
13) dx−

[
w δN13

]xb

xa
= 0, (3.23)∫ xb

xa

(
1

E1I1
Me

11 δM
e
11 + φe δMe

11,x) dx−
[
φ δM11

]xb

xa
= 0, (3.24)

∫ xb

xa

(Ne
13,x −

Ed

R2
we + p̂ e3 ) δwe dx = 0, (3.25)∫ xb

xa

(Me
11,x −Ne

13) δφe dx = 0. (3.26)

As the displacement boundary conditions are natural in this case, the displacement
variables w(x) and φ(x) can be approximated discontinuously, and their lowest-order
approximation is constant. The stress boundary conditions are now essential and
C0-continuous approximation is required for the stress variables N13(x) and M11(x),
i.e., their lowest possible order approximation is linear:

we(ξ) = w0, Ne
13(ξ) = QaN1(ξ) +QbN2(ξ), (3.27)

φe(ξ) = φ0, Me
11(ξ) = MaN1(ξ) +MbN2(ξ). (3.28)

The matrices of the unknowns, the element displacements w0, φ0 and the nodal
stresses Qi = N13(xi), Mi = M11(xi), i = a, b, appearing in (3.27)-(3.28), are given
by

[ u0 ]T = [w0 φ0 ], [ s ]T = [Qa Qb Ma Mb ]. (3.29)

The element stiffness matrix of the dual-mixed formulation will be derived apply-
ing the λ-multiplier technique, a method often called hybridization [15, 16]. This
technique involves the introduction of additional nodal variables as unknowns that
turn out to be the nodal values of the displacement w(x) and rotation φ(x) of element
e:

[ u ]T = [wa wb φa φb ], (3.30)

where wi = w(xi) and φi = φ(xi), i = a, b. Note that these nodal displacements and
rotations are, at least at approximation level, independent from w0 and φ0, which are
approximations for we(x) and φe(x) in the element domain. In view of (3.29) and
(3.30), the last terms on the left-hand side of (3.23)-(3.24) can be written as

−
[
w δN13

]xb

xa
= wa δQa − wb δQb, (3.31)

−
[
φ δM11

]xb

xa
= φa δMa − φb δMb, (3.32)

and, in order to ensure the continuity of N13(x) and M11(x) at the nodes, variational
equations (3.23)-(3.26) should be supplemented by equations

δwaQa − δwbQb = 0, (3.33)

δφbMb − δφbMb = 0, (3.34)
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where δwi = δw(xi) and δφi = δφ(xi), i = a, b are arbitrary nodal values. Equations
(3.33)-(3.34) are parts of the global variational equations that ensure the continuity
of the shear force N13(x) and bending moment M11(x) at all the nodes (see Appendix
A).

Using the variational equations (3.23)-(3.26) together with (3.31)-(3.34) and ap-
plying the Bubnov-Galerkin method, all the variables of (3.29) can be eliminated at
element level and, as wi and φi , i = a, b are the nodal displacements and rotations,
the stiffness matrix and the load vector of the dual-mixed element can be derived.
After performing all the (symbolic) computations, the following matrix equation is
obtained:

[KDM] [ u ] = [FDM], (3.35)

where

[KDM] = [KDM

m ] + [KDM

b ] + [KDM

s ] =
Ed

h

h2

R2


1/4 1/4 0 0
1/4 1/4 0 0
0 0 0 0
0 0 0 0

 1

Cm

+
E1I1
h


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

+
ksGd

h


1 −1 −h/2 −h/2
−1 1 h/2 h/2
−h/2 h/2 h2/4 h2/4
−h/2 h/2 h2/4 h2/4

 1

Cs
(3.36)

is the stiffness matrix of the dual-mixed element (indicated by the letters DM in the
superscript) and

[FDM] =


F1

F2

F3

F4

 , Fj =
1

Cm

h

4

∫ +1

−1
p̂ e3 (ξ) dξ + Q̃j ,

Fj+2 = M̃j , j = 1, 2

(3.37)

is its load vector with Q̃j and M̃j , j = 1, 2 representing known external loads at the
nodes. The material- and mesh-dependent constants Cm and Cs appearing in (3.36)
and (3.37) are given by

Cm = 1 +
1

12 ks

E

G

h2

R2
, with lim

h/R→0
Cm = 1, (3.38)

Cs = 1 + ks
G

E1

h2

d2
, with lim

h/d→0
Cs = 1. (3.39)

The role of these constants is discussed in Section 3.5. Note that for isotropic materials
Cm and Cs depend on the Poisson ratio only, as E/G = 2(1+ν) and G/E1 = (1−ν)/2.

Remark. If variational equations (3.23)-(3.26) are supplemented by the weak form
of the kinematic equation (2.30) or, equivalently, by (3.14), then N22(x) can be ap-
proximated as an independent variable. A dual-mixed formulation of this type with
piece-wise constant approximation for N22(x) yields, however, the same stiffness ma-
trix as given by (3.36). This is due to the fact that in the above formulation N22(x) is
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expressed by w(x) using (3.3), and w(x) has been approximated by an element-wise
constant function.

3.4. A consistent primal-dual mixed formulation. In view of the strong forms
of the kinematic equation (2.7) and the equilibrium equation (2.23) of the shell model,
a consistent finite element approximation would require that the polynomial degree
of the displacement w(x) be higher by one than that of the rotation φ(x), and the
same applies to the bending moment M11(x) and shear force N13(x). In this sense,
none of the three finite element formulations and models considered in Sections 3.1–
3.3 is consistent, since both w(x) and φ(x) are approximated by the same degree of
polynomials (by either constant, or linear functions) and this is true for M11(x) and
N13(x) as well.

A consistent approximation of the lowest possible order, i.e., constant for φ(x)
and N13(x) and linear for w(x) and M11(x), can easily be derived for the shell model
investigated by mixing the weak forms (2.26)-(2.29) and (2.31)-(2.34) of the governing
equations in such a way that one of the kinematic equations is considered in its
first weak form, the other in its second weak form, and the equilibrium equations
are taken into account accordingly. The corresponding consistent primal-dual mixed
weak formulation, out of the two possible formulations of this type, is described by
the following variational equations:∫ xb

xa

(
1

ksGd
Ne

13 − we,x−φe) δNe
13 dx = 0, (3.40)∫ xb

xa

(
1

E1I1
Me

11 δM
e
11 + φe δMe

11,x) dx−
[
φ δM11

]xb

xa
= 0, (3.41)

∫ xb

xa

[
−Ne

13 δw
e,x−

Ed

R2
weδwe + p̂ e3 δw

e
]
dx+

[
N13 δw

]xb

xa
= 0, (3.42)∫ xb

xa

(Me
11,x −Ne

13) δφe dx = 0. (3.43)

These equations can be considered as a special combination of the weak forms of the
primal- and dual-mixed formulations of Sections 3.2 and 3.3. As the displacement
boundary condition for w(x) and the stress boundary condition for M11(x) are now
essential, C0-continuous approximation is required for them. The boundary condi-
tions for φ(x) and N13(x) are natural, they can be approximated discontinuously. The
lowest possible order approximation of the variables is given as follows:

we [ξ(x)] = waN1(ξ) + wbN2(ξ), φe(x) = φ0, (3.44)

Me
11 [ξ(x)] = MaN1(ξ) +MbN2(ξ), Ne

13(x) = Q0. (3.45)

This approximation is consistent with the strong form of the kinematic equation (2.7)
and the equilibrium equation (2.23), as the polynomial degree of w(x) is higher by
one than φ(x), and the same applies to M11(x) and N13(x).

The element stiffness matrix for the present case can be obtained by introducing
the nodal rotations φa and φb as Lagrangian multipliers to ensure the continuity of
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M11(x) at the nodes. The corresponding variational equations are equivalent to (3.32)
and (3.34) of the dual-mixed formulation of Section 3.3 and, therefore, they are not
repeated here. After eliminating the element unknowns φ0, Q0, Ma, Mb, the matrix
equation for the nodal variables [ u ]T = [wa wb φa φb ] is obtained, which can be
given briefly as

([KST

m ] + [KST

b ] + [KDM

s ]) [ u ] = [FST]. (3.46)

According to the indices in the superscripts, the stiffness matrix of the primal-dual
mixed element is obtained as the sum of the membrane and bending parts of the
displacement-based (standard) stiffness matrix of (3.10) and the shear part of the
dual-mixed stiffness matrix (3.36). The element load vector is equivalent to that of
the displacement-based formulation given by (3.11).

Remark. In the above formulation, N22(x) is computed from w(x) according to (3.3)
and will be C0 continuous and piece-wise linear (provided that N11(x) is at most a
linear function). If N22(x) is considered as an independent variable and approximated
by piece-wise constant function, just like in the case of the primal-mixed formulation of
Section 3.2, then the membrane and bending parts of the primal-dual mixed stiffness
matrix will be equal to those of the primal-mixed element and the same applies to
the load vectors, i.e.,

([KPM

m ] + [KPM

b ] + [KDM

s ]) [ u ] = [FPM].

Note, however, that neither constant nor linear approximation of the membrane force
N22(x) is consistent with the strong form of the corresponding equilibrium equation
(2.22).

3.5. Relationships between stiffness matrices and load vectors of different
variational formulations and finite elements. In view of the results of Sections
3.1–3.4, the analytical comparison of the stiffness matrices and the load vectors gives
the following results.

3.5.1. Comparison of the displacement-based and primal-mixed formulations. On com-
paring the stiffness matrices in (3.10) and (3.21), it can be seen that no difference
exists between the bending parts, i.e., [KST

b ] = [KPM

b ]. Four components in the mem-
brane, as well as in the shear parts of the stiffness matrices are different; these terms
are indicated by frames in (3.21). The load vectors (3.11) and (3.22) of the two
formulations are equivalent, provided the membrane force Ne

11 is zero.

The difference in the membrane stiffness matrices has no significant effect on the
performance of the elements, which is due to the coefficient h2/R2 and to the fact,
that in practical finite element computations the relation h� R applies. The rather
small difference in the shear parts results, however, in a dramatic change in the
approximation properties of the elements for thin shell problems and, as is well known,
the primal-mixed formulation leads to shear locking-free displacement computations,
just like in the case of the Timoshenko beam element (see, e.g., [2, 18] and [17]). Note
that the primal-mixed element of Section 3.2 can also be obtained by the reduced
integration technique applied in the standard displacement formulation.
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3.5.2. Comparisons with respect to the dual-mixed formulation. On comparing the
element stiffness matrices in (3.21) and (3.36), it can be seen that no difference exists
between their bending parts. The membrane and shear parts of the stiffness matrices
of the primal- and dual-mixed formulations are related through the constants Cm and
Cs, respectively, defined by (3.38) and (3.39). The relationships are given briefly by

[KDM

m ] =
1

Cm
[KPM

m ], [KDM

b ] = [KPM

b ], [KDM

s ] =
1

Cs
[KPM

s ]. (3.47)

The load vectors (3.22) and (3.37) for arbitrary distributed load p3(x) are different
and they are equivalent only in those cases when the shell element is subjected to

concentrated shear forces and bending moments Q̃i and M̃i, i = 1, 2 at the nodes.

After some algebraic manipulation it can also be pointed out that the relationship
between the sum of the bending and shear parts of the standard (displacement-based)
element’s stiffness matrix and that of the dual-mixed element can be written as

[KDM

b ] + [KDM

s ] =
1

Cs
([KST

b ] + [KST

s ]). (3.48)

The sum of the above element stiffness matrices will be equal only when Cs = 1, i.e.,
in the limiting case of h/d → 0. The above relation indicates that the results of the
standard displacement formulation can, theoretically, never be equivalent to those of
the dual-mixed formulation and, as is well known, the standard element cannot lead
to shear locking-free results for shells, no matter how thin or thick the shell is.

3.5.3. Comparisons with respect to the primal-dual mixed formulation. Taking into
account the results of Subsection 3.4 and making use of relations (3.47)-(3.48), the
matrix equation (3.46) can be rewritten as{

[KST

m ] +
1

Cs
([KST

b ] + [KST

s ])
}

[ u ] = [FST]. (3.49)

This equation suggests that the solution of the primal-dual mixed element for the
nodal displacements [ u ] can be directly computed with the knowledge of the stiffness
matrix and load vector of the standard shell element using the mesh-dependent con-
stant Cs. The bending moment and shear force computation will, however, become
equivalent to that of the primal-dual mixed element only in that case when they are
computed from the nodal displacement vector [ u ] without differentiation, according
to equations (B.5)-(B.6) and (B.9) of Appendix B.

Assuming that the primal-dual mixed formulation is locking-free, equation (3.49)
suggests that either the mesh-dependent constant Cs, defined by (3.39), or its recip-
rocal

0 < Ls =
1

Cs
≤ 1 (3.50)

can be considered as a shear locking indicator for the standard shell element and its
displacement solution. The closer Ls is to zero, the more serious the shear locking
is. Ls = Cs = 1 would indicate absolutely locking-free behavior; it could be attained,
however, only when the length h of the element is zero. The function Ls = Ls(h/d),
depicted in Figure 2 for ν = 0.3 and ks = 5/6, clearly indicates that only a sufficiently
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refined mesh, when h/d is (much) smaller then unity and the corresponding Ls value
is close to 1, can lead to acceptable numerical results in the case of the standard
element. For example, if the element size h is chosen to be equal to the thickness
d, the error in the displacements is around 20%, with respect to the primal-dual
mixed solution, no matter how thin or thick the shell is. Using (3.39), the required
mesh size and element number for a given locking-error tolerance in the displacement
computation can a priori be determined.

0
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1

0.1 1 10 100
h=d

Figure 2. Locking indicator Ls = 1/Cs versus h/d

Remark. The coefficient Cm defined by (3.38) has a very similar structure to Cs in
terms of h/R and the function 1/Cm versus h/R is practically the same as that of
1/Cs versus h/d in Figure 2. The relevance of Cm in the finite element computations
is, however, not as significant as that of Cs, which is primarily due to the fact that
relations h � R and, thus, h/R � 1 usually hold true. In addition, the membrane
part of the stiffness matrices contains the term h2/R2 ≪ 1 as well.

4. Numerical example and comparisons

The analytical comparisons of different variational formulations and finite element
matrices, presented in the previous sections, are supplemented here by numerical
comparisons through the solution of a simple demonstrative example, a clamped-
clamped cylindrical shell subjected to uniform load p3(x) = p0 (Figure 3). The
numerical solutions are computed and compared for shells with thickness to radius
ratios d/R = 10−2, 10−3 , 10−4 and 10−6 employing uniform mesh refinement. The
decay length of the cylindrical shell is defined by [19]

` =
2π

β
with β =

4

√
3(1− ν2)

R2d2
. (4.1)

In order to approximate the boundary layer correctly, L = 4` is chosen for each
shell investigated, and only half the length of the shell is discretized with symmetry
conditions prescribed at x = L/2 = 2`. The radius of the mid-surface is R = 1000 mm,
E = 2 · 105 MPa, ν = 0.3, ks = 5/6, and the load value is p0 = 1 MPa. The finite
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element computations were performed using research codes written in MapleTM and
Octave.

d

x

z

p0

L

R
Figure 3. Clamped-clamped shell with uniform load

The decay lengths, as well as the analytical solutions for the central displacement,
the maximum bending moment and shear force are listed in Table 2. Scaled values
according to the expressions

w = w d M =
M11

d
, Q =

N13

βd
(4.2)

are also listed in Table 2. Note that these analytical solutions, based on the Naghdi
shell model including shear deformations, are slightly different from that of the Koi-
ter shell model which relies on the Kirchhoff-Love kinematical hypothesis and, thus,
excludes shear deformations.

Table 2. Analytical solutions for clamped-clamped shell (Naghdi-
model, scaled values)

d/R ` [mm] w
∣∣
L/2 Mmax Qmax

10−1 1.545750e+03 4.999982 -2.765072e+02 5.659172e+02

10−2 4.888090e+02 4.999967 -2.997833e+02 6.009802e+02

10−3 1.545750e+02 4.999965 -3.023283e+02 6.047993e+02

10−4 4.888090e+01 4.999965 -3.025852e+02 6.051847e+02

10−5 1.545750e+01 4.999965 -3.026109e+02 6.052223e+02

10−6 4.888090e+00 4.999965 -3.026135e+02 6.052271e+02

The convergence of the central displacement at L/2 is shown in Figure 4 (using
logarithmic scale) for the formulations considered in Section 3. The well-known shear
locking phenomenon for the standard displacement-based shell element is clearly seen
from the figures. None of the mixed elements are sensitive to the d/R ratio and the
asymptotic rate of convergence of the relative error in the displacements is of order
two, independently of the mixed formulation employed.

Figure 5 shows the convergence curves of the relative error in the maximum bending
moment (at x = 0) on a log-log scale. The error amplification due to shear locking
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Figure 4. Convergence of the central displacement w(L/2)

of the standard element is apparent again as d/R decreases. The mixed elements
are locking-free in the bending moment computations as well; the asymptotic rates
of their convergences are, however, significantly different: while the primal-mixed
element (equivalent, in this case, with the reduced integration displacement element)
gives first-order rates, the dual-mixed and the primal-dual mixed elements give second-
order rates of asymptotic convergence (3% error, for instance, in the bending moment
requires about 30 dual-mixed elements and more than 500 primal-mixed elements).
This property is clearly the main advantage in the application of the dual-mixed and
the primal-dual mixed elements.
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Figure 5. Convergence of the maximum bending moment

The convergence curves of the relative error in the maximum shear force (at x = 0)
are depicted in Figure 6. To obtain comparable results for displacement-based and
primal-mixed elements, the average nodal values of the first element have been taken
as the shear force value at x = 0. The discretization error due to shear locking of the
standard displacement element is the most serious in the shear force computation; the
mixed elements are, again, locking-free. Only the dual-mixed element gives second-
order rates of asymptotic convergence for the shear force, whereas the primal-mixed
and the primal-dual mixed elements provide first-order rates of convergence only,
as indicated in Figure 6. Note that the order of convergence is strongly related
to the approximation order of the shear force: in the dual-mixed formulation the
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Figure 6. Convergence of the maximum shear force

shear force approximation is element-wise linear and obtained according to (B.7)-(B.8)
of Appendix B. In the primal-dual-mixed formulation, the shear force is piece-wise
constant and obtained according to (B.9).

5. Concluding remarks

Considering the Naghdi shell model for axisymmetric deformations of cylindrical
shells, the stiffness matrices and the load vectors of three different mixed finite el-
ements have been derived and compared analytically and explicitly to each other
and to those of the standard displacement element, using the lowest possible order
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of polynomial approximations the formulations permit. The shear locking-free be-
havior of the mixed finite elements has been demonstrated through a simple model
problem. The numerical results and comparisons clearly demonstrated that out of
the four finite element models investigated in this paper, the dual-mixed element is
the only one that gives second-order rates of asymptotic convergence for both the
bending moment and shear force computations. This property is considered as the
main advantage of the dual-mixed elements over the standard displacement-based and
primal-mixed elements.

The analytical investigations of the relationships between the element stiffness
matrices resulted in the introduction of two geometry-, material- and mesh-dependent
coefficients denoted by Cm and Cs which can easily be computed for each element in
the mesh. The effect of Cm is usually insignificant, the coefficient Cs, or its reciprocal
denoted by Ls turned out, however, to be a reliable shear locking indicator which
can have a significant impact on the behavior of either the displacement-based, or the
primal-mixed element. The structure of Cs, together with equation (3.49) and the
presented numerical results, confirms the well-known fact that locking-free behavior
can theoretically never be obtained using the original, unmodified, displacement-based
shell element.

The results of the paper provide variational support for the transformability of
the standard displacement-based shell element into a shear locking-free dual-mixed
one, independently of the thickness and the loading of the shell. The recipe for
obtaining shear locking-free solutions for cylindrical shells with second-order rates of
convergence in all the variables (displacement, bending moment and shear force) from
the knowledge of the stiffness matrix and load vector of the standard displacement
formulation and the shear locking indicator Cs of (3.39) is the following:

• compute the standard element stiffness matrix and load vector for each element,
according to Subsection 3.1 and equations (3.10)-(3.11);

• compute the mesh-dependent constant Cs according to (3.39) for each element
of size h in the mesh;

• modify the element stiffness matrices according to (3.48)-(3.49) and, after as-
sembling them, compute the solution for the nodal displacements and rotations;

• in the post-processing phase, compute the element bending moments and shear
forces according to (B.5)-(B.6) and (B.7)-(B.8) of Appendix B.

Similar transformation steps can be applied to the element matrices of the primal-
mixed formulations, according to equation (3.47), in order to obtain second-order rates
of asymptotic convergence in the bending moment and shear force computations.
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Appendix A.

In the dual-mixed variational formulation and finite element model presented in
Section 3.3, the continuity of the shear force N13(x) and bending moment M11(x) at
the element nodes with labels i = 0, 1, 2, ..., ne is enforced by the following variational
equations:

ne∑
i=0

δwi [[Qi]] = 0, (A.1)

ne∑
i=0

δφi [[Mi]] = 0, (A.2)

where ne is the number of the elements, δwi and δφi are arbitrary virtual nodal
displacements and rotations, and

[[Qi]] = Qi+1
i −Qii, (A.3)

[[Mi]] = M i+1
i −M i

i (A.4)

denote the jumps in the shear force and bending moment at node i, where i and
i+ 1 in the superscript refer to two neighboring elements with common node i in the
subscript. Note that (A.1)-(A.2) represent 2× (ne + 1) independent equations.

In Section 3.3, the virtual displacements at the nodes of element e, with nodal
coordinates xa and xb , have been denoted by δwa ≡ δwe−1, δwb ≡ δwe, and the nodal
values of the element shear force Qe(x) have been denoted by Qa ≡ Qee−1 ≡ Qe(xa)
and Qb ≡ Qee ≡ Qe(xb). Employing this simplified notation, equation (A.1) for
element e takes the form

δwaQa − δwbQb = 0, (A.5)

which proves (3.33). Applying a similar procedure and notation simplification with
respect to equation (A.2), variational equation (3.34) is obtained for element e.

When concentrated external loads Q̃i and M̃i are given at node i, the jumps in the
shear force and bending moment should be equal to these prescribed values. In this
case, instead of (A.1)-(A.2), the modified variational equations

δwi [[Qi]] = δwi Q̃i, δφi [[Mi]] = δφi M̃i (A.6)

hold at node i. For completeness it is noted that when displacement boundary con-
ditions are prescribed for the nodal values wi and φi at node i, then δwi = 0 and
δφi = 0 in equations (A.1)-(A.2) and (A.6).

Appendix B.

The dual-mixed formulation of Section 3.3 leads to an equation system of the form

[A] [q] + [B] [u] + [f] = [0], (B.1)
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[B]T[q] + [g] = [0] (B.2)

for each element, where, using (3.29), [ q ]T =
[

[ u0 ]T [ s ]T
]
. An equation system

for the nodal variables [ u ], defined by (3.30), can be obtained performing static
condensation: expressing the unknowns [ q ] from (B.1) as

[q] = −[A]−1([B] [u] + [f]) (B.3)

and substituting (B.3) into (B.2) leads to equation (3.35) with the following matrix
expressions:

[KDM] [u] = [FDM], [KDM] = [B]T[A]−1[B],

[FDM] = [g]− [B]T[A]−1[f]. (B.4)

When the solution for [ u ] is known, the bending moment and shear force of the
element can be computed using (B.3). For the dual-mixed element of Section 3.3, the
nodal bending moments and shear forces are obtained as

Ma =
1

Cs

[ ksGd
2

(wa − wb) +
E1I1
h

(φb − φa)− ksGhd

6
(2φa + φb)

]
, (B.5)

Mb =
1

Cs

[ ksGd
2

(wb − wa) +
E1I1
h

(φb − φa) +
ksGhd

6
(φa + 2φb)

]
, (B.6)

Qa = − 1

Cm

Ehd

4R2
(wa + wb) +

1

Cs
ksGd

(wb − wa
h

+
φa + φb

2

)
+

1

Cm

h

4

∫ +1

−1
p̂ e3 (ξ) dξ,

(B.7)

Qb =
1

Cm

Ehd

4R2
(wa + wb) +

1

Cs
ksGd

(wb − wa
h

+
φa + φb

2

)
− 1

Cm

h

4

∫ +1

−1
p̂ e3 (ξ) dξ.

(B.8)

For the primal-dual mixed element in Section 3.4, the nodal bending moments can be
computed according to (B.5)-(B.6) and the constant element shear force is

Q0 =
1

Cs
ksGd

(wb − wa
h

+
φa + φb

2

)
. (B.9)

The mesh-dependent constants Cm and Cs are given by (3.38)-(3.39).
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Abstract. The paper is devoted to plane problems of orthotropic bodies in a dual formu-
lation. After presenting the governing equations in terms of stress functions of order one,
we determine the two fundamental solutions and set up the dual Somigliana relations both
for inner and exterior regions. These include the boundary integral equations of the direct
method. A constant stress state at infinity is part of the formulation established for exterior
regions. We also derive an integral representation of the stresses. The numerical examples
presented illustrate the applicability of the direct boundary integral equations.
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1. Introduction

According to the famous Tonti scheme [1], in the primal system of elasticity the
displacement field is the basic variable while the strains and stresses are the inter-
mediate variables of the first and second kind. Body forces are referred to as the
source variable. Problems in the primal system are governed by the primal kinematic
equations, which relate the strains to the displacements; Hooke’s law, which con-
nects the primal intermediate variables of the second kind to those of the first kind;
and the equilibrium or primal balance equations, written in terms of the intermediate
variables of the second kind.

c©2015 Miskolc University Press
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In the dual system of elasticity, stress functions are the basic variables, and stresses
and strains constitute the intermediate variables of the first and second kind. A
prescribed incompatibility, which is in general zero, is the source variable. Problems
in the dual system are governed by the dual kinematic equations, which express the
stresses in terms of stress functions; the inverse form of Hooke’s law, which relates
the dual intermediate variables of the second kind to that of the first kind; and the
compatibility equations (dual balance equations).

In a classical paper, Rizzo and Shippy [2] solve plane problems by the direct
boundary element method for which physical quantities (in the primal system the
displacements and the stress vector) are the unknowns on the boundary. These au-
thors assume that the body is orthotropic and focus on an inner region. The most
important relations are presented for anisotropic bodies as well. As in earlier work
by Rizzo [3], the numerical solution is based on a constant approximation of the
displacements and the stress vector over boundary elements.

A number of subsequent papers study the boundary value problems of plane elas-
ticity using the boundary element method under the assumption that the material
is orthotropic or anisotropic. Vable and Sikarskie apply the indirect method for
which the solution is sought in terms of appropriately chosen potential functions [4].
Shiah and Tan transform 2D and 3D anisotropic field problems in such a way that
the Laplace operator becomes the operator of the basic equation, a procedure known
as direct domain mapping [5, 6]. However, these results can only be applied to prob-
lems of elasticity when it is possible to define a displacement potential which satisfies
the basic equation investigated by Shiah and Tan. Hung, San, Liu and Zen [7]
also study orthotropic bodies and provide additional references. We emphasize that
all these papers [2, 3, 4, 7] as well as the books [8, 9] and the references they cite use
the primal system of plane elasticity.

While many papers study plane problems in the primal system, there are only a
few which use the dual system and treat the real stress functions of order one as the
basic variables. One advantage of using stress functions of order one is that calculat-
ing stresses only requires determining first derivatives, while with stress functions of
order two the stresses are obtained in terms of the second derivatives. First deriva-
tives are more convenient in boundary element applications, although an additional
equation is needed to ensure that the stresses are symmetric. Assuming homogenous
and isotropic materials and using stress functions of order one, Szeidl investigated
the plane problem with the direct boundary element method in the dual system of
elasticity [10, 11].

Our goal in this paper is to extend the results presented in [10, 11] as well as those in
the thesis [12] for homogenous but orthotropic materials. We develop the fundamental
solutions and the Somigliana relations in the dual system of plane elasticity for an
orthotropic body provided that the stress functions of order one are the basic variables.
We then set up a direct boundary element formulation and present an algorithm for
numerical solutions. The examples shown illustrate the applicability of the algorithm.
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The paper is organized into eight sections. Section 2 presents the governing equa-
tion of the problem in a dual formulation. The fundamental solutions of order one
and two are determined in Section 3. The dual Somigliana relations for inner and
outer regions are derived in Sections 4 and 5. Section 6 deals with the determination
of the stresses on the boundary. The last two sections present two numerical examples
and a conclusion.

2. Governing equations

Throughout this paper x1 = x
and x2 = y are rectangular Carte-
sian coordinates, referred to an ori-
gin O. For vectorial and ten-
sorial quantities indicial notations
are used. {Greek}[Latin subscripts]
are assumed to have the range
{(1,2)}[(1,2,3)], summation over re-
peated indices is implied, δκλ is the
Kronecker delta, εpqr is the permu-
tation symbol. If an index in a sum-
mation is repeated more than twice,
we also typeset the summation sym-
bol to avoid misunderstanding (see
for instance equation (3.9) below).

The inner and outer regions
shown in Figure 1 are denoted by
Ai and Ae. They are bounded by
the contour

L0 = Lt1 ∪ Lu2 ∪ Lt3 ∪ Lu4 .

s

L
t1

A

e

u2 τ
ϰ

P P

t2 u2

=

P

t1

=

P

u5

n

π

u4

A

i

t3

L

L

L
o

L

P

t4

= P

u4

t3

P P=

u3

Figure 1.

We assume that [displacements]{tractions} are imposed on the arc [Lu = Lu2 ∪
Lu4]{Lt = Lt1∪Lt3}. We stipulate that the contour has a unit tangent τκ and admits
an appropriate parametrization in terms of its arc length s. The outer unit normal
is denoted by nπ. In accordance with the notations introduced ∂α stands for the
derivatives taken with respect to xα. Assuming plane problems let uκ, eκλ and tκλ be
the displacement field and the in plane components of strain and stress, respectively.
The stress functions of order one are denoted by Fρ.

We shall assume that there are no body forces.

