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2, 39106 MAGDEBURG, Germany,
ulrich.gabbert@mb.uni-magdeburg.de
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Abstract. A methodology for minimization of composite panels deflections and stresses
that uses a time domain nonlinear modal finite element model with two different optimiza-
tion algorithms (genetic and DB algorithms) is described. The nonlinear modal formulation
is based on geometrical nonlinearities rather than material nonlinearities, which does not
require updating of the stiffness matrix at each time step, making it extremely time effi-
cient when compared to commercial finite element softwares. Optimization algorithms are
implemented in Matlab and can be used either with the finite element code itself or as a
post-processing option. The method is applied to rectangular 10-ply symmetrically lami-
nated plates under uniform pressure loads, with simply supported and clamped boundary
conditions. The design constraints are based on the Tsai-Wu failure criterion. Results of the
optimization using genetic algorithm include the influence of the initial size of population
and number of generations. The DB algorithm proposed by the authors is shown to be more
effective for the presented examples than the genetic algorithm.

Keywords: Composite optimization, lay-ups, stacking sequences, genetic algorithm, DB al-
gorithm

1. Nomenclature

Latin Symbols
a, b panel dimensions,

b indicates that a vector (or matrix) depends on bending

mb indicates that a vector (or matrix) depends on
couples bending membrane (mb=bm)

E modulus of elasticity
G shear modulus of elasticity

c©2016 Miskolc University Press
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h panel thickness

m indicates that a vector (or matrix) depends on membrane
z distance from neutral axis
[K] linear stiffness matrices
[K1] first order stiffness matrices (they depend on {Wb})
[K2] second order stiffness matrices (they depend on {Wb})
[M ] mass matrices
P (t) time dependent load vector
u, v in-plane displacements
W transverse panel deflection.

Greek Symbols
ρ panel density
ν Poisson’s ratio
ζ damping coefficient

2. Introduction

The latest commercial aircraft from Boeing and Airbus, the 787 and the A350, first
flew in 2009 and 2013, respectively. Both represented a technological step change by
having structures composed of up to 50% of composite materials. They are only two
examples of a trend that indicates that the industry will rely more and more on the
beneficial properties of composites. The best mechanical properties of composite ma-
terials are obtained from laminates composed of many layers of unidirectional fibers
embedded in a polymer matrix. These plies are distributed with different orientations,
allowing the laminates properties to be tailored to the specific structural application.
Hence, it is clear that to extract the maximum performance out of these materials,
efficient stacking sequence optimization techniques are needed. Different optimization
techniques based on Lagrangian minimization principle exist, however, in this work,
the technique that will be explored is that of genetic algorithms (GA), which relies on
evolutionary principles developed by Holland [1]. GA solve the problem of optimiza-
tion by following a process analogous to what is observed in nature, where only the
mutations that give an advantage to the individual are propagated to the new gen-
erations. The mechanics of GA is based on operations that result in structured, yet
randomized exchange of genetic information between individual strings (chromosome
strings) of the parents and consists of crossover, mutation and inversion [2]. For the
sake of brevity, only the genetic representations for optimization of structural design
will be discussed here. Goldberg and Samtani [3] were the first to use GA in structural
design, solving the weight optimization problem of a 10 bar truss. Different variants
of GA widely used in various structural problems have already been discussed in
detail [4]. More specifically, multiple authors [5–7] combined commercially available
finite element software with GA in the design of composite structures. However, it has
been remarked that the major limitation in this application stems from the generality
of the finite element package, i.e., those programs can be adapted to analyze compos-
ites but that is not their main objective. Hence, the novelty of the present work is
that the authors would be using their own modal finite element program that is able
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to accurately predict the linear and nonlinear response of composite beams, plates,
and shells subjected to different loading conditions at a reasonable computational
cost. Accurate prediction of behavior of aircraft panels to different loading conditions
is essential for design. Traditional design and analysis methods for commercial and
military aircraft [8] [9] are based on linearization and simplified loading conditions.
However, experimental data have shown that, in many instances, the loads induce
large nonlinear deflection responses. Table 1 shows the non-dimensional displacement
(Wmax/h) and the maximum normal stress for linear and nonlinear analysis of com-
posite panels with varying stacking sequences when subjected to a uniform load of
1, 500 Pa. It can be seen that the linear analysis overpredicts the responses, something
that will result in a heavier, overbuilt structure.

Table 1. Comparison of linear and nonlinear deformations and nor-
mal stresses

Deformation Wmax/h Normal stress σ [MPa]
Stacking Linear Non-linear Linear Non-linear

0 0 0 0 0 0 0 0 0 0 1.067 0.534 33.58 12.63
-45 0 0 0 0 0 0 0 0 -45 1.283 0.616 140.19 40.54

-45 45 -45 45 -45 -45 45 -45 45 -45 1.302 0.765 153.43 59.30
45 90 90 90 45 45 90 90 90 45 2.375 0.989 265.95 61.10

h is the panel thickness

To the authors’ best knowledge, all commercial finite element packages study geo-
metrical nonlinear deformations at the structural degree of freedom, something that
is extremely computationally expensive because all nonlinear matrices need to be re-
assembled at each time of the solution by considering deformations from the previous
step. This is a severe obstacle in optimization that is intended to be overcome with
the approach presented in this paper.

3. Formulation

This section introduces the fundamentals of the nonlinear modal formulation and
genetic algorithms.

3.1. Nonlinear modal finite element. The governing equations of motion (EOM)
for a two-dimensional panel subject to thermal and time dependent loading are devel-
oped. First, the EOM are expressed in terms of structural degrees of freedom (DOF)
or in physical coordinates. Then the system level EOM are transformed into modal
coordinates based on the expansion theorem. The plate is subjected to load intensi-
ties driving the response into the nonlinear range. The von Karman large deflection
plate theory is employed here to describe the nonlinear strain and displacement rela-
tionships.

3.1.1. Equations of motion in structural degrees of freedom. The 24-DOF Bogner-Fox-
Schmit C conforming rectangular plate element is used for the finite element model.
Considering large amplitude deflections, i.e., that the transverse displacement of the



6 K. Bogdansky, J. M. Dhainaut and A. Josephsohn

panel is of the same order of magnitude as the panel thickness, the in-plane membrane
response becomes coupled with the transverse bending. As the plate bends, the
middle surface stretches and significant membrane forces develop. The load-transverse
deflection response becomes nonlinear. The von-Karman plate theory addresses the
above in-plane extension effects by introducing additional quadratic terms to the
strains developed in a vibrating plate. The von-Karman nonlinear strain-displacement
relationship is given by

{ε} =

 u,x
v,y

u,y + v,x

+
1

2


w2
,x

w2
,y

2w,xw,y

+ z

 −w,xx
−w,yy
−2w,xy

 =

=
{
ε0
m

}
+
{
ε0
θ

}
+ z {κ} (1)

where
{
ε0
m

}
is the linear membrane strain vector,

{
ε0
θ

}
is the von Karman nonlinear

membrane strain vector, and z {κ} is the bending strain vector.

When the principle of virtual work and the finite element expressions are combined,
the assembled governing EOM for the panel subjected to aerodynamic, thermal, and
acoustic excitations are derived and expressed as[

Mb 0
0 Mm

]{
Ẅb

Wm

}
+([

Kb Kbm

Kmb Km

]
−
[
KN∆T 0

0 0

]
+

[
K1Nm+K1Nb K1bm

K1mb 0

]
+

[
K2 0
0 0

]){
Wb

Wm

}
=

=

{
Pb∆T
Pm∆T

}
+

{
Pb(T )

0

}
(2)

or

[M ] {Ẅ}+ ([Ko]− [KN∆T ] + [K1] + [K2]) {W} = {P} (3)

where {P} = {Pb∆t + Pb(t)}. If the membrane inertia term {Ẅm} is neglected, the
in-plane displacement vector can be expressed in terms of the bending displacement
as

{Wm} = [Km]
−1 {Pm∆T } − [Km]

−1
[Kmb] {Wb}−

− [Km]
−1

[K1mb] {Wb} = {Wm}0 + {Wm}1 + {Wm}2 (4)

where {Wm}0 = [Km]
−1 {Pm∆T } is a constant matrix in function of the linear mem-

brane matrix [Km] and the constant membrane in-plane load {Pm∆T }; {Wm}1 =

− [Km]
−1

[Kmb] {Wb} is in function of the constant membrane matrix [Km], the con-
stant coupling bending-membrane matrix [Kmb] and the linear vertical bending de-

formation {Wb}; {Wm}2 = − [Km]
−1

[K1mb (Wb)] {Wb} is in function of the con-
stant matrix [Km], the first order nonlinear matrix [K1mb] which depends on {Wb}
and the bending deformation {Wb}. Consequently, the term {Wm}2 quadratically

({Wb}2) depends on {Wb}. Thus [K1Nm] which depends on {Wm} = {Wm}0 +

{Wm}1 + {Wm}2 has three components
[
K10

Nm

]
evaluated with {Wm}0,

[
K11

Nm

]
evaluated with {Wm}1 and

[
K12

Nm

]
evaluated with {Wm}2. Recalling that {Wm} =
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{Wm}0 +{Wm}1 +{Wm}2 it should be clear that {Wm} is the sum of a constant term
{Wm}0, and two terms that depends on the bending deformation {Wb} only. The
term {Wm}1 depend linearly on {Wb} while the term {Wm}2 depends quadratically
on {Wb}. Next, by substituting {Wm} which is now in function of {Wb} into equation
(2), the system EOM can be written in terms of the bending deformation {Wb} only

[Mb]
{
Ẅb

}
+

+
(
[KL] + [K1 (Wb)] +

[
K2

(
W 2
b

)])
{Wb} = {F} (5)

where

[KL] = [Kb]− [KN∆T ] + [K1bm] [Km]
−1

[Pm∆T ]−

− [K1bm] [Km]
−1

[Kmb] +
[
K10

Nm

]
, (6a)

[K1] = [K1Nb] +
[
K11

Nm

]
− [Kbm] [Km]

−1
[K1mb]−

− [K1bm] [Km]
−1

[Kmb] , (6b)

[K2] = [K2b] +
[
K12

Nm

]
− [K1bm] [Km]

−1
[K1mb] (6c)

and

{F} = {Pb∆T }+ {Pb(t)} − [Kbm] [Km]
−1 {Pm∆T } . (6d)

For more details on the derivation of the nonlinear modal formulation readers can
consult [10]

3.1.2. Equations of motion in modal degree of freedom. Equation (5) is expressed in
terms of structure DOF, which means a costly computational burden since the gov-
erning equations increase proportionally with the number of elements. This obstacle
is resolved by transforming the system EOM in the structural DOF into a set of trun-
cated modal coordinates by expressing the response as a linear combination of some
base functions

{Wb} =

n∑
r=1

qr (t) {φr} = [Φb] {q} (7)

where qr(t) denotes the modal coordinates of the r-th mode, which reflects the con-
tribution to the total deflection from the r-th mode; Φb = [φ1, φ2, . . . , φr, . . . , φn] is
the modal matrix, in which φr is the mode shape due to the transverse bending of
the r-th mode obtained from the linear vibration analysis.

The transformation of system governing EOM into modal coordinates is achieved
by substituting equation (6) into equation (5) and pre-multiplying the whole equation

by [Φb]
T

. If structural modal damping in the form of ζr (r = 1, 2, . . . , n) is assumed
the transformed EOM in modal coordinates can be written in a brief form as follows:[

M̄b

]
{q̈}+ 2ζr

ωr
ω2

0

[
M̄b

]
{q̇}+

+
([
K̄L

]
+
[
K̄q

]
+
[
K̄qq

])
{q} =

{
F̄
}

(8)
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Here the diagonal mass matrix is of the form[
M̄b

]
= [Φb]

T
[Mb] [Φb] (9)

The linear, quadratic, and cubic stiffness matrices are as follows:[
K̄L

]
= [Φb]

T
([Kb]− [KN∆T ]) [Φb] +

+ [Φb]
T
(

[K1bm] [Km]
−1

[Pm∆T ]
)

[Φb]− [Φb]
T
(

[K1bm] [Km]
−1

[Kmb]
)

[Φb] +

+ [Φb]
T ([

K10
Nm

] )
[Φb] , (10)

[
K̄q

]
= [Φb]

T

(
n∑
r=1

qr

(
[K1Nb]

(r)
+
[
K11

Nm

](r)))
[Φb]−

− [Φb]
T

(
n∑
r=1

qr

(
[Kbm] [Km]

−1
[K1mb]

(r)
))

[Φb]−

− [Φb]
T

(
n∑
r=1

qr

(
[K1bm]

(
r) [Km]

−1
[Kmb]

))
[Φb] , (11)

[
K̄qq

]
= [Φb]

T

(
n∑
r=1

n∑
s=1

qrqs

(
[K2]

(rs)
+
[
K12

Nm

](rs)))
[Φb]−

− [Φb]
T

(
n∑
r=1

n∑
s=1

qrqs

(
− [K1bm]

(r)
[Km]

−1
[K1mb]

(s)
))

[Φb] (12)

The modal load vector is given by:{
F̄
}

= [Φb]
T {Pb∆T }+ [Φb]

T {Pb (t)}−

− [Φb]
T

[Kbm] [Km]
−1 {Pm∆T } . (13)

3.2. Genetic algorithms. The application of GA operators to a problem first re-
quires the representation of the possible combinations of the variables in terms of bit
strings, analogous to chromosomes in biological genetics [2]. In order to increase the
speed of the genetic search the following assumptions are considered: i) the stacking
sequences are limited to using 0◦, ±45◦ and 90◦ plies; ii) the laminate thickness can
only be an integer multiple of the standard ply thickness; iii) the laminate is sym-
metric. The initial population set is generated by a function that generates pseudo-
random numbers uniformly and, to generate future generations, parents are selected
from the initial population based on their fitness. Next, genetic operators are used
to create new stacking sequences: the children population. Good features from the
initial population set propagate to the children population by using a biased roulette
wheel where better parents are assigned a larger area. A description of the genetic
operators for the construction of new generations is given next [7].

Crossover operator. Once a pair of parents is selected, the children are generated
by combining information from both parents, for example, by splicing the left part
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of the string of one of the parents with the right part of the string from the other
parent.

Parent 1: [90/0/45]s
Parent 2: [45/90/0]s possible child designs are:

Child: [90/90/0]s, [90/0/0]s, [45/0/45]s, [45/90/45]s
It is important to note that the present work utilizes a modified crossover algorithm
given the constraints that all laminates must be symmetric.

Mutation operator. Mutation performs the valuable task of preventing premature
loss of important genetic information by introducing random alteration in the child
string obtained by the crossover operator. Inferior designs may have some good
traits that would get lost in the gene pool (roulette wheel) when the parents are not
selected. For example if you only consider the first child from the crossover [90/90/45]s
a possible mutation is [90/0/45]s, which may lead to a good design but that would
not be accounted for by the crossover operator.

The implementation of the GA was done in Matlabr. Due to the assumptions
mentioned in Section 2.2, the number of possible solutions (stacking sequences) is
limited and is generated as a matrix.

To fully test the program, ensuring that it fulfills all of the assumptions, the results
for each layup are calculated and stored in a separate matrix. In the final version of
the program, this approach can be easily replaced by real time calculations.