For homogenous and orthotropic material the plane problem of classical elasticity
in the dual system of elasticity is governed by

1. the dual kinematic equations

t11 = F1∂2 , t12 = F2∂2 , (2.1a)
t21 = −F1∂1 , t22 = −F2∂1 , (2.1b)
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which express the stresses in terms of stress functions of order one,
2. the inverse form of Hooke’s law

e11 = u1∂1 = s11t11 + s12t22 , e22 = u2∂2 = s21t11 + s22t22 , (2.2a)

e12 =
1

2
(u1∂2 + u2∂1) =

s66
4

(t12 + t21) ; (2.2b)

where s11, s12, s21 and s22 stand for the constants of elasticity1,
3. the compatibility conditions

e11∂2 − e12∂1 + ϕ3∂1 = 0 , e21∂2 − e22∂1 + ϕ3∂2 = 0 (2.3)

in which ϕ3 is the rotation field
4. and the symmetry condition

t12 = t21 . (2.4)

If this equation is fulfilled then either equation (2.1a)2 or equation (2.1b)1 can
be omitted. Thus we have nine equations for the nine unknowns F1, F2, t11,
t12 = t21, t22, e11, e12 = e21, e22 and ϕ3.

Field equations (2.1a,b), (2.2a,b), (2.3) and (2.4) should be associated with ap-
propriate boundary conditions. If the contour is not divided into parts then either
tractions or displacements can be imposed on it. In the opposite case the contour is
assumed to be divided into arcs of even number on which displacements and tractions
are imposed alternately. As mentioned earlier, in Figure 1 {tractions}[displacements]
are prescribed on the arc {Lt}[Lu]. Variables with hats stand for the values pre-
scribed: ûκ, t̂ρ and F̂ρ are the prescribed displacements, tractions (stress vector) and
stress functions, respectively.

For the sake of a formal similarity of the boundary integral equations regarded in
primal and dual formulations we introduce the notation

tλ = −nκ (εκρ3eρλ − δκλϕ3) s ∈ Lo , (2.5a)

where on the other hand
tλ = −duκ

ds
s ∈ Lo . (2.5b)

We refer to tλ as the dual stress vector and to its elements as dual stresses. Observe
that the same letter denotes both the stresses and the dual stresses; we distinguish be-
tween them by typesetting the dual stresses in calligraphic fonts. The same notational
convention will be used for the dual displacements defined by equation (3.2)2.

The dual field equations (2.1a), . . . ,(2.4) should be associated with the strain bound-
ary conditions of the form

tκ = −dûκ
ds

s ∈ Lu , (2.6)

1The strain energy density u should be strictly positive:

2u = t11 (s11t11 + s12t22) + t22 (s21t11 + s22t22) +
s66

4
(t12 + t21) (t12 + t21) > 0 .
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(note that one can not prescribe boundary conditions directly on the displacements
since they do not belong to the set of dual variables) and a set of boundary conditions
imposed on the stress functions

Fρ(s)−Fρ(Pti)︸ ︷︷ ︸
C
(ti)

ρ

=

∫ s

Pti

t̂ρ(σ) dσ︸ ︷︷ ︸
F̂ρ(s)

, s ∈ Lti , i = 1, 3 (2.7)

where the integral with value F̂ρ(s) on the right side is the resultant of the tractions
prescribed on the arc [Pti,s] while C

(ti)
ρ is an undetermined constant of integration.

The supplementary conditions of single valuedness can easily be obtained from
equation (2.6). These conditions express displacement continuity at the endpoints of
the arcs Lti regarded on the contour and have the form∫

Lti
nκ (εκρ3eρλ − δκλϕ3) ds− ûλ|

Pt,i+1

Pti
= 0 (i = 1, 3) . (2.8)

Observe that we have as many undetermined constants of integration as there are
supplementary conditions of single valuedness.

One undetermined constant of integration C
(ti)

ρ can be set to zero without loss

of generality, since the equations (2.1b,c) contain only the derivatives of the stress
functions. It can also be shown that the supplementary conditions of single valuedness
(2.8) are not independent, i.e., one condition can always be omitted. A proof for the
latter statement assuming isotropic bodies and plane problems can be found in the
thesis [13] by Szeidl.

3. Basic equation and fundamental solutions

After eliminating the intermediate variables eκλ and tκλ from the compatibility con-
ditions (2.3) and the symmetry condition (2.4) we obtain the basic equation in the
form

Dikuk = 0 i = 1, 2, 3 (3.1)

where Dik is a differential operator and uk is the vector of fundamental variables (the
stress functions uκ – see below – will be referred to as dual displacements):

[Dik] =


s11∂2∂2 +

s66
4
∂1∂1 −

(
s12 +

s66
4

)
∂1∂2 −∂1

−
(
s21 +

s66
4

)
∂1∂2 s22∂1∂1 +

s66
4
∂2∂2 −∂2

−∂1 −∂2 0

 , uk = (F1,F2,︸ ︷︷ ︸
uκ

−ϕ3) .

(3.2)
Let Q(ξ1, ξ2) andM (x1, x2) be two points in the plane of strain: the source point and
the field point. We shall assume temporarily that the point Q is fixed. The distance
between Q and M is R, the position vector of M relative to Q is rκ. We refer to the
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solution of the differential equation
M

Dikuk + δ(M −Q)ei(Q) = 0 , i = 1, 2, 3 (3.3)

as the fundamental solution. Here δ(M −Q) stands for the Dirac function, eκ(Q) is a
prescribed incompatibility and e3(Q) is a couple perpendicular to the plane of strain.
We determine the fundamental solution following the approach of Kupradze [14],
here we only present the main steps in the derivation.

Let Dkl be the cofactor of Dik

DikDkl = det(Dmn) δil . (3.4)

We seek the fundamental variables uk in the form

uk = Dklχl , (3.5)

where χl = χel(Q) and χ is the Galjorkin function. If we substitute (3.5) into (3.3)
and take (3.4) into account we get

det(Dmn)χ+ δ(M −Q) = 0 (3.6)

where
det(Dmn) = −

[
s11∂

4
2 + (2s21 + s66) ∂

2
1∂

2
2 + s22∂

4
1

]
. (3.7)

For the sake of later calculations we introduce the following quantities

α2
1,2 = −2s21 + s66

2s11
±

√(
2s21 + s66

2s11

)2

− s22
s11

, β2
κ = −1/ακ (3.8a)

ρκ = (x1 − ξ1) + βκ(x2 − ξ2) , (3.8b)

d1 = −

∣∣∣∣∣∣
1 β̃1 β̃2

1

1 β2 β2
2

1 β̃2 β̃2
2

∣∣∣∣∣∣ , d2 = −

∣∣∣∣∣∣
1 β1 β2

1

1 β̃1 β̃2
1

1 β̃2 β̃2
2

∣∣∣∣∣∣ , (3.8c)

(β̃κ is the complex conjugate of βκ)

K = − 1

I1 + I2
, Iκ = 4π

dκ
bκ + 1

(
b3κs11 + b2κ(s21 + s66)− bκs12 − s22

)
, (3.8d)

b1 =

√
D1 −

√
D , b2 =

√
D1 +

√
D (3.8e)

D =

(
2s21 + s66

2s11

)2

− s22
s11

, D1 =
2s21 + s66

2s11
(3.8f)

a33 = s11s22 +
(s66

4

)2
−
(
s21 +

s66
4

)2
. (3.8g)

Using the quantities introduced it can be shown that the solution for χ takes the
form

χ(M,Q) = KIm
2∑

κ=1

dκρ
2
κ ln ρκ . (3.9)
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With the Galerkin function χ it follows from equation (3.5) that

uk = Dklχl = Dklχ︸ ︷︷ ︸
Ukl

el = Ukl(M,Q)el(Q) , (3.10)

where Ukl(M,Q) is the matrix of the fundamental solution of order one. Omitting
the long formal transformations we find that

[Upq(Q,M)] = Im

2∑
k=1

K×

×

 dk (2 ln ρk + 3)β2
k dk (2 ln ρk + 3)βk

2dk
ρk

[
−(s21 + s66

2 )β2
k + s22

]
dk (2 ln ρk + 3)βk dk (2 ln ρk + 3) 2dkβk

ρk

[
(s12 +

s66
2 )− s11β2

k

]
2dk
ρk

[
s22−(s21+ s66

2 )β2
k

]
2dkβk
ρk

[
(s21+

s66
2 )−s11β2

k

] {
s21s66+

s266
2 −2a33

}
β2
k
dk
ρ2k


(3.11)

Recalling the dual kinematic equations (2.1a,b) we obtain the fundamental solutions
for the stresses t11, t12 = t21 and t22 by calculating from the following equations:

t11 = F1

M

∂ 2 = u1
M

∂ 2 =
M

∂ 2U1l(M,Q)el(Q) , (3.12)

t12 = F2

M

∂ 2 =
M

∂ 2U2l(M,Q)el(Q) = t21 = −F1

M

∂ 1 = −
M

∂ 1U1l(M,Q)el(Q) , (3.13)

t22 = −F2

M

∂ 1 = −u2
M

∂ 1 = −
M

∂ 1U2l(M,Q)el(Q) . (3.14)

After performing the necessary calculations we have

 t11
t12
t22

 = K Im

2∑
k=1

2dk
ρk


−β3

k β2
k −βk

ρk

[(
s21 +

s66
2

)
β2
k + s22

]
β2
k −βk

1

ρk

[(
s21 +

s66
2

)
β2
k + s22

]
−βk 1

βk
ρk

[(
s12 +

s66
2

)
+ s11β

2
k

]

 e1
e2
e3

 .

(3.15)
With the knowledge of the stresses, the strains can be obtained from the Hooke law
(2.2a,b): e11

e12
e22

 = K Im

2∑
k=1

2dk
ρk
×

×


−s11β3

k−s12βk s11β
2
k+s12 −

βk
ρk

[
(s12+

s66
2

)(s11β
2
k−s12) + s11(s22−s12β2

k)
]

1
2s66β

2
k − 1

2s66βk
s66
2ρk

[(
s21 +

s66
2

)
β2
k + s22

]
−s21β3

k−s22βk s21β
2
k+s22 −

βk
ρk

[
(s21+

s66
2

)(s21β
2
k − s22)+s22(s21−s11β2

k)
]

 e1
e2
e3

 .

(3.16)
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The dual stress vector is defined by equation (2.5a). We can compute the dual
stress vector from the fundamental solution of order one to obtain

tκ = −duκ
ds

= el(Q)Tlκ(
o

M,Q) , (3.17)

where Tlκ is referred to as fundamental solution of order two. The formal calculations
are based on equation (2.5a,b), which can be rewritten in a matrix form:

− d

ds

[
u1

u2

]
=

[
n2 −n1 0
0 n2 −n1

] e11
e12
e22

+

[
n1

n2

]
ϕ3 (3.18)

We remark that these calculations require the use of equation (3.16) and el(Q)Ul3(Mo, Q)
– the latter provides ϕ3. Omitting the details, we obtain for Tlκ:

T11(Mo, Q) = KIm
2∑

κ=1

2dκ
ρκ

{
n2
(
−s11β3

κ − s12βκ
)
− n1

2
s66β

2
κ−

−n1
[
s22+

(
s21 +

s66
2

)
β2
κ

]}
, (3.19a)

T21(Mo, Q) = KIm
2∑

κ=1

2dκ
ρκ

{
n2
(
s11β

2
κ + s12

)
+
n1
2
s66βκ−

−n1βκ
[(
s12 +

s66
2

)
+ s11β

2
κ

]}
, (3.19b)

T12(Mo, Q) = KIm
2∑

κ=1

2dκ
ρκ

{n2
2
s66β

2
κ + n1

(
s21β

3
κ + s22βκ

)
−

−n2
[
s22 +

(
s21 +

s66
2

)
β2
κ

]}
, (3.19c)

T22(Mo, Q) = KIm
2∑

κ=1

2dκ
ρκ

{
−n2

2
s66βκ − n1

(
s21β

2
κ + s22

)
−

−n2βκ
[(
s12 +

s66
2

)
+ s11β

2
κ

]}
, (3.19d)

T31(Mo, Q) = KIm
2∑

κ=1

2dκ
ρκ

{
−n2βκ

ρκ

[
(s12+

s66
2

)(s11β
2
κ−s12) + s11(s22−s12β2

κ)
]
−

−n1s66
2ρκ

[(
s21 +

s66
2

)
β2
κ + s22

]
+ n1

β2
κ

ρκ

[
a33 −

s21s66
2
− s266

4

]}
, (3.19e)

T32(Mo, Q) = KIm
2∑

κ=1

2dκ
ρκ

{
n2s66
2ρκ

[
(s21 +

s66
2

)β2
κ + s22

]
+

+
n1βκ
ρκ

[(
(s21 +

s66
2

)(s21β
2
κ − s22)

)
+ s22(s21 − s11β2

κ)
]
+
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+n2
β2
κ

ρκ

[
a33 −

s21s66
2
− s266

4

]}
. (3.19f)

It can also be shown by long hand made calculations that every column of the fun-
damental solutions Ukl and Tkλ satisfies the basic equations if Q 6=M .

4. Dual Somigliana formulae for inner regions

The functions Fψ, tκλ, eκλ and ϕ3 are called an elastic state of the region Ai if
they satisfy the corresponding field equations. Let

Fψ, tκλ, eκλ, ϕ3 and
∗
Fψ,

∗
tκλ,

∗
eκλ,

∗
ϕ3

be two elastic states of the region Ai. Integrating by parts, one can show that the
relation∫

Ai

Fλ
[
εκρ3

∗
eκλ∂ρ +

∗
ϕ3∂λ

]
︸ ︷︷ ︸

uλ(Dλl
∗
ul)

dA−
∫
Ai

ϕ3

(
∗
Fψ∂ψ

)
︸ ︷︷ ︸
−u3D3l

∗
ul

dA−

−
∫
Ai

[εκρ3eκλ∂ρ + ϕ3∂λ]
∗
FλdA+

∫
Ai

(Fψ∂ψ)
∗
ϕ3dA =

=

∮
Lo
Fλ nπ

[
επκ3

∗
eκλ − δπλ

∗
ϕ3

]
︸ ︷︷ ︸

uλ
∗
tλ

ds−
∮
Lo
nπ [επκ3eκλ − δπλϕ3]

∗
Fλds (4.1)

is an identity, referred to as the dual Somigliana identity. We can also write this
identity in a more concise form∫

A

[
ur

(
Drl
∗
ul

)
− ∗ur (Drlul)

]
dA =

∮
Lo

[
uλ
∗
tλ −

∗
uλtλ

]
ds . (4.2)

Henceforward let ul(M) be an elastic state of the region Ai. Suppose that the other
elastic state, denoted by *, is the one which belongs to the fundamental solutions:

∗
ul(M) = ek(Q)Ukl(M,Q)

The latter is singular at the point Q. Consequently depending on the position of
point Q relative to the region Ai we distinguish three cases – two of them are shown
in Figure 2.

1. If Q ∈ Ai, then the neighborhood of Q with radius Rε, which is denoted by Aε
and is assumed to lie wholly in Ai, is removed from Ai and we apply the dual
Somigliana identity to the double connected domain A′ = Ai \ Aε. Note that
the contour Lε of Aε and the arc L′ε, which is assumed to be the part of the
contour Lε lying within Ai, coincide with each other.
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2. If Q =
o

Q ∈ ∂A = Lo, then the part Ai ∩ Aε of the neighborhood Aε of
Q is removed from Ai and we apply the dual Somigliana identity to the sim-
ply connected region A′ = Ai\(Ai∩Aε). In this case, the contour of the simply

M

O

x

1

x

2

Q

r

M

r

Q

A

r

A



M

O

x

1

x

2

r

M

r

Q

A

i

r

A

i

R

L

o

L





L

o

R



Q=Q

o

’



’



L

’

Figure 2.
connected region just obtained consists of two arcs, the arc L′o left from Lo
after the removal of Aε and the arc L′ε, i.e., the part of Lε that lies within Ai.

3. If Q /∈ (Ai ∪ Lo) we apply the dual Somigliana identity to the original region
Ai.

Since both
∗
uk and uk are elastic states the surface integrals in (4.2) are identically

equal to zero.

We now consider each of these three cases, focusing on the main steps of the
argument.

1. If Q ∈ Ai it follows from equation (4.2)∮
Lo

[
uλ(

o

M)
∗
tλ(

o

M)− ∗uλ(
o

M)tλ(
o

M)

]
ds o
M

+

∮
Lε

[
uλ(

o

M)
∗
tλ(

o

M)− ∗uλ(
o

M)tλ(
o

M)

]
ds o
M

(4.3)

= ek(Q)

{∮
Lo

[
Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M,Q)tλ(
o

M)

]
ds o
M

+

∮
Lε
[Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M,Q)tλ(
o

M)] ds o
M

}
= 0 .

Since equation (4.3) holds for arbitrary ek(Q) we have∮
Lo

[
Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M,Q)tλ(
o

M)

]
ds o
M
+

+

∮
Lε

[Tkλ(M,Q)uλ(M)− Ukλ(M,Q)tλ(M)] dsM = 0 . (4.4)
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To obtain the final form of the above equation, we need to use the integrals
detailed below:
• In spite of the singularity of the fundamental solution of order two we can

prove that

lim
Rε→0

∮
Lε

Tκλ(M,Q) [uλ(M)− uλ(Q)] dsM = 0 . (4.5)

• We can also show by performing formal transformations that

lim
Rε→0

∮
Lε

Uκλ(M,Q)tλ(M) dsM = 0 . (4.6)

• It can be proved by relatively long hand calculations that

lim
Rε→0

∮
Lε

U3λ(M,Q)tλ(M) dsM = ϕ3|Q = −u3|Q . (4.7)

Making use of the integrals (4.5), (4.6) and (4.7) from equation (4.4) we obtain∮
Lo
· · ·+ lim

Rε−→0

∮
Lε
· · · =

= uk(Q)−
∮
Lo

Ukλ(
o

M,Q)tλ(
o

M) ds o
M

+

∮
Lo

Tkλ(
o

M,Q)uλ(
o

M) ds o
M

= 0 (4.8)

which is, in fact, the first dual Somigliana formula:

uk(Q) =

∮
Lo

Ukλ(
o

M,Q)tλ(
o

M) ds o
M
−
∮
Lo

Tkλ(
o

M,Q)uλ(
o

M) ds o
M
. (4.9)

2. If Q =
o

Q our starting point is the formula∫
L′o

[
Tκλ(

o

M,
o

Q)uλ(
o

M)− Uκλ(
o

M,
o

Q)tλ(
o

M)

]
ds o
M
+ (4.10)

+

∫
L′ε

[
Tκλ(M,

o

Q)uλ(M)− Uκλ(M,
o

Q)tλ(M)

]
dsM = 0 .

Using the limit

lim
Rε→0

∫
L′ε

Tκλ(M,
o

Q) dsM = cκλ(
o

Q) , (4.11)

where cκλ(
o

Q) = δκλ/2, if the contour is smooth at
o

Q and repeating the line of
thought resulting in equation (4.9), we arrive at the second dual Somigliana
formula, i.e. the integral equation of the direct method:

cκλ(
o

Q)uλ(
o

Q) =

∮
Lo

Uκλ(
o

M,
o

Q)tλ(
o

M) ds o
M
−
∮
Lo

Tκλ(
o

M,
o

Q)uλ(
o

M) ds o
M
. (4.12)

3. If Q /∈ (A ∪ Lo) it is not too difficult to check that the third dual Somogliana
formula takes the form:

0 =

∮
Lo

Uκλ(
o

M,Q)tλ(
o

M) ds o
M
−
∮
Lo

Tκλ(
o

M,Q)uλ(
o

M) ds o
M
. (4.13)
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Upon substitution of the first dual Somigliana formula (4.9) into the dual kinematic
equations (2.1a,b) and taking into account that Fκ = uκ we get the stresses sm =
(t11, t12, t22) in the form

sm(Q) =

∮
Lo
Smλ(

o

M,Q)tλ(
o

M) ds o
M
−
∮
Lo
Dmλ(

o

M,Q)uλ(
o

M) ds o
M
, Q ∈ Ai

(4.14)
where the matrices of Smλ and Dmλ are

[Smλ] = −2K Im

2∑
k=1

dk
ρk

 −β3
k β2

k

β2
k −βk

−βk 1

 , (4.15)

and

[Dmλ] = K Im

2∑
k=1

2dk
ρ2k
×

 D11 D12

D21 D22

D31 D32

 ,

in which

D11 = n2
(
−s11β4

k − s12β2
k

)
− n1

2
s66β

3
k − n1

[
s22βk +

(
s21 +

s66
2

)
β3
k

]
,

D21 =
n2
2
s66β

3
k + n1

(
s21β

4
k + s22β

2
k

)
+ n2

[
s22βk +

(
s21 +

s66
2

)
β3
k

]
,

D12 = n2
(
s11β

3
k + s12βk

)
+
n1
2
s66β

2
k − n1β2

k

[(
s12 +

s66
2

)
+ s11β

2
k

]
,

D22 = −n2
2
s66β

2
k − n1

(
s21β

3
k + s22βk

)
− n2β2

k

[(
s12 +

s66
2

)
+ s11β

2
k

]
,

D13 = −n2
(
s11β

2
k + s12

)
− n1

2
s66βk + n1βk

[(
s12 +

s66
2

)
+ s11β

2
k

]
,

D23 =
n2
2
s66βk + n1

(
s21β

2
k + s22

)
+ n2βk

[(
s12 +

s66
2

)
+ s11β

2
k

]
.

5. Dual Somigliana formulae for exterior regions

Figure 3 depicts a triple connected region A′e bounded by the contours Lo, Lε and
the circle LR with radius eR and center O. Here Lε is the contour of the neighborhood
Aε of Q with radius Rε while eR is sufficiently large so that the region bounded by
LR covers both L0, and Lε. If eR→∞ and Rε → 0 then clearly A′e → Ae.
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We shall make the following assumptions:

1. The stresses are constant at infinity. Their values are denoted by

t11(∞), t12(∞) = t21(∞) and t22(∞) . (5.1)

2. The rigid body rotation vanishes at infinity:

ϕ3(∞) = 0 . (5.2)

Let ul(M) and
∗
ul(M) be sufficiently smooth elastic states (dual displacements and

rotation) on Ae. The corresponding dual stresses on the contour are denoted by

tλ and
∗
tλ

respectively. The equation∫
A′e

[
ur(M)

(
M

Drl
∗
ul(M)

)
− ∗ur(M)

(
M

Drlul(M)

)]
dAM =

=

∮
Lo

[
uλ(

o

M)
∗
tλ(

o

M)− ∗uλ(
o

M)tλ(
o

M)

]
ds o
M
+

∮
Lε

[
uλ(

o

M)
∗
tλ(

o

M)− ∗uλ(
o

M)tλ(
o

M)

]
ds o
M

+

∮
LR

[
uλ(

o

M)
∗
tλ(

o

M)− ∗uλ(
o

M)tλ(
o

M)

]
ds o
M

(5.3)
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is the dual Somigliana identity (4.2) when it is applied to the triple connected region
A′e. Observe thatM over a letter denotes that the corresponding derivatives are taken
with respect to the coordinates of M .

Let again
∗
ul(Q) = ek(Q)Ukκ(M,Q), which is a non-singular elastic state of the

plane in A′e. We regard ul(M) as a different elastic state in the region Ae. Further
we assume that ul(M) has the far field pattern (asymptotic behavior)

uλ(M) = ũλ(M) = cλ(∞) + εκρ3xρtλκ(∞) , (5.4a)

u3(M) = ũ3(M) = −ϕ3(∞) = 0 . (5.4b)
when xβ or equivalently M tends to infinity. Here cλ(∞) is an arbitrary constant
which can be set to zero.

Substituting the above quantities into the Somigliana identity (5.3) and taking
into account that the surface integrals vanish we have

ek(Q)

{∮
Lo

[
Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M,Q)tλ(
o

M)

]
ds o
M
+

+

∮
Lε

[
Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M,Q)tλ(
o

M)

]
ds o
M
+

+

∮
LR

[
Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M,Q)tλ(
o

M)

]
ds o
M

}
= 0 (5.5)

since
∗
tκ(

o

M) = el(Q)Tlκ(
o

M,Q) .

It is clear that one can omit ek(Q). Recalling the limit (4.8) we get

uk(Q) = lim
eR−→∞

∮
LR

[
Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M,Q)tλ(
o

M)

]
ds o
M
+

+

∮
Lo

[
Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M,Q)tλ(
o

M)

]
ds o
M
. (5.6)

In order to establish the first dual Somigliana formula for the exterior region Ae
we need to find the limit of the first integral on the right hand side.

In the following, our main objective is to prove that

Ik = lim
eR−→∞

∮
LR

[
Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M,Q)tλ(
o

M)

]
ds o
M

= ũk(Q) . (5.7)

The proof uses the first dual Somigliana formula valid for inner regions and requires
simple tools only.

Let us consider the simple connected region AR bounded by the circle LR with
radius eR and center at O. We shall assume that the point Q is an inner one.

It is clear that the dual displacements ũκ(M) and rotation field ũ3(M) defined by
equations (5.4a,b) are an elastic state of AR with no body forces. The corresponding

dual stresses on the contour are denoted by t̃κ(
o

M). It is also obvious that for any
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elastic state of the region AR one can apply the first dual Somigliana formula. Since
ũk(M) is an elastic state of the orthotropic inner region AR we have

ũk(Q) =

∮
LR

[
Tkλ(

o

M,Q)ũλ(
o

M)− Ukλ(
o

M,Q)̃tλ(
o

M)

]
ds o
M
. (5.8)

If in addition we take into account the limits

lim
eR−→∞

uλ(
o

M) = ũλ(
o

M) and lim
eR−→∞

tλ(
o

M) = t̃λ(
o

M) , (5.9)

then we find that the limit of the integral in question in equation (5.7) is really

lim
eR−→∞

∮
LR

[
Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M,Q)tλ(
o

M)

]
ds o
M

= ũk(Q) . (5.10)

Consequently, the first dual Somigliana formula – modified to include a constant
stress state at infinity – immediately follows from equations (5.6) and (5.7):

uk(Q) = ũk(Q) +

∮
Lo

Ukλ(
o

M,Q)tλ(
o

M) ds o
M
−
∮
Lo

Tkλ(
o

M,Q)uλ(
o

M) ds o
M
. (5.11)

If Q =
o

M is on Lo, nothing changes concerning the limit of the integral taken on
LR. Consequently

cκλ(
o

Q)uλ(
o

Q) = ũk(
o

Q) +

∮
Lo

Uκλ(
o

M,
o

Q)tλ(
o

M) ds o
M
−
∮
Lo

Tκλ(
o

M,
o

Q)uλ(
o

M) ds o
M
.

(5.12)

where cκρ = δκρ/2 if the contour is smooth at
o

Q. This integral equation is that of the
direct method (or the second dual Somigliana formula) for exterior regions.

If Q is inside the contour Lo, i,e., in the region Ai, then it is easy to show that

0 = ũk(Q) +

∮
Lo

Ukλ(
o

M,Q)tλ(
o

M) ds o
M
−
∮
Lo

Tkλ(
o

M,Q)uλ(
o

M) ds o
M
. (5.13)

which is the third Somigliana formula for exterior regions.

Recalling formula (4.14) for the stresses, it is easy to check that

sm(Q) = sm(∞)+

∮
Lo
Smλ(

o

M,Q)tλ(
o

M) ds o
M
−
∮
Lo
Dmλ(

o

M,Q)uλ(
o

M) ds o
M
. Q ∈ Ae

(5.14)
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6. Calculations of the stresses on the boundary

After solving the integral equations of the di-
rect method (equation (4.12) for inner regions,
equation (5.12) for exterior regions) we know
the dual displacement vector uκ (the stress
functions) and the dual stress vector tκ (dis-
placement derivatives with respect to the arc
coordinate s) on the contour. The next ques-
tion is how to determine the stresses on the
contour in terms of these quantities.

The calculations leading to the equation
system that results in the stresses sought will
be carried out in the coordinate system (x, y).
In this section we shall not apply indicial no-
tations including the summation convention.

t

tx

ty

y

x

n
ny

nxAi
s

Figure 4.

It is clear from Figure 4 that
dx

ds
= tx = −ny and

dy

ds
= ty = nx (6.1)

If we recall formulae (2.1a,b) which give the stresses in terms of stress functions,
we can write (indices 1 and 2 correspond to x and y, respectively):

dFx
ds

=
∂Fx
∂x

dx

ds
+
∂Fx
∂y

dy

ds
= nxσxx + nyτxy , (6.2a)

dFy
ds

=
∂Fy
∂x

dx

ds
+
∂Fy
∂y

dy

ds
= nxτxy + nyσyy . (6.2b)

On the basis the definition of the dual stresses (2.5b) we have

−tx =
dux
ds

=
dux
dx

dx

ds
+

dux
dy

dy

ds
= exx

dx

ds
+

dux
dy

dy

ds
(6.3)

−ty =
duy
ds

=
duy
dx

dx

ds
+

duy
dy

dy

ds
=

duy
dx

dx

ds
+ eyy

dy

ds
. (6.4)

Multiplying by tx = −ny and ty = nx throughout and combining the equations
obtained from (6.3) and (6.4) we arrive at

nytx − nxty = exx

(
dx

ds

)2

+ eyy

(
dy

ds

)2

+
dy

ds

dx

ds

2exy︷ ︸︸ ︷(
∂ux
∂y

+
∂uy
∂x

)
(6.5)

from which making use of the Hooke law and the geometrical relations (6.1) we
obtain

nytx − nxty =
(
ny

2s11 + nx
2s21

)
σx − nxny

s66
2
τxy +

(
ny

2s12 + nx
2s22

)
σy . (6.6)

Equations (6.2a,b) and (6.6) can be arranged in a matrix form
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0 nx ny

n2ys11 + n2xs21 −nxny s662 n2ys12 + n2xs22

 σxx
τxy
σyy

 =

=

 dFx/ds
dFy/ds

nytx − nxty

 . (6.7)

Since the outer normal n, the stress functions Fx, Fy and the dual stresses tx, ty are
all known on the contour as soon as we have solved the integral equation of the direct
method, solution of the above linear equations will result in the stress components
sought.

7. Examples

A program has been written in Fortran 90 in order to solve the integral equations
(4.12) and (5.12) of the direct method on inner and exterior regions numerically.
We have applied quadratic boundary elements. Let nbe and nbn be the number of
boundary elements and that of the boundary nodes. Further let

uj =

[
uj1
uj2

]
and tj =

[
tj1
tj2

]
j = 1, . . . , nbn (7.1)

be the matrices of the dual displacements and dual stresses at node j on the boundary.