In the first generation, a specified number (size of population) of indices (corre-
sponding to their chromosomes) are selected using random permutations. Selected
chromosomes form the population and the random permutations used ensure the
selection of unique (non-repeating) sets. The results for every chromosome are then
sorted by increasing values of the Tsai-Wu failure criterion on the outer (first) layer of
the laminate. That forms the fitness function. The best two from the list are then se-
lected as parents and will be used in crossover and mutation operations. Afterwards,
parents are crossed over with the rest of the population forming offspring. Subse-
quently, these two parents are mutated and form new sets of chromosomes. From
parents, offspring and mutated chromosomes, a list of unique stacking sequences is
formed and the corresponding results are extracted from the result matrix. The fitness
function (value of Tsai-Wu for the outer layer) is evaluated and the ordered results
constitute the first generation. Subsequent generations are generated in a similar way
but, instead of randomly choosing chromosomes at the start, the best two from the
previous generation become parents and the rest are used for crossover operation.

3.3. DB algorithm. The authors propose a DB algorithm that reduces the optimiza-
tion computational cost. It does not depend on either the size of the populations nor
on the number of generations. The advantage of such an approach will be explained
in the results section.

At first only one stacking sequence is randomly chosen. Since the ply orientations
are limited to only four angles, i.e., 0◦, ±45◦ and 90◦, the chosen layup is replicated
three times. In the next step, a randomly chosen layer is replaced in the replicated
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layups with all the other possible angle ply orientations.

Example:
Randomly chosen stacking: [90/0/45]
Newly formed stacking sequences with the third layer replaced: [90/0/0], [90/0/-45],
[90/0/90].

According to the fitness function (the same as the one used in genetic algorithm:
value of Tsai-Wu for the outer layer), the best layup is chosen from the four stacking
sequences. This best stacking is then replicated again three times and a different
layer is now replaced with the other ply orientations. That process is repeated until
all of the layers have been replaced and the very best out of all stacking sequences is
chosen. The number of calculations is equal to: No calc = L(A − 1) + 1 where L is
the number of layers and A is the number of possible angle ply orientations. In the
present case, L = 5 and A = 4, giving No calc = 16. Using the same matrices with
stacking sequences and results a program using the DB algorithm has been written
using Matlabr.

4. Results

4.1. Material properties. Composite and isotropic panels are used to validate the
finite element code and the DB algorithm. The material properties of isotropic alu-
minum panels are E1 = 73 GPa, ν = 0.30, ρ = 2750 kg/m3 and of composite
Graphite/Epoxy T300/5208 E1 = 181.0 GPa, E2 = 10.3 GPa, G12 = 7.17 GPa,
G23 = 6.21 GPa, ν12 = 0.28 and ρ = 1550 kg/m3.

A proportional damping ratio of ζrωr = ζsωs with ζ1 = 0.02 is used for transient
responses. For validation purposes, simply-supported (S-S) boundary conditions are
considered and for generalization clamped (C) boundary conditions are considered
as well. For all support cases the maximum deformation occurs at the center of
the panel for the uniform loading but the maximum stress depends on the support
conditions. For instance, maximum stress occurs at center of the plate for SS but
at the midpoint of the longest edge for C conditions. Preliminary mesh convergence
and modal convergence was verified for all composite panels. It was found that eight
modes were sufficient for converged stress responses on a 24×24 mesh. The validation
of the nonlinear modal finite element code and of the GA can be done separately since
they are completely independent of each other. The former is only used to evaluate the
responses, and the GA is simply a numerical procedure used for finding the optimum
stacking sequence but does not depend on the linearity of the responses.

4.2. Validation. The validation of the present nonlinear modal FE formulation,
equation (7), is performed by comparing results for isotropic SS panels obtained with
classical formulation [11]. The linear and nonlinear stiffness matrices will be verified
by solving the single mode linear and nonlinear free vibration problems, respectively.
Table 2 shows the non-dimensional frequency parameter ωa

√
ρ(1− ν2)/E1 which

neglects the in-plane inertia and characterizes the linear free vibration behavior by
the fundamental linear bending mode (1,1) only. Results are obtained for different
shell geometries ranging from spherical shells (Rx/Ry = 1) to hyperbolic paraboloids
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(Rx/Ry = −1). The curved panels (b/a = 1) are modeled by an 8 × 8 mesh on a
quarter shell, more than adequate for modeling the fundamental mode (1,1). The
validation was performed on curved and cylindrical panels because no data for flat
panels was available.

Table 2. Non-dimensional frequency parameter ωa
√
ρ(1− ν2)/E1

$a
√
ρ(1 − ν2)/E1

Rx/Ry Ref. [11] F.E.

-1.0 0.05695 0.05831
-0.5 0.06174 0.06251
0.0 0.07429 0.07471
0.5 0.09144 0.09178
1.0 0.1111 0.1115

Rx = Ry

3.048 0.1111 0.1115
5.08 0.07429 0.08096
12.7 0.06007 0.006145
25.4 0.05776 0.005813

H = h/a

0.005 0.09955 0.09901
0.01 0.1111 0.1115
0.02 0.1485 0.1489
0.1 0.5622 0.5778
0.2 1.033 1.1437

Figure 1. Non-dimensional stress vs. uniform pressure



12 K. Bogdansky, J. M. Dhainaut and A. Josephsohn

It can be observed that results compare very well, except for the very thick shell
case (h/a = 0.2) where the difference is 10.7%.

The stress convergence was based on stresses rather than displacements because
the Tsai-Wu failure criteria used for the optimization is based on stresses. The same
mesh size and number of modes will be employed in subsequent sections.

This difference is due to the fact that the present modal FE formulation neglects
shear effects, negligible for thin-shells but significant in thick ones. The uniform
pressure loading is verified on a 0.254 × 0.381 × 0.00127 m (12 × 15 × 0.05 in.) flat
panel modeled with a 20 × 20 mesh on a full panel. Isotropic material properties
and simply-supported boundary conditions are assumed. Figure 1 shows the non-
dimensional stress at different uniform load intensities.

4.3. Results. Genetic algorithm. The GA algorithm was tested on several different
population sizes with the following assumptions: i) stacking sequences consisted of
10 layers (5 symmetrical), ii) there are 1024 possible (unique) stacking sequences.
Calculations have been performed for both simply supported and clamped boundary
conditions

Since all the stacking sequences were calculated, it was found that for the applied
load and simply supported boundary conditions, the highest value of Tsai-Wu for
one layup was more than twenty times greater than the lowest. The distribution of
the results in comparison to the lowest value is shown in Figure 2. The solution is
treated as converged if the result of the Tsai-Wu for the outer layer does not differ
more than 5% from the best result of the 1024 stacking sequences. This results in a
list consisting of 24 solutions (2.34% of the total population).

Figure 2. Distribution of results for simply supported boundary con-
ditions in comparison to the best result
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Table 2 presents the results for simply supported boundary conditions of the stacking
sequences generated using the GA sorted by each generation and population size.
Each of the results has been calculated using statistics based on 40 samples. Number
of solutions means how many unique calculations have to be performed after every
generation. The adjacent column contains the percentage of the results obtained after
every generation that belong to the set of the 24 best results. The least number of
calculations performed in order to find the best results was 46 with the population
of 15 after the fourth generation. A 90% chance of achieving the best solution is
possible after 30 calculations with the population size of 10 after the fifth generation.
The same efficiency can be obtained after the second generation with a 50% larger
population. However, the computational cost is 23% higher.

Table 3. Percentage of 24 best results (2.3% of all possible) in each
generation sorted by population size

Population size 5 10 15

Generation
Number of

%
Number of

%
Number of

%
solutions solutions solutions

1 11 25 13 45 27 85
2 15 35 20 50 37 90
3 18 65 23 70 47 90
4 20 75 27 70 46 100
5 22 85 30 90 47 100
6 24 85 33 95 49 100
7 25 85 35 95 50 100

Population size 20 25 30

Generation
Number of

%
Number of

%
Number of

%
solutions solutions solutions

1 26 75 40 85 37 95
2 34 85 53 100 52 100
3 40 95 62 100 58 100
4 46 95 68 100 63 100
5 50 100 70 100 67 100
6 53 100 73 100 70 100
7 56 100 75 100 73 100

The results in Table 3 clearly show that the larger the population size, the higher
the probability of getting the best answer in that generation. However, due to the
larger size, the number of solutions needed to be calculated grows rapidly. To get
a 90% chance of getting the solution, the lowest number of solutions is 30 with a
population size of 10 after the fifth generation. The same efficiency can be obtained
after the second generation with a 50% larger population but the computational cost
is 23% higher.

Table 4 shows how the probability of finding the best solution decreases when for
convergence the best 1% of the results is selected as opposed to 2.3%. It is worth
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noting that with a population size of 30, all of the results were in the best 1% of the
results after the second generation.

Table 4. Comparison of percentage of 10 and 24 best results in each
generation sorted by population size

Population
10 20 30size

Generation
Best 10 Best 24 Best 10 Best 24 Best 10 Best 24

[%] [%] [%] [%] [%] [%]

1 25 45 55 75 80 95
2 30 50 70 85 100 100
3 35 70 80 95 100 100
4 45 70 85 95 100 100
5 65 90 90 100 100 100
6 80 95 95 100 100 100
7 90 95 95 100 100 100

Table 5. Percentage of 9 best results (0.88% of all possible) for fixed
boundary conditions in each generation sorted by population size

Population size 5 10 15

Generation
Number of

%
Number of

%
Number of

%
solutions solutions solutions

1 12 15 16 15 34 30
2 17 20 23 25 46 45
3 20 20 28 30 52 60
4 22 35 33 45 55 60
5 23 40 35 50 59 70
6 24 45 37 55 62 70
7 26 60 38 55 63 75

Population size 20 25 30

Generation
Number of

%
Number of

%
Number of

%
solutions solutions solutions

1 29 40 48 60 41 65
2 42 60 64 65 55 80
3 50 65 71 65 63 90
4 56 70 74 70 70 95
5 59 70 76 80 74 95
6 62 70 82 85 79 100
7 65 75 84 85 82 100

The second tested example differed by changing the boundary conditions from
simply supported to clamped. Using the same criterion that the result of the Tsai-
Wu for the outer layer does not differ more than 5% from the best result of the
1024 stacking sequences, the results list consists of only 9 solutions (0.9% of the total
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population). Table 5 presents the results for fixed boundary conditions using GA. In
comparison to the simply supported boundary conditions the results are worse due to
the lesser number of results considered for convergance. A 90% chance of achieving
the best solution is possible with the population size of 30 after 63 calculations and
three generations. In order to have a 100% chance of getting the solution converged,
the number of calculations has to increase up to 79 (by 25.4%).

4.3.1. DB Algorithm. Since the DB algorithm is simpler because it is not influenced by
the number of generations or population size, the analysis of the results is significantly
faster.

The algorithm was run 10,000 times and in 80.6% of the calculations the best
result, out of 1,024, was obtained. The two best results for simply supported boundary
conditions were obtained in 100% of the calculations. Compared to the presented GA,
16 unique calculations would result in a maximum 45% chance of finding a solution in
the best 24 possible results, whereas there is a 100% chance of getting one of the best
two results with the DB algorithm. For fixed boundary conditions, the DB algorithm
would give a 72.3% chance of converging (one of the best 9 results). Using the GA, 16
unique calculations would only give a 15% chance of achieving the converging solution.
It is worth mentioning that the worst result obtained for the DB algorithm was the
72nd best answer and only appeared in 0.18% of all of the performed calculations.

5. Conclusions

An efficient nonlinear finite element modal formulation was combined with two dif-
ferent optimization algorithms. It was shown that the newly developed DB algorithm
is more effective than the most popular GA for the studied cases.

For the first case (simply supported boundary conditions) and given assumptions,
the GA allows finding a result in the best 1% of all of the results, with about 90%
efficiency, by calculating about 3% of all of the possible solutions. By reducing the
efficiency to 85%, the computational costs only drops to requiring the calculation of
2.2% of the solutions. Since the GA is basically a semi-controlled random process, it
does not guarantee finding the best answer in the process. On the other hand, the
DB algorithm gave a 100% chance of finding one of the best two solutions after only
16 calculations (1.6% of all possible stacking sequences) and in 80% of cases it gave
the best possible solution.

The second tested case (fixed boundary conditions)also shoed better results gained
from the DB algorithm compared to the GA. It has given a 72.3% chance of conver-
gence compared to only 15% for the GA after 16 unique calculations. A 100% chance
of finding a result in the best 1% of all of the results is possible using GA, but it
takes on average 79 unique calculations. In future work, the authors will keep on
testing and developing the DB algorithm, including increasing the number of layers
and applying more complex loads.



16 K. Bogdansky, J. M. Dhainaut and A. Josephsohn

References

1. Holland, J. H.: Adaptation of Natural and Artificial Systems. MIT Press, 1992. ISBN:
978-0-262-08213-6.
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Abstract. This paper is concerned with the statics of an isotropic, linearly elastic, homoge-
neous incompressible body. The body considered is bounded by two spherical surfaces and
two conical surfaces. The centre of the spherical surfaces and the apex of conical surfaces are
the same point. The concept of the spherical strain state is introduced and the concerning
boundary value problem of elastic equilibrium is formulated in terms of a displacement poten-
tial and the mean stress. Two examples illustrate the applications of the derived equations.
The analytical solutions we have obtained are compared with FEM solutions computed by
the Abaqus finite element software.

Mathematical Subject Classification: 70B10, 70B15
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1. Introduction

As is well known the displacement based finite element solutions for incompressible
isotropic elastic bodies have some difficulties such as the Poisson ratio locking [1,
2]. Poisson (volumetric) locking is a serious problem which cannot be avoided by
refining the mesh. All the standard fully integrated finite elements will lock in the
incompressible limit, and some elements show very poor performance if the Poisson
ratio ν is approximately 0.5. The source of the error of the finite element solution
when the Poisson ratio ν is close to 0.5 is that the finite element interpolation functions
are unable to properly approximate a volume preserving strain field [1]. Therefore it
is of great importance to find exact analytical solutions for some statical problems
of incompressible elastic bodies which then can be compared with the finite element
solutions. The aim of this paper is to give a new class of the exact benchmark solutions
for incompressible elastic bodies.