Following the well-known procedure valid for the primal formulation – see for in-
stance [9] – solution of the dual integral equation (4.12) can be reduced to the solution
of the linear equations

h11 h12 · · · h1nbn

h21 h22 · · · h2nbn

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
hnbn1 hnbn2 · · · hnbnnbn




u1

u2

· · ·
unbn

 =

=


b11 b12 · · · b1nbn

b21 b22 · · · b2nbn

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
bnbn1 bnbn2 · · · bnbnnbn




t1
t2
· · ·
tnbn

 (7.2)

where the 2× 2 submatrices hij and bij are computed from the integrals

ĥij =

∑
e∈j

∫
Le

Tκλ(Qi, η)N
a(j,e)(η)J(η) dη

 , hij =

{
ĥii + cii, if i = j

ĥij , if i 6= j

(7.3)

bij =

∑
e∈j

∫
Le

Uκλ(Qi, η)N
a(j,e)(η)J(η) dη

 (7.4)

in which (a) the summation is to be carried out for those boundary elements having
the nodal point j as their common nodal point; (b) i identifies the fixed nodal point
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Qi referred to as the collocation point; (c) Na(j,e)(η) is the a-th shape function for
which a(j, e) is the local number of the global nodal point j on element e; (d) cii is
the matrix of cκλ(Qi) in equation (4.11); (e) J(η) is the Jacobian. Equation system
(7.2) can be rewritten as

Hu = Bt . (7.5)

We remark that determination of the diagonal elements hii, i = 1, . . . , nbn requires
the computation of strongly singular integrals.

If the region under consideration is an exterior one then in accordance with integral
equation (5.12) the right-hand side of equation (7.5) is to be supplemented by the term

ũT = [ ũ11 ũ
1
2︸ ︷︷ ︸

ũT1

| ũ21 ũ22︸ ︷︷ ︸
ũT2

| . . . | ũnbn1 ũnbn2︸ ︷︷ ︸
ũTnbn

] (7.6)

and takes the form

Hu = ũ+Bt . (7.7)

If the dual displacements (the stress functions) are constant the stresses and the
strains vanish. If in addition we assume that the rotaion ϕ3 vanishes – this does not
violate generality – then the dual stresses also vanish. Consequently

2nbn∑
j=1

Hij = 0 from where Hii = −
2nbn∑
j=1
(i 6=j)

Hij i = 1, 2, . . . , 2nbn (7.8)

where Hij is an element of the matrix H. Making use of the equation above we
can avoid the computation of strongly singular integrals for interior boundary value
problems.

For an exterior region, the strongly singular integrals can be determined using an
equation similar to equation (7.8), which we present here without proof:

Hii = −
2nbn∑
j=1
(i 6=j)

Hij + 1 i = 1, 2, . . . , 2nbn . (7.9)

We have solved one simple internal test problem and two external boundary value
problems. First we consider a beam in pure bending (Figure 5), second the coordinate
plane with a circular hole (Figure 6b.); third the coordinate plane with a rigid inclusion
(Figure 6c.). The material is birch for which s11 = 8.497 × 10−5, s12 = s21 =
−6.11× 10−2, s22 = 1.6999× 10−4 and s66 = 1.456× 10−3 [mm2/N ].
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Figure 5.

The first problem has a closed form solution for the stresses:

σxx = 200y/L , σyy = 0; , τxy = 0 .

The contour is divided into twenty elements of equal length as shown in Figure 6.
Table 1 presents the computed results which are in close agreement with the accurate
values.

Table 1.. Results for the pure bending of a beam
Pure bending: stresses at the inner - and contour points
The point Stresses [MPa]
Selected σxx τxy σyy
1 (6;3) 25.00023 0.000707695 -0.000186628
2 (30;9) 74.99414 0.000184937 -0.000164188
3 (42;3) 24.99820 -0.000128817 -0.000083552
4 (54;12) 100.02202 0.000000000 0.000000000
5 (90;3) 25.00023 0.000707695 -0.000186628
6 (18;-3) -24.99898 -0.000708675 0.000120160
7 (30;-12) -100.02220 0.000000000 0.000000000
8 (54;-9) -74.99372 -0.000055471 0.000156285
9 (66;-3) -24.99844 0.000398726 0.000092128

10 (78;-12) -100.02223 0.000000000 0.000000000

For the exterior boundary value problems we shall assume that

τxy(∞) = σyy(∞) = 0 and σxx(∞) = p = constant

For completeness Figure 6a shows the region to use if we solve the integral equation
of the direct method in its traditional form – see equation (4.9) – i.e. if the exterior
region is replaced by a bounded one.



166 J. Dudra, G. Szeidl

y

x

O

r

o

p=σ

xx

( )

oo

A

D

e

(a)

p=σ

xx

( )

oo

r

o

(b)

p=σ

xx

( )

oo

y

x

O

r

o

p=σ

xx

( )

oo

A

D

e

p=σ

xx

( )

oo

Rigid 
incluson

(c)

hole

Figure 6.

Lekhtniski’s book [15] contains closed form solutions for the stresses on the
boundary, as well as numerical values which can be found in Table 17 on page 197.
In this paper we show the results as computed by solving the integral equation and
the results taken from [15] – see Tables 2 and 3. We used a polar coordinate system,
and the tables contain the quotients σθ/p for the plane with circular hole and σr/p,
τrθ/p and σθ/p for the plane with the rigid circular inclusion.

Table 2.. Results for the circular hole
Circular hole

Polar angle σθ/p
Lekhnitski

[15]
0◦ −0.70744 −0.707
15◦ −0.33928 −0.340
30◦ 0.06951 0.069
45◦ 0.40451 0.404
60◦ 0.96605 0.966
75◦ 2.57736 2.577
90◦ 5.45409 5.453
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Table 3. Results for the rigid inclusion
Rigid kernel

Polar angle σr/p τrθ/p σθ/p
Lekhnitski Lekhnitski Lekhnitski

[15] [15] [15]
0◦ 1.2363 1.237 0.0000 0.000 0.0444 0.044
15◦ 1.1558 1.156 −0.2999 −0.299 0.0936 0.093
30◦ 0.9364 0.937 −0.5188 −0.519 0.2701 0.270
45◦ 0.6370 0.698 −0.5986 −0.599 0.5158 0.516
60◦ 0.3377 0.338 −0.5181 −0.519 0.6990 0.699
75◦ 0.1188 0.119 −0.2987 −0.299 0.5627 0.564
90◦ 0.0389 0.039 0.0000 0.000 0.0028 0.003

We remark that the underlined value is mistaken in book [15].

8. Concluding remarks

The present paper has dealt with the following issues:

1. We have presented the equations of plane elasticity for an orthotropic body
in terms of stress functions of order one. We have also clarified what are the
supplementary conditions of single valuedness for a class of mixed boundary
value problems in the dual system of plane elasticity.

2. By applying Galorkin functions and following the procedure presented among
others in book [14] by Kupradze we have derived the dual fundamental solu-
tions of order one and two for plane problems of orthotropic bodies.

3. We have set up the dual Somigliana relations both for inner regions and for
exterior ones. A constant stress state at infinity is a part of the formulation we
have developed for exterior regions. The integral representation of the stresses
has also been established.

4. Three simple boundary value problems (one for an interior region, the other
two for the same exterior region) have been solved numerically in order to
demonstrate the applicability of the solution algorithm.

We remark that the supplementary conditions of single valuedness should be incor-
porated into the algorithm if (a) the number of arcs on which tractions are prescribed
is more than one or (b) if in addition to this the region under consideration is multiply
connected. Work on these issues is in progress.
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Dedicated to Professor Barna Szabó on the occasion of his eightieth birthday

and to Professor Imre Kozák on the occasion of his eighty-fifth birthday

Abstract. The aim of this paper is to analyze some second order motion properties of rigid
body motion. The existence of unique acceleration center is proven by means of vector-
tensor algebra for the case when the vectors of angular velocity and of angular acceleration
are linearly independent. The case when the vectors of angular velocity and of angular
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are derived for the position of the acceleration center and axis. A detailed analysis of the
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1. Introduction

Consider a rigid body b moving in general spatial motion with respect to a fixed
reference frame {0;x, y, z}. Let ω be the angular velocity of body b and let the points
A and B be on body b with their velocities denoted by vA and vB , respectively. The
velocity field of body b is formulated as [1, 2]

vB = vA + ω × (rB − rA) , (1.1)

where rA and rB are the position vectors of points A and B relative to the fixed frame
{0;x, y, z} (Figure 1). In equation (1.1), the cross denotes the vectorial product of
two vectors. It is known if

vA · ω = 0 and ω 6= 0, (1.2)

then there exists a set of points on body b which have zero velocity at the instant
considered. The points which have zero velocity are called velocity center points;
they are on a straight line which is parallel to the angular velocity vector ω [1, 3].
We note that in equation (1.2) the dot between two vectors indicates their scalar
product. Assuming that the condition formulated in equation (1.2) is satisfied, then

c©2015 Miskolc University Press
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Figure 1. Rigid body in instantaneous general spatial motion.

the position of velocity center points is given by the formula

rC = rA +
ω × vA
ω2

+ pω −∞ < p <∞. (1.3)

Equation (1.3) gives the equation of the instantaneous axis of rotation [2, 3]. The
validity of formula (1.3) can be checked by a direct substitution of equation (1.3) into
equation (1.1).

Differentiation of equation (1.1) with respect to time leads to the formula of accel-
eration field

aB = aA +α× (rB − rA) + ω × (ω × (rB − rA)) , (1.4)

where

aA =
dvA
dt

, aB =
dvB
dt

(1.5)

are the accelerations of points A and B (Figure 1), t is the time, α = dω
dt is the

angular acceleration of body b.

The aim of this paper is to analyze two second order motion properties of rigid
body motion, which are the acceleration center and acceleration axis. The concepts of
acceleration center and of acceleration axis are borrowed from the book by Bottema
and Roth [1] and a paper by Mohamed [4]. The existence of a unique acceleration
center is proven from the case when ω and α are linearly independent vectors by the
use of the method of vector and tensor algebra. An explicit coordinate-free relation-
ships will be derived for the position of acceleration center and axis. The case when
ω and α are linearly dependent vectors is also considered.
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Martinez and Duffy [5] presents a review of papers dealing with the acceleration
center. Martinez and Duffy gave the inverse of acceleration matrix introduced by
Mohamed [4] but they did not cite Mohamed’s paper [4]. In [5], a closed form expres-
sion for the inverse of the acceleration matrix in terms of the coordinates of ω and
α is presented. Martinez and Duffy transformed the coordinate representation of the
position vector of center of acceleration into a coordinate-free vectorial formula [5].

2. Acceleration center

Denote Q the acceleration center of body b at the considered instant and let % be
defined as % = rQ−rA. According to the definition of acceleration center [1, 4, 5] we
can write

aQ = 0 = aA +α× %+ ω × (ω × %) . (2.1)

Two cases are treated. At first we assume that

ω ×α 6= 0 (2.2)

and then we investigate the existence of the center of acceleration when

ω ×α = 0 and E = ω4 + α2 6= 0 . (2.3)

If condition (2.2) holds then the vectors a1 = ω, a2 = α and a3 = ω×α form a base
of the 3D space.

In this case, we seek the position vector of point Q relative to point A as

% = p1ω + p2α+ p3ω ×α (ω ×α 6= 0) . (2.4)

Combination of equation (2.1) with equation (2.4) yields

p1α× ω + p2ω × (ω ×α) + p3 {α× (ω ×α) + ω × [ω × (ω ×α)]} = −aA . (2.5)

Dot products of vector equation (2.5) with the vectors ω, α and ω ×α give

p3(ω ×α)2 = −aA · ω , (2.6)

p2(ω ×α)2 = aA ·α , (2.7)

p1(ω ×α)2 + p3ω
2(ω ×α)2 = aA · (ω ×α) . (2.8)

Substitution of equation (2.6) into equation (2.8) leads to the equation

p1(ω ×α)2 = aA · (ω ×α) + (aA · ω)ω2 . (2.9)

The combination of equations (2.6), (2.7) and (2.9) with equation (2.4) gives the
coordinate-free expression of the position vector of acceleration center Q relative to
point A

% =
1

(ω ×α)2
[(aA ·α)α− (aA · ω)(ω ×α) +

+
{
aA · (ω ×α) + (ω · aA)ω2

}
ω
]
. (2.10)

By the use of the next identity

[(ω ×α)× ω]× aA = [aA · (ω ×α)]ω − (aA · ω)ω ×α (2.11)



172 I. Ecsedi and A. Baksa

we can write into a more compact form the expression of position vector % as

% =
1

(ω ×α)2
[
{(ω ×α)× ω} × aA + (α · aA)α+ ω2(ω · aA)ω

]
. (2.12)

Here, we note

(ω ×α)2 = ω2α2 sin2 γ , (2.13)

where γ is the angle formed by the vectors ω and α and we have

(ω ×α)2 = ω2α2 − ω2α2 cos2 γ = ω2α2 − (ω ·α)2 , (2.14)

ω2 = ω · ω , α2 = α ·α . (2.15)

Mohamed [4] deduced a system of linear equations for the coordinates of vector %
in a matrix form. The coefficient matrix of the unknown coordinates of % is called the
“acceleration matrix” and it is shown by Mohamed [4], its determinant is opposite to
(ω ×α)2. An explicit (closed) form of the inverse matrix of acceleration matrix was
not presented by Mohamed [4].

Martinez and Duffy [5] gave the expression of inverse of acceleration matrix in terms
of coordinates of ω and α by means of the symbolic algebra software MapleTM . Mar-
tinez and Duffy decomposed the inverse of the acceleration matrix into its symmetric
and skew-symmetric parts and they interpreted these parts in the form of vector
and scalar products respectively, and they obtained the vector formula (2.10) for the
position of acceleration center [5]. Our approach does not use the coordinate rep-
resentation of equation (2.1) in any Cartesian coordinate system to get the vector
formula (2.10) for the acceleration center.

In the Appendix, the geometrical meaning of vectors

%1 =
1

(ω ×α)2
[(aA ·α)α− (aA · ω)(ω ×α)] (2.16)

and

%2 =
1

(ω ×α)2
[
aA · (ω ×α) + (ω · aA)ω2

]
ω (2.17)

appearing in formula (2.10) is presented.

Next, we analyze the existence of acceleration center under the condition (2.3).
In this case the angular velocity vector ω and angular acceleration vector α are not
linearly independent, their vectors are parallel. We again start from equation (2.1)
and equation (2.7). Let

% = %0 + pω , (2.18)

be, where

ω · %0 = 0 . (2.19)

Inserting equation (2.18) into equation (2.1) we obtain

α× %0 − ω2%0 = −aA . (2.20)

According to the condition (2.3) we have

ω = ωe , α = αe , (2.21)
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where e is the unit vector directed to parallel to the direction of ω and α, thus we
have ω = ω · e, α = α · e.

From equation (2.20) we get the condition of existence of acceleration center point
which is

aA · e = 0 . (2.22)

The conditions formulated in equations (2.21) and (2.22) are valid for instantaneous
plane motion [2, 3]. We look for %0 in the form

%0 = p1aA + p2aA × e . (2.23)

Scalar product equation (2.20) with the vectors aA and aA × e gives the results

α (aA × e) · %0 − ω2%0 · aA = −a2
A , (2.24)

α%0 · aA + ω2 (aA × e) · %0 = 0 . (2.25)

On the other hand from equation (2.23) it follows that

p1a
2
A = %0 · aA , p2a

2
A = %0 · (aA × e) . (2.26)

Combination of equations (2.24), (2.25) with equations (2.26)1,2 gives

ω2p1 − αp2 = 1 , (2.27)

αp1 + ω2p2 = 0 , (2.28)

from which we have

p1 =
ω2

ω4 + α2
, p2 = − α

ω4 + α2
. (2.29)

Substitution of equations (2.29)1,2 into equation (2.23) yields the result

%0 =
1

α2 + ω4

[
ω2aA +α× aA

]
. (2.30)

It is evident the location of the acceleration centers, points having zero acceleration,
with respect to point A under the conditions (2.3) is given by the formula

% =
1

α2 + ω4

[
ω2aA +α× aA

]
+ pe , −∞ < p <∞ . (2.31)

Equation (2.31) defines the line of acceleration centers [4].

3. Acceleration ellipsoid

According to Mohamed [4] the acceleration ellipsoid is defined as

|a(R)| = |α×R+ ω × (ω ×R)| = M = constant (M ≥ 0) . (3.1)

In equation (3.1), R is the position vector of an arbitrary point P on body b relative

to the center of acceleration, that is R =
−−→
QP and a(R) = aP . At first, we consider

the case when ω and α are linearly independent, the condition (2.2) is valid. We
introduce tensor A0 by the next prescription

A0 = 1×α+ ω ◦ ω − ω21 , (3.2)

where 1 is the unit tensor of 3D space and a circle between two vectors denotes their
tensorial (dyadic) product. The definition of the scalar and vectorial product of a
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vector with a tensor and the properties of dyadic product are given by Malvern [6],
Mase et al. [7] and Lurje [8]. It is obvious

a(R) = A0 ·R. (3.3)

Here, A0 is a nonsingular tensor, since its determinant [6, 8]

detA0 =
(f1 × f2) · f3

(ω ×α)
2 (3.4)

is non-zero, where

f1 = A0 · ω , f2 = A0 ·α , f3 = A0 · (ω ×α) . (3.5)

By a simple calculation we obtain

f1 = α× ω , f2 = ω (ω ·α)−αω2 , f3 = α× (ω ×α)− ω2 (ω ×α) . (3.6)

Inserting the results above obtained into equation (3.4) we have

detA0 = − (ω ×α)
2

(3.7)

according to the result of Mohamed [4] since the tensor A0 is the tensorial represen-
tation of the acceleration matrix ψ introduced by Mohamed [4]. The tensor

A = AT
0 ·A0 (3.8)

is a positive definite symmetric tensor since its determinant is positive

detA = (ω ×α)
4
> 0 , (3.9)

and for an arbitrary x vector we have

xT ·A · x ≥ 0 . (3.10)

We reformulate equation (3.1) as

R ·A ·R = M2 . (3.11)

This equation shows that the points whose acceleration vector has a given magnitude
lie on an ellipsoid (acceleration ellipsoid). The center point and main axes of the
acceleration ellipsoid for different value of M are the same. The common center point
of acceleration ellipsoids is the acceleration center.

By a lengthy but elementary calculation starting from equation (3.2) and using the
definition of A we can derive the coordinate-free representation for A as

A = −α× 1×α+ ω ◦ (ω ×α) + (ω ×α) ◦ ω − ω2ω ◦ ω + ω41 . (3.12)

In the second case when ω and α are not linearly independent we have ω = ωe,
α = αe and we resolve the vector R into two components as

R = R0 +R1 , R0 · e = 0 , R1 × e = 0 . (3.13)

A simple calculation shows that

A0 = α1× e+ ω2e ◦ e− ω21 , (3.14)

A = −α2e× 1× e− ω4e ◦ e+ ω41 , (3.15)

A0 · e = 0 and A · e = 0 , (3.16)
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R ·A ·R = R0 ·A ·R0 =
(
α2 + ω4

)
R2

0 . (3.17)

From equation (3.17) it follows that the points whose acceleration vector has a given
magnitude M and E = α2 + ω4 6= 0 are on a cylindrical surface.

The generators of this cylindrical surface are parallel to the vectors e and the center
point of its base circle is one of the acceleration center given by equation (2.31); the
radius of base circle is

|R0| =
|M |√
α2 + ω4

. (3.18)

It is obvious the normal vector of the plane of base circle is e.

4. Acceleration axis

At first we compute the angle between the acceleration vector aP = a(R) and the

position vector R =
−−→
QP = Rq. Here, q is a unit vector and its direction is parallel

to the vector R. It is evident that

a(R) = Ra(q) , a(q) = A0 · q . (4.1)

Equation (4.1) shows that the acceleration vectors of the points of straight line de-
termined by point Q and unit vector q (0 ≤ R <∞) have same direction and their

magnitudes are proportional with R =
∣∣∣−−→QP ∣∣∣. The angle between a(q) and q is de-

noted by δ. A simple calculation gives for ω ×α 6= 0

cos δ =
q · a (q)

|a (q)| =
q ·A0 · q√
q ·A · q = − (ω × q)

2

√
q ·A · q . (4.2)

From equation (4.2) it follows that

π

2
≤ δ ≤ π. (4.3)

If ω ×α = 0 and E = α2 + ω4 6= 0, then we have ω = ωe, α = αe and we resolve q
into two components as

q = q0 + q1e , q0 · e = 0 , q20 + q21 = 1 . (4.4)

By a detailed computation which is based on equations (3.14) and (3.15) we obtain

cos δ =
q · a(q)

|a(q)| = − ω2

√
α2 + ω4

|q0| , 0 ≤ |q0| ≤ 1 . (4.5)

The latter case is characterised by the equation (2.21), we consider one of the accel-
eration centers given by equation (2.31). Let q1 = 0 be in equation (4.4); in this case
we have |q0| = 1 . The angle δ for points lying in that plane whose normal vector is
e and contains the chosen acceleration center (q1 = 0) is as follows

cos δ = − ω2

√
α2 + ω4

. (4.6)

Equation (4.6) it is a known result of plane kinematics [2, 3].
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Next, we deal with the general 3D motion which is characterised by equation (2.2).
For this case the acceleration axis is defined by the equation

cos δ = −1 , δ = π . (4.7)

All points P whose acceleration vectors are directed along the position vectorR =
−−→
QP

(Q is the acceleration center) are in a line which is called acceleration axis [1, 4].
Equation (4.7) can also be formulated as an eigenvalue problem

A0 ·R = µR . (4.8)

At first we prove the real eigenvalues of tensor A0 are non-positive. From equa-
tion (4.8) it follows that

R ·A0 ·R = − (ω ×R)
2

= µR2 , (4.9)

i.e.

µ = − (ω ×R)
2

R2
≤ 0 . (4.10)

The next bound for the real eigenvalues of tensor A0 can be derived

− ω2 ≤ µ ≤ 0 (4.11)

by the use of (4.10) and

(ω ×R)
2 ≤ ω2R2 . (4.12)

The scalar product of equation (4.8) with the vectors

a1 = ω, a2 = α, a3 = ω ×α (4.13)

leads to a system of homogenous linear equations −µ 0 1
α · ω −

(
µ+ ω2

)
0

−α2 α · ω −
(
µ+ ω2

)
 ·
 X1

X2

X3

 =

 0
0
0

 . (4.14)

for

X1 = ω ·R, X2 = α ·R, X3 = (ω ×α) ·R . (4.15)

The condition of the zero value of the determinant of coefficient matrix of equation
(4.14) yields the next characteristic equation for s = µ

ω2

s3 + 2s2 + (1 + h2)s+ h2 sin2 γ = 0, (4.16)

where

h =
α

ω2
. (4.17)

A special coordinate representation of the angular velocity and angular acceleration
vectors was used by Bottema and Roth to get the characteristic equation for µ [1]. It
is very easy to point out that equation (4.16) is the same as which can be obtained
from Bottema and Roth’s result.

The discriminant of cubic equation (4.16) can be written in the form [9]

D = D1 +D2, (4.18)
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where

D1 =
1

27

(
h2 − 1

3

)3

, D2 =
1

4

(
h2 sin2 γ − 2

3
h2 − 2

27

)2

. (4.19)

• For D < 0 there are three distinct real roots of equation (4.16). In this case
three real acceleration axes exist.
• For D > 0, equation (4.16) has only one real root and two complex roots.

In this case there is only one real acceleration axis and the other two are
imaginary.
• For D = 0 the cubic equation (4.16) has three real roots and at least two are

equal. If D1 = D2 = 0 then there are three equal real roots. For the case
D = 0 and D2

1 +D2
2 6= 0 there are two real acceleration axes. If D2

1 +D2
2 = 0

then there is only one real acceleration axis.

The direction of the acceleration axis is determined by the eigenvector R corre-
sponding to the eigenvalue µ = ω2s. We look for R as

R = λ1α× (ω ×α) + λ2(ω ×α)× ω + λ3(ω ×α). (4.20)

The vectors

h1 = α× (ω ×α), h2 = (ω ×α)× ω, h3 = ω ×α (4.21)

are linearly independent since

(h1 × h2) · h3 = |(ω ×α)|4 6= 0. (4.22)

Combination of equation (4.15) with equation (4.20) gives

λ1 =
X1

(ω ×α)2
, λ2 =

X2

(ω ×α)2
, λ3 =

X3

(ω ×α)2
. (4.23)

The relationships between X2, X3 and X1 for µ 6= −ω2 are as follows

X2 =
α · ω
µ+ ω2

X1, X3 = µX1. (4.24)

In (4.24) X1 is an arbitrary constant.

Let

X =
X1

(ω ×α)2
. (4.25)

The combination of equation (4.20) with equations (4.23), (4.24) and (4.25) gives the
equation of acceleration axis for µ 6= −ω2

R = X

[
α× (ω ×α) +

α · ω
µ+ ω2

(ω ×α) + µ(ω ×α)

]
, −∞ < X <∞. (4.26)

Next, the case of µ = −ω2 is analyzed. For this case from equation (4.14) we
obtain

ω2X1 +X3 = 0 (4.27)

α · ωX1 = 0 (4.28)

− α2X1 +α× ωX2 = 0. (4.29)
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The existence of a nontrivial solution for X1, X2 and X3 which means that X2
1 +

X2
2 +X2

3 6= 0, is

α · ω = 0. (4.30)

From equation (4.14) it follows that

X1 = 0, X3 = 0, X2 = α ·R = arbitrary, (4.31)

and the equation of acceleration axis has the form

R = λα −∞ < λ <∞ (4.32)

according to equations (4.15( and (4.31).

The existence of µ = −ω2 under the conditions

α× ω 6= 0 and α · ω = 0 (4.33)

can be derived from the solution of cubic equation (4.16) with substitution for γ = π
2 .

In this case we have following solution for s

s1 = −1, µ1 = −ω2, (4.34)

s2 =
−1 +

√
1− 4h2

2
, µ2 =

−ω2 +
√
ω4 − 4α2

2
, (4.35)

s3 =
−1−

√
1− 4h2

2
, µ3 =

−ω2 −
√
ω4 − 4α2

2
, (4.36)

In what follows the case of D2
1 +D2

2 = 0 will be considered. For this case we have

h2 =
1

3
, sin2 γ =

8

9
. (4.37)

Substitution of results obtained above into the cubic equation (4.16) gives

s3 + 2s2 +
4

3
s+

8

27
= 0, (4.38)

i.e.

(3s+ 2)3 = 0. (4.39)

It is evident that if the conditions formulated in equation (4.37) are satisfied then

s1 = s2 = s3 = −2

3
, µ1 = µ2 = µ3 = −2

3
ω2. (4.40)

Substitution of equation (4.40)2 into equation (4.14) gives

X3 = −2

3
ω2X1, X2 = ±α

ω
X1. (4.41)

From the equations above obtained it follows that

n1 ·R = 0, n2 ·R = 0, (4.42)

where

n1 = ω ×α+
2

3
ω2ω, (4.43)

n2 = α− α

ω
ω for cos γ =

1

3
, (4.44)
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n2 = α+
α

ω
ω for cos γ = −1

3
. (4.45)

The intersection of planes whose equations are given by (4.41) is a straight line, which
is the real acceleration axis in the considered case. From equation (4.41) it follows
that the equation of acceleration axis has the form

R = λ(n1 × n2) −∞ < λ <∞. (4.46)

It is also worth noting that the eigenvalue µ cannot be zero or an imaginary number if
ω 6= α 6= 0. The validity of this statement follows from equation (4.16). It is evident,
if

ω ×α = 0 and α 6= 0 (4.47)

then the acceleration axis does not exist, but for the case

ω ×α = 0 and α = 0, ω 6= 0 (4.48)

we have
a(q) = ω2e× [e× (q0 + q1e)] = −ω2q0 (4.49)

i.e., all the line segments QP in the plane q1 = 0 can be considered as an acceleration
axis.

5. Conclusion

This paper deals with the analysis of the acceleration field of a rigid body in a
general 3D spatial motion. Some results derived by Mohamed [4] are reformulated
and analyzed in detailed forms. Explicit coordinate free relationships are presented
for the position of the acceleration center and acceleration axis. A new proof is given
to the vectorial formula of the acceleration center which was derived by Martinez and
Duffy. Formulation and solution of problems are based on the well known relationships
of rigid-body kinematics and the tools of vector–tensor algebra.

Acknowledgements. This research was carried out as part of the TAMOP 4.2.1.B-
10/2/KONV-2010-0001 project with support by European Union, co-financed by European
Social Fund.

Appendix A. Remark to the formula of acceleration center

Let us consider the point X whose position vector relative to point A is (Figure 2)

−−→
AX =

1

(ω ×α)2
[(α · aA)α− (ω · aA)(ω ×α)] . (A.1)

Application of equation (1.4) gives

aX = aA +α×−−→AX + ω × (ω ×−−→AX) =

= aA +
1

(ω ×α)2
[
−(ω · aA)α2ω + (α · ω)(ω · aA)α +

+ (ω ·α)(α · aA)ω − ω2(aA ·α)α+ ω2(ω · aA)ω ×α
]
. (A.2)
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A
ω ×α

X
aX = AX(ω ×α)

Q

ω

aQ = 0

ω

aA

α

̺

−−→
XQ = AXω

Figure 2. Determination of position of acceleration center

A simple computation shows that

aX · ω = 0 , aX ·α = 0 , (A.3)

aX · (ω ×α) = aA · (ω ×α) + (aA · ω)ω2 . (A.4)

From equations (A.2), (A.3) and (A.4) it follows that

aX = AX(ω ×α) , (A.5)

where

AX =
1

(ω ×α)2
[
aA · (ω ×α) + (aA · ω)ω2

]
, (A.6)

The position vector of point Q relative to point X according to formula (2.11) is

−−→
XQ =

1

(ω ×α)2
[
{(ω ×α)× ω} × aX + (α · aX)α+ ω2(ω · aX)ω

]
=

=
AX

(ω ×α)2
{(ω ×α)× ω} × (ω ×α) = AXω , (A.7)

that is
−−→
XQ = AXω =

1

(ω ×α)2
[
aA · (ω ×α) + (a · ω)ω2

]
. (A.8)

Comparing equation (2.10) with equations (A.1) and (A.8) we can write

% =
−→
AQ =

−−→
AX +

−−→
XQ , (A.9)

where %1 =
−−→
AX and %2 =

−−→
XQ are given by (A.1) and (A.8), respectively (Figure 2).



Acceleration analysis of rigid body motion 181

References

1. O. Bottema, B. Roth, Theoretical Kinematics, North-Holland, Amsterdam, 1979.

2. I. H. Ginsberg, Advanced Engineering Dynamics, Cambridge University Press, Cam-
bridge, 1995.

3. K. Hunt, Kinematics Geometry of Mechanisms, Oxford University Press, Oxford, 1978.

4. M. G. Mohamed, Kinematics of rigid bodies in general spatial motion: second order
motion properties, Appl. Math. Modelling, 21 (1997) 471–479.

5. J. M. R. Martinez, J. Duffy, Determination of the acceleration center of a rigid body
in spatial motion, Eur. J. Mech. A/Solids, 17, (1998), 969–977.

6. L. E. Malvern, Introduction to the Mechanics of Continuous Medium, Prentice Hall,
New York, 1969.

7. G. T. Mase, G. M. Mase, Continuum Mechanics, CRC Press, London, 1997.

8. A. I. Lurje, Theory of Elasticity (in Russian), Izd. Nauka, Moscow, 1970.

9. I. N. Bronshtein, K. A. Semendyayev, G. Muisol, H. Muchling, Handbook of Math-
ematics, Springer, Berlin, 2004.





Journal of Computational and Applied Mechanics, Vol. 10, No. 2, (2015), pp. 183–208

DOI: 10.32973/jcam.2015.012

ALWAYS CONVERGENT METHODS FOR SOLVING
NONLINEAR EQUATIONS

Aurél Galántai
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Abstract. We develop always convergent methods for solving nonlinear equations of the
form f (x) = 0 (f : Rn → Rm, x ∈ B = ×n

i=1 [ai, bi]) on continuous space curves that are
lying in B. Under the only assumption that f is continuous these methods have a kind of
monotone convergence to the nearest zero on the given curve, if it exists, or the iterations
leave the region in a finite number of steps. Depending on the selection of the curve these
methods are always convergent in the previous sense. In the paper we also investigate the
selection of curves and also provide numerical test results that indicate the feasibility of the
suggested methods.
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1. Introduction

Targonszky [1] investigated the following problem:

Let f : C→ C be continuous in the closed domain

S = {z ∈ C : |z| ≤ K, ϕ0 ≤ arg z ≤ ϕ1}

and assume that f (0) 6= 0. Let

ω (δ) = sup
z1,z2∈S
|z1−z2|≤δ

|f (z1)− f (z2)|

be the modulus of continuity of f and let ρ : [0,∞) → [0,∞) be a continuous and
strictly monotone increasing function so that

ρ (0) = 0, ρ (δ) ≥ ω (δ) (δ > 0) , lim
δ→∞

ρ (δ) =∞.

c©2015 Miskolc University Press

http://dx.doi.org/10.32973/jcam.2015.012
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Furthermore assume that γ > 0 is a constant such that γK ≤ 1. Let F : [0,∞) →
[0,∞) be any continuous and strictly monotone decreasing function such that

F (0) = 1, F (x) ≥ 1

1 + x
(x > 0) .

Let

ψ (z) = zF
(
γρ−1 (|f (z)|)

)
. (1.1)

Observe that for z 6= 0, z = ψ (z) if and only if f (z) = 0. For any 0 6= z ∈ S,
f (z) 6= 0, define the iteration sequence

z0 = z (1.2)

zi+1 = ψ (zi) , i = 0, 1, . . . . (1.3)

Theorem 1. ( [1]). The iteration is always convergent in the following sense: (i) If
the line segment {tz ∈ C : 0 < t ≤ 1} contains no zero of f , then zi → 0; (ii) If the
line segment contains at least one zero of f , then zi tends to the zero that is nearest
to z.

Theorem 2. ( [1]). The line segment {tz ∈ C : 0 < t ≤ 1} contains no zero of f , if
and only if the series

∑∞
n=0 zi is convergent.

Denote by LipMβ (0 < β ≤ 1) those functions for which

‖f (x)− f (y)‖ ≤M ‖x− y‖β (x, y ∈ D ⊂ D (f)). (1.4)

Lipβ denotes the set of those functions that are LipMβ for some constant M ≥ 0.

If f ∈LipLβ (L > 0), then ω (f ; δ) = ρ (δ) = Lδβ can be chosen. Thus ρ−1 (x) =

(x/L)
1/β

and the iteration function (1.1) takes the form

ψ (z) = zF

(
γ

(
|f (z)|
L

) 1
β

)
. (1.5)

It is interesting to note that Beauzamy [2] investigated the direct paths from 0 to
the zeros of polynomials P , that is the sets {P (tzj) : 0 ≤ t ≤ 1}, where zj is a zero
of P (z) (where P is normalized so that P (0) = 1). He showed that there is always
a zero towards which the direct path declines near 0, that is |P (tzj)| < |P (0)| if t
is small enough. However, starting with degree 5, there are polynomials for which
no direct path constantly remains below the altitude 1. Observe that Targonszky’s
method approaches the zero from above.

Also note that algorithm (1.2)–(1.3) works with any function f that is continuous
on the compact set S. The weak point of the algorithm is, however, its behavior at
zero. There is no indication if f has no zero on the line segment, while the algorithm
makes infinitely many iterations.

In this paper we extend Targonszky’s method for solving nonlinear equations in
more general environments. In Section 2 we analyze and generalize some of its prop-
erties. Then we develop some classes of iteration methods with better convergence
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behavior. Using the new results we suggest always convergent iteration schemes for
solving nonlinear equations of the form

f (x) = 0 (f : Rn → Rm, x ∈ B = ×ni=1 [ai, bi]) , (1.6)

where f is continuous on B. These methods work on continuous curves lying in B and
exhibit a kind of monotone convergence to the nearest zero on the given curve, if it
exists, or the iterations leave the region in a finite number of steps. The convergence
is assured under continuity and its rate is estimated in many cases. The suggested
curves are space-filling curves and/or α-dense curves.

Definition 3. Let r : [0, 1] → [0, 1]
n

(n ≥ 2) be a continuous mapping. The curve
x = r (t) (t ∈ [0, 1]) is space-filling if r is surjective.

Given a space-filling curve r : [0, 1] → [0, 1]
n

and the hyperrectangle (or box)
B = ×ni=1 [ai, bi], the mapping

hi (t) = (bi − ai) ri (t) + ai, i = 1, . . . , n

clearly fills up the whole hyperrectangle B.

Space-filling curves are used in many areas ( [3], [4], [5], [6]). Their use in opti-
mization was first suggested by Butz [7], [8], followed by Strongin and others (see,
e.g. [9], [3], [6]). The use of Hilbert’s space-filling functions for solving nonlinear
systems was also suggested by Butz [10] and also later by Hlawka [11].

Definition 4. Let I = [a, b] ⊂ R be an interval and B = ×ni=1 [ai, bi] ⊂ Rn be a
rectangle. The map x : I → B is an α-dense curve, if for every x ∈ B, there exists a
t ∈ I such that ‖x (t)− x‖ ≤ α.

The concept and use of α−dense curves in optimization was suggested and applied
by Cherruault and Guillez (see, e.g. [12], [13] or [14]).

In Section 6 we analyze and select space-filling and α-dense functions. In Section
8 we test some of the new methods on a set of test problems in order to see the
feasibility of the suggested algorithms.

2. An analysis of Targonszky’s method

There are two key elements of Targonszky’s method. One is the iteration formula,
the other is a kind of Lipschitz property.

For the first element, we can reformulate the Targonszky method in the following
way. Set zi = zti (ti ∈ (0, 1]). Then iteration function (1.1) can be replaced by

ψ (t) = tF
(
γρ−1 (|f (zt)|)

)
, (2.1)

where function tF (y) has the following properties:

(i) tF (y) is strictly monotone increasing in t and strictly monotone decreasing in
y;

(ii) For t > 0 and y > 0, tF (y) < t;
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(iii) For t > 0, tF (y) = t if and only if y = 0.

In the next two sections we generalize this iteration method and also derive particular
formulae.

The second element is that if f has a zero z∗ = zt∗ ∈ {tz ∈ C : 0 < t ≤ 1}, then
γρ−1 (|f (zt)|) satisfies a kind of Lipschitz property

γρ−1 (|f (zt)|) ≤ |t− t
∗|

t∗
.

From the proof of Theorem 1 it seems that the latter property is the quintessential
element of Targonszky’s method. It can can be formulated more generally as follows.

Lemma 5. Assume that f ∈ C [a, b], ω (δ) = ω (f ; δ) is its modulus of continuity,
ρ : [0,∞) → [0,∞) is a strictly monotone increasing function such that ρ (0) = 0,
ρ (x) ≥ ω (x) for x ∈ [0, b− a] and limx→∞ ρ (x) = ∞. Assume that f has a zero
ξ ∈ [a, b]. Then

ρ−1 (|f (x)|) ≤ |x− ξ| (x ∈ [a, b]) .

Proof. Since |f (x)| = |f (x)− f (ξ)| ≤ ω (|x− ξ|) ≤ ρ (|x− ξ|) and ρ−1 is also strictly
monotone increasing we have ρ−1 (|f (x)|) ≤ |x− ξ|. �

If f ∈LipMβ, then ρ (δ) = ω (f ; δ) = Mδβ can be chosen. If f is not Lipschitz
β for some β (0 < β ≤ 1), then we can use the following result (for the proof, see
Efimov [15]).

Theorem 6. (S.B. Stechkin). For each modulus of continuity ω (δ), 0 ≤ δ ≤ b − a,
there is a concave modulus of continuity ω1 (δ) with the property

ω (δ) ≤ ω1 (δ) ≤ 2ω (δ) , 0 ≤ δ ≤ b− a. (2.2)

Function ω1 is called the least concave majorant of ω. It is easy to see that for
f 6≡ 0, either ω1 is strictly monotone on [0, b− a] or it is strictly increasing on some
interval [0, c] and becomes constant on [c, b− a].

In order to get a proper ρ we can take any continuous and strictly monotone
increasing function g (x) that satisfies g (0) = 0, g (x) ≥ x, and limx→∞ g (x) = ∞.
Then the function

ρ (x) =

{
g (x+ ω1 (x)) , 0 ≤ x ≤ b− a
g (x+ ω1 (b− a)) , x > b− a

will satisfy the requirements for ρ. For example, g (x) = ex − 1 is such a function.

Assume that T ⊂ Rn is a closed and bounded region and f : Rn → Rm is a
continuous function on T . The modulus of continuity of f is defined by

ω (δ) = ω (f ; δ) = sup
x1,x2∈T
‖x1−x2‖≤δ

‖f (x1)− f (x2)‖ (0 ≤ δ ≤ diam (T )) , (2.3)

where diam(T ) is the diameter of the compact region T . It is clear that ω (δ) is
monotone decreasing.
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For other properties, Kolodii and Khil’debrand [16] proved the following results:

(i) ω (δ) is continuous from the right;

(ii) ω (δ) is continuous from the left if and only if T satisfies the following condition
A: for any δ > 0 and any points x, y ∈ T , x 6= y, there are points x′, y′ ∈ T such that
‖x′ − x‖ < δ, ‖y′ − y‖ < δ and ‖x′ − y′‖ < ‖x− y‖;

(iii) ω (δ) is continuous if and only if T satisfies condition A;

(iv) ω is subadditive if and only if T is convex.

Note that any region T satisfying condition A is connected. It is also obvious that if
T is convex, then it satisfies condition A.

Lemma 7. Assume that T ⊂ Rn is a closed, bounded and convex region and f : Rn →
Rm is continuous on T . Let ωf denote the modulus of continuity of f on T . Let Γ
be any continuous curve that lays in T , that is Γ = {r (t) : 0 ≤ t ≤ τ} ⊂ T . Denote
its modulus of continuity by ωr. Assume that ρf , ρr : [0,∞)→ [0,∞) are continuous
and strictly monotone increasing functions so that

ρf (0) = 0, ρf (δ) ≥ ωf (δ) (δ ∈ [0, diam (T )]) , lim
δ→∞

ρf (δ) =∞ (2.4)

and

ρr (0) = 0, ρr (δ) ≥ ωr (δ) (δ ∈ [0, τ ]) , lim
δ→∞

ρr (δ) =∞ (2.5)

hold, respectively. If f (r (t)) has a zero ξ on the curve Γ, that is f (r (ξ)) = 0 for
some ξ ∈ [0, τ ], then

ρ−1
r

(
ρ−1
f (‖f (r (t))‖)

)
≤ |t− ξ| (t ∈ [0, τ ]) . (2.6)

Proof. Since

‖f (r (t))‖ = ‖f (r (t))− f (r (ξ))‖ ≤ ωf (‖r (t)− r (ξ)‖) ≤ ρf (‖r (t)− r (ξ)‖) ,

we have

ρ−1
f (‖f (r (t))‖) ≤ ‖r (t)− r (ξ)‖ ≤ ωr (|t− ξ|) ≤ ρr (|t− ξ|)

and

ρ−1
r

(
ρ−1
f (‖f (r (t))‖)

)
≤ |t− ξ| .

�

Assume that f ∈LipLfβ (0 < β ≤ 1). Then ωf (δ) ≤ Lfδ
β and we can select

ρf (δ) = Lfδ
β and ρ−1

f (δ) =
(
δ
Lf

)1/β

. Similarly, if curve Γ is LipLΓ
µ (µ ∈ (0, 1]),

that is

‖r (s)− r (t)‖ ≤ LΓ |s− t|µ (t, s ∈ [0, τ ]) , (2.7)
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then ωr (δ) ≤ LΓδ
µ and so we can take ρr (δ) = LΓδ

µ and ρ−1
r (δ) =

(
δ
LΓ

)1/µ

. Thus

ρ−1
r

(
ρ−1
f (δ)

)
= 1

L
1
µ
Γ

(
δ
Lf

) 1
µβ

and in the case of a zero ξ ∈ [0, τ ], we have the estimate

ρ−1
r ρ−1

f (‖f (r (t))‖) =
1

L
1
µ

Γ

(
‖f (r (t))‖

Lf

) 1
µβ

≤ |t− ξ| (t ∈ [0, τ ]) . (2.8)

In Targonszky’s case r (t) = t for which µ = 1, LΓ = |z|.

Corollary 8. Assume that both f and Γ are bi-Hölder, that is

kf ‖x− y‖β ≤ ‖f (x)− f (y)‖ ≤ Lf ‖x− y‖β (x, y ∈ T ) (2.9)

and

kΓ |s− t|µ ≤ ‖r (s)− r (t)‖ ≤ LΓ |s− t|µ (s, t ∈ [0, τ ]) . (2.10)

If f (r (t)) has a zero ξ on the curve Γ, that is f (r (ξ)) = 0 for some ξ ∈ [0, τ ], then(
kΓ

LΓ

) 1
µ
(
kf
Lf

) 1
aβ

|t− ξ| ≤ ρ−1
r ρ−1

f (‖f (r (t))‖) ≤ |t− ξ| . (2.11)

Proof. Since

kfk
β
Γ |t− ξ|

µβ ≤ ‖f (r (t))‖ ≤ LfLβΓ |t− ξ|
µβ

we have

ρ−1
r

[kfkβΓ |t− ξ|µβ
Lf

]1/β
 ≤ ρ−1

r ρ−1
f (‖f (r (t))‖) ≤ ρ−1

r (LΓ |t− ξ|µ) = |t− ξ| .

By definition

ρ−1
r

[kfkβΓ |t− ξ|µβ
Lf

]1/β
 =

(
kΓ

LΓ

) 1
µ
(
kf
Lf

) 1
aβ

|t− ξ| ,

and so we have the two-sided bound(
kΓ

LΓ

) 1
µ
(
kf
Lf

) 1
aβ

|t− ξ| ≤ ρ−1
r ρ−1

f (‖f (r (t))‖) ≤ |t− ξ| . (2.12)

�

If Γ ⊂ R is an interval, that is r (t) = t, then kΓ = LΓ = 1, µ = 1, ρr (t) = t and(
kf
Lf

) 1
β

|t− ξ| ≤ ρ−1
r ρ−1

f (‖f (r (t))‖) ≤ |t− ξ| . (2.13)
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3. A general class of iteration methods

We investigate iteration methods of the form

xi+1 = F (xi, ϕ (xi))

for solving real equation f (x) = 0 on the interval [a, 1] ([a, 1] ⊂ [0, 1], f ∈ C [a, 1]).
The selection of interval [0, 1] is only for convenience. We assume that F (x, y) =
x ⇔ y = 0 (x ≥ a), F (x, y) > x or F (x, y) < x for y > 0, ϕ (x) ≥ 0 and ϕ (x) =
0 ⇔ f (x) = 0. We also assume that y ≥ 0 and y := ϕ (x) ≤ |x− ξ|, if a zero ξ of f
exists in the interval [a, 1]. Both F and ϕ are continuous, F (x, y) is strictly monotone
increasing in x and strictly monotone in y. We separately investigate the case when
a = 0 and F (0, y) = 0 may occur for some y > 0.

Theorem 9. Assume that
(a) F (x, y) is continuous in [a, 1]× [0,∞);
(b) x ≥ a, F (x, y) = x⇔ y = 0;
(c) F (x, y) < x (x ∈ [a, 1], y > 0);
(d) For x > ξ (x, ξ ∈ [a, 1]) and 0 ≤ y ≤ x− ξ, F (x, y) ≥ ξ.
(e) F (x, y) is strictly monotone increasing in x, and strictly monotone decreasing in
y;
Assume further that ϕ (x) ≥ 0, ϕ (ξ) = 0 ⇔ f (ξ) = 0 and if a root ξ ∈ [a, 1] exists,
then ϕ (x) ≤ |x− ξ|. Let x0 = 1 and assume that ϕ (1) > 0. Define

xi+1 = F (xi, ϕ (xi)) (i = 0, 1, 2, . . .). (3.1)

Then {xi} is a strictly monotone decreasing sequence that converges to ξmax if a root
exists in [a, 1]. If no root exists, then the sequence {xi} leaves the interval [a, 1] in a
finite number of steps.

Proof. If ϕ (xi) > 0, then xi+1 < xi by (c). If ϕ (xi) = 0 then xi+1 = xi by (b).
Assume that xi > ξmax. Then ϕ (xi) ≤ xi − ξmax and xi+1 = F (xi, ϕ (xi)) ≥
ξmax by (d). Hence the sequence {xi} can not pass the zero ξmax. Since {xi} is a
monotone decreasing sequence bounded from below, it has a limit point x∗ so that
ξmax ≤ x∗ = F (x∗, ϕ (x∗)). Hence x∗ = ξmax. If there is no zero in [a, 1], then
x − F (x, ϕ (x)) ≥ m > 0 (x ∈ [a, 1]) by (c). Hence xi+1 ≤ xi −m and for a large
enough i, xi < a. �

Corollary 10. If for x > ξ (x, ξ ∈ [a, 1]) and 0 ≤ y ≤ x− ξ,

F (x, y) ≥ ξ + κ2 (x− ξ) (0 < κ2 < 1), (3.2)

and ϕ (x) is such that ϕ (x) ≤ |x− ξ| (x ∈ [a, b]), then the speed of convergence is at
best linear.

Proof. Since 0 ≤ ϕ (xi) ≤ xi − ξ, the assumption implies

xi+1 − ξmax = F (xi, ϕ (xi))− ξmax ≥ κ2 (xi − ξmax) ,

which proves this. �
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Corollary 11. If for x > ξ (x, ξ ∈ [a, 1]) and 0 ≤ θ (x− ξ) ≤ y ≤ x− ξ,

ξ + κ1 (x− ξ) ≥ F (x, y) (3.3)

holds with constant 0 < κ2 < κ1 < 1, and ϕ (x) is such that θ |x− ξ| ≤ ϕ (x) ≤ |x− ξ|
(x ∈ [a, b]), then the convergence speed is linear.

Proof. The assumption implies θ (xi − ξmax) ≤ ϕ (xi) ≤ xi − ξmax and

κ1 (xi − ξmax) ≥ xi+1 − ξmax ≥ κ2 (xi − ξmax) .

�

If a = 0 and F (x, y) = x is possible for y > 0 and x = 0, then what we can prove
is prove definitely less.

Theorem 12. Assume that
(a) F (x, y) is continuous in [0, 1]× [0,∞);
(b) x > 0, F (x, y) = x⇔ y = 0;
(c) F (x, y) < x (x ∈ (0, 1], y > 0);
(d) For x > ξ (x, ξ ∈ [0, 1]) and 0 ≤ y ≤ x− ξ, F (x, y) ≥ ξ.
(e) F (x, y) is strictly monotone increasing in x, and strictly monotone decreasing in
y;
Assume further that ϕ (x) ≥ 0, ϕ (ξ) = 0 ⇔ f (ξ) = 0 and if a root ξ ∈ [0, 1] exists,
then ϕ (x) ≤ |x− ξ|. Let x0 = 1 and assume that ϕ (1) > 0. Define

xi+1 = F (xi, ϕ (xi)) (i = 0, 1, 2, . . .). (3.4)

Then {xi} is a strictly monotone decreasing sequence that converges to ξmax if a root
exists in [0, 1]. If no root exists, then the sequence {xi} either converges to 0 or leaves
the interval [0, 1] in a finite number of steps.

Proof. If ϕ (xi) > 0, then xi+1 < xi by (c). If ϕ (xi) = 0 then xi+1 = xi by (b).
Assume that xi > ξmax. Then ϕ (xi) ≤ xi − ξmax and xi+1 = F (xi, ϕ (xi)) ≥ ξmax by
(d). Hence the sequence {xi} can not pass the zero ξmax. Since {xi} is a monotone
decreasing sequence bounded from below, it has a limit point x∗ so that ξmax ≤ x∗ =
F (x∗, ϕ (x∗)). Hence x∗ = ξmax. If there is no zero in [0, 1], then we have two possible
cases: xi ≥ 0 for all i or xi0 < 0 holds for some integer i0 > 0. If xi ≥ 0 for all i and
we have no zero in [0, 1], then xi → 0 must hold. �

Remark 13. The result is different from the previous one. The Targonszky case
indicates that problems with a = 0 if F (0, y) = 0 may happen for y > 0. The two
corollaries of the previous theorem also hold.

Theorem 14. Assume that
(a1) F (x, y) is continuous in [a, 1]× [0,∞);
(b1) x ≥ a, F (x, y) = x⇔ y = 0;
(c1) F (x, y) > x (x ∈ [a, 1], y > 0);
(d1) For x < ξ (x, ξ ∈ [a, 1]) and 0 ≤ y ≤ ξ − x, F (x, y) ≤ ξ;
(e1) F (x, y) is strictly monotone increasing both in x and y.
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Assume further that ϕ (x) ≥ 0, ϕ (ξ) = 0 ⇔ f (ξ) = 0 and if a root ξ ∈ [a, 1] exists,
then ϕ (x) ≤ |x− ξ|. Let x0 = a and assume that ϕ (a) > 0. Define

xi+1 = F (xi, ϕ (xi)) (i = 0, 1, 2, . . .). (3.5)

Then {xi} is a strictly monotone increasing sequence that converges to ξmin if a root
exists in [a, 1]. If no root exists, then the sequence {xi} leaves the interval [a, 1] in a
finite number of steps.

Proof. If ϕ (xi) > 0, then xi+1 > xi by (c1). If ϕ (xi) = 0 then xi+1 = xi by
(b1). Assume that xi > ξmax. Then ϕ (xi) ≤ ξmin − xi and xi+1 = F (xi, ϕ (xi)) ≤
ξmin by (d1). Hence the sequence {xi} cannot pass the zero ξmin. Since {xi} is a
monotone increasing sequence bounded from above, it has a limit point x∗ so that
ξmin ≥ x∗ = F (x∗, ϕ (x∗)). Hence x∗ = ξmin. If there is no zero in [a, 1], then
F (x, ϕ (x)) − x ≥ m > 0 (x ∈ [a, 1]) by (c1). Hence xi+1 ≥ xi + m and for a large
enough i, xi > 1. �

Corollary 15. If for x < ξ (x, ξ ∈ [a, 1]) and 0 ≤ y ≤ ξ − x,

F (x, y) ≤ ξ − λ2 (ξ − x) (0 < λ2 < 1), (3.6)

and ϕ (x) is such that ϕ (x) ≤ |x− ξ| (x ∈ [a, b]), then the speed of convergence is at
best linear.

Proof. The assumption implies

ξmin − xi+1 = ξmin − F (xi, ϕ (xi)) ≥ λ2 (ξmin − xi) ,

which proves this. �

Corollary 16. If for x < ξ (x, ξ ∈ [a, 1]) and 0 ≤ θ (ξ − x) ≤ y ≤ ξ − x,

ξ − λ1 (ξ − x) ≤ F (x, y) (3.7)

holds with constants 0 < λ2 < λ1 < 1, and ϕ is such that θ |x− ξ| ≤ ϕ (x) ≤ |x− ξ|
(x ∈ [a, 1]), then the convergence speed is linear.

Proof. The assumption implies θ (ξmin − xi) ≤ ϕ (xi) ≤ ξmin − xi and

λ2 (ξmin − xi) ≤ ξmin − xi+1 ≤ λ1 (ξmin − xi) .

�

For certain cases a = 0 is possible. For F (x, y) = x (1 + y) the iteration does not
start from x0 = 0.
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4. Some iteration functions

Using requirements (a)-(e), (a1)-(e1) and various assumptions on the form of
F (x, y) such as

F (x, y) = g (x)h (y) ,

F (x, y) = g (x) + h (y) ,

and

F (x, y) =
α+ βx+ γy

a+ bx+ cy

we derived the iteration functions (d-1)-(d-3), (i-1)-(i-3) given in the following tables.
These tables also contain iteration functions (d-4), (i-4) that are direct generalizations
of method [17] (see, also [18], [19]). It is assumed that function U is strictly monotone
increasing, and both U and U−1 are Lipschitz with LU−1 < 1 and LU > 1.

For the error constants κ1, κ2, λ1 and λ2 we have to assume the existence of a zero
ξ.

monotone decreasing case κ2 κ1

(d-1) F (x, y) = x
1+y (1− ξ) /2 ≥ 0 1− θξ ≤ 1

(d-2) F (x, y) = x− 1
P y (P ≥ 1) 1− 1

P ≥ 0 1− θ
P < 1

(d-3) F (x, y) = px+qy
p+wy

p−w+q
p+w ≥ 0 p−θ(wξ−q)

p < 1

(p > 0, W ≥ 0, q < 0, p ≥W − q)
(d-4) F (x, y) = U−1 (U (x)− y) 1− LU−1 1− θ

LU

monotone increasing case λ2 λ1

(i-1) F (x, y) = x (1 + y) 1− x ≥ 0 1− θx ≤ 1

(i-2) F (x, y) = x+ 1
P y (P ≥ 1) 1− 1

P ≥ 0 1− θ
P < 1

(i-3) F (x, y) = px+qy
p+wy (p ≥ q > w ≥ 0) p−(q−wξ)

p+w ≥ 0 p−θ(q−wξ)
p < 1

(i-4) F (x, y) = U−1 (U (x) + y) 1− LU−1 1− θ
LU

Formulae (d-1) and (d-2) are special cases of (d-3). Case (d-1) is Targonszky’s
formula and F (x, y) = x⇔ y = 0 holds only for x > 0.

Formula (i-2) is a special case of (i-3). For (i-1), F (x, y) = x ⇔ y = 0 holds only
for x > 0.

If U (x) = Px+ q, then U−1 (x) = x−q
P and U−1 (U (x)± y) = x± 1

P y. In this case
formulae (d-2) and (i-2) are special cases of subclasses (d-4) and (i-4).

While the determination of error constants for cases (1)-(3) is rather straightfor-
ward, cases (d-4)-(i-4) require some argument. Here we exploit the strict monotonicity
of U and U−1 as follows. For x > ξ,

U−1 (U (x)− y)− ξ ≥ κ2 (x− ξ)⇔ U (x)− y ≥ U (ξ + κ2 (x− ξ))⇔

U (x)− U (ξ + κ2 (x− ξ)) > 1

LU−1

(1− κ2) (x− ξ) ≥ x− ξ ≥ y
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holds if 1
LU−1

(1− κ2) ≥ 1. This gives the error constant κ2 ≤ 1 − LU−1 . Also we

have

κ1 (x− ξ) ≥ F (x, y)− ξ ⇔ U (κ1 (x− ξ) + ξ) ≥ U (x)− y ⇔
U (x)− U (κ1 (x− ξ) + ξ) ≤ LU (x− ξ − κ1 (x− ξ))

= LU (1− κ1) (x− ξ) ≤ θ (x− ξ) ≤ y,

that is if LU (1− κ1) ≤ θ, which leads to κ1 ≥ 1− θ
LU

.

Derivation of (i-4) error constants is similar. Note that in case (d-3) κ2 > 0, if
p > W − q. Similarly in case (i-3) λ2 > 0 if p > q.

5. Iteration methods for general equations

Here we study equations of the form

f (x) = 0 (f : Rn → Rm, x ∈ T = ×ni=1 [ai, bi]) , (5.1)

where f is continuous on the (compact) rectangle/hyperinterval T , and each of the
cases n = m, n < m and n > m is possible.

Assume that a continuous curve Γ = {r (t) : 0 ≤ t ≤ 1} ⊂ T is given. We seek for
the solution of f (x) = 0 on the curve Γ, that is the solution of equation

f (r (t)) = 0 (t ∈ [0, 1]) , (5.2)

which is equivalent to the real equation

‖f (r (t))‖ = 0 (t ∈ [0, 1]) . (5.3)

Taking any iteration method ti+1 = F (ti, ϕ (ti)) of Section 3 with

ϕ (t) = ρ−1
r

(
ρ−1
f (‖f (r (t))‖)

)
(5.4)

we have an always convergent iteration method that either solves the equation on the
curve Γ or leaves Γ in a finite number of steps.