The present paper is concerned with a statical boundary value problem of an
isotropic, homogeneous, incompressible elastic body. The body considered is bounded
by two spherical surfaces ∂V1, ∂V2 and two conical surfaces ∂V3, ∂V4. The centre of
the spherical surfaces ∂V1, ∂V2 and the apex of the conical surfaces ∂V3, ∂V4 are the

c©2016 Miskolc University Press
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same point O as shown in Figure 1. A spherical polar coordinate system Orϕϑ is
introduced with an origo O (Figure 1). The body shown in Figure 1 is said to be in
the Spherical Strain State (SSS) if its displacement field has the form

ur = 0, uϑ = rUϑ(ϑ, ϕ), uϕ = rUϕ(ϑ, ϕ), (1.1)

where ur, uϑ and uϕ are the components of the displacement vector u = urer +
uϕeϕ + uϑeϑ and er, eϕ and eϑ are the unit vectors of the spherical coordinate
system Orϕϑ. Application of the strain-displacement relationships of the linearised
theory of elasticity leads to the next results for the strains in the spherical coordinate
system Orϕϑ [4, 5]

εr = 0, εϑ(ϑ, ϕ) =
∂Uϑ
∂ϑ

, εϕ(ϑ, ϕ) =
1

sinϑ

∂Uϕ
∂ϕ

+ Uϑ cotϑ (1.2)

γrϕ = γrϑ = 0, γϕϑ(ϑ, ϕ) =
1

sinϑ

∂Uϑ
∂ϕ

+
∂Uϕ
∂ϑ
− Uϕ cotϑ. (1.3)

O

er

eϑ

x

x = r sinϑ cosϕ
y = r sinϑ sinϕ

ez

z

ur

ϑ

uϑ

ex P′

ϕ y

eϕ
ey

z = r cosϑ }
P

uϕ

n

n

n = er

∂V3

∂V4

∂V2

∂V1

n = −er

Figure 1. Space domain bounded by spherical and conical surfaces

The material of the body considered is homogeneous, isotropic, incompressible and
linearly elastic. According to Hooke’s law for ν = 0.5 we can write [3]

σr = 2Gεr + σ0, (1.4)

σϕ = 2Gεϕ + σ0, (1.5)

σϑ = 2Gεϑ + σ0, (1.6)
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τrϕ = Gγrϕ, τrϑ = Gγrϑ, (1.7)

τϕϑ = Gγϕϑ, (1.8)

where σr, σϕ and σϑ are the normal stresses, τrϕ, τrϑ and τϕϑ are the shearing stresses,
G is the shear modulus of elasticity and σ0 is the mean stress defined by the following
equation

σ0 =
1

3
(σr + σϕ + σϑ). (1.9)

For incompressible elastic body in SSS we have [3]

divu = εr + εϕ + εϑ =
∂Uϑ
∂ϑ

+
1

sinϑ

∂Uϕ
∂ϕ

+ Uϑ cotϑ = 0. (1.10)

2. Boundary value problem

The following prescriptions define the boundary value problem of the elastic equi-
librium we shall consider,

• There is no body forces in V , where V is the space domain occupied by body
shown in Figure 1.
• The boundary conditions are given by the following equations:

ur = 0 and τrϕ = τrϑ = 0 on ∂V1 ∪ ∂V2, (2.1)

p3 = T · n, p3 = p̃3 on ∂V3 or u = ũ3 on ∂V3, (2.2)

p4 = T · n, p4 = p̃4 on ∂V4 or u = ũ4 on ∂V4, (2.3)

The applied traction vector p̃i (i = 3, 4) and the prescribed surface displace-
ment ũi on the boundary surface segment ∂Vi (i = 3, 4) have the forms

p̃i = p̃iϑ(ϑ, ϕ)eϑ + p̃iϕ(ϑ, ϕ)eϕ (i = 3, 4), (2.4)

ũi = r
(
Ũiϑ(ϑ, ϕ)eϑ + Ũiϕ(ϑ, ϕ)eϕ

)
(i = 3, 4). (2.5)

We remark that the radial coordinate r is constant on the boundary parts ∂Vi
(i = 1, 2), that is, r = ri where ri is a constant. Observe that the traction vectors p̃3

and p̃4 cannot be prescribed arbitrarily, they should statisfy an equation. Later on
we shall derived this equation from the condition of global mechanical equilibrium.

In the present case the local equilibrium condition can be given in the following
form [4,5]:

T · ∇ = 0 inV, (2.6)

where ∇ is the gradient (del) operator. By applying the Gauss divergence theorem
we get from equation (2.6) that∫
V

T ·∇ dV =

∫
∂V

T ·n dA =

∫
∂V1

T ·ndA+

∫
∂V2

T ·ndA+

∫
∂V3

T ·n dA+

∫
∂V4

T ·n dA = 0.

(2.7)
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Here n is the outer unit normal vector on the boundary surface ∂V =
4⋃
i=1

∂Vi and dA
is the area element:

dA = r2i sinϑdϑ dϕ = r2i da and n = (−1)ier on ∂Vi (i = 1, 2), (2.8a)

dA = r dr dsi and n = nϑ(ϑ, ϕ)eϑ + nϕ(ϑ, ϕ)eϕ on ∂Vi (i = 3, 4). (2.8b)

In equations (2.8a,b) da is the area element on a unit sphere and dsi (i = 3, 4) is the
arc element on the intersection line of the conical surface ∂Vi (i = 3, 4) and the unit
sphere (r = 1). It follows from equation (2.7) that the force equilibrium equation for
the whole body assumes the following form∫
∂V

T · ndA = −
∫
∂V1

σrer dA+

∫
∂V2

σrer dA+

∫
∂V3

p3 dA+

∫
∂V4

p4 dA =

(r22 − r21)

∫
a

σrer da+
r22 − r21

2

∫
∂a3

p3 ds3 +

∫
∂a4

p4 ds4

 = 0, (2.9)

where the hollow two-dimensional domain a on the unit sphere 0 < ϑ < π is bounded
by the intersection line of the conical surfaces ∂V3, ∂V4 and the unit sphere. It is
clear from Figure 2 that the boundary curve of a is ∂a = ∂a3 ∪ ∂a4. A detailed form
of equation (2.9) is given by

2

∫
a

σr(ϑ, ϕ)er sinϑ dϑ dϕ+

∫
∂a3

p3(s3) ds3 +

∫
∂a4

p4(s4) ds4 = 0. (2.10)
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∂V4

∂V2

r = 1

p3

n = nϑeϑ + nϕeϕ

O

∂V3

∂V1

s

p4
s ∂a4

∂a3

a er

Figure 2. Definition of domain a on the unit ball.

Equation (2.10) shows how the surface forces p̃3, p̃4 are related to the stresses on
the boundary surface ∂V1∪∂V2. We would like to emphasise that equation (2.9) does
not provide any constraint for the applied surface forces given by relation (2.4).
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In the absence of body forces the local equilibrium condition

r × T · ∇ = 0 (r = rer) (2.11)

can be transformed into a global one in the same way as we did for equation (2.6).
We obtain∫

V

r × T · ∇ dV =

∫
∂V

r × T ·n dA−
∫
V

(ex × T · ex + ey × T · ey + ez × T · ez) dV

=

∫
∂V

r × T · ndA = 0, (2.12)

where we have taken into account that [4, 5]:

ex × T · ex + ey × T · ey + ez × T · ez = 0, (2.13)

Here ex, ey and ez are the unit vectors of the Cartesian coordinate system Oxyz
shown in Figure 1.

It follows from equations (2.11) and (2.12) that∫
∂V

r×T ·ndA =

∫
∂V1

r×T ·ndA+

∫
∂V2

r×T ·ndA+

∫
∂V3

r×p3 dA+

∫
∂V4

r×p4 dA =

− r1
∫
∂V1

er × σrer dA+ r2

∫
∂V2

er × σrer dA+

r2∫
r1

r2(

∫
∂a3

er × p3 ds3)dr+

r2∫
r1

r2(

∫
∂a4

er × p4 ds4)dr = 0. (2.14)

The moment equilibrium equation (2.14) we have derived can be rewritten into a more
compact form ∫

∂a3

er × p3 ds3 +

∫
∂a4

er × p4 ds4 = 0. (2.15)

This equation is the constraining equation the applied surface forces p̃3 and p̃4

should meet. Consequently, for the boundary value problem we have defined in this
section the constraint equation (2.15) we have established is a solvability condition.

For the displacement boundary conditions of the form

u = ũ3 = rŨ3 on ∂V3 and u = ũ4 = rŨ4 on ∂V4 (2.16)

we can rewrite the solvability condition (2.15) by utilising the incompressiblity con-
dition (1.10): ∫

∂a3

Ũ3 · nds3 +

∫
∂a4

Ũ4 · nds4 = 0. (2.17)
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3. Formulation of elastic equilibrium in terms of displacement
potential and mean stress

In our formulation the unknown fields are Uϑ = Uϑ(ϑ, ϕ), Uϕ = Uϕ(ϑ, ϕ) and
σ0 = σ0(ϑ, ϕ). Let F = F (ϑ, ϕ) be a displacement potential in the terms of which

Uϑ =
1

sinϑ

∂F

∂ϕ
, Uϕ = −∂F

∂ϑ
. (3.1)

are the two displacement components. It follows from equations (1.2), (1.3) and (3.1)
that the strains are

εϑ =
∂

∂ϑ

(
1

sinϑ

∂F

∂ϕ

)
, (3.2)

εϕ = − ∂

∂ϑ

(
1

sinϑ

∂F

∂ϕ

)
, (3.3)

and

γϕϑ =
1

sin2 ϑ

∂2F

∂ϕ2
− sinϑ

∂

∂ϑ

(
1

sinϑ

∂F

∂ϑ

)
. (3.4)

For a sufficiently smooth otherwise arbitrary displacement potential F = F (ϑ, ϕ) the
condition of incompressiblity

εr + εϑ = 0 (3.5)

is identically satisfied. Upon substitution of equations (3.2), (3.3) and (3.4) into
Hooke’s law (1.4-1.9) we get the stresses in terms of the displacment potential:

σϑ = 2G
∂

∂ϑ

(
1

sinϑ

∂F

∂ϕ

)
+ σ0, (3.6)

σϕ = −2G
∂

∂ϑ

(
1

sinϑ

∂F

∂ϕ

)
+ σ0, (3.7)

σ0 = σr =
1

2
(σϑ + σϕ) , (3.8)

τϕϑ = G

[
1

sin2 ϑ

∂2F

∂ϕ2
− sinϑ

∂

∂ϑ

(
1

sinϑ

∂F

∂ϑ

)]
, (3.9)

τrϕ = τrϑ = 0. (3.10)

It is well known that the equilibrium equations (2.6) in spherical polar coordinate
system are as follows [3, 4]:

∂σr
∂r

+
1

r

∂τϑr
∂ϑ

+
1

r sinϑ

∂τϕr
∂ϕ

+
1

r
(2σr − σϑ − σϕ + τϑr cotϑ) = 0, (3.11)

τϑr
∂r

+
1

r

∂σϑ
∂ϑ

+
1

r sinϑ

∂τϕϑ
∂ϕ

+
1

r
[(σϑ − σϕ) cotϑ+ 3τrϑ] = 0, (3.12)

∂τrϕ
∂r

+
1

r

∂τϕϑ
∂ϑ

+
1

r sinϑ

∂σϕ
∂ϕ

+
1

r
(2τϕϑ cotϑ+ 3τrϕ) = 0. (3.13)
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For SSS problems these equations assume the form

∂σϑ
∂ϑ

+
1

sinϑ

∂τϕϑ
∂ϕ

+ (σϑ − σϕ) cotϑ = 0, (3.14)

∂τϕϑ
∂ϑ

+
1

sinϑ

∂σϕ
∂ϕ

+ 2τϕϑ cotϑ = 0, (3.15)

since σϑ = σϑ(ϑ, ϕ), σϕ = σϕ(ϑ, ϕ) and σr = σ0 ≡ σ0(ϑ, ϕ).

A combination of equations (3.6), (3.7) and (3.8) with equations (3.14) and (3.15)
yields a coupled system of differential equations for F = F (ϑ, ϕ) and σ0 = σ0(ϑ, ϕ):

1

G

∂σ0
∂ϑ

+ Lϑ[F ] = 0, (3.16)

1

G

∂σ0
∂ϕ

+ Lϕ[F ] = 0, (3.17)

where

Lϑ[F ] = 2
∂2

∂ϑ2

(
1

sinϑ

∂F

∂ϕ

)
+

1

sin3 ϑ

∂3F

∂ϕ3
− ∂

∂ϑ

(
1

sinϑ

∂2F

∂ϑ∂ϕ

)
+4 cotϑ

∂

∂ϑ

(
1

sinϑ

∂F

∂ϕ

)
,

(3.18)

Lϕ[F ] =
∂

∂ϑ

(
1

sin2 ϑ

∂2F

∂ϕ2

)
− ∂

∂ϑ

[
sinϑ

∂

∂ϑ

(
1

sinϑ

∂F

∂ϑ

)]
− 2

sinϑ

∂

∂ϑ

(
1

sinϑ

∂2F

∂ϕ2

)
+ 2

cotϑ

sin2 ϑ

∂2F

∂ϕ2
− 2 cosϑ

∂

∂ϑ

(
1

sinϑ

∂F

∂ϑ

)
. (3.19)

For a simply connected region a fulfillment of the Schwarz theorem

∂

∂ϑ

(
∂σ0
∂ϕ

)
=

∂

∂ϕ

(
∂σ0
∂ϑ

)
(3.20)

assures that the function σ0 = σ0(ϑ, ϕ) is determined with the accuracy of an arbitrary
constant of integration σ0 = σ0(ϑ0, ϕ0) which is the value of the function σ0 = σ0(ϑ, ϕ)
at the point P0.

For a double connected region a (0 < ϑ < π) – this is our case – fulfillment
of condition (3.20) is necessary but not sufficient. The additional condition to be
satisfied is of the form ∫

∂a4

∂σ0
∂ϑ

dϑ+

∫
∂a4

∂σ0
∂ϕ

dϕ = 0 . (3.21)

A combination of equations (3.16), (3.17) and (3.20), (3.21) results in the following
two equations:

∂Lϑ[F ]

∂ϕ
− ∂Lϕ[F ]

∂ϑ
= 0 (ϑ, ϕ) ∈ a, (3.22)∫

∂a4

Lϑ[F ]dϑ+

∫
∂a4

Lϕ[F ]dϕ = 0 . (3.23)
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With the knowledge of the displacement potential F = F (ϑ, ϕ) the mean stress is

σ0(ϑ, ϕ) = σ0(ϑ0, ϕ0)−G

 ∫
P̂0P

Lϑ[F ]dϑ+

∫
P̂0P

Lϕ[F ]dϕ

 , (3.24)

where P̂0P is an arbitrary curve in a with end points P0 and P and the constant of
integration σ0(ϕ0, ϑ0) can be obtained from the stress boundary conditions (2.2) and
(2.3).

4. Examples

4.1 Example 1. Lamé’s problem for a hollow circular cone. The body considered
in this example is bounded by two spherical surfaces ∂Vi (i = 1, 2) of radius ri
(i = 1, 2) and two circular conical surfaces ∂Vi (i = 3, 4) whose mantles are given by
the following prescription

ϑ = ϑi on ∂Vi (i = 3, 4). (4.1)

The meridian section of this body of rotation is shown in Figure 3.
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Figure 3. Meridian section of body of rotation

The surface forces on ∂V3 and ∂V4 are given by

p̃3 = −p3eϑ, p̃4 = p4eϑ p3 and p4 are constants, (p3 > 0, p4 > 0). (4.2)

It is easy to show that the solvability condition (2.15) for this boundary value
problem is fulfilled since

−
∫
∂a3

p3er×eϑ ds3+

∫
∂a4

p4er×eϑ ds4 =−p3 sinϑ3

2π∫
0

eϕ dϕ+p4 sinϑ4

2π∫
0

eϕ dϕ = 0. (4.3)

If take into account that Example 4.1 is an axially symmetric statical boundary
value problem we can write

Uϑ = Uϑ(ϑ), Uϕ = 0, εϑ = εϑ(ϑ), εϕ = εϕ(ϑ), γϕϑ = 0,

σϑ = σϑ(ϑ), σϕ = σϕ(ϑ), σ0 = σ0(ϑ), τϕϑ = 0. (4.4)

Solutions for the displacement potential are sought in the form

F = Cϕ, (4.5)
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where C is an arbitrary constant. By a routine computation it easy to see that the
displacement potential given by equation (4.5) satisfies equations (3.22) and (3.23).
In addition it follows from equations (3.17) and (3.16) that

∂σ0
∂ϕ

= 0,
∂σ0
∂ϑ

= −2G
C

sinϑ
. (4.6)

Integration of equation (4.6) yields

σ0(ϑ) = −2GC ln

∣∣∣∣tan
ϑ

2

∣∣∣∣+D, (4.7)

where D is a constant of integration. Making use of equations (3.6), (3.7), (3.8) and
(4.7) we have

σϑ = −2GC

(
cosϑ

sin2 ϑ
+ ln

∣∣∣∣tan
ϑ

2

∣∣∣∣)+D, (4.8)

σϕ = 2GC

(
cosϑ

sin2 ϑ
− ln

∣∣∣∣tan
ϑ

2

∣∣∣∣)+D, (4.9)

σr = −2GC ln

∣∣∣∣tan
ϑ

2

∣∣∣∣+D. (4.10)

The unknown integration constants C and D can now be calculated from the stress
boundary conditions

σϑ(ϑ3) = −p3, σϑ(ϑ4) = −p4. (4.11)

Omitting the details we get

C =
p3 − p4

2G

[
ln

∣∣∣∣ tan ϑ3
2

tan
ϑ4
2

∣∣∣∣+ cosϑ3

sin2 ϑ3
− cosϑ4

sin2 ϑ4

] , (4.12)

D =
p3

(
cosϑ4

sin2 ϑ4
− ln

∣∣tan ϑ4

2

∣∣)− p4 ( cosϑ3

sin2 ϑ3
− ln

∣∣tan ϑ3

2

∣∣)
ln

∣∣∣∣ tan ϑ3
2

tan
ϑ4
2

∣∣∣∣+ cosϑ3

sin2 ϑ3
− cosϑ4

sin2 ϑ4

. (4.13)

Once we know C equation (4.5) yields F . Then the non-zero displacement component
uϑ can be obtained from (3.1):

uϑ = uϑ(r, ϑ) =
(p3 − p4)r

2G

[
ln

∣∣∣∣ tan ϑ3
2

tan
ϑ4
2

∣∣∣∣+ cosϑ3

sin2 ϑ3
− cosϑ4

sin2 ϑ4

]
sinϑ

. (4.14)

For p3 = p4 = p, we have
C = 0, D = −p, (4.15)

σr = σϕ = σϑ = σ0 = −p, uϑ = 0 (4.16)

which represent a hydrostatic state of stresses.

The formulas derived above are used in the following numerical example:

ϑ3 =
π

3
, ϑ4 =

π

6
, G = 0.1× 109 Pa (rubber),

p3 = 1× 106 N/m2, p4 = 4× 106 N/m2.
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Figure 4. U2 = uϑ and S33 = σϕ from FEM computations

The stress values are independent of the magintude of ri (i = 1, 2). Figure 5 shows
the graph of σ0 = σ0(ϑ), σϑ = σϑ(ϑ), σϕ = σϕ(ϑ). The graph of uϑ(1, ϑ) = Uϑ(ϑ) is
shown in Figure 6.

According to equation (2.10)

2

∫
a

σrer da = 1.570796327× 106 ez N/m2, (4.17)

∫
∂a3

p̃3 ds3 +

∫
∂a4

p̃4 ds4 = −1.570796327× 106 ez N/m2 . (4.18)

The FEM solutions shown in Figures 4, 5 and 6 are computed by the finite element
software Abaqus using CAX8H, which are 8-node biquadratic hybrid elements with
linear pressure approximation.
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4.2 Example 2. Torsional spring. For the problem examined in this section the
displacement boundary conditions on the boundary surface segment ∂V3 ∪ ∂V4 are of
the form

u = ũ3 = 0 on ∂V3 =
{

(r ϕ, ϑ)
∣∣ r1 ≤ r ≤ r2, 0 ≤ ϕ ≤ 2π, ϑ = ϑ3

}
, (4.19)

u = ũ4 = rα sinϑ4eϕ on ∂V3 =
{

(r, ϕ, ϑ)
∣∣ r1 ≤ r ≤ r2, 0 ≤ ϕ ≤ 2π, ϑ = ϑ4

}
.

(4.20)
It is clear that

Uϑ = 0 on ∂V3 ∪ ∂V4, (4.21)

Uϕ = 0 on ∂V3 and Uϕ = α sinϑ on ∂V4 . (4.22)

Note that the solvability condition (2.17) is satisfied by the surface displacements
(4.22).
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Figure 7. Example for prescribed surface displacements

Figure 7 shows the meridian section of the coupled system of an elastic-rigid body
with rotational symmetry. The rigid cone is rotated by angle α about the axis z.
This rotation creates that surface displacement on the boundary surface ∂V4 which is
given by equation (4.20). The rotation of the rigid cone about the axis z is produced
by a torque T exerted on the cone as shown in Figure 7. Solution to the boundary
value problem defined above is derived from the displacement potential

F (ϑ, ϕ) =
C1

2
cosϑ ln

∣∣∣∣tan
ϑ

2

∣∣∣∣+ C2 cosϑ. (4.23)

It is very easy to show that in the present problem

Lϑ[F ] = Lϕ[F ] = 0. (4.24)

It follows from equation (3.1) that

Uϑ = 0, (4.25)

Uϕ =
C1

2

(
sinϑ ln

∣∣∣∣tan
ϑ

2

∣∣∣∣− cotϑ

)
+ C2 sinϑ. (4.26)

With Uϕ equations (1.2) and (1.3) yield

εϑ = εϕ = 0, γϕϑ =
C1

sin2 ϑ
. (4.27)

A combination of equations (1.4), (1.5), (1.6), (1.9) and (4.2) with equations (4.27)
results in the stresses:

σr = σϑ = σϕ = σ0 = D = constant. (4.28)

The equilibrium condition for the rigid circular cone leads to the equation

σϑ = D = 0. (4.29)

Figure 8 is the free-body diagram of the rigid cone. Note that equation (4.29) is a
consequence of the force equilibrium in the direction of the axis z.
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Figure 8. Free-body diagram of the rigid cone

The integration constants C1 and C2 are obtained from the displacement boundary
conditions (4.22)1,2. A detailed computation yields

C1 =
H1

H
, C2 =

H2

H
, (4.30)

where

H = 2 sinϑ3

(
sinϑ4 ln

∣∣∣∣tan
ϑ4
2

∣∣∣∣− cotϑ4

)
− 2 sinϑ4

(
sinϑ3 ln

∣∣∣∣tan
ϑ3
2

∣∣∣∣− cotϑ3

)
,

(4.31)
H1 = 4α sinϑ3 sinϑ4, (4.32)

H2 = −2α sinϑ4

(
sinϑ3 ln

∣∣∣∣tan
ϑ3
2

∣∣∣∣− cotϑ3

)
. (4.33)

Making use of equations (3.9) and (4.27), (4.30)1, (4.31) then equation (4.32), we
get the shearing stress:

τϕϑ =
2αG

(h(ϑ4)− h(ϑ3)) sin2 ϑ
, (4.34)

where

h(ϑ) = ln

∣∣∣∣tan
ϑ

2

∣∣∣∣− cosϑ

sin2 ϑ
. (4.35)

Relationship between the applied torque and the prescribed angular displacement
α can be derived from the moment equilibrium equation:

T + 2π

r2∫
r1

τϕϑr
2 sinϑdr = 0 . (4.36)

Omitting the details we get

T = Rα, R =
4

3
πG

r32 − r31
h(ϑ3)− h(ϑ4)

. (4.37)

Figures 10 and 11 show the graph of functions τϑϕ = τϑϕ(ϑ) and uϕ(1, ϑ) = Uϕ(ϑ).
The following data were used ϑ3 = π

2 , ϑ4 = π
6 , G = 108 N/m2, α = 10−2 rad,

r1 = 0.01 m, r2 = 0.02 m. In this example

R = 613.28522 Nm, T = 6.1328522 Nm.
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Figure 9. U2 = uϕ and S23 = τϕϑ from FEM computations
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Figure 10. Analytical and FEM solutions for the shearing stresses
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The results of FEM computation are represented in Figure 9. Figures 10 and 11
show the comparison of the analytical and FEM solutions. The latter are computed
by the finite element software Abaqus using the 10-node quadratic tetrahedron hybrid
finite element C3D10H with constant pressure approximation.

5. Conclusions

In this paper the static equilibrium of an elastic body made of incompressible and
homogeneous material is investigated. We have assumed that the body considered
is bounded by two spherical and two conical surfaces. We have introduced a new
concept called spherical strain state (SSS). If a body is in SSS the strains and stresses
are independent of the radial coordinate in a properly chosen spherical coordinate
system.

The present paper is a contribution to the existing exact benchmark solutions
for incompressible elastic bodies. The analytical results we have obtained for the two
examples are compared with finite element solutions. They are in excellent agreement.

The Poisson number for the finite element solutions, which are computed by the
software Abaqus, is ν = 0.499999 for both examples.
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Abstract. Cost is an important characteristic of welded structures, since welding is an
expensive fabrication technology. The developed cost calculation method enables designers
to predict the cost of material, assembly, welding and painting costs in the design stage. Cost
comparison can select the most economical structural version. Since only optimized versions
can be compared to each other realistically, a minimum cost design procedure should be
performed for each version.

In the present study cost comparisons are discussed for the following welded structures:
(a) a cantilever column constructed from stringer-stiffened circular cylindrical shell as well
as from square box section with stiffened or cellular plates, (b) a stiffened or cellular plate
supported at four corners, (c) a wind turbine tower constructed as a ring-stiffened slightly
conical circular shell or as a tubular truss, (d) a ring-stiffened slightly conical shell with
equidistant or non-equidistant stiffening.

Keywords: Structural optimization, welded steel structures, cost calculations, stiffened and
cellular plates, conical shells

1. Introduction

Comparisons of main structural characteristics help designers to select the best ver-
sions. The large selection of structural types made from welded plates or profiles
enables designers to construct load-carrying engineering structures, which fulfil not
only the constraints on safety and fabrication, but also are economic. Economy is an
important requirement, since welding is an expensive fabrication technology.

In order to characterize the economy of structural versions we have developed a
cost calculation method mainly adaptable for welded steel structures in the design
phase. Based on this cost function we have worked out a number of optimization
problems for different structural types. Realistic numerical models have been used to
show how to construct safe, fit for production and economic welded structures.

We have used cost comparisons in many optimization problems to find the min-
imum cost version. In the present paper the results of these minimum cost design
studies are collected to make cost comparisons useful for designers in selecting the

c©2016 Miskolc University Press
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most suitable and competitive structural versions. Since only optimized versions can
be realistic compared to each other, each version is optimized for minimum cost.

Since the detailed studies of these problems have already been published, only the
main characteristics, results and discussion of the cost differences are presented here.

2. The cost calculation method

The general formula for the welding cost is as follows [1–4]:

Kw = kw

(
C1Θ

√
κρV + 1.3

∑
i

Cwia
n
wiCpiLwi

)
(1)

where kw [$/min] is the welding cost factor, C1 is the factor for the assembly usually
taken as C1 = 1 min/kg0.5, Θ is the factor expressing the complexity of assembly,
the first member calculates the time of the assembly, κ is the number of structural
parts to be assembled, V is the volume, ρV is the mass of the assembled structure,
the second member estimates the time of welding, Cw and n are the constants given
for the specified welding technology and weld type.

Furthermore Cpi is the factor for the welding position (download 1, vertical 2,
overhead 3), Lw is the weld length, the multiplier 1.3 takes into account the additional
welding times (deslagging, chipping, changing the electrode).

Material cost is calculated as

Km = kmρV, km = 1.0 $/kg (2)

where V is the volume of a structural part. The painting cost is

KP = kPS, kP = 28.8 × 10−6 $/mm
2

(3)

in which S is the surface to be painted.

3. A column in compression and bending with a constraint on top sway

This structural component is used in buildings and piers of highways. Since during
the large earthquake in Kobe in 1995 many highway piers were destroyed by too
large horizontal seismic forces, Japanese researchers have made great efforts to work
out advanced seismic-resistant structural versions. Although our studies do not con-
tain earthquake loads, our results can be applied in the design of seismic-resistant
structural versions.

We have optimized three structural versions using the same column height, loads,
constraints and similar cost calculations.

3.1. Column constructed as a stringer-stiffened circular cylindrical shell.
The investigated structure is a supporting column loaded by an axial and horizontal
force (Figure 1). The horizontal displacement of the top is limited for serviceability
of the supported structure. Both the stiffened and unstiffened shell versions are
optimized and their cost is compared to each other. In the stiffened shell outside
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longitudinal stiffeners of halved rolled I-section (UB) are used. The cost function is
formulated according to the fabrication sequence.

 
HF

NF

w

2R

L

 

R

t

Figure 1. A cantilever column and its cross-section of stringer-
stiffened circular cylindrical shell

Numerical data: The vertical load NF = 34000 kN, the horizontal force HF =
0.1NF , the yield stress fy = 355 MPa, R = 1850 mm, L = 15 m. The discrete values
of h and the nominal size of I-beam (UB)(in the parenthesis) are as follows according
to the ARCELOR catalog: 152.4 (152), 177.8 (178), 203.2 (203), 257.2 (254), 308.7
(305), 353.4 (356), 403.2 (406), 454.6 (457), 533.1 (533), 607.6 (610), 683.5 (686),
762.2 (762), 840.7 (838), 910.4 (914), 1008.1 (1016) mm. The main dimensions of
some UB profiles are given in Table 3. Cost K is given in USD ($) throughout the
paper.

Table 1. Results of the optimization for stiffened and unstiffened
shell. The positive cost difference means savings due to stiffening.
Stiffener height (h) and shell thickness (t) in mm, cost (K) in $

Stiffened Unstiffened
Cost

difference

φ h n t K t K

400 203 5 24 56,310 22 49480 -14
500 610 5 22 56,082 22 49,480 -13
600 406 5 23 55,760 25 55,800 0
700 686 14 16 57,751 29 64,440 12
800 914 10 16 62,294 33 73,370 18
900 914 15 12 66,545 37 82,580 24
1000 914 18 11 70,571 41 92,100 30

Constraints on shell buckling (unstiffened curved panel buckling) and stringer panel
buckling are formulated according to DNV design rules. Horizontal displacement on
the top is limited to L/φ = L/400–L/1000.
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The optimization is performed using the Particle Swarm mathematical algorithm
[4]. The results are summarized in Table 1.

The buckling stress constraint is active when the allowable horizontal displacement
is L/400 – L/500 and for these cases the unstiffened shell is cheaper than the stiffened
one. On the other hand, for L/700 − L/1000 the displacement constraint is active
and the stringer-stiffened shell is cheaper than the unstiffened one. The cost savings
achieved by stiffening are 12-30%.