One can easily reformulate Theorems 9, 12 and 14 and their respective Corollaries.
We just do this with Theorem 9.

Theorem 17. Assume that f : Rn → Rm is continuous on the rectangle T =
×ni=1 [ai, bi] and Γ = {r (t) : 0 ≤ t ≤ 1} ⊂ T is a continuous curve. Let ωf and ωr
be the modulus of continuity of f on T and Γ on [0, 1], respectively. Assume that
ρf , ρr : [0,∞)→ [0,∞) are continuous and strictly monotone increasing functions so
that

ρf (0) = 0, ρf (δ) ≥ ωf (δ) (δ ∈ [0, diam (T )]) , lim
δ→∞

ρf (δ) =∞ (5.5)

and
ρr (0) = 0, ρr (δ) ≥ ωr (δ) (δ ∈ [0, τ ]) , lim

δ→∞
ρr (δ) =∞ (5.6)

hold, respectively. Furthermore assume that
(a) F (x, y) is continuous in [a, 1]× [0,∞);
(b) x ≥ a, F (x, y) = x⇔ y = 0;
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(c) F (x, y) < x (x ∈ [a, 1], y > 0);
(d) For x > ξ (x, ξ ∈ [a, 1]) and 0 ≤ y ≤ x− ξ, F (x, y) ≥ ξ.
(e) F (x, y) is strictly monotone increasing in x, and strictly monotone decreasing in
y;

Define ϕ (t) = ρ−1
r

(
ρ−1
f (‖f (r (t))‖)

)
(t ∈ [a, 1]). Let t0 = 1 and assume that ϕ (1) >

0. Define

ti+1 = F (ti, ϕ (ti)) (i = 0, 1, 2, . . .). (5.7)

Then {ti} is a strictly monotone decreasing sequence that converges to ξmax if a root
ξ of ‖f (r (t))‖ = 0 exists in [a, 1]. If no root exists, then the sequence {ti} leaves the
interval [a, 1] in a finite number of steps.

If Γ is a space-filling curve, then we clearly have the always convergence property.
Butz [10] suggested using the Hilbert curve, while Hlawka [11] suggested using the
Schoenberg curve.

If the selected curve Γ is not space-filling, the algorithm may fail to find a zero.
However the space-filling functions used in practice are only approximations to the
true ones, and do not have the space-filling property. Hence in practice we are forced
to use approximate curves.

6. Selection of curves

6.1. Space-filling curves. The first examples of space-filling functions were given
by Peano in 2D and 3D and were followed by several other space-filling functions
constructed by Hilbert, Lebesgue, Sierpinski, Schoenberg and many others (see, e.g.
Singh [20], Sagan [21], Bader [22]). There are plenty of space-filling or Peano-type
curves that are applied in a variety of fields (see, e.g. Strongin-Sergeyev [3], Zumbusch
[4], Bebendorf [5], Sergeyev at al. [6]). The most often applied space-filling function
is the Hilbert function (for definition, see, e.g. [21], Butz [7], [23], [3], [4], [6]).

Lemma 18. The Hilbert mapping rH : [0, 1]→ [0, 1]
n

is space-filling, nowhere differ-
entiable and LipKµ with K = 2

√
n+ 3 and µ = 1/n:

‖rH (s)− rH (t)‖ ≤ K |s− t|1/n (s, t ∈ [0, 1]) . (6.1)

For a proof, see, e.g. [4] (p. 96). Other n-dimensional space-filling functions that
are Lip 1

n are the Peano and Sierpiński curves (see [4] p. 101).

Buckley [24] proved that there exist 2D space-filling curves f that are Lip 1
2 , but

no such curve is Lipµ for µ > 1/2. Hence for n = 2, the Lipschitz/Hölder-exponent
of the Hilbert curve is the best possible. However the estimate of Lipschitz constant
K = 2

√
5 ≈ 4.4721 is not the sharpest result. Bauman [25] proved that K = 2

√
5

can be replaced by K =
√

6 = 2.4495. For a more refined characterization of the
smoothness properties of space-filling functions, see Jaffard-Nicolay [26].

Most of the space-filling functions are defined by a possibly recursive geometric
process [21]. Any evaluation of the function at a point requires building up a good
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approximation to the whole function. We however need only to estimate the function
at certain points.

From this point of view, Schoenberg’s space filling-function [27], [28] is different,
as it is defined by absolutely convergent series that can be evaluated at any point.
Define function p as

p (t) =


0, 0 ≤ t ≤ 1/3
3t− 1, 1/3 ≤ t ≤ 2/3
1, 2/3 ≤ t ≤ 4/3
5− 3t, 4/3 ≤ t ≤ 5/3
0, 5/3 ≤ t ≤ 2

(6.2)

and extend it periodically by p (t+ 2) = p (t) (t ∈ R). Note that 0 ≤ p (t) ≤ 1 for
any t ∈ R. Also we have |p (s)− p (t)| ≤ 3 |s− t| (s, t ∈ [0, 2]), which extends to
|p (s)− p (t)| ≤ 3 |s− t| (s, t ≥ 0).

The two-dimensional space-filling curve of Schoenberg [27] is defined by

rSch (t) = [x(t), y (t)]
T

(t ∈ [0, 1]), (6.3)

where

x (t) =
1

2

∞∑
k=0

p
(
32kt

)
2k

, y (t) =
1

2

∞∑
k=0

p
(
32k+1t

)
2k

. (6.4)

Steele [29] proved that Schoenberg’s 2D curve is Lipschitz α with α = 1
2 log2 3 ≈

0.31546 (see also Jaffard-Nicolay [26]).

For general finite dimensional spaces Hlawka [11] extended Schoenberg’s functions
[27], [28]. The n-dimensional Schoenberg space-filling curve r : [0, 1] → [0, 1]

n
is

defined by

rj (t) =

∞∑
k=0

1

2k+1
p
(
3nk+j−1t

)
(j = 1, . . . , n) . (6.5)

Using the proof of Steele [29] we estimate the Lipschitz exponent and also the Lipschitz
constant.

Lemma 19. The n-dimensional Schoenberg curve is LipLα with α = 1
log2 3n and

Lipschitz constant L ≤ 32n/
√

2.

Proof. We can write

|rj (s)− rj (t)| ≤ 1

2

∑̀
k=0

∣∣p (3nk+j−1s
)
− p

(
3nk+j−1t

)∣∣
2k

+
1

2

∞∑
k=`+1

2

2k

≤ 3j |s− t|
2

∑̀
k=0

(
3n

2

)k
+

1

2`+1
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=
3n+j |s− t|
2 (3n − 2)

(
3n

2

)`
+

1

2`+1

Select ` so that

− log2 |s− t|
log2 3n

< ` ≤ − log2 |s− t|
log2 3n

+ 1.

Then

|rj (s)− rj (t)| ≤ 1

2

(
32n+j

3n − 2
+ 1

)
|s− t|

1
log2 3n

and

‖r(s)− r(t)‖22 ≤

1

4

n∑
j=1

(
32n+j

3n − 2
+ 1

)2
 |s− t| 2

log2 3n . (6.6)

A simple calculation yields the estimates for n ≥ 2 and 1 ≤ j ≤ n,

32n+j

3n − 2
+ 1 ≤ 4

3
3n+j

and
1

4

n∑
j=1

(
32n+j

3n − 2
+ 1

)2

≤ 1

2
32n

(
32n − 1

)
.

Hence we obtain the estimate

‖r(s)− r(t)‖2 ≤
32n

√
2
|s− t|

1
log2 3n .

�

A direct substitution into formula (6.6) gives a somewhat better result. For

example for n = 2 and n = 3, we obtain L = 55.54 (vs 34/
√

2 = 57.276) and

L = 417.95 (vs. 36/
√

2) = 515.48, respectively. Note however that

lim
n→∞

1
4

∑n
j=1

(
32n+j

3n−2 + 1
)2

1
234n

=
9

16
.

Note that the n-dimensional Lebesgue space-filling curve is also Lip 1
log2 3n (see [4]

p.108). Both curves are based on the Cantor set and closely related (see, e.g. [27], [4],
[26], [30]).

6.2. Alpha-dense curves. The idea of α-dense curves comes from the Alienor method
of optimization and it is due to Cherruault and Guillez (see, e.g. [12], [13]). The the-
ory and application of α-dense curves is summarized in the monograph by Cherruault
and Mora [14].

Definition 20. Let I = [a, b] ⊂ R be an interval and B = ×ni=1 [ai, bi] ⊂ Rn be a
rectangle. The map x : I → B is an α-dense curve, if for every x ∈ B, there exists a
t ∈ I such that ‖x (t)− x‖ ≤ α.



Always convergent methods for solving nonlinear equations 197

There are many α-dense curves (see, e.g. [14]). Particularly we mention two curves:

xi (t) =
1

2
(1− cos (ωi2πt)) , i = 1, . . . , n (6.7)

by Cherruault and

x1 (t) = t, (6.8)

xi (t) =
1

2

(
1− cos

(
σi−12πt

))
, i = 2, . . . , n (6.9)

by Mora.

Note that approximations of space-filling curves are also α-dense curves for some
α. For 2D, the nth approximating polygon of the Hilbert curve is α-dense with
α ≤
√

2/22n, while for 3D, α ≤
√

3/23n (see, e.g. Sagan [21]).

Mora [31] gave a characterization of the connection between space-filling curves
and α-dense curves.

The α-dense curves are not space-filling functions. Hence for any small α > 0,
the solver can fail. This may happen, however, with the approximate space-filling
functions as well.

However it is easy to evaluate/compute α-dense curves and they may be smooth
enough. It is a disadvantage that the known constructions are such that their Lipschitz
constant grows to infinity, while α→ 0.

We use the following class of α-dense curves.

Assume that fi : [0, 1] → [0, 1] (i = 1, . . . , n) are continuous functions such that
for each i = 1, 2, . . . , n, Range(fi) = [0, 1] and fi is periodically extended to R with
period 1. Also assume that there exist constants Li > 0 and 0 < βi ≤ 1 such that

|fi (x)− fi (y)| ≤ Li |x− y|βi (x, y ∈ [0, 1]) (6.10)

hold for i = 1, 2, . . . , n. Define the curve x : [0, 1]→ [0, 1]
n

by

xi (t) = fi (ωit) , i = 1, . . . , n, (6.11)

where ωi’s are positive integers such that ωi+1 = σiωi with σi ∈ N and σi ≥ 1.

It is clear that xi (t) is periodic with period Ti = 1/ωi. Note that Ti = σiTi+1.

Lemma 21. The density of curve (6.11) is

α ≤

 n∑
i=1

L2
i(

σβii

)2


1/2

(6.12)

Proof. Choose any point a ∈ [0, 1]
n
. We estimate the distance between a and the

curve x (t). There exists t1 ∈
[
0, 1

ω1

]
such that x1 (t1) = a1. There is a unique integer
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0 ≤ k1 ≤ σ1 − 1 such that t1 ∈ I1 =
[
k1

ω2
, 1+k1

ω2

]
. Note that for any t ∈ I1,

|x1 (t)− a1| = |f1 (ω1t)− f1 (ω1t1)| ≤ L1 (ω1 |t− t1|)β1 ≤ L1

σβ1

1

.

There exists t2 ∈
[
0, 1

ω2

]
such that x2 (t2) = a2. There is a unique integer 0 ≤ k2 ≤

σ2 − 1 such that t2 ∈
[
k2

ω3
, 1+k2

ω3

]
. For any t ∈

[
k2

ω3
, 1+k2

ω3

]
,

|x2 (t)− a2| = |f2 (ω2t)− f2 (ω2t2)| ≤ L2 (ω2 |t− t2|)β2 ≤ L2

σβ2

2

.

Define I2 =
[
k1

ω2
+ k2

ω3
, k1

ω2
+ 1+k2

ω3

]
. Since 1+k2

ω3
≤ 1

ω2
, I2 ⊂ I1. The periodicity

assumption implies that for t ∈ I2,

|x2 (t)− a2| ≤ L2 (ω2 |t− t2|)β2 ≤ L2

σβ2

2

also holds. Assume that for j ≥ 2, we have the interval

Ij =

[
j∑
i=1

ki
ωi+1

,
1

ωj+1
+

j∑
i=1

ki
ωi+1

]
⊂ Ij−1

such that for t ∈ Ij , |xj (t)− aj | ≤ Lj/σ
βj
j holds. There exists tj+1 ∈

[
0, 1

ωj+1

]
such

that xj+1 (tj+1) = aj+1. There is a unique integer 0 ≤ kj+1 ≤ σj+1 − 1 such that

tj+1 ∈
[
kj+1

ωj+2
,

1+kj+1

ωj+2

]
. For any t ∈

[
kj+1

ωj+2
,

1+kj+1

ωj+2

]
,

|xj+1 (t)− aj+1| ≤ Lj+1 (ωj+1 |t− tj+1|)βj+1 ≤ Lj+1

σ
βj+1

j+1

.

Define

Ij+1 =

[
j+1∑
i=1

ki
ωi+1

,
1

ωj+2
+

j+1∑
i=1

ki
ωi+1

]
.

Since
1+kj+1

ωj+2
≤ 1

ωj+1
, Ij+1 ⊂ Ij . By the periodicity of xj+1 (t), for t ∈ Ij+1,

|xj+1 (t)− aj+1| ≤ Lj+1 (ωj+1 |t− tj+1|)βj+1 ≤ Lj+1/σ
βj+1

j+1 .

Thus we have a sequence of intervals In ⊂ In−1 ⊂ · · · ⊂ I1 such that for any t ∈ In,

|xj (t)− aj | ≤
Lj

σ
βj
j

(j = 1, 2, . . . , n) .

Hence the density of x (t) is estimated by

‖x (t)− a‖22 ≤
n∑
i=1

L2
i(

σβii

)2 . (6.13)

�
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Remark 22. Since σi is specified by ωi+1 = σiωi for i = 1, . . . , n− 1, σn ≥ 1 is our
choice. If L = Lj, σi = σ > 1 and βi = 1 (i = 1, . . . , n − 1), then we can select
σn = σ and so the density estimate becomes

‖x (t)− a‖2 ≤
√
nL

σ
. (6.14)

If f1 (t) = t, ω1 = 1 and L = Lj, σi = σ > 1, βi = 1 (i = 2, . . . , n), then

‖x (t)− a‖2 ≤
√

1 + (n− 1)L2

σ
. (6.15)

Remark 23. It is clear from the proof that for f1 (t) = t, we do not need its periodic
extension to R. It also follows that for t1 6= t2, x (t1) 6= x (t2), unlike in the case of
space-filling functions.

If fi is periodically extended to R, then its Lipschitz constant may change.

Lemma 24. If fi is continuously and periodically extended to R, then

|fi (s)− fi (t)| ≤ 21−βiLi |s− t|βi (s, t ≥ 0) . (6.16)

Proof. Assume that βi = 1. If s, t ∈ [k, k + 1] (k ≥ 0 integer), then

|fi (s)− fi (t)| = |fi (s− k)− fi (t− k)| ≤ Li |s− t| ,
which clearly extends to R. Assume that βi < 1. If s, t ∈ [k, k + 1] (k ≥ 0 integer),
then

|fi (s)− fi (t)| = |fi (s− k)− fi (t− k)| ≤ Li |s− t|βi .

If, say s > t and s ∈ [k, k + 1], t ∈ [j, j + 1] and k ≥ j + 1, then by the periodicity
and the continuity

|fi (s)− fi (t)| = |fi (s)− fi (k) + fi (j + 1)− fi (t)| ≤ Li
(
|s− k|βi + |j + 1− t|βi

)
.

Since xβi is concave, the Jensen inequality implies that

|s− k|βi + |j + 1− t|βi ≤ 2

(
s− k + j + 1− t

2

)βi
≤ 2

(
s− t

2

)βi
and

|fi (s)− fi (t)| ≤ 21−βiLi |s− t|βi .

�

Corollary 25. Curve (6.11) satisfies the Lipschitz condition

‖x (t)− x (s)‖2 ≤

[
n∑
i=1

(
21−βiLiω

βi
i |s− t|

βi
)2
]1/2

(s, t ∈ [0, 1]) . (6.17)

Particularly, if L = Lj, σi = σ > 1 and βi = 1 (i = 1, . . . , n), then

‖x (t)− x (s)‖2 ≤ ω1L

(
σ2n − 1

σ2 − 1

)1/2

|s− t| (s, t ∈ [0, 1]) . (6.18)
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If f1 (t) = t, ω1 = 1 and L = Lj, σi = σ > 1, βi = 1 (i = 2, . . . , n), then

‖x (t)− x (s)‖2 ≤
(

1 + L2σ
2n − σ2

σ2 − 1

)1/2

|s− t| (s, t ∈ [0, 1]) . (6.19)

7. Comparison with known methods

The use of space filling functions for solving nonlinear equations first appeared in
Butz [10] and later in Hlawka [11]. In the context of the theory of uniform distributions
Hlawka suggested a quadrature related method that uses Schoenberg’s space-filling
curve and is different from the present approach.

Butz [10] investigated the following problem

f (x) = 0
(
f : X ⊂ [0, 1]

n → RN
)
, (7.1)

where X is nonempty and closed. Let h : [0, 1]→ [0, 1]
n

be a space-filling curve that
satisfies the Lipschitz condition

‖h (t)− h (t+ ∆)‖ ≤ B (∆t, t) ≤M∆1/n (t, t+ ∆t ∈ [0, 1] , ∆t ≥ 0) , (7.2)

where B is a nondecreasing function of ∆t, and B = 0 if and only if ∆t = 0.

Define
t (X) = min {t : t ∈ [0, 1] , h (t) ∈ X} (7.3)

and x (X) = h
(
t (X)

)
.

Theorem 26. (Butz [10]) Assume that ω (x) is some function and γ (x) is some
continuous function such that for all x ∈ [0, 1]

n
,

ω (x) ≥ γ (x) ≥ 0 (7.4)

with strict inequality on the right if x /∈ X and, if X is not empty,

ω (x) ≤ ‖x− x′‖ (7.5)

for every x′ ∈ X. Let
{
ti, xi

}
be a sequence, where t0 = 0 and xi = h

(
ti
)

such that

ti+1 = min
{

1, ti + ∆ti
}
, (7.6)

where ∆ti ≥ 0 is such that

ω
(
xi
)
≥ B

(
∆ti, ti

)
≥ min

{
κ,

1

2
ω
(
xi
)}

, (7.7)

where κ > 0 is some constant, with strict inequality on the left if ω
(
xi
)
> 0 (xi /∈ X).

Then if X is not empty, ti → t (X) and xi → x (X) with ti+1 > ti for all i (unless
h (0) ∈ X). If X is empty, ti = 1 for finite i with ω (h (1)) > 0.

Butz applies this result and Hilbert’s space-filling function to solve equation

f (x) = 0
(
f : [0, 1]

n → RN
)
,

when X is the solution set, and it is assumed that for any solution x∗ ∈ X,

|fk (x)| ≤ Kk ‖x− x∗‖ (x ∈ [0, 1]
n
, k = 1, . . . , N) (7.8)
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holds with positive constants Kk. Using

ω (x) = max
1≤k≤N

|fk (x)|
Kk

(≤ ‖x− x∗‖) (7.9)

his algorithm (7.6) takes the form

ti+1 = ti +

(
ω
(
xi
)

M

)n
(7.10)

(for this see [10], p. 379).

Since fk (x) = 0⇔ fk (x) /Kk = 0, we can assume that equation f (x) = 0 is such
that every Kk = 1. Then ω (x) = maxk |fk (x)| = ‖f (x)‖∞. Here ρr (δ) = Mδ1/n

and ρf (δ) = δ, ρ−1
r (δ) =

(
δ
M

)n
and ρ−1

f (δ) = δ. Hence

ρ1
r

(
ρ−1
f (δ)

)
= ρ−1

r (δ) =

(
δ

M

)n
,

and

ρ1
r

(
ρ−1
f (‖f (r (t))‖)

)
=

(
‖f (r (t))‖

M

)n
Hence formula (7.10) clearly corresponds to iteration function (i-2) with P = 1.

8. Numerical experiments

The purpose of testing is only to get some view about the feasibility and behavior of
the suggested algorithms. It is clear that space-filling curves have no finite arclength
and so the computation time to get the first zero on the curve (if it exists) can be
arbitrarily high. The smooth α-dense curves have finite arclength that increases to
infinity when α→ 0.

8.1. The tested algorithms and curves. 1. Targonszky’s extended formula ((d-
1))

F (x, y) =
x

1 + y
.

2. Formula (d-2) with P = 1:

F (x, y) = x− y.

This formula corresponds to formula (7.10) of Butz.

3. Formula (d-3) with fixed parameters

F (x, y) =
x− 0.5y

1 + 0.5y
.

4. Formula (d-4) with U (x) = (x+ 2)
2
:

F (x, y) =

√
(x+ 2)

2 − y − 2.
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The tested curves were the Hilbert and Schoenberg space-filling-curves and the
following α-dense curves: Cherruault curve with ωi = σi, Mora’s curve, and three
other curves of the form

x1 (t) = t

xi (t) = f
(
σi−1t

)
, i = 2, . . . , n,

with f (x) = p (2x) (Schoenberg’s p (x), identified as Schoenberg-α), f (x) = 1 −
|2x− 1| (identified as ADC1) and

f (x) =


3
2x+ 1

2 , 0 ≤ x ≤ 1/3
2− 3x, 1/3 ≤ x ≤ 2/3
3
2x− 1, 2/3 ≤ x ≤ 1

(identified as ADC2).

For the computation of the 2D Hilbert curve we used the algorithm on page 52
of Bader [22] with depth = 50, that computes the points of the curve with an error
proportional to 2−50 = 8.8818 × 10−16. For 3D, we used a recursively generated
approximate Hilbert curve with 2097152 points and density α ≈ 0.0078. The error
of the used Schoenberg curve approximation is also proportional to 2−50 = 8.8818×
10−16.

The problem of exit or termination condition is well-known both from practical
and theoretical points of view (see, e.g. Rice [32], Delahaye [33]). We set generally
the condition

‖f (r (ti))‖ ≤ tol ∨ i = itmax,

which is not the most sophisticated exit condition.

It is reasonable to have the practical lower bound ϕ (ti) ≥ εmachine on the it-
erates ti. For f ∈LipLfβ and r ∈LipLΓ

µ, this holds if and only if ‖f (r (ti))‖ ≥
LfL

β
Γε
µβ
machine. Hence the tol parameter has the lower bound tol ≥ LfL

β
Γε
µβ
machine.

Since each of the tested problems has β = 1, the lower bound changes to tol ≥
LfLΓε

µ
machine.

In double precision floating point arithmetic εmachine ≈ 2.2204e − 016. The fol-
lowing table indicates the values of constant LΓε

µ
machine of the lower bound on tol.

curve n=2 n=3
Hilbert 6.6640e− 008 2.9666e− 005
Schoenberg 6.6042e− 004 2.6310e− 001
Mora 6.9757e-013 6.9757e-010
Schoenberg-α 1.3323e-012 1.3323e-009
Cherruault 6.9757e-010 6.9757e-007
ADC1 4.4409e-013 4.4409e-010
ADC2 6.6613e-013 6.6613e-010

Note that the α-dense curve values are computed for σ = 1000 and these lower bound
constants are better than those of the space-filling curves.
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Another reasonable bound on the tolerance is the following. If there is a zero x∗

of f and x (t) is α-dense, then there must be a point t′ that ‖x (t)− x∗‖ ≤ α. Hence
if f ∈LipLfβ, then

‖f (r (t′))‖ ≤ Lf ‖r (t′)− x∗‖ ≤ Lfα.
Hence tol ≤ Lfα seems to be a practical restriction because tol must be definitely
less than Lfα to sort out the possible zero.

In comparison we give the density estimates of these curves as well (σ = 1000).

curve n=2 n=3
Mora 0.0033 0.0046
Schoenberg-α 0.0061 0.0085
Cherruault 0.0044 0.0054
ADC1 0.0022 0.0030
ADC2 0.0032 0.0044

For the 2D test problems and σ = 1000, the bound Lfα is proportional to 1e-2
except for the Powell problem No. 7 the Lipschitz constant of which is 1.7e+5. In
the case of 3D problems the smallest bounds are proportional also to 1e-2. Hence the
selection of tol = 1e− 2 seems appropriate (for similar tolerance, see also Butz [10]).

8.2. Test results. We tested the four methods on each curve and on each 2D test
problems with tol = 1e − 2 and itmax = 1e + 6. The α-dense curves used the
parameter σ = 1000. The test was carried out on a PC with Intel I7 processor
and Matlab R2011b. A summary of the obtained results (average iteration/average
precision) is contained in the following two tables, the first of which contains the best
methods versus curves, while the second contains the best curves versus methods.

best in iterations best in precision
2D curve method iteration method precision
Hilbert (d-2) 1.0848e+004 (d-2) 3.1479e-001
Schoenberg (d-1) 1e+6 (d-1) 9.0372e-001
Mora (d-2) 1.4541e+004 (d-3) 3.1661e-001
Schoenberg-α (d-2) 1.2754e+005 (d-1) 3.0483e-001
Cherruault-α (d-2) 4.7817e+004 (d-3) 1.9037e-001
ADC1 (d-2) 1.1923e+004 (d-4) 1.9774e-001
ADC2 (d-2) 1.6164e+004 (d-4) 3.1686e-001

best in iterations best in precision
method curve iteration curve precision
(d-1) ADC2 3.7099e+004 Cherruault 1.9058e-001
(d-2) Hilbert 1.0848e+004 Cherruault 1.9064e-001
(d-3) Hilbert 1.4002e+004 Cherruault 1.9037e-001
(d-4) ADC1 4.5867e+004 Cherruault 1.9065e-001
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In fact, none of the methods solved test problem No. 7 and Schoenberg’s space
filling curve did perform poorly. On average, the other method-curve combinations
performed acceptably. For 3D the situation became different. The next table contains
the results (average iteration/average precision) of 3D test problems. Here we set
itmax = 1e+ 8.

best in iterations best in precision
curve method iteration method precision
Mora (d-2) 2.7581e+006 (d-3) 2.5842e+000
Schoenberg-α (d-2) 1.1053e+007 (d-4) 5.1233e-001
Cherruault-α (d-4) 4.1809e+006 (d-4) 1.5270e-001
ADC1 (d-2) 2.0374e+006 (d-1) 2.6802e+000
ADC2 (d-2) 7.1008e+006 (d-4) 6.0737e-002

The performances of the 3D Hilbert and Schoenberg curves were so poor that the
results are not included in the table. The 3D Hilbert curve performed better; however,
the achieved precision was limited due to the lack of computer memory and a more
efficient 3D Hilbert-curve program that computes the coordinate values directly. It is
seen that α-dense curves performed better and the best methods stopped under the
exit condition ‖f (r (ti))‖ ≤ tol. The arguments of the previous subsection indicate
that smaller tol would require smaller εmachine, which can be obtained with multiple
precision arithmetic.

In general, we can say that the proposed methods are working and feasible, al-
though they are more expensive than the local methods. For higher dimension they
require the use of multiple precision and more efficient curve computation other than
those of [34], [35] and references cited therein.

9. Appendix

The test problems are taken from the Estonian test problem collection [36]. When-
ever it is available we give the original source as well.

No. 1 (Yamamoto [37])

f1 (x) = x2
1 + x3

2,

f2 (x) = x2
2

No. 2 (Powell [38])

f1 (x) = x1 − 1,

f2 (x) = x1x2 − 1.

No. 3 (Yamamoto [37])

f1 (x) = x3
1 + x1x2,
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f2 (x) = x2 + x2
2.

No. 4 (Fuchs)

f1 (x) = x2
1 − x2

2 − 1,

f2 (x) = x2
1 + x2

2 − 4.

No. 5 (Brezinski [39])

f1 (x) = 0.5x2
2 − 0.5,

f2 (x) = −x2 + sin (x1) + sin (x2 − 1) + 1.

No. 6 (Bartish)

f1 (x) = x2
1 + x2

2 − 1,

f2 (x) = 0.75x3
1 − x2.

No.7 (Powell [38])

f1 (x) = 10000x1x2 − 1,

f2 (x) = exp (−x1) + exp (−x2)− 1.0001.

No. 8 (Boggs [40])

f1 (x) = x2
1 − x2 + 1,

f2 (x) = x1 − cos (0.5πx2) .

No. 9 (Brezinski [39])

f1 (x) = −x1 + 0.5x2
2 − 1.5,

f2 (x) = −x2 + 0.605 exp
(
1− x2

1

)
+ 0.395.

No. 10 (Allgower-Georg [41])

f1 (x) =
(
x1 − x2

2

)
(x1 − sin (x2)) ,

f2 (x) = (cos (x2)− x1) (x2 − cos (x1)) .

No.11 (Yamamoto [37])

f1 (x) = x1 + x2 + x3 − 1,

f2 (x) = 0.2x3
1 + 0.5x2

2 − x3 + 0.5x2
3 + 0.5,

f3 (x) = x1 + x2 + 0.5x2
3 − 0.5.

No. 12 (Allgower-Georg [41])

f1 (x) = x2
1 + 2x2

2 − 4,

f2 (x) = x2
1 + x2

2 + x3 − 8,

f3 (x) = (x1 − 1)
2

+
(

2x2 −
√

2
)2

+ (x3 − 5)
2 − 4.
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No. 13 (Brown-Conte)

f1 (x) = 3x1 + x2 + 2x2
3 − 3,

f2 (x) = −3x1 + 5x2
2 + 2x1x3 − 1,

f3 (x) = 25x1x2 + 20x3 + 12.

No. 14 (Babitsch)

f1 (x) = x1x2 + x2x3 + x1x3 − 47,

f2 (x) = x1
1 + x2

2 − x2
3,

f3 (x) = (x3 − x1) (x3 − x2)− 2.
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Abstract. In this paper, we present two simple arrangements of portable tent structures
for flood protection. In the first, an inflated cylinder lifts the top of the textile as the water
level rises, while in the second the textile supporting the water pressure of the tide is hung
on a steel framework and is filled with water previously. We give a numerical solution for
the nonlinear system of equations of the compatibility and equilibrium conditions, and also
present a complete analytic solution to the boundary value problem of the shape of an inex-
tensible, weightless, prismatic textile, similar to the sessile drop problem. After discussing
the mechanical behavior of the structures, different geometries capable of withstanding a
certain water height are determined by a software developed for this specific purpose en-
abling the design for optimum. Furthermore, the basic rules of thumb are also formulated,
aiding the preliminary conceptual design.