3.2. Columns of square box section constructed from stiffened or cellular
plates. A cantilever stub column of square box section is optimized. The column is
subject to compression and bending and is constructed from four equal orthogonally
stiffened and cellular side plates. The thickness and width of side plates as well
as the dimensions and numbers of longitudinal stiffeners are calculated to fulfill the
constraints and minimize the cost function.
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Figure 2. A cantilever column can be constructed of stiffened or cellu-
lar plates. (a) Main dimensions and loads, (b) orthogonally stiffened
plate, (c) corner construction with cellular plates

The constraints on overall buckling are formulated according to the Det Norske
Veritas design rules [5]. The horizontal displacement of the column top is limited.
The minimum distance between stiffeners is prescribed to ease the welding of stiffeners
to the base plates.

Halved rolled I-profile stiffeners are used. Their height characterizes the whole
profile, since the other dimensions can be expressed by height using approximate
functions derived from the data of a profile series selected from available sections.
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The cost function is formulated according to the fabrication sequence.

It is possible to compare the costs of structural versions of the column with the
same height, loads and constraints on stress and displacement as follows.

(1) The stringer-stiffened circular shell with a radius of 1850 mm has the minimum
cost of K = 70571 (unstiffened K = 92, 100 $),

(2) The square box structure composed from orthogonally stiffened plates with an
optimized width of b0 = 4500 mm has the minimum cost of K = 76, 990 $
(see [4]),

(3) The cellular box structure loaded by a slightly different compression force
(30000 instead of 34000 kN) with an optimized width of b0 = 4700 mm has the
minimum cost of K = 60, 430 $.

It can be concluded that the cellular box column is the most economic structural
version, since cellular plates have much higher torsional stiffness that the plates stiff-
ened on one side.

4. Stiffened or cellular square plates supported at four corners

4.1. The stiffened square plate. A square plate is investigated subject to uni-
formly distributed normal static load, supported at four corners, stiffened by a square
symmetrical orthogonal grid of ribs. Halved rolled I-section stiffeners are used welded
to the base plate by double fillet welds (Figure 3) [4, 6].
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Figure 3. A stiffened square plate supported at four corners. Cross-
sections of external (a) and internal (b) stiffeners of halved rolled
I-section

The bending moments are calculated using the force method for torsionless grid-
works with different numbers of stiffeners. Constraints on stress in the base plate
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and in stiffeners as well as on deflection of edge beams and of internal stiffeners are
formulated. The cost function includes material, welding and painting costs and is
formulated according to the fabrication sequence.

The unknowns are the base plate thickness (t), the heights of edge (he) and internal
(h) stiffeners and the number of internal stiffeners (n).

Numerical data: Yield stress of steel fy = 355 MPa, fy1 = fy/1.1 = 322, elastic
modulus E = 2.1× 105 MPa, edge length of the base plate L = 18.0 m, factored load
intensity p0 = 0.0015 N/mm2, load intensity considering the self mass

p = p0 + ρ0
V

L2
, (4)

where density of steel ρ = 7.85× 10−6 kg/mm3, ρ0 = 7.85× 10−5 N/mm3, admissible
deflection wadm = L/300 = 60 mm, factor for the complexity of assembly Θ = 3,
factor for the complexity of painting ΘF = 3, cost factors: km = 1.0 $/kg, kw = 1.0
$/min, kP = 14.4 × 10−6 $/mm2. The ranges of unknowns: t = 4–40 mm, h and
he = 152–1008.1 mm.

Results obtained for discrete variables are summarized in Table 2.

Table 2. Results obtained by Particle Swarm Optimization for dis-
crete variables. Dimensions and deflections in mm, stresses in the
external fibres for edge and internal stiffeners in MPa, costs (K) in
$. The minimum cost is marked by bold letters

n he h t σe1 σe σ1 σ we w K

3 1016 607.6 14 208 310 112 106 36.1 47.6 118,500
4 1016 607.6 9 109 286 205 285 51.6 51.7 106,800
5 1008.1 762.2 12 142 233 301 299 45.9 42.7 134,200

4.2. The cellular square plate. Cellular plates can be applied in various structures
e.g. in floors and roofs of buildings, in bridges, ships, machine structures, etc. Cellular
plates have the following advantages over the plates stiffened on one side: (a) because

P0

Figure 4. A square cellular plate
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of their large torsional stiffness the plate thickness can be decreased, which results
in a decrease in welding cost, (b) their planar surface is more suitable for corrosion
protection, (c) their symmetric welds do not cause residual distortion.

In a previous study [7] it was shown that cellular plates can be calculated as
isotropic ones and bending moments and deflections can be determined by using
classic results of isotropic plates for various load and support types.

In the present study a cellular plate is designed which is supported at four corners
and subject to a uniformly distributed normal load.

In order to guarantee a suitable fabrication procedure halved rolled I-section stiff-
eners are used, their web is welded to the upper base plate by double fillet welds and
the bottom base plate parts are welded to the stiffener flanges also by fillet welds
(Figure 4).

Structural characteristics to be changed (variables):

– number of stiffeners in one direction (square symmetry) n,
– thicknesses of the upper and bottom base plates t1 and t2,
– height of the rolled I-section stiffener h.

Other dimensions of UB profiles are given in Table 3. Note that for these dimensions
approximate formulae can be applied as well.

Available series of rolled I-sections: UB profiles selected according to the ARCELOR
catalog [8] (necessary for the optimization).

Table 3. Selected UB profiles according to the ARCELOR catalogue

UB profile h b tw tf
610 × 229 × 113 607.6 228.2 11.1 17.3
686 × 254 × 140 683.5 253.7 12.4 19.0
762 × 267 × 173 762.2 266.7 14.3 21.6
838 × 292 × 194 840.7 292.4 14.7 21.7
914 × 305 × 224 910.4 304.1 15.9 23.9
1016 × 305 × 349 1008.1 302.0 21.1 40.0

Numerical data: Plate edge length: L = 18 m, factored load intensity p0 = 150 kg/m
2

=

0.0015 N/mm
2
, yield stress of steel fy = 355 MPa, elastic modulus E = 2.1 × 105

MPa, Poisson ratio ν = 0.3, steel density ρ = 7.85 × 10−6 kg/mm3, ρ0 = 7.85 × 10−5

N/mm3.

Optimization and results: In the optimization process the optimum values of vari-
ables are sought that fulfil the design and fabrication constraints and minimize the
cost function. Calculation shows that the deflection constraint is always active, and
the minimum cost corresponds to the minimum value of plate thickness t2 = 4 mm.
The results are summarized in Table 4.

It can be seen that the cost increases when h decreases, thus it is not necessary to
continue with the search. The optimum is marked by bold letters. Each result given
in Table 4 satisfies all the constraints.
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Table 4. Optimization results. Allowable deflection is 60 mm. Di-
mensions and deflections in mm, stresses in MPa

h n t1 t2 σ2 wmax 10−5K $

1008.1 3 8 7 191 57.2 1.125
4 7 4 122 57.2 1.071
5 5 4 166 59.6 1.061
6 4 4 191 56.8 1.094

910.4 3 12 4 65 57.6 1.158
4 10 4 60 59.1 1.121
5 9 4 51 56.9 1.129

840.7 3 14 4 47 57.7 1.232
4 12 4 41 58.4 1.188
5 11 4 34 56.0 1.191
6 10 4 30 55.0 1.195
7 9 4 29 55.2 1.200

Comparing the two structural versions it can be concluded that the cellular plate
is competitive to the plate stiffened on one side, since the costs are nearly the same
(106,800 compared to 106,100 $) and the cellular construction has some advantages
over the stiffened one.

5. A wind turbine tower

Steel towers for wind turbines can be constructed in various structural versions. Ring-
stiffened cylindrical shells or tubular trusses are usually applied.

The cost comparison is applied now to two structural versions of a wind turbine
tower. The tower is 45 m high, loaded on the top by a factored vertical force of 950
kN (self weight of the nacelle), a bending moment of 997 kNm and a horizontal force
of 282 kN from the turbine operation. The tower width is limited to 2.5 m due to the
rotating turbine blades of length 27 m.

Both the shell and the truss structure are constructed from 3 parts each of 15 m
length with stepwise increasing widths. The shell parts are designed against shell
buckling and panel ring buckling according to the design rules of the Det Norske
Veritas [5]. The number of flat ring stiffeners is determined by the designer to avoid
larger ovalization of the cylindrical shell. The 3 shell parts are joined by bolted
connections.

5.1. The ring-stiffened shell structure. Design constraints on shell buckling and
on local buckling of flat ring-stiffeners are formulated according to DNV [5] and API [9]
design rules. The wind load acting on the shell tower is calculated according to
Eurocode 1 Part 2-4 [10]. To avoid shell ovalization a minimum number of 5 and a
maximum number of 15 stiffeners is prescribed. In the shell buckling constraint an
imperfection factor as proposed by Farkas [3] is used, which expresses the effect of
radial shell deformation due to shrinkage of circumferential welds.
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Figure 5. A wind turbine tower constructed as a ring-stiffened circu-
lar slightly conical shell. (a) wind loads, (b) diameters of the shell,
(c) bending moments, (d) shell thicknesses

The optimization has been performed using Rosenbrock’s search algorithm [1].
The optimal values of the shell thickness (t) for n = 5, which comply with the design
constraints and minimize the cost function, are given in Figure 5d. The minimal
masses and costs are summarized in Table 5.

Table 5. Summary of masses (kg) and costs ($)

Shell part Mass Cost without Kp Kp Total K
top 5398 12096 6440 18,536

middle 9472 19772 7603 27,373
bottom 15648 30941 8778 39,719

total 30518 62809 22821 85,628

5.2. The tubular truss structure. The truss is statically determinate. The dis-
tance between parallel chords in the upper part of the tower is limited because of the
rotating blades (Figure 6).

Thus, in the optimization procedure the inclination angle or the larger constant
chord distance and the member dimensions of the lower tower part are sought that
minimize the structural volume and fulfill the design constraints.



42 J. Farkas

Fw0

2

G
4

G
4

Mw

2

Fw1

4
x
3

0
0

0

2100

Ø244.5x8

Ø114.3x5

Ø76.1x4

Ø48.3x3.2

Fw2

6
x
3

0
0

0

2500

Ø323.9x10

Ø114.3x5

Ø88.9x3.2

Ø48.3x3.2

Fw3

5
x
3

0
0

0

2900

Ø355.6x10

Ø114.3x5

Ø88.9x4

Ø60.3x3.2

Truss of the top tower
part

Truss of the middle tower
part

Truss of the bottom tower
part

Figure 6. A wind turbine tower constructed as a tubular truss

The constraints relate to the buckling strength of circular hollow section (CHS)
members and to the local strength of welded tubular joints. Seismic behavior is not
considerred. In the numerical problem the loads from wind acting on the turbine and
from the nacelle mass are selected from the literature. With the member forces an
iterative suboptimization method is used for the calculation of compression member
dimensions.

The cross-section of the truss can be quadratic or triangular. In the case of a
triangular cross-section the whole horizontal load should be carried by a truss plane,
since the horizontal load direction is variable. Therefore the quadratic cross-section
is used. In this case only the half value of the horizontal load is acting on a truss
plane.

The tubular truss structure consists of three parts with different but constant
width. The four truss planes are stiffened by horizontal diaphragms constructed from
two struts.

Both structural versions are checked for eigenfrequency and fatigue [11]. The de-
tails of the cost calculation are summarized in Table 6, where G – mass, Km – material
cost, KCG – cost of cutting and grinding of the tubular member ends, KA – cost of
assembly, Kw – cost of welding, KP – cost of painting, K – total cost.
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Table 6. Costs in $ of the tubular tower, the surface AP to be painted
in mm2

Part G kg Km KCG KA Kw APx10−6 KP K
Top 3437 4139 1936 1180 2514 72.46 2087 11,856

Middle 7395 9096 2867 1965 3108 130.11 3747 20,783
Bottom 6701 8643 2551 1629 2353 116.17 3346 18,522
Total 17533 21878 7354 4774 7975 318.74 9180 51,161

The comparison of the two structural versions (Tables 5 and 6) shows that the tubular
truss has smaller mass (17533 compared to 30518 kg), smaller surface to be painted
and is much cheaper than the shell structure (51,161 compared to 85,628 $). This
difference is caused by the much lower mass and surface of the tubular truss version.

6. A ring-stiffened slightly conical shell loaded by external pressure

Conical shells are applied in numerous structures, e.g. in submarine and offshore
structures, aircraft, tubular structures, towers and tanks, etc. Their structural char-
acteristics
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Figure 7. A ring-stiffened slightly conical shell with equidistant stiff-
ening. Ring stiffener of welded box section

are as follows:

– Material: steels, Al-alloys, fiber-reinforced plastics.
– Geometry: slightly conical (transition parts between two circular shells), strongly

conical (storage tank roofs), truncated.
– Stiffening: ring-stiffeners, stringers, combined, equidistant, non-equidistant.
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– Stiffener profile: flat, box, T -, L-, Z-shape,
– Loads: external pressure, axial compression, torsion, combined.
– Fabrication technology: welding, riveting, bolting, gluing.

In the present study we select the following structural characteristics: steel, slightly
conical shell, ring stiffeners of welded square box section to avoid tripping, equidistant
and non-equidistant stiffening, external pressure, welding. Design rules of Det Norske
Veritas [5, 12] are applied for shell and stiffener buckling constraints.

In the case of equidistant stiffening the variables to be optimized are as follows:
number of shell segments (n) (Figure 7), shell thicknesses (ti), dimensions of ring-
stiffeners (hi, tri). The number of stiffeners is n+1, since stiffeners should be used at
the ends of the shell, thus, two stiffeners are used in the first shell segment.

In the case of non-equidistant stiffening [13] the variables to be optimized are as
follows: length of shell segments for a given shell thickness (Figure 1), dimensions of
ring-stiffeners (hi, tri). The ring stiffeners are placed at a small distance from the
circumferential welds connecting two segments to allow the inspection of welds: this
is marked in Figure 1 by dotted lines.

The optimization process for the equidistant stiffening has the following parts:

(a) design of thicknesses for each shell segment given by two radii (Ri and Ri+1)
using the shell buckling constraint,

(b) design of ring stiffeners for each shell segment using the stiffener buckling
constraint,

(c) cost calculation for each shell segment and for the whole shell structure.

These design steps should be carried out for a series of segment numbers. On the
basis of calculated costs the optimum solution corresponding to the minimum cost
can be determined.

The optimization process for the non-equidistant stiffening has the following parts:

(d) design of each shell segment length for a given shell thickness using the shell
buckling constraint,

(e) design of ring stiffeners for each shell segment using the stiffener buckling
constraint,

(a) cost calculation for each shell segment and for the whole shell structure.

These design steps should be carried out for a series of shell thicknesses. On the
basis of calculated costs the optimum solution corresponding to the minimum cost
can be determined.

Numerical data (Figure 7) : Total shell length L = 15000 mm, side radii Rmin =
R1 = 1850 and Rmax = Rn+1 = 2850 mm, yield stress of steel fy = 355 MPa, with
a safety factor for yield stress fy1 = fy/1.1, external pressure intensity p = 0.5 MPa,
safety factor for loading yb = 1.5, Poisson ratio ν = 0.3, elastic modulus E = 2.1×105

MPa.

Results of the optimization for equidistant stiffening: The detailed calculations are
carried out for numbers of shell segments n = 3 − 15. The corresponding material
and total costs are summarized in Table 7.
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Table 7. The material and total costs in $ for investigated numbers
of shell segments. The optima are marked by bold letters

n 3 4 5 6 8 10 12 15
Km 48,540 43,540 40,350 36,830 33,390 31,390 29,840 31,192
K 85,390 82,360 81,430 79,210 80,260 82,120 84,811 95,818

It can be seen that the optimum number of shell segments for material cost is
nMopt = 12 and for total cost nopt = 6. This difference is caused by the fact that the
fabrication (assembly, welding and painting) cost represents a large amount of total
cost. The cost data show that forming the plate elements into shell shape, welding
and painting make up a significant part of the fabrication cost.

In order to characterize the dimensions of the optimum structure, the main data
are given in Table 8.

Table 8. Main dimensions (in mm) of the optimum shell structure

i Ri ti hi tri
1 1850 18 121 4
2 2017 19 132 4
3 2184 20 143 5
4 2351 20 156 5
5 2518 21 155 5
6 2685 22 153 5
7 2852 23 152 6

Results of the optimization for non-equidistant stiffening: The detailed calculations
are carried out for shell thicknesses ti = 14 − 20 mm. The corresponding material
and total costs are summarized in Table 9.

Table 9. The material and total costs in $ for investigated shell thick-
nesses. The optima are marked in bold letters

ti Km K
14 28,490 82,280
16 29,620 76,150
18 32,390 75,040
20 38,170 80,120

It can be seen that the optimum shell thickness for material cost is 14 and for
total cost 18 mm. This difference is caused by the fact that the fabrication (assembly,
welding and painting) cost represents a large amount of total cost. The cost data
show that forming the plate elements into shell shape, welding and painting make up
a significant part of the fabrication cost.

In order to characterize the dimensions of the optimum structure, the main data
are given in Table 10.
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Table 10. Main dimensions (in mm) of the optimum shell structure
(t = 18 mm)

Ri Li hi tri
1850 2630 121 4
2025 2376 134 4
2183 2189 146 5
2329 2044 158 5
2465 1927 170 5
2593 1831 182 6
2715 1750 194 6
2832 (1680) 207 7

Comparison of the two structural versions (Tables 9 and 10) shows that the non-
equidistant stiffening produces more economic solution than that of the equidistant
one: material costs 28,490 vs 29,340 $ and total costs 75,040 vs 79,210 $.

7. A simply supported sectorial plate with different stiffenings
subject to uniformly distributed normal load
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Figure 8. Stiffened sectorial plates

Halved rolled I-section stiffeners are used [14]. Comparing the costs of the different
structural solutions, it can be concluded that in the present numerical problem the
lowest total cost corresponds to equidistant tangential stiffening with variable base
plate thickness (n = 8, K = 6, 320 $).
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A similarly low total cost can be achieved by non-equidistant tangential stiffening
with constant base plate thickness (t = 4mm, K = 6, 437 $).

Equidistant tangential stiffening combined with radial stiffeners needs much higher
total cost (t = 6, K = 7, 730 $).

The lowest mass (or material cost) corresponds to non-equidistant tangential stiff-
ening with constant base plate thickness (t = 4 mm, Km = 2, 094 $) followed by
combined stiffening (t = 4 mm, Km = 2, 456 $). The solution giving the lowest total
cost needs larger material cost (n = 8, Km = 3, 077 $). These data show that the
fabrication costs (welding and painting cost) significantly affect the total cost.

The comparison with the cost of the unstiffened sectorial plate shows that the
stiffened version is much more economic than the unstiffened one.

8. Conclusions

The developed cost calculation method makes it possible to select the most economic
structural version. Cost comparison is presented in the case of four welded steel
structural types. The compared versions are optimized for minimum cost with the
same conditions (loads, constraints, some main dimensions, cost calculation method).

In the case of a cantilever column loaded by compression and bending with a
constraint on top sway, the square box section constructed from cellular plates is the
most economic version.

A square plate supported at four corners subject to a uniform normal load can be
constructed as an orthogonally stiffened plate or a cellular plate with nearly the same
cost. The cellular plate is competitive to the plate stiffened on one side because of its
high torsional stiffness.

The comparison of two versions of a wind turbine tower shows that the cost of a
tubular truss structure is much lower than that of the slightly conical circular shell,
because the tubular truss version has much lower mass and surface.

In the case of a slightly conical ring-stiffened shell subject to external pressure
the non-equidistant stiffening is more economic than the equidistant one, since the
shell thicknesses influence the cost significantly. For the investigated stiffened secto-
rial plates the lowest total cost corresponds to equidistant tangential stiffening with
variable base plate thickness.
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Abstract. In this paper the hypersingular integral equation method in the dual system of
plane elasticity is developed and applied to mixed boundary value problems providing that
the region under consideration is simply connected. The accuracy of stress calculations on
the boundary is greatly increased if one applies hypersingular integral equations instead of
using the traditional computational techniques of the boundary element method. In contrast
to earlier results which formulate the hypersingular integral equations in the primal system of
elasticity, we attack the plane problems in a dual formulation in which the stress functions
of order one and the rigid body rotation are the fundamental variables. It is a further
advantage of the dual formulation that the stress components can be obtained directly from
the stress functions of order one. There is therefore no need for Hooke’s law, which should be
used when we determine the stress components on the boundary from displacements. The
numerical examples presented prove the efficiency of this technique.
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Keywords: Dual formulation, stress functions of order one, strain boundary conditions,
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1. Introduction

The theory of the boundary integral equations with hypersingular kernels in the
primal system of elasticity is well developed and there are a number of problems –
these include some problems of fracture mechanics – for the solution of which they are
successfully applied. Guiggiani at al. [1] is, in all probability, one of the first papers
devoted to this issue. The authors came to the conclusion that a deep analysis of the
hypersingular formulation provides an opportunity to increase the accuracy of the
stress components computed at interior points and points on the contour. Later on
this technique was developed further for 2D and 3D problems in the primal system
of elasticity [2–4].
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The boundary integral equations of the direct method in the dual system of plane
elasticity are established in [5] and [6]. These works formulate the dual boundary
integral equations for plane problems in terms of stress functions of order one and the
rigid body rotation.

The paper is organized into six sections. Section 2 outlines the most important
preliminaries, i.e., it presents the dual integral equations of the direct method and
clarifies what the boundary conditions are for the stress functions. The concept of
the strain boundary conditions is also introduced. When using the direct boundary
element method one has to compute weakly and strongly singular integrals. This
is the main reason for obtaining partly inaccurate results for the stresses at points
close to the boundary. Surprisingly the efficiency of the numerical solutions could be
increased by using an appropriately chosen hypersingular formulation [1, 2]. Section
3 deals with the issue of how to introduce the hypersingular integral formulation for
those boundary value problems in which the governing equations are given in terms
of stress functions of order one. The necessary equations are set up in a suitable form
in Section 4 which is devoted to some important computational issues so that we can
develop an appropriate algorithm for the stress computations. Section 5 presents the
applicability of the algorithm for a simple and a bit more difficult problem. The last
section is a summary of the results. Some longer formulae are presented in Appendix
A.

2. Preliminaries

Throughout this paper xρ and yρ are rectangular Cartesian coordinates referred to the
same origin O. (Greek)[Latin] subscripts are assumed to have the range (1, 2)[1,2,3].
For subscripts repeated twice, the summation convention is applied. In accordance

Figure 1. The inner region Ai
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with the notations introduced, δρλ is the Kronecker symbol, derivatives with respect
to yρ are denoted by the subscript ρ preceded by a coma and ερπ3 is the permutation
symbol.

Consider a simply connected inner region Ai. The contour Lo of the region can be
divided into two parts denoted by Lt and Lu. We shall assume that [Lt] {Lu} is the
union of those arcs on which [stress functions (obtainable from prescribed tractions)]
{strain boundary conditions (derivatives of displacements with respect to the arc
coordinate)} are imposed. If the number of arcs on the boundary is four they are
denoted by Lt1, Lt3 and Lu2, Lu4, respectively. The quantities that are prescribed
on the boundary are denoted by hatted letters: ûλ and t̂λ are the displacements and
stresses (tractions) prescribed on the boundary. Let y = (y1, y2) and x = (x1, x2) be
the source point and field point.

The three dual Somigliana formulae for the inner region are of the form

uk(y) =

∮
Lo

Ukλ(x, y)tλ(x) dsx −
∮
Lo

Tkλ(x, y)uλ(x) dsx y ∈ Ai , (2.1a)

cκλ(y)uλ(y) =

∮
Lo

Uκλ(x, y)tλ(x) dsx −
∮
Lo

Tκλ(x, y)uλ(x) dsx y ∈ Lo , (2.1b)

0 =

∮
Lo

Uκλ(x, y)tλ(x) dsx −
∮
Lo

Tκλ(x, y)uλ(x) dsx y 6∈ Ai ∪ Lo ,

(2.1c)

in which the stress functions of order one uλ – this vector is also referred to as dual
displacement vector – and the rigid body rotation u3 = ϕ constitute the vector uk,

[Ukl(x, y)] = K1


−2 lnR− 3− 2

r2r2
R2

2
r1r2
R2

2

µ
(1− ν)

r1
R2

2
r2r1
R2

−2 lnR− 3− 2
r1r1
R2

2

µ
(1− ν)

r2
R2

2

µ
(1− ν)

r1
R2

2

µ
(1− ν)

r2
R2

0

 ,

(2.2a)

K1 =
µ

4π(1− ν)
(2.2b)

is the fundamental solution of order one, the distance between the points xρ and yρ
is R, the position vector is defined as rρ = xρ − yρ, s is the arc coordinate on Lo
(the positive direction on Lo is the one which leaves the region on the left side), tλ(x)
stands for the derivative −duλ/ds taken on the boundary (here uλ is the displacement
vector) – this quantity is also referred to as the dual stress vector –, µ and ν are the
shear modulus of elasticity and the Poisson number, respectively,
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[Tlλ(x, y)] = D(R)



n1r1

(
4
r22
R2
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)
+n2r2

(
4
r22
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) −n2r1
(
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4
r21
R2
− 2(1− 2v)
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4
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)
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4
r22
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(
4
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R2
− 2(3− 2v)

)
+n1r1

(
4
r21
R2
− 2(3− 2v)

)

−n1
2

µ
(1− ν)

r21 − r22
R2

−n2
4

µ
(1− ν)

r1r2
R2

−n1
4

µ
(1− ν)

r1r2
R2

+n2
2

µ
(1− ν)

r21 − r22
R2


D(R) =

1

8π(1− ν)R2
(2.3)

is the fundamental solution of order two, nρ is the outer unit normal, cκλ(y) depends
on the angle formed by the tangents to the contour at y (cκλ(y) = δκλ/2 if the contour
is smooth at y). Uκλ(x, y) and Tκλ(x, y) are weakly and strongly singular. Integral
equation (2.1b) is that of the direct method for inner regions in the dual system
of plane elasticity: the unknowns are uλ(x) on Lu and tλ(x) on Lt [5, 6]. The line
integrals in (2.1b) should be taken in principal value.

Equation (2.1a) should be associated with appropriate boundary conditions. One
can readily check that the stress function vector (the dual displacement vector) on
the arcs of Lti is of the form

ûρ(s) =

∫ s

Pti

t̂ρ(σ)dσ s ∈ Lti i = 1, 3 , (2.4)

where – in accordance with all that has been said earlier – the hatted letters denote
the prescribed values. Consequently, equation

uρ(s) = ûρ(s) + C(ti)
ρ s ∈ Lti i = 1, 3 (2.5)

is the traction boundary condition. Observe that the quantities C
(ti)
ρ in equation (2.5)

are undetermined constants of integration.

The so-called strain boundary conditions on the arcs on Lui have the following
form:

dûλ
ds

= nρ[ερπ3eπλ − δρλϕ3] s ∈ Lui i = 2, 4 , (2.6)

where ûλ (s) is the vector of the prescribed displacements on Lui and eκλ are the
in-plane components of the strain tensor.

If tractions (stress functions) are imposed on the whole contour Lo (Lt ≡ Lo), the
compatibility condition in the large∫

Lo
nρ[ερπ3eπλ − δρλϕ3]ds = 0 (2.7)
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should also be satisfied. If tractions (stress functions) are imposed only on the arcs
Lt1, Lt3 of the contour Lo, the supplementary conditions of single valuedness to be
satisfied are ∫

Lti
nρ[ερπ3eκλ − δρλϕ3]ds− ûλ|

Pt,i+1

Pti
= 0 i = 1, 3 , (2.8)

where the extremities of the arc Lti are denoted by Pti and Pt,i+1, respectively.

If the compatibility field equation

εκρ3eλκ;ρ + ϕ3
.;λ = εκρ3

(
eλκ;ρ − ελκ3ϕ3

.;ρ

)
= 0 x ∈ Ai (2.9)

is fulfilled then the supplementary compatibility conditions (2.8) are not independent
– one can be omitted [7]. Since no stresses belong to constant stress functions, we

can also set two constants (one vector C
(ti)
ρ ) to zero .

In this way, we have as many independent conditions of single valuedness (2.8) as

there are undetermined integration constants C
(ti)
ρ in the traction boundary condition

(2.5).

The outer region Ae is understood as the part of the coordinate plane outside the
closed curve Lo – see Figure 1. We shall assume that the stresses at infinity denoted
by

t11(∞), t12(∞) = t21(∞), t22(∞)

are all constants. We shall also assume that the rigid body rotation vanishes at
infinity:

ϕ3(∞) = 0 . (2.10)

The stresses at infinity can be obtained from the stress functions

ũλ(x) = εα3ρxαtλρ(∞) + cλ(∞) , (2.11)

where there belong no stresses to the constant stress function vector cλ(∞).

The three dual Somigliana formulae for the outer region are of the form

uk(y) = ũλ(y) +

∮
Lo

Ukλ(x, y)tλ(x) dsx −
∮
Lo

Tkλ(x, y)uλ(x) dsx y ∈ Ae ,

(2.12a)

cκλ(y)uλ(y) = ũλ(y) +

∮
Lo

Uκλ(x, y)tλ(x) dsx −
∮
Lo

Tκλ(x, y)uλ(x) dsx y ∈ Lo ,

(2.12b)

0 = ũλ(y) +

∮
Lo

Uκλ(x, y)tλ(x) dsx −
∮
Lo

Tκλ(x, y)uλ(x) dsx y 6∈ Ae ∪ Lo .

(2.12c)

3. Hypersingular integral equations in the dual system of plane
elasticity

If we would like to use hypersingular equations in the dual system, the partial deriva-
tives of equation (2.1c) with respect to the coordinates yρ of the source point y should
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be known. In order to obtain appropriate formulae, a small neighborhood of the source
point y should be removed from the region of integration: this way we can avoid cal-
culating singular integrals – the kernels are singular at the point x = y. Assume that
the small circular domain Aε with the source point as its center is removed from the
original region Ai. Consequently, the new contour consists of two arcs (i) Lε left from
Lo after the removal of the small circle with radius ε and (ii) the circular arc sε.