Mathematical Subject Classification: 65H05, 65B99
Keywords: Portable tent, flood protection, sessile drop, elastica, nonlinear pendulum, ana-
lytic solution

1. Introduction

Due to climate change, peak water levels more and more often exceed the height
of the existing artificial embankment dams, causing ever increasing difficulties in
flood-prone, inhabited areas near regulated rivers. Since the most common current
emergency measures involve laying sandbags thus requiring considerable manpower,
new methods are desired. In the first two chapters we present two possible alterna-
tives, being fast and easy not only to transport but to construct as well, while in
the last chapter we summarize the parametric representation of the directrix shape of
a weightless, inextensible, prismatic membrane loaded by static water pressure, and
we also derive the closed form equation of the area between the curve and an arbi-
trary vertical line. These formulations involve computationally burdensome elliptic
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functions and their inverses; therefore, solving directly the governing boundary value
problem by a numerical algorithm is also a good alternative.

2. First arrangement

The international Inflater project [1], managed by the MFKK Invention and Research
Center and funded by the EU 7th Framework Programme, aimed to develop novel,
affordable mobile flood defense systems. One of the many possibilities presented there
involves a self-erecting textile. As participants, we developed a computer program
capable of determining the static and geometric properties of the structure [2]. The
detailed description of the algorithm and the analysis of the structural behavior are
given in this section.

2.1. Geometry. This portable structure, mounted on the vertical crown of the ex-
isting embankment dam, solely consists of tensile elements. The first component is
an inflated cylinder of radius r with diaphragms dividing its length into several cells
and an additional active monitoring system for over-pressure control. The second is
a sheet of impermeable textile skirt attached to a generatrix of the cylinder. The
third component involves several tie-backs of length l welded to the same generatrix
at equal distances along the length of the dam. The latter two are anchored to the
foundation, a common fixed point on the horizontal crown of the embankment dam.
A representative equilibrium cross-section is depicted in Fig. 1. We describe the setup
in the x-y coordinate system. The main input parameters of the structure geome-
try are the BCDA textile section length (lBCDA), the AB tie-back length (lAB), the
inflated cylinder radius (r), and the supported water level above crown level (h).

lAB

lCD

h

r

αA

B C

D

E
F

O x

y

Figure 1. Cross-section of the 1st arrangement

2.2. Behavior of the structure. Initially the structure lies on the ground and is
erected as the floating cylinder filled with air lifts the top of the textile with the
rising water level, while the tie-back – capable of letting the water through – prevents
the whole structure from collapsing. To avoid leakage, diaphragms and an electronic
monitoring system are applied. The sufficiency of the anchorage at point A, although
a critical issue of the general stability, is not addressed here.
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2.3. Assumptions.

• The cross-section of the structure shows only negligible alterations in the longi-
tudinal direction based on three-dimensional finite element simulation results,
therefore it is sufficient to examine only the cross section in planar deformation
state after linearly distributing the concentrated tie-back forces along directrix
B.
• The over-pressure inside the inflated cylinder is high enough to maintain the

circular cross-section, thus we handle it as a rigid body.
• The dimensions lBCDA, lAB, and r are constant, that is, all elements have

tensile stiffness large enough for the loads to cause negligibly small strains.
• The weight of the textile, the tie-back, and the cylinder are negligible compared

to the loads they bear.

2.4. Theoretical background. The internal forces and the equilibrium geometry of
the arrangement are determined by a system of four nonlinear transcendental equa-
tions. The first two express the equilibrium of the cylinder, while the other two state
the geometric compatibility of the textile.

2.4.1. Loads on the cylinder. Fig. 2 shows the loads acting on the inflated cylinder.
These are:

1. T , the specific tensile force from the tie-back,
2. S, the specific force from the textile tangential to the cylinder, and
3. p (ξ) the pressure from the water normal to the cylinder.

We describe the conformation of the whole arrangement by four parameters:

1. α, the inclination of the tie-back from the horizontal,
2. β, the angle between the horizontal and the BE line connecting the end of the

tie-back and the center of the cylinder,
3. δ, the angle between the BE line and the CE line connecting the point where

the textile separates from the cylinder and the center point, and
4. T , the specific force in the tie-back.

In terms of these parameters the coordinates of the center of the cylinder (E) are

xE = lAB cosα+ r cosβ, yE = h− lAB sinα− r sinβ, (2.1)

the coordinates of the point where the canvas separates from the cylinder (C) are

xC = xE − r cos (β + δ) , yC = yE + r sin (β + δ) , (2.2)

the inclination of the tangent of the textile from the horizontal at point C is

ϕC =
π

2
− β − δ, (2.3)

the inclination of the FE line connecting the point where the water level intersects
the cylinder and the center of the cylinder from the horizontal is

γ = −arcsin
yE
r
, (2.4)
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Figure 2. Parameters for the load calculation of the inflated cylinder

and the water pressure on the cylinder expressed as a function of the polar angle (ξ)
measured counterclockwise from the horizontal is

p (ξ) = %gr (sin ξ − sin γ) , (2.5)

where ρ = 1000 kg/m3 is the density of the water and g = 9.81 m/s2 is the gravita-
tional acceleration.

2.4.2. Equilibrium of the cylinder. The specific tensile force in the textile yields from
the moment equilibrium at point E:

S = T sin (β − α) . (2.6)

The two projections of the force equilibrium equation are:∫ β+δ

γ

p (ξ) r cos ξ dξ − T cosα+ S cosϕC = 0,

−
∫ β+δ

γ

p (ξ) r sin ξ dξ + T sinα− S sinϕC = 0,

(2.7)

which after integration and substitution of (2.3) and (2.6) lead to the first two tran-
scendental condition equations:

f1 (α, β, δ, T ) =T [sin (β − α) sin (β + δ)− cosα] +

+%gr2
[

cos2 γ + 3 sin2 γ − cos 2 (β + δ)

4
− sin γ sin (β + δ)

]
= 0,

f2 (α, β, δ, T ) =T [sin (β − α) cos (β + δ) + sinα] +

+%gr2
[
γ − β − δ

2
+

sin 2 (β + δ) + sin 2γ

4
+ sin γ cos (β + δ)

]
= 0,

(2.8)

where γ is determined via (2.4) and (2.1).
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2.4.3. Geometric compatibility of the textile. The remaining two condition equations:

f3 (α, β, δ, T ) = lBCDA − δ · r–lCD − xD = 0,

f4 (α, β, δ, T ) = h− yD = 0,
(2.9)

where lCD, xD, and yD are calculated through (4.15), (4.20), and (4.9)2, respectively,
stem from the compatibility conditions of the textile, whose loaded shape determina-
tion is described in Section 4.

2.4.4. The nonlinear system of equations. To summarize (2.8) and (2.9), we write:

f (x) = 0, where f =


f1
f2
f3
f4

 , and x =


α
β
δ
T

 . (2.10)

We solve (2.10) by a target code applying the Jacobi method implemented in MAT-
LAB 2011a (The MathWorks Inc., Natick, Massachusetts, United States). As stated
in (4.7), to find a physically admissible solution that prevents the textile from rising
above water level, that is, to prevent inflection in the directrix, the domain of f is
restricted so that the Eötvös number exceeds the critical value of 1.

2.5. Analysis of the structure.

2.5.1. Water level elevation. As an illustration, the equilibrium geometries of the
arrangement lAB = 1.1 m, lBCDA = 3.1 m, r = 0.2 m are shown in the frames of
Fig. 3 for water level rising by 10 centimeters. The corresponding specific tensile
force increases in the tie-back (T ) and in the textile (S), along with the tie-back
inclination (α), are shown in Fig. 4.

2.5.2. Maximal supported water level. The maximal supported water level h is a
function of lAB, lBCDA, and r together describing the geometry of a given arrange-
ment. This extremal state is defined by γ = −π/2. We first consider the value of
r as given and instead of δ we choose ϕC as the independent variable, constraining
yC = r (1 + cosϕC). To reach the desired h = yD, which due to (4.7)1 and (4.9)2 is
smaller than

hmax =

√
2r2 (1 + cosϕC)

2

1− cosϕC
, (2.11)

S is found from (4.9)2 to be

S =
ρg
(
h2 − y2C

)
2 (1 + cosϕC)

. (2.12)

ϕC uniquely describes Fx and Fy, the components of the water pressure resultant as
shown in Fig. 5 and in (2.13):

Fx =
%gr2

2
(1 + cosϕC)

2
, Fy =

%gr2

2
[ϕC − π + sinϕC (2 + cosϕC)] . (2.13)

Through the equilibrium of the cylinder, the tie-back position is determined via
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Figure 3. Frames of the equilibrium geomery of the arrangement
lAB = 1.1 m, lBCDA = 3.1 m, r = 0.2 m in case of the water level
rising by 10 cm in each step.
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Figure 4. Specific tensile forces in the tie-back (T ) and in the textile
(S) (left), and the tie-back inclination (α) as a function of the rising
water level (h)

α = arctan
−S sinϕC − Fy
S cosϕC + Fx

, β = α+ arcsin
Fy cosα+ Fx sinα

Fy cosϕC − Fx sinϕC
, (2.14)
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Figure 5. Decomposition of the water pressure resultant exerted on
the cylinder in case of the highest possible supported water level

yielding the tie-back and textile lengths:

lAB =
h− r (1 + sinβ)

sinα
, lBCDA = δ · r + lCD + xD, (2.15)

where δ, lCD and xD are calculated via (2.3), (4.15) and (4.20), respectively.

2.6. Preliminary design.

We have now the possible geometric parameters characterizing the extremal design
state of the structure. For a given r, their relation describes a surface in the three-
dimensional (lAB, lBCDA, h) space, the contours of which are shown in Fig. 6 by blue
lines, where it becomes possible to optimize the cost of the arrangement. Usually the
textile length is to be minimized, both for financial reasons, and because the top of
the existing dam it is going to be placed on offers a limited space, consequently the
optimal designs are extremal points of the level lines forming the red curve also shown
in Fig. 6. Agreeing upon this condition, we present the design method to define a
geometry which is capable of withstanding a water height h:

1. We assume that h includes the uncertainty of the water level and the sur-
face wave amplitudes as well. Hence reducing the problem to a quasi-static
investigation.

2. As Fig. 7 shows, the tie-back and textile lengths decrease radically with the in-
creasing cylinder radius, the critical design parameter, chosen to be the highest
feasible value.

3. lAB and lBCDA are concluded form Fig. 7.
4. S and T , the specific textile and tie-back forces are found from Fig. 8.
5. For designing the anchorage foundation, the tie-back inclination angle is shown

in Fig. 9.
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radius and maximal supported water level
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Figure 9. Extremal tie-back inclination angle as functions of the
cylinder radius and maximal supported water level

3. Second arrangement

The second scenario is invoked to life by the Airdome-Mobildam Kft. who approached
us to analyze the structure presented in this chapter. Similarly to the first problem,
we give here the shape and the specific forces of the textile and the reaction forces on
the supports.

3.1. Geometry. This arrangement, also mounted on the crown, consists of an im-
permeable textile channel attached to a steel framework. A representative loaded
cross-section solely of the textile in the plane of a frame position is presented in
Fig. 10. The textile of cross-sectional length L is suspended on the framework at
height H along two fixed directors, B1 and B2 at a vertical distance d from each
other. The inner water height is hi, the supported tidal water height over the crown
is hs.

3.2. Behavior of the structure. Initially the unloaded textile is hanging on the
supporting framework at points B1 and B2. During the fill-up, water is pumped
inside the textile from the rising tide of the river, gradually erecting the yet symmet-
ric structure. The rising supported water level deforms the structure violating the
symmetry. At this stage, the weight of the water infill acts as a gravity retaining wall.
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Figure 10. Cross-section of the 2nd arrangement

3.3. Assumptions.

• The fixed suspension points (B1 and B2) are connected in the axial direction
with sufficiently stiff elements for the textile to have translational symmetry
in that direction. This way the textile is in a planar deformation state.
• The weight of the textile is negligible compared to the perpendicular water

pressure it bears, which itself is considered as a static loading. Consequently,
the specific tensile forces S1 in the B1C1D1 and S2 in the B2C2ED2 textile
sections are constant but not necessarily equal.
• All the elements have tensile stiffnesses large enough for the loads to cause

negligibly small strains.

3.4. Unloaded, erected textile shape. Without the tidal water load the erected
structure is symmetric, therefore we only present the right half (B1C1D1) of the
arrangement H = 1.6 m, d = 5 cm and L = 6 m in Fig. 11 with internal water
level rising by 20 centimeters. The whole textile is smooth, stretches straight in
segment B1C1, leans against the ground in D1O and takes the loaded shape defined
in Chapter 4 in segment C1D1. Note, that the horizontal dimension of the structure
remains virtually unaltered during the process, thus the approximate formula for the
preliminary design to calculate the horizontal space occupied is:

ta =
L2 − 4H2 − d2

2 (L− d)
. (3.1)

3.4.1. Governing equation. The textile shape results from Chapter 4, while the geo-
metric compatibility of the structure as a whole for a given hi internal water level is
fulfilled by adjusting S1 in

f1 (S1) = 2

(
H − hi
sinϕ1

+ lC1D1
+ xD1

)
− L = 0, (3.2)
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B1

O

Figure 11. Unloaded, erected textile shape during the fillup process
with internal water level rising by 20 centimeters

where lC1D1 and xD1 are found from (4.15) and (4.20), respectively. Based on the
restriction on the Hamiltonian of the system (H0 < 0 see Section 4.2), or – in a
mechanically more expressive form – the horizontal equilibrium of a textile section,
the viable values of S1 are taken from (S1,min,∞), where

S1,min =
%gh2i

4
. (3.3)

We obtain the solution of (3.2) by the bisection method, consequently this unbounded
interval is transformed to the bounded interval of s1 ∈ (0, 1] by introducing

s1 =
S1,min

S1
. (3.4)

3.4.2. Design parameters. For calculating the necessary strength and stability of the
frame the support force components are to be determined. In case of our example we
illustrate them in Fig. 12 in terms of the internal water level elevation.
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Figure 12. Specific tensile forces and its components in the textile
(left), and initial inclination of the textile (right) as functions of the
rising internal water level

3.5. Loaded geometry. The textile still remains smooth, stretches straight in seg-
ment B2C2, leans against the ground in ED1, takes the loaded shape defined in
Chapter 4 in segment C2D2, and forms a circle section in D2E, the radius (R) and
central angle (φ) of which is:

R =
S2

%g (hi − hs)
,

φ = arccos
R− hs
R

.

(3.5)

3.5.1. Governing equation. The geometric compatibility for a given hi and hs is again
met by adjusting S2 in the cross-sectional length error:

f2 (S1) = 2

(
H − hi
sinϕ2

+ lC2D2
+Rφ+ xD2

−R sinφ

)
− L = 0, (3.6)

where lC2D2 and xD2 are found by evaluating at ϕ = π − φ the functions (4.13) and
(4.19), respectively. Similarly to the unloaded case, the solution is obtained by the
bisection method, thus the unbounded interval of S2 ∈ (S2,min,∞), where

S2,min =
%g
(
h2i − h2s

)
4

(3.7)

is transformed to the bounded interval of s2 ∈ (0, 1] by introducing

s2 =
S2,min

S2
. (3.8)
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3.6. Rise of the supported water level. Once the desired internal water level
is reached, its volume (found from (4.21) and shown in Fig. 13) does not change
throughout the increasing loading of the tide. Numerically, after the two internal
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Figure 13. Specific volume of the infill against its rising level

iteration of S1 and S2 for the geometric compatibility of the two sides, an outer
bisection iteration adjusts hi to match the volume requirement:

f3 (hi) = 2V (ϕC, π, S)− V (ϕC1 , π, S1) + V (ϕC2 , ϕD2 , S2) +

+
R2φ

2
− R2 sin 2φ

4
+R (1− cosφ) (xD2 −R sinφ) = 0,

(3.9)

where V is defined in (4.21), arguments with indice 1 and 2 represent the free and
the loaded side, respectively while the symmetric unloaded geometry is referred to by
subscripts without any index. Fixing the infill volume at the value when hi = 1.3 m
in the unloaded state, the increasing hs deforms the cross-section shown in the frames
of Fig. 14. Fig. 15 depicts the tension (S2) in the loaded textile decreasing with hs.

3.7. Conclusions.

• The structure acts as a gravity retaining wall.
• The symmetry of the erected structure is violated by the supported tidal water

pressure.
• Counter-intuitively, instead of pushing the structure away from the riverbed,

the external water pulls it closer due to the uplift.
• The internal water level decreases, although insignificantly (by 5 cm in the

presented example, see Figure 15, where the specific tensile force becomes zero
at hs = 1.25 cm).
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0 0.2 0.4 0.6 0.8 1 1.2 1.4

0
1

2
3

4
5

6
7

8
9

hs [m]

sp
ec

ifi
c

fo
rc

e
[k

N
/
m

]

S2

S2x

S2y

Figure 15. Specific tensile force and its components in the textile
loaded by the rising supported water level

• The textile tension in the supporting side decreases to zero as hs reaches hi,
when the supporting textile loosens and its shape becomes undefined.
• The properties of the side away from the river depend only on the internal

water level, which is virtually unaltered, thus its shape and tension agrees
with the unloaded state.
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• hs = hi is the critical state from stability point of view, when total load of
the tide acts only on the outer textile part, while the balancing tension in the
other side of the textile is missing.

3.8. Preliminary design. The preliminary design for an expected hs,max starts with
prescribing H and d for the framework and t, the necessary minimal length where
the textile touches the ground at the time of the maximal tidal level to prevent the
river flooding out and to provide the overall stability of the structure; and results in
the critical design force descriptors from the point of view of the framework: S1, the
specific force in the outer textile part and ϕC1

, the inclination of the textile tangent
at point C1. In Figure 16, we present the design charts supporting this simplified
work-flow. We consider the limit case when hi = 1.25hs,max, and assume that H = hi.
Having been agreed upon the safety ratio of 1.25 and infill ratio of 1, the designer
chooses a suitable t, adjusts it by d and from the left graph on Figure 16 the necessary
cross-sectional textile length is obtained alongside with S1 as is ϕC1

from the chart
on the right. For a given H, the increase in L causes a decrease in both S1 and ϕC1

,
thus not only because of the limited space available and cost efficiency reasons, but
because of overall structural stability issues, the shortest L is to be chosen meeting
the criterion on t.
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Figure 16. Dependence of the specific force in the outer textile part
(S1) (left) and the inclination of the textile tangent from the vertical
at point C1 (ϕC1

) (right) on the cross-sectional textile length (L) and
the framework height (H) when the supported water height (hs) is
0.8H
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4. Shape of the loaded textile section

Consider a prismatic, weightless, inextensible textile supporting static water pressure,
the cross-section of which is shown in Fig. 17, where the water level is at y = 0. In this
section we give the parametric functional description of this directrix (in the following
referred to as fiber) shape and the closed form equation of the V area between the
curve and the y axis. For similar structures, such as closed pressurized geomembrane
tubes c.f. [3] for the elastic case, [4] for stacked arrangement, [5] for infill with liquids
of different density, [6] for compressible subgrade soil; or [7] for liquid filled nonlinearly
elastic shells.

V
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yC

yD

xD
x

y

Figure 17. Boundary value problem of the textile shape loaded by
static water pressure

4.1. Initial value problem. The initial value problem of ordinary differential equa-
tions describing the fiber shape is given by

x′ = cosϕ,

y′ = sinϕ,

ϕ′ =
%g

S
y,

x (0) = xC ,

y (0) = yC ,

ϕ (0) = ϕC ,

(4.1)

where x and y are the horizontal and vertical coordinates respectively, ϕ is the incli-
nation of the tangent from the positive x axis in clockwise direction. % is the water
density, g is the gravitational acceleration, S is the specific tensile force in the fiber,
and prime denotes the derivative with respect to the arch length parameter (λ). The
first two equations are the compatibility conditions and the third is the tangential
equilibrium statement. Since the fiber weight is negligible and the water pressure is
normal to the curve, the equilibrium condition in the normal direction prescribes the
specific tension (S) in the fiber being constant. By eliminating y from the last two
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ODEs of (4.1), we simplify the problem to

ϕ′′ = ω2 sinϕ, ϕ′ (0) = ω2yC , ϕ (0) = yC , ω2 =
%g

S
, (4.2)

which is analogous to the nonlinear pendulum equation [8] except the sign change.
The same equation governs the elastica [9] and capillarity problems and if we consider
S to be the surface tension, we arrive at the problem of sessile drops.

4.2. The first integral. We can define the corresponding Lagrangian:

L = ϕ′2 + 4ω2 sin2 ϕ

2
, (4.3)

which does not depend explicitly on the arch-length, thus following Noether’s theo-
rem [10] we construct a conserved quantity:

H = ϕ′2 − 4ω2 sin2 ϕ

2
= const. (4.4)

This – speaking in mechanical terms – states the horizontal equilibrium of a textile
section. At a certain depth the first term is proportional to the horizontal hydrostatic
load resultant, the second is proportional to the horizontal tensile force in the textile,
resulting in the alternate form of (4.4):

H̃ =
ρgy2

2
+ S cosϕ = const. (4.5)

In the followings we work with the form of (4.4). This translational symmetry, analo-
gous to the energy or the Hamiltonian of the pendulum moving in conservative field,
suggests scrutinizing the periodic phase space and its two qualitatively different tra-
jectories DTCD (0 < H = const.) and SUVS (0 > H = const.) separated by the
dash-dotted separatrix (H = 0) in Fig. 18. We introduce two constants:

H0 = ω4y2C −Hp sin2 ϕC
2
, Hp = 4ω2, (4.6)

which correspond to the total energy and the maximal potential energy of the pen-
dulum, respectively.

In case of the first arrangement (Chapter 2), we allow only the curves above the
upper separatrix since it restricts the y coordinate to be positive, that is the fibre
does not rise above the water level, and has no inflection, which is the only physically
acceptable scenario, analogous to the overturning pendulum. The necessary criterion
is H0 > 0, which yields an inequality constraint to the boundary conditions given by

yC > yl, where yl =

√
2 (1− cosϕc)S

%g
, or

Eo > 1, where Eo =
%gy2c

2 (1− cosϕc)S
.

(4.7)

Here yl is the capillarity length and Eo is the Eötvös number both measuring the
relationship between the gravity and surface tension effects, and are extensively used
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Figure 18. Phase space of the Hamiltonian

for analyzing capillarity phenomena such as the shape of pendant or sessile drops [11].
Now we are able to determine

y (ϕ) =

√
y2C +

4

ω2

(
sin2 ϕ

2
− sin2 ϕC

2

)
, (4.8)

which gives us the maximal and minimal textile heights denoted by points D and T
in the phase space:

yT =

√
y2C −

2

ω2
(1− cosϕC),

yD =

√
y2C +

2

ω2
(1 + cosϕC).

(4.9)

In case of the second arrangement (Chapter 3), analogous to the oscillating pendulum,
the only viable curves are between the separatrices (H0 < 0) with initial conditions
ϕ′ = 0 and ϕ > 0, turning around the relations in (4.7), but leaving (4.8) unaltered.

4.3. Elliptic functions. In the followings we use the definition of Legendre’s elliptic
integrals (4.10) and the Jacobi functions (4.11). These are the incomplete elliptic
integrals of the first (F) and second (E) kind; the Jacobi amplitude (am), the sinus
amplitudinis (sn), and cosinus amplitudinis (cn) functions:

F (ϕ|A) =

∫ ϕ

0

dφ√
1−A sin2 φ

,

E (ϕ|A) =

∫ ϕ

0

√
1−A sin2 φ dφ,

(4.10)

am (λ|A) = F−1 (λ|A) ,

sn (λ|A) = sin [am (λ|A)] ,

cn (λ|A) = cos [am (λ|A)] ,

(4.11)
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4.4. Parametric description of the fiber. In the first scenario Hp = 4ω2 > 0,

H0 > 0, and ϕ′ > 0; in the second H0 < −Hp sin2(ϕC/2) < 0 and ϕ′ > 0 since
ϕ ∈ [ϕC, π]. Consequently, for both arrangements (4.4) results in the ODE:

ϕ′ =

√
H0 +Hp sin2 ϕ

2
, (4.12)

and its solutions:

λ (ϕ) = sign (H0)
2√
H0

F
(ϕ

2
|A
)
− λC , and ϕ

(
λ̄
)

= 2am
(
λ̄|A

)
, where (4.13)

λ̄ = sign (H0)

√
H0

2
(λ+ λC) , λC = sign (H0)

2√
H0

F
(ϕC

2
|A
)
, A = −Hp

H0
.

(4.14)
Hence the length of the CD curve is

lCD = sign (H0)
2√
H0

[
F
(ϕD

2
|A
)
− F

(ϕC

2
|A
)]
. (4.15)

Substituting (4.13)2 into (4.8) gives

y
(
λ̄
)

=

√
y2C +

4

ω2

[
sn2
(
λ̄|A

)
− sin2 ϕC

2

]
. (4.16)

Merging (4.2)1 and (4.13)2, we get

x′ = cos
[
2am

(
λ̄|A

)]
= 1− 2sn2

(
λ̄|A

)
, (4.17)

and its solution

x
(
λ̄
)

= xC +
4H0 + 2Hp√

H0Hp

(
λ̄− λ̄C

)
+

+
4
√
H0

Hp

{
E
[
am
(
λ̄C|A

)
|A
]
− E

[
am
(
λ̄|A

)
|A
]}
,

(4.18)

where λ̄C =
√
H0λC/2, or in terms of ϕ

x (ϕ) = xC + sign (H0)
4H0 + 2Hp√

H0Hp

[
F
(ϕ

2
|A
)
− F

(ϕC

2
|A
)]

+

+ sign (H0)
4
√
H0

Hp

[
E
(ϕC

2
|A
)
− E

(ϕ
2
|A
)]
.

(4.19)

We also give the x coordinate of point D:

xD = xC + lCD
Hp + 2H0

Hp
+ sign (H0)

4
√
H0

Hp

[
E
(ϕC

2
|A
)
− E

(ϕD

2
|A
)]
. (4.20)
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4.5. Enclosed area. The area between the y axis and the curve, when ϕ ∈ [ϕC, ϕD]
(shaded area in Fig. 17), can be deduced using Green’s theorem, partial integration,
variable change, (4.16) and (4.1)1,3 in this order, as shown in (4.21).

V (ϕC, ϕD, S) =

∫ yD

yC

x dy =

∫ lCD

0

xy′ dλ = [xy]
D
C −

∫ lCD

0

x′y dλ =

= [xy]
D
C −

∫ ϕD

ϕC

x′y

ϕ′
dϕ = xDyD − xCyC −

∫ ϕD

ϕC

cosϕy

ω2y
dϕ =

= xDyD − xCyC −
1

ω2

∫ ϕD

ϕC

cosϕdϕ =

= xDyD − xCyC + (sinϕC − sinϕD)
S

ρg
.

(4.21)

4.6. Conclusion. In this section we derived the parametric functional description of
the cross-sectional shape and the explicit function of the enclosed area of an inex-
tensible weightless prismatic textile subjected to water pressure loading and constant
specific tensile force with known initial point coordinates (xC, yC) and prescribed ini-
tial tangent line inclination (ϕC). As a summary, we give here the most important
equations of the fiber position:

x (ϕ) =xC + sign (H0)
4H0 + 2Hp√

H0Hp

[
F
(ϕ

2
|A
)
− F

(ϕC

2
|A
)]

+

+ sign (H0)
4
√
H0

Hp

[
E
(ϕC

2
|A
)
− E

(ϕ
2
|A
)]
,

y (ϕ) =

√
y2C +

4S

ρg

(
sin2 ϕ

2
− sin2 ϕC

2

)
,

(4.22)

and the area enclosed by the y axis and the curve:

V (ϕ) = xy − xCyC + (sinϕC − sinϕ)
S

ρg
, (4.23)

the parameter (ϕ) being the inclination angle.
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Abstract. The relative sliding motion of two elastic bodies in contact induces wear process
and contact shape evolution. The transient process at the constant relative velocity between
the bodies tends to a steady state occurring at fixed contact stress and strain distribution.
This state corresponds to a minimum of the wear dissipation power. The optimality condi-
tions of the functional provide the contact stress distribution and the wear rate compatible
with the rigid body punch motion. The present paper is devoted to analysis of wear processes
occurring for periodic sliding of contacting bodies, assuming cyclic steady state conditions
for mechanical fields. From the condition of the rigid body wear velocity a formula for sum-
marized contact pressure in the periodic steady state is derived. The optimization problem
is formulated for calculation of the contact surface shape induced by wear in the steady
periodic state.

Mathematical Subject Classification:
Keywords: steady wear process, periodic sliding, unilateral contact, p-version of finite ele-
ment method, shape optimization

1. Introduction

The wear process on the frictional interface of two bodies in a relative sliding motion
induces shape evolution. In many practical industrial applications it is very important
to predict the form of wear shape and contact stresses. Usually the simulation of the

c©2015 Miskolc University Press

http://dx.doi.org/10.32973/jcam.2015.014
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contact shape evolution is performed by numerical integration of the modified Archard
wear rule expressed in terms of the relative slip velocity and contact pressure.

For cases of monotonic sliding motion the minimization of the wear dissipation
power provided the contact pressure distribution and rigid body wear velocities di-
rectly without time integration of the wear rule until the steady state is reached, cf.
[1, 2, 3, 4]. (The steady state is reached when the contact stress is fixed with respect to
the moving contact domain and the rigid body wear velocity is constant in time. The
quasi-steady wear state is reached for the stress distribution dependent on a slowly
varying contact domain Sc(t). It is important, that in general contact conditions the
vector of wear rate is not normal to the contact surface and has tangential component
[1]. A fundamental assumption was introduced, namely, in the steady state the wear
rate vector is collinear with the rigid body wear velocity of a sliding body, allowed by
boundary constraints.

In [1] a new idea of the wear rate vector and new form of the wear dissipation
power was presented. This new principle was applied in the analysis of the steady
wear states in disk and drum brakes.