Figure 2. The boundary curve Lε ∪ sε

Under this condition equation (2.1c) can be written in the form

0 = lim
ε→0

{∫
Lε

[Ukλ(x, y)tλ(x) − Tkλ(x, y)uλ(x)] dsx+

+

∫
sε

[Ukλ(x, y)tλ(x) − Tkλ(x, y)uλ(x)] dsx

}
. (3.1)

After deriving equation (3.1) with respect yρ, we have

lim
ε→0

{∫
Lε

[Ukλ,ρ(x, y)tλ(x) − Tkλ,ρ(x, y)uλ(x)] dsx+

+

∫
sε

Ukλ,ρ(x, y)tλ(x) − Tkλ,ρ(x, y)uλ(x) dsx

}
= 0 , (3.2)

where the derivatives Ukλ,ρ are given below:

Ukλ,1(x, y)] = K1



2r1 −
4r1r

2
2

R2
−2r2 +

4r21r2
R2

−2r2 +
4r21r2
R2

6r1 − 4
r31
R2

2

µ
(1− ν)

r21 − r22
R2

2

µ
(1− ν)

2r1r2
R2


, (3.3)
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[Ukλ,2(x, y)] = K1



6r2 −
4r32
R2

−2r1 +
4r1r

2
2

R2

−2r1 +
4r1r

2
2

R2
2r2 − 4

r21r2
R2

2

µ
(1− ν)

2r1r2
R2

2

µ
(1− ν)

r22 − r21
R2


. (3.4)

We have also determined the derivatives Tκλ,ρ. The results are presented in Appendix
A – see equations (A.1). Due to the derivation, the order of singularity of the kernels
is increased, i.e., Dkρλ = Ukλ,ρ has a singularity of order one, while the singularity of
Skρλ = Tkλ,ρ is that of order two.

Assume further that the stress functions of order one are continuous and differ-
entiable in the neighborhood of the point y. Then it holds with a good accuracy
that

uλ(x) = uλ(y) + uλ,δ(y)(xδ − yδ) +O(r1+α) , (3.5)

where O is the ordo symbol. It is also not too difficult to check that the displacement
derivative tλ in the vicinity of the source point assumes the form

tλ(x) = −∂uλ
∂s
∼= −uλ,π(y)τπ(x) = −uλ,π(y)ε3ρπnρ(x) , (3.6)

where the outward unit normal nρ is taken at the point x and τπ is the unit tangent.

Making use of these approximations, we can rewrite equation (3.2) in the form

lim
ε→0

{∫
Lε

[Dkρλtλ(x) − Skρλuλ(x)] dsx+

∫
sε

Dkρλ[tλ(x) + uλ,π(y)τπ(x)] dsx−

−
∫
sε

Skρλ[uλ(x)− uλ,δ(y)(xδ − yδ)− uλ(y)] dsx −
∫
sε

Skρλdsxuλ(y)−

−
∫
sε

Dkρλuλ,π(y)τπ(x)dsx −
∫
sε

Skρλuλ,δ(y)(xδ − yδ)dsx
}

= 0 . (3.7)

Observe that the second integral in the first line and the first integral in the second
line are equal to zero if we take their limits. The value of the last integral in the
second line can be manipulated into the form

lim
ε→0

{∫
sε

Skρλdsxuλ(y)

}
= lim
ε→0

{
bkρλ(y)

ε
uλ(y)

}
. (3.8)

This formula clearly shows that the limit of the above integral – due to the fact
that the kernel is singular – is unbounded and depends also on the value of bκρλ(y).
However, if the source point y is an internal point, then bκρλ(y) = 0 – the proof is
omitted here. Therefore, if we take the limit of the last two integrals in (3.7), we have

lim
ε→0

{∫
sε

Dkρλuλ,π(y)τπ(x)dsx +

∫
sε

Skρλuλ,δ(y)(xδ − yδ)dsx
}

= dkραβ(y)uα,β(y) ,

(3.9)
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where dκραβ(y)uα,β = 0.5uκ,ρ if the contour Lo is smooth at the source point y.
Finally, we obtain

lim
ε→0

{∫
Lε

[Dkρλtλ(x) − Skρλuλ(x)] dsx

}
= lim
ε→0

{
bkρλ
ε

uλ(y)

}
+ dkραβ(y)uα,β(y) .

(3.10)
or by rearranging it we get

1

2
uk,ρ(y) + lim

ε→0

{∫
Lo

[Skρλuλ(x)−Dkρλtλ(x) ] dsx +
bkρλ
ε

uλ(y)

}
= 0 . (3.11)

Let us introduce the following notations:∫
Lo
– Dkρλtλ(x)dsx = lim

ε→0

∫
Lo
Dkρλtλ(x)dsx (3.12)

and ∫
Lo
–– Skρλuλ(x)dsx = lim

ε→0

{∫
Lo
Skρλuλ(x)dsx +

bkρλ
ε

uλ(y)

}
. (3.13)

Making use of the notations introduced, equation (3.11) can be rewritten in the same
form as in the primal system of elasticity:

1

2
uk,ρ(y) =

∫
Lo
– Dkρλtλ(x)dsx −

∫
Lo
–– Skρλuλ(x)dsx . (3.14)

Assume further that the contour Lo is divided into nbe boundary elements, which have
three nodes and are denoted by Le. With the previous notations, the corresponding
formula for computing the elements of the stress tensor at the boundary point y is
rewritten into this form:

tψκ(y) = εψρ3uκ,ρ(y) = 2εψρ3

{
nbe∑
e=1

∫
Le
Dκρλ (x, y) teλdsx −

−
nbe∑

e=1,e6=m

∫
Le
Sκρλ (x, y) ueλdsx − Imκρλumλ

 . (3.15)

Here the upper index e is the number of the boundary element considered. The
element that contains the source point y is denoted by the upper index m. Imκρj
stands for the line integral with the hypersingular kernel.

4. Numerical evaluation of the hypersingular integral

Assume that the nodal values of the variables are known from the solution of the
direct boundary integral equation method. The nodal values uaλ and taλ (a = 1, . . . , 3),
which belong to element e and local node number a are given in the matrix form

[uej ]
T =

[ [
u1λ
]T [

u2λ
]T [

u3λ
]T ]

=
[
u11 u12 u21 u22 u31 u32

]
(4.1)

and

[tej ]
T =

[
t11 t12 t21 t22 t31 t32

]
(4.2)
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on the e-th element (j = 1, . . . , 6). It is obvious that the approximations of the vectors
uλ and tλ on the e-th element take the form:

uλ = Nλj(ξ)u
e
j , tλ = Nλj(ξ)t

e
j , (4.3)

in which e identifies the element and

[Nλj(ξ)] =

[
N1(ξ) 0 N2(ξ) 0 N3(ξ) 0

0 N1(ξ) 0 N2(ξ) 0 N3(ξ)

]
(4.4)

is the shape function matrix constituted by the quadratic Lagrange polynomials

N1(ξ) =
1

2
ξ(ξ − 1), N2(ξ) = 1− ξ2, N3(ξ) =

1

2
ξ(ξ + 1) (4.5)

that map the element onto the interval ξ ∈ [−1, 1] – isoparametric approximation.
Making use of approximations (4.3) in (3.15), the stress tensor tψκ at the boundary
point is calculated as follows:

tψκ(η) = 2εψρ3

{
nbe∑
e=1

∫
Re
Dκρλ (ξ, η)Nλj(ξ)J(ξ)dξtej −

−
nbe∑

e=1,e6=m

∫
Re
Sκρλ (ξ, η)Nλj(ξ)J(ξ)dξuej − Imκρjumj

 . (4.6)

Here J(ξ) is the Jacobian, Re is the map of Le on the interval [−1, 1]. The mean-
ing of Rmε can be read off from Figure 3 which also shows the map of Le on the axis ξ.

Figure 3. The interval Rmε
The length of Rmε is denoted by α(ε), while η is the image of the source point y on
this interval. The line integral containing the hypersingularity can be given in the
following form:

Imκρj =

∫
Rm
Skρλ (ξ, η)Nλj(ξ)J(ξ)dξ =

∫
Rm

Fmκρj(ξ, η)dξ . (4.7)

To determine the power series of Sκρλ (ξ, η) in ξ, we have to utilize the equations

rλ
R

=
Aλ
A
sgn(δ) +

[
Bλ
A
− AλC

A3

]
δ

sgn(δ)
+O(δ2) (4.8)

and
1

R2
=

1

A2δ2
− 2

C

A4δ
+O(1) , (4.9)

in which δ = ξ − η. The constants Aλ and Bλ are derived from the first two terms of
the Taylor series of the position vector rλ in the vicinity of the source point:
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rλ = xλ(ξ)− yλ(η) = 0 +
∂xλ
∂ξ

∣∣∣∣
ξ=η︸ ︷︷ ︸

Aλ

(ξ − η)︸ ︷︷ ︸
δ

+
1

2!

∂2xλ
∂ξ2

∣∣∣∣
ξ=η︸ ︷︷ ︸

Bλ

(ξ − η)2 + . . . =

= Aλδ +Bλδ
2 +O(δ3) , (4.10)

where

Aλ = (x1λ − 2x2λ + x3λ)η +
1

2
(x3λ − x1λ) , Bλ =

1

2
(x1λ − 2x2λ + x3λ) (4.11)

are constants at η. A =
√∑

A2
λ and C =

∑
AλBλ. The power series of the shape

function matrix is then

Nλj(ξ) = Nλj(ξ)

∣∣∣∣
ξ=η

+
d

dξ
Nλj(ξ)

∣∣∣∣
ξ=η

(ξ − η) +O(δ2) =

= 0Nλj(η) + 1Nλj(η)δ +O(δ2) , (4.12)

in which the elements are given by

0N1(η) =
1

2
η(η − 1), 0N2(η) = 1− η2, 0N3(η) =

1

2
η(η + 1) (4.13)

1N1(η) =
1

2
(η − 1), 1N2(η) = −2η, 1N3(η) =

1

2
(η + 1) . (4.14)

The product of the Jacobian and the vector nρ can also be given in the following
forms:

J1 (ξ) = n1J (ξ) = A2 + 2B2δ +O(δ2) , (4.15)

J2 (ξ) = n2J (ξ) = −A1 − 2B1δ +O(δ2) . (4.16)

After substituting power series (4.8)-(4.16) into integral (4.7), the integrand Fmκρj(ξ, η)
can be manipulated in a Laurent series in the vicinity of the source point η:

Fmκρj(ξ, η) =
−2Fmκρj (η)

(ξ − η)
2 +

−1Fmκρj (η)

ξ − η
+O(1) , (4.17)

where −1Fmκρj (η) and −2Fmκρj (η) are constant values at a fixed η ∈ (−1, 1). Sub-
tracting the first two terms of the power series from Fmκρj(ξ, η) in equation (4.7) and
investigating the terms obtained separately, three line integrals are resulted:

Imκρj = lim
ε→0

∫
Rm−2Rmε

{
Fmκρj(ξ, η)−

[
−2Fmκρj (η)

(ξ − η)
2 +

−1Fmκρj (η)

ξ − η

]}
dξ+

+lim
ε→0

∫
Rm−2Rmε

−2Fmκρj (η)

(ξ − η)
2 dξ+lim

ε→0

∫
Rm−2Rmε

−1Fmκρj (η)

ξ − η
dξ = 0Imκρj+

−2Imκρj+
−1Imκρj .

(4.18)

Observe that the integrand of 0Imκρj is a polynomial function without singular terms.
Its limit therefore assumes the following form:

0Imκρj =

∫ 1

−1

{
Fκρλ(ξ, η)−

[
−2Fmκρj (η)

(ξ − η)
2 +

−1Fmκρj (η)

ξ − η

]}
dξ . (4.19)
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This integral is regular and can be calculated numerically by using the standard
integration techniques. We have chosen a 14 node Gaussian quadrature rule for
the interval [−1, 1]. The second and third terms on the right side of (4.18) can
be determined analytically. To this end we have to use the following expansion of α
– see Figure 3 – in the powers of ε:

α(ε) =
ε

A
− C

A4
ε2sgn(α) +O(ε3) . (4.20)

After dividing Rm into two subintervals [−1,−α] and [α, 1] at the singular point η
and making use of series (4.20) we can determine the limit of the last two integrals
in equation (4.18). After some hand calculations, we obtain the following analytical
result

−1Imκρj = lim
ε→0−


η−α∫
−1

−1Fmκρj (η)

ξ − η
dξ

+ lim
ε→0+


1∫

η+α

−1Fmκρj (η)

ξ − η
dξ

 =

= −1Fmκρj (η) ln

∣∣∣∣ 1− η
−1− η

∣∣∣∣ . (4.21)

Likewise, the last integral in equation (4.18) can also be given in a closed form:

−2Imκρj = lim
ε→0−


η−α∫
−1

−2Fmκρj (η)

(ξ − η)
2 dξ

+ lim
ε→0+


1∫

η+α

−2Fmκρj (η)

(ξ − η)
2 dξ

 =

= −2Fmκρj (η)

(
1

−1− η
− 1

1− η

)
. (4.22)

Consequently, formulae (4.19), (4.21) and (4.22) can be used to determine the value
of the hypersingular integrals over the element containing the hypersingularity.

It is obvious that these integrals can easily be calculated and thus they can given
in closed form. After collecting partial results, the final formula for the evaluation of
the hypersingular integral is given by

Imκρj =

∫ 1

−1
Fmκρj(ξ, η)−

[
−2Fmκρj (η)

(ξ − η)
2 +

−1Fmκρj (η)

ξ − η

]
dξ+

+ −2Fmκρj (η)

(
− 1

1− η
+

1

−1− η

)
+ −1Fmκρj ln

∣∣∣∣ 1− η
−1− η

∣∣∣∣ , (4.23)

where η ∈ (−1, 1). In those cases where η = −1 or η = 1 the previous derivation leads
to the following formula:

Iκρj =

2∑
m=1

{∫ 1

−1
Fmκρλ(ξ, η)−

[
−2Fmκρj (η)

(ξ − η)
2 +

−1Fmκρj (η)

ξ − η

]
dξ −

− −2Fmκρj (η)

(
γm
β2
m

sgn(δ) +
1

2

)
+ −1Fmκρj ln

∣∣∣∣ 2

βm

∣∣∣∣ sgn(δ)

}
. (4.24)
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The calculation program, written in Fortran90, has been developed for the numerical
solution using the formulae of [6] and equations (4.23), (4.24).

5. Numerical examples

Problem 1. We shall consider a circular region with radius R = 10 mm. The material
properties are µ = 8 · 104 MPa, ν = 0.3.

Figure 4. A circular region

On the arc AB of the contour for which the angle ϕ ∈ [0, π] the normal stress
is σo = 100 MPa and there is no shear stress. On the arc BA of the contour
uo = (1 − 2ν)σoro/2µ is the radial displacement and there is no displacement in
the circumferential direction – see Figure 4. One can check with ease that these so-
lutions determine a homogenous state of stress. At the points of the region Ai the
exact solutions for the stresses are as follows:

σ1 = σ2 = σo = 100 [MPa], τ12 = τ21 = 0 .

Table 1 below shows how the accuracy of numerical results at a boundary point is
increased if we increase the number of boundary elements nbe.