Next, this approach was extended in [2] by the authors of previous analysis to
specification of steady-state contact shapes with account for coupled wear and thermal
distortion effects. The wear rule was assumed as a non-linear relation of wear rate
to shear stress and relative sliding velocity. The analysis of wear of disks and drum
brakes was presented with account for the thermal distortion effect.

In [3] the improved numerical analysis of the thermo-elastic contact coupled with
wear process was developed. The coupled thermo-mechanical problem has been nu-
merically treated by applying the operator split technique. For larger values of rela-
tive sliding velocities and moving frictional heat fluxes the thermal analysis requires
application of upwind technique. Neglecting temperature dependence of material pa-
rameters, it was concluded that the contact pressure distribution in the steady-state
is not affected by temperature field, but the contact surface shape reached in the wear
process strongly depends on the thermal distortion. A brake system with different
shoes support was investigated, deriving the contact pressure distribution also for the
steady wear state.

In [4] the numerical analysis of coupled thermo-elastic steady wear regimes was
presented: wear analysis of a punch translating on an elastic strip and wear induced
by a rotating punch on a toroidal surface. The wear and friction parameters were
assumed as fixed or temperature dependent. The incremental procedure for temper-
ature dependent parameters was established. Three transverse friction models were
discussed accounting for the effect of wear debris motion. It was demonstrated, that
the contact pressure distribution depends only on the transformed wear velocities,
friction coefficient and wear parameter b, and is not dependent on relative velocity
and wear parameter β̃i (see (1)). The contact conformity condition was defined. In
the cases of wear of punch and wear of two bodies the contact pressure distribution
in the steady state is governed by the relative rigid body motion induced by wear.
On the other hand, when only wear of substrate takes place, the contact pressure
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distribution is specified from the contact conformity condition and depends on the
elastic moduli of contacting bodies. In literature there are numerous works dealing
with fretting problems when in the contact domain both adhesion and slip sub-regions
can develop, [5, 6, 7, 8, 9]. The periodic contact sliding was treated in some papers,
cf. [10, 11].

The extension of variational method is presented for the case of multi-zone contact
problems for steady wear states in [12] which both transient and steady states have
been analyzed.

Paper [13] was aimed at extending the results of previous analyses [1, 2, 3, 4] of
steady state conditions to cases of periodic sliding of contacting bodies, assuming the
existence of cyclic steady state conditions. In the time integration it was be assumed
that contact pressure distribution is fixed during the semi-cycle and varies discontin-
uously during sliding reversal in consecutive semi-cycles. The p-version of the finite
element method is well suited for solving the contact problems with high accuracy,
using the blending technique for approximation of the shape. Wear prediction was
made in the brake system by using the averaging technique of results from monotonic
motions. The contact pressure distribution has been derived in the discretized form
for 3 cases using the Green functions. Case 1 : wear of both punch and substrate,
Case 2 : wear of substrate only, Case 3 : wear of punch only.

In particular, the body B1 can be regarded as a punch translating and rotating
relative to the substrate.

Several classes of wear problems can be distinguished and discussed for specified
loading and support conditions for two bodies in the relative sliding motion: Class 1 :
The contact zone Sc is fixed on one of sliding bodies (like punch) and translates on the
surface of the other body (substrate). The rigid body wear velocity is compatible with
the specified boundary conditions. The steady state condition is reached when the
contact pressure distribution corresponds to the wear rate proportional to the rigid
body velocity [2, 3]. The relative velocity between the bodies is constant in time.
Class 2 : Similarly as for Class 1 the contact zone Sc is fixed but the wear process
occurs for periodic sliding motion. Class 3 : Similarly as for Class 1 the relative
velocity is constant, but the load is periodic in time. Class 4: Similarly as for Class
2 the contact zone is fixed, but the wear process reaches the steady state for periodic
load and periodic sliding motion (for instance in braking process). In the case Class
1 from minimization of the wear dissipation power it is easy to derive the formulae
for contact pressure distribution [2, 3]. Paper [6] presents the analysis of wear for the
case of periodic sliding of contacting bodies, assuming cyclic steady state conditions
with account for the heat generation at the contact surface. In particular, the body
B1 can be regarded as a punch translating and rotating relative to the substrate B2.

It is assumed that strains are small and the materials of the contacting bodies
are linearly elastic. In discretization of the contacting bodies for the displacement
and temperature determination, the p-version of finite elements was used, [13, 14],
assuring fast convergence of the numerical process and providing a high level accuracy
of geometry for shape optimization.
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The specific examples are related to the analysis of punch wear induced by recipro-
cal sliding along a rectilinear path on an elastic strip. The external loads acting on the
punch are not symmetric. Specifying the steady state contact pressure distributions
for an arbitrarily constrained punch, it is noted that the pressure at one contact edge
vanishes, and the maximal pressure is reached at the other edge. It was shown that
by summarizing pressure values for consecutive semi-cycles, the resulting distribution
is obtained that corresponds to a rigid body displacement of punch. The analysis of
the same example with account for heat generation demonstrates that the thermal
distortion affects essentially the contact shape and the transient contact pressure dis-
tribution [15]. However, it was shown that in the steady wear state for reciprocal
sliding, the contact pressure reaches the same distribution as that obtained for the
case of neglect of heat generation, but the steady state contact shapes are different.

In the case of periodic sliding motion, the steady state cyclic solution should be
specified and the averaged pressure in one cycle and the averaged wear velocity can
be determined from the averaged wear dissipation in one cycle. In our investigation
between the bodies it was assumed that the stick zone no longer exists and the whole
contact zone undergoes sliding. The tangential stress can then be directly calculated
from the contact pressure and the coefficient of friction.

2. Wear rule and wear rate vector

The modified Archard wear rule [1] specifies the wear rate ẇi,n of the i-th body in
the normal contact direction. Following the previous work [1, 2] it is assumed that

ẇi,n = βi(τn)bi‖u̇τ‖ai = βi(µ pn)bi‖u̇τ‖ai = βi(µ pn)bivair = β̃ip
bi
n v

ai
r , i = 1, 2 (1)

where µ is the friction coefficient, βi, ai, bi are the wear parameters, β̃i = βiµ
bi ,

vr = ||u̇τ || is the relative tangential velocity between the bodies, constrained by the
boundary conditions.

Figure 1. Reference frame and wear rate vectors on the contact
surface Sc. Coaxiality rule of ẇR and eR.

The shear stress at the contact surface is expressed in terms of the contact pressure
pn by the Coulomb friction law τn = µpn. In general contact conditions the wear
rate vector ẇi is not normal to the contact surface and results from the constraints
imposed on the rigid body motion of punch B1. Introducing the local reference triad
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eτ1, eτ2, nc on the contact surface Sc (see Figure 1), where nc is the unit normal
vector, directed into body B2, ni is the unit surface normal of the i-th body, eτ1 is
the unit tangent vector coaxial with the sliding velocity and eτ2 is the transverse unit
vector, the wear rate vectors of bodies B1 and B2 are

ẇ1 = −ẇ1,n nc + ẇ1,τ1 eτ1 + ẇ1,τ2 eτ2 , ẇ2 = ẇ2,n nc− ẇ2,τ1 eτ1− ẇ2,τ2 eτ2 . (2)

The contact traction on Sc can be expressed as follows [3]

tc = tc1 = −tc2 = −p±nρ±c , ρ±c = nc ± µ eτ1 + µd eτ2 (3)

where ρ±c specifies the orientation and magnitude of traction tc with reference to the
contact pressure pn and µd is the transverse friction coefficient. The sign + in (2)
corresponds to the case when the relative tangential velocity is u̇τ = u̇(2)

τ − u̇(1)
τ =

−‖u̇τ‖ eτ1 = −vreτ1 with the corresponding shear stress acting on the body B1 along
−eτ1. The fundamental coaxially rule was stated by Páczelt and Mróz [1, 2, 3, 4],
namely: in the steady state the wear rate vector ẇR is collinear with the rigid body
wear velocity vector λ̇R, thus

ẇR = ẇR eR , eR =
λ̇R∥∥∥λ̇R∥∥∥ =

λ̇F + λ̇M ×∆r∥∥∥λ̇F + λ̇M ×∆r
∥∥∥ , (4)

where ∆r is the position vector. The coaxiality rule is illustrated in Figure 1. The
normal and tangential wear rate components now are

ẇn = ẇR cos χ , ẇτ = ẇR sinχ = ẇn tanχ (5)

where χ is the angle between nc and eR . The wear rate components in the tangential
directions are

ẇτ1 = wR sinχ cosχ1 , ẇτ2 = wR sinχ sinχ1 (6)

where the angle χ1 is formed between the projection of ẇR on Sc and eτ,1 as shown
in Figure 1. Let us note that the sliding velocity vr = ‖u̇τ‖ is specified from the
boundary conditions and the wear velocity vectors λ̇F and λ̇M should be determined
from the solution of a specific problem. In the analysis of sliding wear problems the
elastic term of relative sliding velocity is usually neglected.

3. Steady state conditions for monotonic motion

It has been shown in [1, 2] that the steady state conditions for monotonic motion can
be obtained from minimization of the wear dissipation power subject to equilibrium
constraints for body B1. The wear dissipation power for the case of wear of two bodies
equals

Dw =

2∑
i=1

∫
Sc

(tci · ẇi) dS

 =

2∑
i=1

Ci . (7)
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The global equilibrium conditions for the body B1 can be expressed as follows

f = −
∫
Sc

ρ±c p±n dS + f0 = 0

m = −
∫
Sc

∆ r × ρ±c p±n dS + m0 = 0

(8)

where f0 and m0 denote the resultant force and moment acting on the body B1 .
The formula for contact pressure at steady wear state can be found in papers [1, 2, 4]
and for multi-contact zone cases the contact pressure’s formula can be found in [12].

4. Wear dissipation in periodic motion and summed pressure in periodic
steady wear state

In this section we shall analyse the wear process induced by the reciprocal strip
translation. It is assumed that only the punch undergoes wear (see Figure 2), that is
in our case β̃1 6= 0, β̃2 = 0.

a) b)
Figure 2. Periodic sliding on the contact interface between punch and
strip. The number of finite elements in body 1 along the x direction
is 8, and in vertical z direction is 7. The lines are drown through the
Lobatto integral coordinates.

In the analysis the contact pressure distribution is assumed as fixed during semi-
cycle and varies discontinuously during sliding reversal in consecutive semi-cycle. The
temperature distribution varies continuously during each cycle period [15]. The cou-
pled thermo-mechanical problem was solved by the operator split technique [16]. The
wear effect is calculated incrementally by applying the Archard type wear rule (1).
The wear is accumulated at the end of half period of motion, so the contact pressure
is fixed (at the iteration level), and the transient heat conduction problem is next
solved for the given temperature field at the beginning of half period.
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The steady state contact pressure distribution in the wear process induced by peri-
odic sliding does not depend on the value of wear factor β̃1 nor generated temperature
field, but the wear induced contact surface shape is strongly affected.

During the steady periodic response the wear increment accumulated during one
cycle should be compatible at each point x ∈ Sc with the rigid body punch motion.

The wear dissipation work for periodic motion is

Ew =
1

2

2∑
i=1

T∗/2∫
0

∫
S

(i)
c

(tc+i · ẇ
+
i ) dS

 dτ +
1

2

2∑
i=1

T∗∫
T∗/2

∫
S

(i)
c

(tc−i · ẇ
−
i ) dS

 dτ

(9)
where tc+i , tc−i is the contact traction vector and ẇ+

i , ẇ
−
i is the wear velocity of the

i-th body in the progressive and reciprocal motion direction, T∗ is the period of sliding
motion, T∗ = 2π/ω.

Figure 3. The wear process occurring on the contact interface be-
tween punch and strip translating with the relative velocity vr =

u0 ω sinωτ, u̇τ = −vr eτ1. The segment M̃Ñ of the substrate takes
part in the wear process.

In our case the tangential velocity of body 2 is (see Figure 3):

u̇τ = u̇(2)
τ − u̇(1)

τ = u0 ω sinωτ ex = −u0 ω sinωτ eτ1 = −vr eτ1 (10)

with the corresponding shear stress acting on the body B1 along −eτ1. The integral
of the relative velocity between the bodies is

T∗/2∫
0

vrdτ =

T∗∫
T∗/2

vrdτ = 2u0 . (11)

In view of the wear rule (1) the wear dissipation for the punch of Figure 2 is

Ew =
1

2

1∑
i=1

T∗/2∫
0

 ∫
S

(1)
c

p+
n ẇ

+
1,ndS

 dτ +
1

2

1∑
i=1

T∗∫
T∗/2

 ∫
S

(1)
c

p−n ẇ
−
1,n dS

 dτ (12)
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and for β̃1 6= 0, β̃2 = 0, a1 = b1 = 1 there is

Ew

2u0 β̃1

=

∫
S

(1)
c

{
(
p+
n

)2
+
(
p−n
)2

)} dS =
E+
w

2u0 β̃1

+
E−
w

2u0 β̃1

. (13)

In the steady wear state Ew reaches a minimum value. Let us note that p+
n and

p−n are not uniformly distributed at the contact interface. Taking the coordinate
x̃ = 1130− x it can be stated that p(x) = p(x̃) during the consecutive semi-cycles of
reciprocal sliding.

It is very important, that during the steady wear periodic state the wear increment
accumulated during one cycle should be compatible at each point p(x) = p(x̃) with
the rigid body punch motion. The main idea for derivation of the wear increment
and summed pressure for 2D system with cylindrical contact surface is collected in
the Appendix.

Assume the rigid body wear velocities for left (−) and right (+) directions of the
substrate in the following

λ̇
−
F = −λ̇−F ez , λ̇

−
M = λ̇−M ey , λ̇

+

F = −λ̇+
F ez , λ̇

+

M = −λ̇+
M ey . (14)

Thus the velocities at an arbitrary point at punch, Figure 2b, are −(λ̇+
F + λ̇+

M x̃)ez,
or −(λ̇−F − λ̇

−
M x̃)ez. The displacements resulting from this velocities are

− (∆λ+
F + ∆λ+

M x̃)ez and − (∆λ−F −∆λ−M x̃)ez (15)

where

∆λ+
F,M =

T∗/2∫
0

λ̇+
F,M dt , ∆λ−F,M

T∗∫
T∗/2

λ̇−F,M dt .

Thus, the total wear accumulated during one sliding cycle is

∆wn = ∆w+
n + ∆w−

n = (∆λ−F + ∆λ+
F )− (∆λ−M −∆λ+

M ) x̃ (16)

This value of wear can be calculated from the wear law supposing β̃1 6= 0, β̃2 = 0,
a1 = b1 = 1, thus according to (A.12)

∆wn = ∆w+
n + ∆w−

n = Q (p+
n + p−n ) = 2 Q pm = QpΣ (17)

where

pm = (p+
n + p−n )/2 = pΣ/2 and Q = β̃1

T∗/2∫
0

‖u̇τ‖ dt .

Comparing (16) and (17), it is seen that the distribution of the sum of contact pressure
values of consecutive semi-cycles must be a linear function of position, thus

pm = pCm + pLm x̃ (18)
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that is

∆wn = ∆w+
n +∆w−

n = (∆λ−F+∆λ+
F )−(∆λ−M−∆λ+

M ) x̃ = β̃1

T∗∫
0

‖u̇τ‖ dt 2 (pCm+pLm x̃),

where ∆λ±
F,M

is the increment of rigid body wear velocities in the half period time.
Using the equilibrium equations for summed loads, the summed pressure for the steady
wear state is determined as

pCm =
F0

Sc
− 3F0(−L+ 2x̃F )

LSc
, pLm =

6F0(−L+ 2x̃F )

L2 Sc
,

pΣ = 2pm = p+
n + p−n = 2(pCm + pLm x̃)

(19)

where x̃F is the coordinate of the resultant load F0 = F0(p∼) . For non-negativity of
pm there should be L/2 6 x̃F 6 2L/3. At x̃F = L/2 the results of [5, 6] are obtained.
Here Sc is the area of contact zone.

The wear increment in one period equals (note that the contact pressure is fixed
in half period)

∆w1,n = β̃1

[
p+
n + p−n

]
(u0ω)

T∗/2∫
0

|sin ωτ | dτ (20)

which using (11) provides the simple relation

∆w1,n = β̃1

[
p+
n + p−n

]
2u0 = Q pΣ (21)

where Q = β̃1 2u0 and the averaged wear rate in one period equals

¯̇w1,n =
∆w1,n

T∗
=
β̃1[p+

n + p−n ]

T∗
2u0 . (22)

If the rigid body wear velocity λ+
M = λ−M = 0, (at the supports see Figure 2a), then

in the steady periodic wear regime the uniform wear increment is accumulated during
full cycle at each point of the contact zone and the following condition should be
satisfied

p+
n + p−n = 2pm = const . (23a)

Remark : If a1 = 1 b = b1 6= 1 then in a periodic steady state there must be(
p+
n

) b
+
(
p−n
) b

= 2(pm)
b

= const2 (23b)

where pm is the contact pressure at the centre of the punch contact zone, at x = 1100.
Because at x = 1070, p−n = 0 the contact pressure is

p+
n (x = 1070) = 21/bpm (23c)

At the other perimeter at x = 1130 it holds that p+
n = 0 and

p−n (x = 1130) = 21/bpm . (23d)
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Performing time integration of the wear rate rule for a1 = b1 = 1 during the one half
period, the wear increment is calculated in the following way

∆w
(j)
1,n =

tp+T∗/2∫
tp

β̃1 p
(j)
n (τ) u0 ω |sinωτ | dτ ∼= β̃1 p

(j)
n (tp + T∗/2)

T∗/2∫
0

u0ω |sinωτ | dτ

(24)
where tp is the time of start of the half period, p(j)

n = p
(j)
n (tp + T∗/2).

The accumulated wear at the end of half period at the iterational step j equals

w
(j)
1,n(tp + T∗/2) = w1,n(tp) + ∆w

(j)
1,n = w1,n(tp) + β̃1 p

(j)
n 2 u0 (25)

or in other notation

w
(j)
1,n(tp + T∗/2)=tp+T∗/2w

(j)
1,n = tpw1,n + ∆w

(j)
1,n . (26)

This j type iterational process is repeated until j = J when the following convergence
criterion for contact shape is satisfied, thus

ew = 100

∣∣∣∣∣∣
∫
Sc

(
tpg+∆w

(j)
1,n

)
dS−

∫
Sc

(
tpg+∆w

(j−1)
1,n

)
dS

∣∣∣∣∣∣ /
∫
Sc

(
tpg + ∆w

(j−1)
1,n

)
dS 6

6 0.01 . (27)

Here tpg is the initial gap at the beginning of the half period.
Remark: If a1 = 1, b = b1 6= 1 then the wear increment during the one half period is

∆w
(j)
1,n = β̃1

(
p(j)
n

) b
2 u0 . (28)

In practical calculations the iterative scheme of contact pressure and wear shape
correction can be modified after k half cycles, so we can write

tp+kT∗/2w1,n = tpw1,n + k∆w
(J)
1,n . (29)

In our case choosing the extrapolation factor k in the following way:
for the numerical steps n ≤ 50, k = 1; for 50 < n ≤ 100, k = 5 and when n > 100,
then k = 10.
The number of the half periods in the interval then is

50 6 n 6 100 nhp = 50 + (n− 50) · 5 ,
n > 100 nhp = 300 + (n− 100) · 10 .

(30)

5. Examples

5.1. Example 1: wear of punch induced by periodic sliding of the substrate.
Let us analyze the wear of punch (Body 1) shown in Figure 2. We would like to
examine two types of constraints, one when the punch can move only in the vertical
direction (see Figure 2a), and second when the punch has additional rotation around
a pin (see Figure 2b). The point M in the punch has coordinates: x = 1070, z = 100.
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The following geometric parameters are assumed: the punch width is L = 60 mm, its
height is h = 100 mm, the thickness of punch and strip is tth = 10 mm.

The wear parameters are: β̃1 = 1.25π·10−8, β̃2 = 0, a1 = 1, b1 = 1, the coefficient of
friction is µ = 0.25. The horizontal displacement of the substrate is uτ = −u0 cosωτ ,
where u0 = 1.5 mm, ω = 10 rad/s, τ is the time. The material parameters are
presented in Table 1.

Table 1. Mechanical parameters of two materials
Young modulus

Poisson ratio
Material density

MPa kg/m3

Material 1 (steel) 2.0× 105 0.30 7800
Material 2 (composite) 1.3× 105 0.23 846

The upper parts of the punch and strip are assumed to be made of the same
materials, (Material 1, see Table 1). The lower punch portion of height 20 mm is
characterized by the parameters of Material 2, see Table 1).

5.1.1. Symmetric load. The punch is loaded on the upper boundary z = 200 mm by
the uniform pressure p∼ = 16.666 MPa corresponding to the resultant vertical force
F0 = 10.0 kN.

The wear parameter is b = 1. This problem was analyzed with no account for heat
generation in [13], and with account for heat generation in [15]. The numerical results
of paper [13] are collected in Table 2 and in Figure 4 for lz = 40mm.

Let us denote the contact pressure for the punch of Figure 2a by pn(λ̇F ), for the
punch of Figure 2b for lz = 20 and lz = 40 by pn(λ̇F , λ̇M , lz = 20) and pn(λ̇F , λ̇M , lz =
40), respectively.

After time integration of the Archard wear rule the contact pressures at the point
M are collected in Table 2 versus the numerical time steps n for different punch
constraints.

It is clear that convergence to the pressure 33.333 MPa proceeds for all cases of
constraints. In the case lz = 40mm the evolution of the shape and contact pressure
is demonstrated in Figure 4.

Because the loading distribution is symmetric, the distribution of the pressure and
shape is also symmetric. The optimal solutions (marked by . . . ) corresponds to the
monotonic relative motion. Also it is observed, that after n ≥ 1500, the pressure
distribution does not change and the contact profile is preserved, moving along the
punch axis like a rigid line. In this case ∆λ−F = ∆λ+

F ,∆λ
−
M = ∆λ+

M , that is in the
wear process the accumulated punch wear is the same during each period, the pressure
distribution is pm = pCm = p∼, and the summed pressure pΣ = p+

n + p−n = 2pm = 2p∼.
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Table 2. Mechanical parameters of two materials

n
no. of half

pn(λ̇F ) pn(λ̇F , λ̇M , `z = 20) pn(λ̇F , λ̇M , `z = 40)period nhp
1 1 0.14841933E + 03 0.10087461E + 03 0.13837226E + 03

50 50 0.11470731E + 03 0.87926576E + 02 0.10745308E + 03
100 300 0.69721237E + 02 0.57950338E + 02 0.67301651E + 02
200 1300 0.46654939E + 02 0.41195687E + 02 0.46039272E + 02
300 2300 0.40931186E + 02 0.36462991E + 02 0.40376545E + 02
400 3300 0.37501127E + 02 0.35565594E + 02 0.37620120E + 02
500 4300 0.36392637E + 02 0.34548895E + 02 0.36225178E + 02
600 5300 0.35307986E + 02 0.33997961E + 02 0.35262677E + 02
700 6300 0.34768942E + 02 0.33713578E + 02 0.34696425E + 02
800 7300 0.34330459E + 02 0.33562469E + 02 0.34205548E + 02
900 8300 0.34008547E + 02 0.33456073E + 02 0.33905548E + 02
1000 9300 0.33529593E + 02 0.33394566E + 02 0.33758886E + 02
1100 10300 0.33568957E + 02 0.33358149E + 02 0.33445945E + 02
1500 15300 0.33403968E + 02 0.33307992E + 02 0.33345945E + 02
1700 16300 0.33372654E + 02 0.33304515E + 02 0.33335945E + 02
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Figure 4. a) Contact pressure at different time steps and sliding di-
rections, b) Evolution of shape of punch for reciprocal motion, lz = 40
mm, the load p∼ = 16.666 MPa and resultant force’s coordinate is
x̃F = L/2.

The wear parameter is b 6= 1. Let us investigate the periodic wear process at β̃1 =
1.25π µ0.210−8, β̃2 = 0, and a1 = 1, b = b1 = 1.2, µ = 0.25. The displacement of
body 2 is: u = −u0 cosωτ , where u0 = 1.5 mm, ω = 10 rad/s.

Performing time integration of (1) we see that after the number of half periods
(n ≥ 1100) nhp ≥ 10300 the wear process reaches its steady state. In this case the
value 2 (pm)

b
= const2 = 61.48, where pm = 17.369 MPa, p+

n = p−n = 30.948 MPa.
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Comparing the contact pressure and shape of punch in the steady state, we see
that the pressure for b = 1.2 at the border of contact zone is lower than that for
b = 1, and at the centre of the punch the pressure is higher. The contact shape for
b = 1.2 is shown by the curve placed above that predicted for b = 1 cf. Figure 5.
On the other hand, for the case b = 0.8, the contact pressure is higher than that for
b = 1 at the perimeters points, and the contact shape curve is lower than that for
b = 1. It also is noted that for the wear parameter value β̃1 = 1.25π µ−0.210−8 which
is smallest, the steady state is reached at n = 2500. Then the pressure in the centre is
pm = 15.886 MPa, the value 2 (pm)

b
= const2 = 18.274, the pressure at the perimeter

points are p+
n = p−n = 37.806 MPa and calculated value is (p+

n )
b

= (p−n )
b

= 18.283.
The calculation error 100

[
(p+
n )
b − 2 (pm)

b
]
/2 (pm)

b
= 0.0055 is very small. Also

p+
n (x = 1070) = 21/bpm, pm = 15.8954 MPa.

1070 1080 1090 1100 1110 1120 1130
0

5

10

15

20

25

30

35

40

45

50

 x~=1130−x [mm]

p
n
 [
M

P
a
] 
 

F
0
=10.0 kN, Contact pressure by different wear parameter b [MPa]

n=3000, b=0.8 (− .)

n=1500, b=1 (−)

n=1500, b=1.2 (− −)

Rightward sliding direction

Leftward sliding direction

1070 1080 1090 1100 1110 1120 1130
0

1

2

3

4

5

6
x 10

−3

 x~=1130−x [mm]

S
h
a
p
e
 [
m

m
] 
 

F
0

=10.0 kN, Shapes by different wear parameter b [mm]

n=1500, b=1.2 (− −)

n=1500, b=1 (−)

n=3000, b=0.8 (− .)

a) b)
Figure 5. The effect of the wear parameter b on the periodic steady
wear state, a) distribution of the contact pressure, b) contact shape
of punch. (maximal shape function ordinate is 6 µm).

5.1.2. Non-symmetric load. Let us now analyze the case of eccentric load when the
resultant vertical force equals F0 = 10 kN and its position coordinate is in the interval
L/2 = 30 ≤ x̃F ≤ 2L/3 = 40.

The first case. The pressure p∼ = 20 MPa is applied in the interval 10 ≤ x̃ ≤ 60. The
resultant position coordinate is x̃F ≤ 35 mm. This load case represents the variant
2. The results are presented in Figures 6. Figures 6a,c demonstrate the pressure
at different numbers of half cycles and Figures 6b,d present the summed pressure
pΣ = p+

n + p−n = 2pm. It is seen that after n ≥ 1000 the summed pressure prac-
tically does not change. Its distribution is presented by a linear function. A small
oscillation is observed because in the solution of the contact problem the positional
technique has not been used [17]. In our calculation it is required, that the gap in point
x = 1130 mm of the contact zone is fixed during consecutive iterations. The contact
shapes are shown in Figure 7a,b. If the pin height is lz = 20mm, the obtained pressure
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Figure 6. Periodic wear process for the load variant 2: a), c), e)
evolution of pressures, b), d), f) evolution of the summed pressure
pΣ = 2pm.
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Figure 7. Evolution of contact shapes for periodic wear process at
the load variant 2: a), c), n = 100− 3500, b), d) n = 5000− 7000.

distribution is shown in Figure 6e, and the summed pressure is shown in Figure
6f. The contact shapes are presented in Figures 7c,d. Because in the equation for
summed pressure (19) the height lz is absent, the summed pressures for lz = 20 mm,
and lz = 40 mm must be the same. This fact is also demonstrated by the numerical
time integration results (compare Figures 6d and 6f).

The second case. The pressures p∼1 = 25 MPa, p∼2 = 12.5 MPa act in the intervals:
p∼1 : 30 ≤ x̃ ≤ 60, p∼2 : 10 ≤ x̃ ≤ 30. The resultant vertical force is F0 = 10 kN, the
resultant position coordinate is x̃F ≤ 37.5 mm. This load case corresponds to variant
3.

The pressure distribution can be seen in Figures 8a,c the summed pressure in Fig-
ures 8b,d. The maximum of the pressure is higher than before, because the resultant
coordinate x̃F is larger with 2.5 mm. In this case the high pressure at the border of
contact domain very quickly decreases. For the periodic steady wear state the maxi-
mum of the pressure can be calculated from the summed pressure, which is predicted
without time integration! For each half period the contact gap has been specified.
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For the rightward sliding direction the maximum of the contact pressure is on the left
border of contact zone, but for the leftward sliding direction the maximum is in the
interior of the contact zone.
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Figure 8. Periodic wear process for the load variant 3: a), c) evolution
of the pressures, b), d) evolution of the summed pressure pΣ = 2pm.

The wear is larger for the loading variant 3 than for the variant 2. However, the
character of wear process is the same. The shape evolution is presented in Figures
9a,b.

5.2. Example 2: Periodic steady wear state for brake system. Consider the
periodic tangential relative displacement of body B2 (disk) with respect to body B1

in the direction eτ

uτ = u0 cosωτ eτ (31)

where u0 and ω are the amplitude and angular velocity of the motion.
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Figure 9. Evolution of the contact shapes for periodic wear process
at the load variant 3: a) n = 500− 3500, b) n = 2500− 7500.

The relative sliding velocity and the cycle period are

u̇τ = −u0 ω sinωτ eτ = −vr eτ (32a)

vr = ‖u̇τ‖ = |ω u0 sinωτ | = |v0 sinωτ | , T∗ =
2π

ω
, v0 = ω u0 (32b)
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Figure 10. Brake system, a) α0 = 30◦, the resultant force F0 = 10
kN, thickness of bodies tth = 10 mm; b) finite element mesh of the
half part of the system, number of contact elements are 11, number of
elements in radial direction is 4, the p-version of the finite elements
have p = 8 polynomial degree. The liners are drawn through the
Lobatto integral coordinates.

The shoe (body B1) is loaded by the force F 0 = −F0 ez. In our case F0 = 10 kN.
The Lagrangian multiplier λ̇F represent the vertical wear velocity.
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distribution at different time steps.
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It is easy to calculate the average normal wear rate for body 1. (The normal wear
vector is ẇ1,n = −ẇ1,nnc)

¯̇w1,n =
1

T∗

T∗∫
0

β̃1p
b
nv

a1
r dτ =

β̃1p
b
n

T∗

T∗∫
0

va1r dτ = β̃1p
b
nv̄

a1
r (33)

The vertical average wear rate is
¯̇wR = ¯̇w1,n/ cosα (34)

In view of (32)-(34), the average vertical wear rate in one period equals

¯̇wR =
1

cosα

β̃1[p+b
n + p−bn ]

T∗
(u0ω)a1

T∗/2∫
0

|sin ωτ |a1 dτ (35a)

which for a1 = b = 1 provides the relation

¯̇wR =
1

cosα

β̃1[p+
n + p−n ]

T∗
2u0 , ∆wR = ¯̇wRT∗ =

1

cosα
(p+
n + p−n )β̃12u0 (35b)

where ∆wR is the vertical wear increment for one motion cycle.

Let us note that p+
n and p−n are not uniformly distributed on the contact interface.

To assure the uniform wear increment ∆wR accumulated during full cycle at each
point of the contact zone, the following condition should be satisfied according to
results of (A.20) in Appendix

∆wR =
∆w1,n

cosα
=
QpΣ

cosα
= Q2pCm = const (36)

where
pΣ = p+

n + p−n = 2pm = 2pCm cosα , Q = β̃1 2u0 (37)

The wear parameters are β̃1 = 0.5π · 10−8, β̃2 = 0, a1 = b1 = 1. The sliding
parameters are u0 = 1.5 mm, ω = 10 rad/s. Using time integration of the wear rule
in the usual way, the obtained contact pressure evolution is demonstrated in Figure
11 at the beginning of numerical steps n = 1000. The number of the half periods are
calculated by (10).

With increasing number of cycles condition (37) is progressively better satisfied, see
Figure 11. Here pΣ = pΣ(α) = (p+

n + p−n ) = 2pCm cosα. At n = 4200, pΣ(0) = 12.42
MPa, at n = 6500 pΣ(0) = 11.67 MPa , at n = 7200 pΣ(0) = 10.93 MPa , at n = 8700
pΣ(0) = 10.71 MPa, at n = 9200 pΣ(0) = 10.69 MPa, at n = 10000 pΣ(0) = 10.66 MPa
and at n = 12100 pΣ = 10.62 MPa, that is n⇒∞ pΣ(0) = 2pCm. The value of pΣ(0) as
the function of n is demonstrated in Figure 12. At the beginning of the wear process
the drop of pressure pΣ(0) is very high, next it exponentially decreases to the value
pΣ(0) = 2pm = 10.57 MPa. This value is calculated from (A.15).

The evolution of the contact shape is also interesting. In the initial phase the wear
is high in the middle contact portion, and next the shape tends to its steady form
which translates vertically as a rigid line, see Figure 13.
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Figure 12. Satisfying the constraint of uniform vertical wear increment.
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Figure 13. Evolution of contact shape in the wear process.
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Figure 14. Prediction of contact shape from the averaged monotonic
sliding motion between the shoe and disk.

The averaging technique for prediction of the shape form [13] provides an overesti-
mated wear form, see Figure 14. In [13] it was demonstrated that the shape does not
depend on the coefficient of friction. At the centre point the averaged shape function
has the value 0.07503 mm, and the shape function obtained by time integration of the
wear rule has the value 0.07456 mm. The error is less than 1%. A small asymmetry
has been found from time integration.

6. Optimization problem

6.1. Specification of the initial wear form. Let us analyze the wear of punch
(Body 1) shown in Figure 2a. We would like to find the steady contact shape for
periodic motion using the results of monotonic strip sliding in the leftward or right-
ward direction and develop a new optimization technique. The punch now is allowed
to execute a rigid body wear velocity λ̇F [13, 15] which is normal to the contact in-
terface. The optimal pressure for steady wear state is uniform, p+

n = p−n = p∼. The
calculation of the initial gap that is the wear shape is performed by loading separately
each body by the optimal contact pressure and friction stress. In this case the bodies
are not allowed for the rigid body motion in the vertical direction. For monotonic
sliding the equation requiring the total contact gap to vanish specifies the wear gap
g, thus

d = u(2)
n − u(1)

n − λF + g = 0 (38)

where the rigid body wear velocity of the punch is known from the stationary condi-
tion, so that λF = λ̇F ts, where ts is the selected time instant specifying initiation of
the steady state. The steady state shapes can be found in Figure 15 where at leftward
sliding it is set: g(x = 1070) = 0, and at rightward sliding: g(x = 1130) = 0.
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Denoting by shape(l), shape(r) the resulting wear shape curves during the leftward
and rightward monotonic sliding (see Figure 15), assume the shape curve for reciprocal
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Figure 16. Prediction of the wear shape for periodic wear process
from the results of monotonic sliding. The average shape is Shape(a)

sliding to be approximated by the sum of monotonic shape curves, thus

Shape(a) = shape(l) + shape(r) − 2 · shape(l)(x = 1100) (39)

where the last term specifies the translation of the curve along the z-axis in order to
obtain the zero value at the mid contact point (see Figure 16). It is seen that the
prediction is not close to the actual wear form at the contact edges. It is also noted
that shapes at n = 1000 and n = 1500 are practically the same, so the wear process
has reached its steady state at n = 1000.
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The evolution of the wear dissipation energy for one cycle is plotted in Figure 17.
The continuous line corresponds to the leftward, and the dotted line to the rightward
sliding direction of the substrate. The wear dissipation energy very quickly decreases
and tends to its minimum level.
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Figure 18. δw = ∆w1,n − min ∆w1,n = (∆w+

1,n + ∆w−
1,n) −

min(∆w+
1,n+ ∆w−

1,n) at different time periods, a) at the beginning of
the wear process, b) in the steady state.

Theoretically calculating the value

δw = ∆w1,n −min ∆w1,n (40)

it is expected that in the steady state it must vanish. Here δw is the wear difference
after one sliding period. In Figure 18 the evolution of δw is shown at the beginning
of the wear process (a), and at the periodical steady state (b). In the initial period
of the wear process, δw is ∼100 time greater than that at the steady state. In the
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steady state it reaches a stabilized small value. It seems to be impossible to reduce
δw to zero in the numerical calculation process.

6.2. Solution of the optimization problem using splines. In view of the pre-
ceding analysis, the following optimization problem can be stated for calculation of
the wear shape

min
gn
{ max δw = ∆w1,n max −∆w1,n min | p±n ≥ 0, d±n ≥ 0,

p±n d
±
n = 0, τ+

n = µp+
n , τ−n = −µp−n , f = 0, m = 0

}
(41)

where ∆w1,n max,∆w1,n min are the maximum and minimum values of wear attained
in one cycle, f = 0, m = 0 are the punch equilibrium equations.

The global equilibrium conditions for the body B1 can be expressed as (8).

According to Signorini contact conditions in the normal direction the contact pres-
sure must be positive in the contact zone and distance after deformation between the
bodies must also be positive, thus

d±n = u(2)±
n − u(1)±

n + gn ≥ 0 (42)

where u(i)
n = u(i) ·nc is the normal displacement of the i-th body, gn is the initial gap

(shape of body 1 in the periodic steady state which is not given, but must be found
in the optimization process). The Signorini conditions for the whole period then are

p±n d
±
n = 0, p±n ≥ 0, d±n ≥ 0 . (43)

The objective function can be stated as: Iδw =
∫
Sc
δw dS, or Iδw · max δw. The

steady state condition then is Iδw = 0, also max δw = 0. Numerically this extremum
cannot be reached. In our examples it is found that Iδw · max δw ∼ 10−6.

6.2.1. First step in the solution of the optimization problem (41). The optimization
problem is solved in two steps.

A. First we take the average shape for monotonic motions [5], see Figure 16(-+)
line, to build a cubic spline for the next points:
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x mm Shape mm

1 0.10700000E+04 0.18265000E-02
2 0.10707500E+04 0.16335910E-02
3 0.10715000E+04 0.14934270E-02
4 0.10736300E+04 0.11869800E-02
5 0.10757500E+04 0.95190000E-03
6 0.10778800E+04 0.76108000E-03
7 0.10800000E+04 0.60226500E-03
8 0.10900000E+04 0.13810000E-03
9 0.11000000E+04 0.00000000E-00

10 0.11136300E+04 0.26240500E-03
11 0.11200000E+04 0.60244000E-03
12 0.11221300E+04 0.76135000E-03
13 0.11242500E+04 0.95234000E-03
14 0.11263800E+04 0.11876850E-02
15 0.11285000E+04 0.14945845E-02
16 0.11292500E+04 0.16349025E-02
17 0.11300000E+04 0.18279500E-02
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Figure 19. Shape modification specified with 9-th polynomial order.

B. Then transform the data in the following way

∆ ·m · (x− 1100)q/ (L/2)
q for x ≤ 1100 ,

∆ ·m · (−x+ 1100)q/ (L/2)
q for x < 1100 .

(44)

We take q = 9, ∆ = 0.0004 mm, m = 1, 2, ..., 7. This procedure is named polyno-
mial iteration. The shapes are demonstrated in Figure 19. In this figure the curve
obtained from time integration of the wear rule (- - o) is presented. It is seen that
the approximation curve at m = 7 is lower than the curve (- - o). That is, the spline
approximation must be modified.

6.2.2. Second step in the solution of the optimization problem (41). In the second step
we suppose that the new wear function can be approximated by the Taylor series

δw = δw(0) +

16∑
j=1

∂ (δw)

∂aj
∆ aj (45)



256 I. Páczelt, Z. Mroz, A. Baksa

that is we can calculate the spline parameters aj
The derivative ∂ (δw) /∂aj is determined in the numerical way, so that

∂ (δw)

∂aj
≈
δw(a

(0)
1 , ..., a

(0)
j + ∆s, ..., a

(0)
16 )− δw(0)

∆s
(46)

In our case ∆s = 0.00002.
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Figure 20. Shape modification specified by spline modification.

For each j the contact problem must be solved and the wear is calculated for one
sliding period. For the control of the condition δw = 0, 16 point zones in the con-
tact domain are taken, and using the Raphson iteration technique, new spline point
coordinates can easily be found:

anewj = a
(0)
j + ∆ aj (47)
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Figure 21. Contact pressure evolution due to different polynomial
shape modifications, a) for rightward sliding motion, b) for leftward
sliding motion.
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Figure 22. Contact pressure evolution due to spline modifications, a)
for rightward sliding motion, b) for leftward sliding motion.

where the algebraic system is

[
∂(δw)i
∂aj

]
i,j=1,16



∆a1

...
∆aj
...

∆a16

 = −



δw1

...
δwj
...

δw16



(0)

(48)

Using this technique, after ms = 1, 2, 3 spline modifications we obtain a nice result,
see Figure 20. The calculated shape is practically the same as that obtained from
time integration. The contact pressure distributions are presented in Figures 21 and
22. When the averaged monotonic shape is applied, the contact pressure has a high
value at the perimeter points changing with the sliding direction, see Figure 21. After
polynomial iteration the pressure value is lower than that in the steady state, see
in Figure 21, lines (–+). After the end of the second step, the pressure exhibits a
very small oscillation, so the optimal solution is very close to the numerically specified
result (see Figure 22). It can be concluded that the recommended optimization process
provides correct results.

6.3. Solution of the optimization problem by applying the penalty tech-
nique. The objective function can be presented in a different form, using the pressure
constraint in the periodic steady wear state. Define the pressure difference for the
rigid body wear velocity λ̇±F 6= 0, λ̇±M = 0 (see (23a))

∆pn = p+
n + p−n − 2pm (49)

If ∆pn = 0 at each point of contact zone, then the corresponding contact shape is
correct. If not, then the shape must be modified. Using the idea of penalty technique
[18], we can write

∆pn = p+
n + p−n − 2pm = cn(u+

n + g+
n + u−n + g−n )− 2pm (50)



258 I. Páczelt, Z. Mroz, A. Baksa

where g+
n and g−n are the shapes (gaps) at the end of the + or – sliding direction , cn

is the penalty parameter used for the normal contact problem.

a) b)
Figure 23. Contact pressure distribution and shape evolution. a) pn
at steady state, b) shape modification in the i-th (+ direction sliding)
and (i+ 1)-th (- direction sliding) iterational step

.

If ∆pn 6= 0 the shape must be changed, that is instead of (50) it can be written

∆p±n = p+
n + p−n − 2pm = cn(u+

n + g∓n + u−n + g±n ) + c∆g±n − 2pm (51)

The optimizational problem can be written in the following form

min
gn
{
∫
Sc

1

2
(p+
n + p−n − 2pm)2 dS | p±n > 0, d±n > 0, p±n d

±
n = 0,

τ+
n = µ p+

n , τ−n = −µ p−n , Equilibrium equations for punch} (52)

where the minimum of (52) provides the contact pressure distribution satisfying (49)
for ∆pn = 0. The shear stress τ±n acts on the contact surface of Body 1 in the direction
of x-axis.

For solution of the minimization problem (52) a special iterational process is rec-
ommended. In each step the Signorini contact conditions: p±n d±n = 0, p±n ≥ 0, d±n ≥ 0,
and the Coulomb dry friction law τ+

n = µp+
n , τ−n = −µp−n must be satisfied in the so-

lution of contact problem and next the modified contact shape should be determined.
The shape modification is taken from equation (51).
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Consider the half cycle i of the + sliding direction, next i + 1 of the – sliding
direction and similarly the consecutive half cycle i+2 for + sliding direction and i+3
for – direction of sliding and so on.

According to Figure 23 in the interval xl ≤ x ≤ xcl the contact pressures are
0 ≤ p+

n , p−n = 0 in the interval xcl ≤ x ≤ xcr the pressures are 0 ≤ p+
n , 0 ≤ p−n and in

the interval xcr ≤ x ≤ xr the pressures are p+
n = 0, 0 ≤ p−n .

Let us begin the i-th half cycle. Then

∆p±n = p+
n + p−n − 2pm = cn(u+

n + g∓n + u−n + g±n ) + c∆g±n − 2pm (53)

in the interval xl ≤ x ≤ xcl because g
+(i)
n = g

−(i−1)
n + ∆g

+(i)
n . It is supposed that

in the right direction of sliding at the end of half cycle the new shape is modified by
∆g

+(i)
n . The modification of the shape is

∆p+
n

cn
− (u+(i)

n + g−(i−1)
n ) = ∆g+(i)

n − 2pm
cn

= ∆g̃+(i)
n . (54)

In the interval xcl ≤ x ≤ xcr in right direction

∆p+
n = p+(i)

n + p−(i−1)
n − 2pm =

= cn(u+(i)
n + g−(i−1)

n + u−(i−1)
n + g−(i−1)

n ) + cn∆g+(i)
n − 2pm , (55)

∆p+
n

cn
− (u+(i)

n + u−(i−1)
n + 2g(i−1)

n ) = ∆g+(i)
n − 2pm

cn
= ∆g̃+(i)

n . (56)

For numerical calculation it is supposed that at the point xcr of the contact domain
the modification of the gap is equal to zero, that is ∆g̃

+(i)
n −∆g̃

+(i)
n (xcr) = ∆g

+(i)num
n

and the new shape at the end of + direction motion is

g+(i)
n = g−(i−1)

n + ∆g+(i)num
n . (57)

In the interval xcr ≤ x ≤ xr in the left direction we have

∆p−n = p−(i+1)
n − 2pm = cn(u−(i+1)

n + g+(i)
n ) + cn∆g−(i+1)

n − 2pm (58)

that is
∆p−n
cn
− (u−(i+1)

n + g+(i)
n ) = ∆g−(i+1)

n − 2pm
cn

= ∆g̃−(i+1)
n (59)

and in the interval xcl ≤ x ≤ xcr for the left direction there is

∆p−n = p+(i)
n + p−(i+1)

n − 2pm =

= cn(u+(i)
n + (g−(i−1)

n + ∆g+(i)
n ) + u−(i+1)

n + g+(i)
n ) + cn∆g−(i+1)

n − 2pm

where g+(i)
n = g

−(i+1)
n + ∆g

+(i)
n , thus

∆p−n = p+(i)
n +p−(i+1)

n −2pm = cn(u+(i)
n +u−(i+1)

n + 2g+(i)
n ) + cc∆g

−(i+1)
n −2pm (60)

and
∆p−n
cn
− (u+(i)

n + u−(i+1)
n + 2g+(i)

n ) = ∆g−(i+1)
n − 2pm

cn
= ∆g̃−(i+1)

n (61)

Science in point xcl the modification of the gap is equal to zero

∆g̃−(i+1)
n −∆g̃−(i+1)

n (xcl) = ∆g−(i+1)num
n
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for numerical calculation the modification of the gap will be

g−(i+1)
n = g+(i)

n + ∆g−(i+1)num
n (62)

Now repeat the calculations for the consecutive period
Right motion:

xl ≤ x ≤ xcl
∆p+

n

cn
− (u+(i+2)

n + g−(i+1)
n ) = ∆g+(i+2)

n − 2pm
cn

= ∆g̃+(i+2)
n (63)

xcl ≤ x ≤ xcr
∆p+

n

cn
− (u+(i+2)

n + g−(i+1)
n + u−(i+1)

n + g−(i+1)
n ) = ∆g+(i+2)

n − 2pm
cn

∆p+
n

cn
− (u+(i+2)

n + u−(i+1)
n + 2g−(i+1)

n ) = ∆g+(i+2)
n − 2pm

cn
= ∆g̃+(i+2)

n

(64)

Left motion

xcr ≤ x ≤ xr
∆p−n
cn
− (u−(i+3)

n + g+(i+2)
n ) = ∆g−(i+3)

n − 2pm
cn

= ∆g̃−(i+3)
n (65)

xcl ≤ x ≤ xcr
∆p−n
cn
− (u+(i+2)

n + g+(i+2)
n + u−(i+3)

n + g+(i+2)
n ) = ∆g−(i+3)

n − 2pm
cn

∆p−n
cn
− (u+(i+2)

n + u−(i+3)
n + 2g+(i+2)

n ) = ∆g−(i+3)
n − 2pm

cn
= ∆g̃−(i+3)

n

(66)

where

∆g̃+(i+2)
n − ∆g̃+(i+2)

n (xcr) = ∆g+(i+2)num
n , g+(i+2)

n = g−(i+1)
n + ∆g+(i+2)num

n ,

∆g̃−(i+3)
n − ∆g̃−(i+3)

n (xcl) = ∆g−(i+3)num
n , g−(i+3)

n = g+(i+2)
n + ∆g−(i+3)num

n .

In this formulation for one period and (i+2-i+3) -th steps, the change of the shape is

g−(i+3)
n = g−(i+1)

n + ∆g+(i+2)num
n + ∆g−(i+3)num

n (67)

In the numerical calculation for each cycle, initially the shape at the point x =
0.5(xl + xr), z = 100 is set to zero value, that is the shape is moved vertically to this
point.

Example 1:
For determination of the shape in periodic steady state for the punch Figure 2a, let
us apply the above iteration process. The initial shape is taken from the solution for
averaged monotonic sliding. Using this initial form the proposed iteration procedure
must be performed approximately for 500 iteration steps. The shape evolution is
shown in Figure 24a. At the beginning the contact pressure has a high value at the
borders of contact domain (see Figure 24b). After ∼300 steps the shape is close to the
steady periodic shape form (see Figure24a). Practically after 500 steps the iterative
procedure provides accurate prediction – see Figure 24d.
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Figure 24. Determination of the shape for steady state periodic mo-
tion for construction Figure 19. a) Evolution of the shape in the
iteration process, b)-d) evolution of the contact pressure.

Example 2:
In this example the punch constraint of Figure 2a is modified. The support is only
placed at one point / pin at point (x = 1030, z = 140) – see Figure 2b. The initial
shape is also taken from the result for averaged monotonic sliding, see Figure 25c
with curve (. . .). To reach the steady state, approximately 300 iteration steps should
be executed. Initially the contact pressure has a high value at the borders of contact
domain. Figure 25e presents the sum of contact pressures which has a high value at
the borders of contact zone in the beginning stage of the wear process. In the steady
periodic state this sum is close to the 2pm = 33.333 MPa. After 200 steps the shape
is close to the steady shape form (Figure 25d). Practically after 300 steps the distri-
bution of contact pressure is fixed – see Figure 25b. The solution of the optimization
problem (52) by penalty technique is characterized by the slow convergence, but the
form of the contact shape can be determined with high accuracy.
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Figure 25. Optimization result for a plane punch with support at
lz = 40 mm. a) evolution of the contact pressure, b) contact pressure
distribution near the steady state, c), d) evolution of the shape in the
iteration process, e) evolution of the sum of contact pressures in the
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7. Conclusion

In our analysis the relative contact sliding displacements were considered and the par-
tial slip displacements were neglected. The relative periodic sliding motion between
contacting bodies induces a periodic steady wear state with different distributions of
contact pressure during the leftward and rightward sliding directions. These pressure
distributions cannot be specified from minimization of the wear dissipation in one
sliding period. They are determined by solving the boundary value problem with
imposed periodicity and contact compatibility conditions. On the other hand, the
summed pΣ contact pressure value for consecutive semi-cycles results from rigid body
wear displacement of punch. In the steady periodic wear state the wear dissipation
during one cycle reaches its minimum and specifies the summed contact pressure.

The specific examples presented in the paper illustrate the solution method for
periodic wear states.

By solving the optimization problem (41) or (53), we can generate the shape and
the contact pressure distributions with high accuracy without time integration of
the wear rule for periodic sliding. The results of steady states for monotonic sliding
provide fairly good simple predictions for shapes generated in the steady periodic
wear states

Appendix A. Periodic sliding along a cylindrical contact surface

Consider a 2D contact problem for fixed loads and periodically varying relative
sliding velocity between two bodies interacting on a cylindrical contact surface, Figure
26. Body 1 (punch) is allowed to translate vertically in z-direction and rotate around
y-axis located at point O. Body 2 (substrate) is a circular disc of radius R0 executing
periodic rotation through the angle [+α,−α] with the relative velocity u̇τ , vr = ‖u̇τ‖.
The wear rate in normal contact direction is specified is by the rule

ẇi,n = βiv
ai
r p

bi
n i = 1, 2 (A.1)

It is assumed that during the steady periodic state the wear increment accumulated
during one cycle should be compatible at each point x ∈ Sc with the rigid body
punch motion. Assume the rigid body wear velocities for left (-) and right (+) sliding
directions of the substrate in the following form

λ̇−F = −λ̇−F ez , λ̇−M = −λ̇−Mey , λ̇+
F = −λ̇+

Fez , λ̇+
M = λ̇+

Mey (A.2)
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Figure 26. Body 1 can move as a rigid body in vertical direction and
rotate around O. The wear velocity is not normal to the contact sur-
face. Its direction eR is defined by the rigid body velocities λ̇

±
F , λ̇

±
M

according to (A.4).

Thus the velocities at an arbitrary point at punch are

ẇ+
R = λ̇

+

F + λ̇
+

M × rOP , ẇ−
R = λ̇

−
F + λ̇

−
M × rOP (A.3)

and the summed wear velocity for consecutive semi-cycles is

ẇR = (λ̇
+

F + λ̇
−
F )+(λ̇

+

M + λ̇
−
M )×rOP = −(λ̇+

F + λ̇−F ) ez+(λ̇+
M − λ̇

−
M ) ey×rOP (A.4)

The displacement resulting from this velocity equals

∆wR = −(∆λ+
F + ∆λ−

F ) ez + (∆λ+
M −∆λ−M ) ey × rOP = −∆λF ez + ∆λM ey × rOP

(A.5)
where

∆λ+
F,M =

T∗/2∫
0

λ̇+
F,Mdt, ∆λ−F,M

T∗∫
T∗/2

λ̇−F,Mdt .

The normal and tangential unit vector components are

nc = − cosα ez − sinα ex , eτ = sinα ez − cosα ex . (A.6)

Thus, the total wear in normal direction accumulated during one sliding cycle is

∆wn = ∆wR · nc = ∆λF cosα+ ∆λM [(xP − xO) cosα− (zP − zO) sinα] (A.7)

The wear velocity vector for two bodies is coaxial with rigid body wear velocity, that
is

ẇR = ẇ2 − ẇ1 (A.8)

Assuming β̃1 6= 0, β̃2 = 0 (the material is removed only from Body 1), the wear
velocity of Body 1 on the contact surface is expressed in the form

ẇR = −ẇ1 = −(−ẇ1,n nc + w1,τ eτ ) , ẇn = ẇR · nc = −ẇ1 · nc = ẇ1,n (A.9)

and its increment for one sliding period is

∆wn = ∆wR · nc = −∆w1 · nc = ∆w1,n (A.10)
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In this way, the wear increment in normal direction can be calculated easily, thus

∆w1,n = −∆w1 ·nc = ∆λF cosα+∆λM [(xP − xO) cosα− (zP − zO) sinα] (A.11)

This value of wear can also be calculated from the wear rule, assuming a1 = b1 = 1,
thus

∆w1,n = ∆w+
1,n + ∆w−

1,n = β̃1

T∗/2∫
0

‖u̇τ‖ p+
n dt + β̃1

T∗∫
T∗/2

‖u̇τ‖ p−n dt

∆w1,n = ∆w+
1,n+∆w−

1,n = β̃1

T∗/2∫
0

‖u̇τ‖ dt (p+
n +p−n ) = Q (p+

n +p−n ) = Q 2pm = QpΣ

(A.12)
where

pm = (p+
n + p−n )/2 = pΣ/2 , Q = β̃1

T∗/2∫
0

‖u̇τ‖ dt .

Comparing (A.11) and (A.12), it is seen that the distribution of the sum of contact
pressure values of consecutive semi-cycles can be expressed as a function of position,
thus

pΣ/2 = pm = pCm cosα+ pLm [(xP − xO) cosα− (zP − zO) sinα] (A.13)

that is

∆w1,n = ∆λF cosα+ ∆λM [(xP − xO) cosα− (zP − zO) sinα] =

= β̃1

T∗/2∫
0

‖u̇τ‖ dt 2 { pCm cosα+ pLm [(xP − xO) cosα− (zP − zO) sinα] } .

where ∆λ±
F,M

is the increment of rigid body wear velocities in the half period time,
pCm, pLm are unknowns, which can be calculated from equilibrium equations.

The punch is assumed to be loaded by the resultant vertical load F0 and the
moment M0 relative to the support point O. Using the equilibrium equations for
summed loads, it can be written

0 = 2f0 +

∫
Sc

(tc+ + tc−) dS (A.14a)

0 = 2m0 +

∫
Sc

rOP × (tc+ + tc−) dS (A.14b)

where
tc+ = −p+

n nc − µ p+
n eτ , tc− = −p−n nc + µ p−n eτ ,

Sc is the area of contact zone, f0 = −F0ez,m0 = M0ey resultant force and moment,
respectively, of the specified loading. The projection of (A.14a) on ez gives
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0 = −2F0 + ez ·
∫
Sc

(tc+ + tc−) dS =

= −2F0 +

∫
Sc

{ (p+
n + p−n ) cosα− µ (p+

n − p−n ) sinα } tthR0 dα

or

0 = −2F0 +

∫
Sc

{ 2pm cosα− µ (p+
n − p−n ) sinα } tthR0 dα . (A.15)

The moment equilibrium equation has the form

0 = 2m0 · ey + ey ·
∫
Sc

rOP × (tc+ + tc−) dS =

= 2M0 −
∫
Sc

2pm [(zP − zO) sinα− (xP − xO) cosα] tthR0 dα+

+

∫
Sc

µ(p+
n − p−n ) [(zP − zO) cosα+ (xP − xO) sinα] tthR0 dα (A.16)

where tth is the disc and punch thickness.

We have two equations for calculation of pCm and pLm occurring in (A.13). For some
cases we find a direct way to calculate these parameters.

Some remarks:

1. If λ̇M = 0, then pm = pCm cosα and in this case from (A.15) we find

pCm = F0/

∫
Sc

(cosα)
2
tthR0dα

2. If the contact surface is plane (α = 0), then from (A.13) we have pm = pCm +
pLm(xP − xO). The values of pCmand pLm can be calculated from (A.15) and
(A.16): Using dS = tthR0 dα and ∆z = zP − zO = const we get that

∫
Sc

µ(p+
n −

p−n )∆zdS = 0 since

µ

∫
Sc

(p+
n − p−n )∆zdS = ∆zµ(

∫
Sc

p+
n dS −

∫
Sc

p−n dS) = ∆z(µF0 − µF0) = 0

Consequently the moment of the shear contact stress is equal to zero.
3. If in the integrals (A.15) and (A.16) the termsµ(p+

n − p−n ) are negligible, then
pCm and pLm can be calculated and can be regarded as the first approximations
of exact values.

Assume the relative tangential displacement on the contact surface in the form uτ =
u0 cosωteτ Then the relative velocity is vr = ‖u̇τ‖ = ωu0 sin ωt.
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The wear increment in one period equals (note that the contact pressure is fixed in
half period)

∆w1,n = β̃1

[
p+
n + p−n

]
(u0ω)

T∗/2∫
0

|sin ωτ | dτ (A.17)

which, using the equalities
T∗/2∫

0

vrdτ =
T∗∫

T∗/2

vrdτ = 2u0, provides the simple relation

∆w1,n = β̃1

[
p+
n + p−n

]
2u0 = Q pΣ (A.18)

where Q = β̃1 2u0.

The averaged wear rate in one period equals

ẇ1,n =
∆w1,n

T∗
=
β̃1[p+

n + p−n ]

T∗
2u0 =

QpΣ

T∗
(A.19)

If the rigid body wear velocity λ̇+
M = λ̇−M = 0, then λ̇+

F 6= 0, λ̇−F 6= 0, pm = pCm cosα,
pΣ = 2pm = 2pCm cosα and

∆wR =
∆w1,n

cosα
=
QpΣ

cosα
= Q 2pCm = const (A.20)

that is in the steady periodic wear regime the uniform vertical (rigid body) wear
increment is accumulated during full cycle at each point of the contact zone.
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