Table 1: Solutions for stress components

nbe σ1 [MPa] τ12 = τ21 [MPa] σ2 [MPa]
8 99.86512 −6.04096 · 10−3 99.88720
16 99.98509 −6.17259 · 10−4 99.98576
32 99.99821 −4.42785 · 10−5 99.99823
64 99.99978 −2.74219 · 10−6 99.99957

Problem 2. Though the contour Lo and the material are the same as in the previous
examples the region under consideration is the outer one, for which a constant stress
state σ1(∞) = 100 MPa, τ12(∞) = τ21(∞) = σ2(∞) = 0 is prescribed at infinity. The
inner boundary is free of displacement constraints.
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Figure 5. Outer region bounded by a circle

It is well known that the formulae

σr =
σ1(∞)

2

[(
1− r2o

r2

)
+

(
1 +

3r4o
r4
− 4r2o

r2

)
cos 2ϕ

]
, (5.1a)

σϕ =
σ1(∞)

2

[(
1 +

r2o
r2

)
−
(

1 +
3r4o
r4

)
cos 2ϕ

]
, (5.1b)

τrϕ =
σ1(∞)

2

[(
1− 3r4o

r4
+

2r2o
r2

)
sin 2ϕ

]
. (5.1c)

written in polar coordinates give the exact solution to this problem – see [8] or [9]. The
exact solution on the whole boundary curve is computed from (5.1) in the coordinate
system (x1, x2):

σ1 = σ1(∞) [1− 2 cos 2ϕ] sin2 ϕ , (5.2a)

σ2 = σ1(∞) [1− 2 cos 2ϕ] cos2 ϕ , (5.2b)

τ12 = τ21 = σ1(∞) [1− 2 cos 2ϕ] sinϕ cosϕ (5.2c)

The contour was divided into 16 equidistant elements. The diagrams below show the
stresses as function ϕ along the circle in clockwise direction.

Figure 6. Exact and numerical solution – σ1 as function ϕ
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Figure 7. Exact and numerical solution – σ2 as function ϕ

Figure 8. Exact and numerical solution – τ12 as function ϕ

Table 2 below represents the numerical results obtained at various boundary points.

Table 2: Solutions for stress components

ϕ σ1[MPa] τ12 = τ21[MPa] σ2[MPa]
π/8 −6.085 −6.066 −14.679 −14.645 −35.346 −35.355
π/4 50.026 50.00 50.047 50.00 50.072 50.00
3π/8 206.169 206.07 85.457 85.355 35.353 35.355
π/2 300.196 300.00 0.00 0.00 −0.072 0.00

The numerical results show a good agreement with the analytical results that appear
in the second columns.

6. Concluding remarks

This paper is concerned with a hypersingular boundary integral formulation in the
dual system of plane elasticity. Our main objective was to present a method by which
the stress components on the boundary can be computed with high accuracy both in
the plane region and on its boundary. We have developed the hypersingular boundary
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integral equation (HBIE) method in the dual system of plane elasticity providing that
(i) the region under consideration is a simply-connected one, (ii) there are no body
forces, (iii) the contour consists of two arcs on which tractions and displacements are
prescribed, respectively. The line of thought is based on a technique developed by
Guiggiani et al. [1] for the primal system of plane elasticity.

It has been proven that the formulae for calculating the stresses on the boundary
can be given in closed forms. The hypersingular integrals in these formulae can
be resolved into two parts. The first one should be computed numerically – this
computation results in, however, a very small numerical error. The second part
can be given in a closed form. Consequently, in contrast to the conventional stress
calculation, which uses polynomial approximations for the derivatives and thus might
lead to significant errors both in the formalism and in the numerical results in the
vicinity of the boundary, the stress calculation method suggested in this paper in
the dual system is much more reliable and accurate due to the way we handle the
hypersingular integrals.

A program has been developed in Fortran 90 for the numerical computations. The
results shown demonstrate that the accuracy of the computations is increased in the
dual formulations if we use hypersingular integral equations.
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10/2/KONV-2010-0001 project in the framework of the New Hungarian Development Plan.
The realization of this project is supported by the European Union, co-financed by the
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Appendix A.

A.1. Derivatives of the fundamental solution of order two. Making use of equation
(2.3), we can determine the derivatives Skρλ = Tκλ,ρ. The results are presented below:
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{
1

R2

[
n1r2

(
16
r21r2
R2

+ 4(1− 2ν)r2

)
+ n2r1

(
16
r32
R2
− 4(3− 2ν)r2

)]
−

−
[
n1

(
4
r21
R2

+ 2(1− 2ν)

)]}
(A.1a)

S112 = D(R)

{
− 1

R2
n1r2

(
16
r31
R2
− 4(3− 2ν)r1

)
− 1

R2
n2r1

(
16
r1r

2
2

R2
+ 4(1− 2ν)r1

)
+

+n2

(
4
r22
R2

+ 2(1− 2ν)

)}
(A.1b)

S211 = D(R)

{
− 1

R2
n1r2

(
16
r31
R2
− 4(1 + 2ν)r1

)
− 1

R2
n2r1

(
16
r31
R2
− 4(1− 2ν)r1

)
+

+n2

(
4
r22
R2
− 2(1− 2ν)

)}
(A.1c)

S212 = D(R)

{
1

R2
n2r2

(
16
r31
R2
− 4(5− 2ν)r1

)
+

1

R2
n1r1

(
16
r31
R2
− 4(5− 2ν)r1

)
−

−n1

(
4
r21
R2
− 2(3− 2ν)

)}
(A.1d)

S121 = D(R)

{
1

R2
n1r1

(
16
r32
R2
− 4(5− 2ν)r2

)
+

1

R2
n2r2

(
16
r32
R2
− 4(5− 2ν)r2

)
−

−n2

(
4
r22
R2
− 2(3− 2ν)

)}
(A.1e)

S122 = D(R)

{
− 1

R2
n2r1

(
16
r32
R2
− 4(1 + 2ν)r2

)
− 1

R2
n1r2

(
16
r21r2
R2
− 4(1− 2ν)r2

)
+

+n1

(
4
r21
R2
− 2(1− 2ν)

)}
(A.1f)

S221 = D(R)

{
1

R2

[
−n1r2

(
16
r21r2
R2

+ 4(1− 2ν)r2

)
− n2r1

(
16
r32
R2
− 4(3− 2ν)r2

)]
+

+n1

(
4
r21
R2

+ 2(1− 2ν)

)}
(A.1g)



Hypersingular boundary integral formulations with first order stress functions 65
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where D(R) = 1/ 8π(1− ν)R2 and the normal nρ is taken at the point x.

A.2. Series expansion of the hypersingular integrand Fmκρj(ξ, η). Applying the power
series (4.8)-(4.11), we can determine the series expansion of the matrix Sκρλ at η as follows:

Sκρλ(ξ, η)J(ξ) = 0aκρλ + 1aκρλδ +O(δ2) , (A.2)
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where K2 = 1/ 8π(1−ν) and K3 = 2(1−2ν). In addition, exploiting equations (4.12)-(4.16),
the Laurent series of Fmκρj(ξ, η) in accordance with equation (4.17) is given in this form:
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Department of Machine and Product Design

Budapest University of Technology and Economics
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Abstract. The aim of our analyses was to model the process of the thermal micro-crack
development on and under a railway wheel tread, equipped only with a disk brake during
an intensive braking procedure. Considering the fact that the thermal micro-crack develop-
ment is a complex problem, a multistage finite element modelling technique was developed.
Using the new modelling approach, the heat and the thermal stress development can be
observed between the wheel and the rail using thermal and coupled thermal-elastic-plastic
FE simulations.

Keywords: Micro-crack development, heat and thermal stresses

1. Introduction

During intensive wheel-braking of the railway vehicles it appears that the wheel slides
on the rail. While the macroscopic sliding speed is restricted it is not eliminated by the
WSP (Wheel Slide Protection System). Through the sliding process considerable heat

Figure 1. Highlighted thermal cracks on the surface of the wheel tread 1

1Photo courtesy of BUTE Department of Aeronautics, Naval Architecture and Railway Vehicles

c©2016 Miskolc University Press

http://dx.doi.org/10.32973/jcam.2016.005


68 P. T. Zwierczyk, K. Váradi

is generated between the connecting parts. This heat may cause micro-cracks on
and under the wheel tread. These phenomena can be observed not only on vehicles
equipped with brake pads but also on those with a disk brake. A great of research
is focusing on the heat development between the wheel and the rail and the different
defects of the railway wheels using various calculation methods. In order to anal-
yse the contact temperature and the temperature fields of components in a relative
sliding motion Knothe and Liebelt [1] used Laplace transformations combined with
the method of Green’s functions. They reduced the three-dimensional problem, as an
approximation, to a two-dimensional one. Tanvir [2] also applied the Laplace trans-
formation method to the determine the temperature on and under the wheel tread. A
new mathematical model was developed to investigate the temperature distribution,
in the case of rolling contact and at different slips, between the wheel and the rail by
Spiryagin et al. [3]. Their investigation involved the one- and the so-called two-point
contact cases as well.

Figure 2. The schematic structure of the multistage FE modelling
method [4, 5]
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Beside the analytical calculation methods many authors used numerical models to
analyse the temperature distribution. Gupta et al. [6] used both two- and three-
dimensional FE models to analyse the temperature rise and distribution on and under
the tread of a locomotive wheel in the case of different combinations of creep and
adhesion. Ertz and Knothe [7] computed the maximum surface temperature during
rolling contact with sliding friction between the wheel and the rail with semi-analytical
and numerical methods. In addition they created a comparison of the previous results.
Kennedy et al. [8], to determine the temperature distribution and the heat partition
between the elements in frictional contact, used a transient FE model. Furthermore,
the results were compared with many analytical solutions. Sábitz and Zobory [9]
as well as Sábitz and Kolonits [10] also used FEM to investigate the temperature
distribution on the surface of the wheel tread.

The finite element method is also popular in the case of the examination of the stress
field caused by the temperature distribution. Wu et al. [11] using two-dimensional
FEM model, analysed the residual stress and strain distributions on and under a
rail head in the case of different loading cases and passes with or without thermal
load. Furthermore Sábitz and Zobory [12], Peng et al. [13] and Peng et al. [14] also
used the finite element method to investigate the thermal stress distribution in the
case of a tread braked wheel in the same cases, allowing for the so-called “rail chill”
effect. The finite element method is also used as a tool to investigate wheel defects
(e.g. thermal fatigue cracks, rolling contact fatigue, etc.) together with experimental
investigations. Makino et al. [15] analysed shelling as a typical rolling fatigue crack
with FE method and with two cylindrical specimens. Similarly Kabo [16], Ringsberg
and Lindbäck [17] and Pletz et al. [18] chose FEM to examine rolling fatigue during
different situations. An experimental test equipment was used by Handa et al. [19] to
examine the tread thermal crack development and propagation. The analysis involved
not only the wheel–rail contact but also the tread breaking process. The same test
apparatus was used by Handa and Morimoto [20] to investigate the dominant factor
of thermal crack development and the possible countermeasures.

In our research a multistage finite element model was developed to investigate the
complete background of the thermal micro-crack development on and under a wheel
tread, equipped only with a cdisk brake under an intensive braking process. For the
elaboration the ANSYS Workbench V14.5 software was used.

2. The structure of the multistage finite element model

Taking into consideration that the problem under examination is so complicated,
the problem has been divided into several smaller tasks with several partial FE models.
The analysis of the contact and the frictional state of a wheel–rail connection and
the heat and the thermal stress generation between them were examined separately.
To verify the new FE modelling method and validate the results, analytical and/or
numerical methods were used at each model stage. The schematic structure of our
multistage FE modelling method can be seen in Figure 2.
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In the first stage a frictional contact analysis was performed using a simplified
segmented wheel-rail geometry. During the calculation half a model was used. In
the following stages the size of the models were also modified. In the course of the
thermal and the coupled analyses, a 14◦-piece of a railway wheel with simplified
geometry and a 175-mm long rail, compliant with the UIC 60E1 profile standard
(both also segmented) were examined (Zwierczyk and Váradi [21]).

In the different computational steps, different basic contact assumptions were used.
During the computation of the contact, real-life contact conditions, an elliptical con-
tact patch and parabolic contact pressure distribution (analytical models), caused by
the bodies in contact, were taken into consideration. During the transient thermal and
the coupled transient thermal-elastic-plastic analyses the previously computed ellipti-
cal contact area was considered to be rectangular with uniform pressure distribution
to compute the heat source. Through the combined thermal and contact analysis the
formerly described rectangular contact patch with uniform pressure distribution (due
to the heat source) and a parabolic pressure distribution (obtained from the contact
computation) were used (Zwierczyk [4]).

Figure 3. The initial geometries, used during the thermal and the
coupled analyses [4]
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3. The results

As a result of the frictional contact analysis the size and the shape of the contact
zone, furthermore the distribution of the contact pressure, which was essential to the
examination of the temperature field were determined. The significant size of the
contact ellipse radiuses and the contact pressure distribution can be seen in Figure 5.
Besides, the complete slipping procedure of the wheel on the rail could also be investi-
gated, also with the displacement of the contact patch within the contact zone (Zwier-
czyk and Váradi [21]). As was mentioned before, all stages were validated and/or

Figure 4. Contact pressure distribution and the size of the contact
patch on the wheel tread (St; Sp illustrated in Figure 7) (Zwierczyk
and Váradi [21]

Figure 5. Temperature distribution vs. time on the wheel side during
5 revolutions (Zwierczyk [4])
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verified with different analytical and numerical methods. In the case of the contact
pressure and the size of the contact patch the Hertz theory was used to validate
the results. To verify the slipping procedure and the displacements, a simplified FE
control model was built (Zwierczyk [4]).

In the next step thermal analyses were performed both the wheel and the rail.
Moving and distributed heat source models were built (distributed heat source models
provide the “average temperature” during each revolution while moving heat source
models provide information about the temperature development moment by moment
in the vicinity of the contact area). As a result of these analyses the temperature
distribution on and under wheel and the rail tread, furthermore the average base
temperature of both of the contacting elements were determined (Zwierczyk and
Váradi [22]; Zwierczyk and Váradi [23]). The heat sources were calculated using
the previous contact pressure and contact patch. The thermal computation valida-
tion is based on Tian at al’s [5] analytical solution, some of the results were compared
with experimental data and measurement results from the literature.

For the third stage of Figure 2, a coupled thermal-elastic-plastic FE analysis was
performed. With the help of this stage the stress field caused by the temperature
distribution could be calculated. Figure 7 shows the von Mises stress distribution
under the wheel tread. As can be seen in the figure, in the t12 time instant when
heat source is just passing through the sampling line, the von Mises stress reaches the
yield strength and a small plastic zone appears on and under the surface of the wheel
tread. The verification of the model was elaborated by a control FE computation
using submodels.

Figure 6. Distribution of von Mises stress below the tread (Sd illus-
trated in Figure 7) during the 1st revolution (the thin dotted line rep-
resents the yield strength as a function of temperature, t12 indicates
the time instant when the von Mises stress reaches its maximum)
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In the last stage a combine contact-thermal-elastic-plastic model was elaborated
using the contact pressure, calculated in the first stage. The contact pressure was ap-
plied as a load together with the heat source, as can be seen in Figure 7. Results show
that because of the common effect of the thermal and mechanical load the previously
computed plastic zone becomes larger and reaches deeper layers of the wheel as can
be seen in Figure 8. This plastic zone may contribute to the development and the

Figure 7. Method of entering heat flux and contact pressure together
and the locations of the sample lines (p-contact pressure; q-heat
source; sample line St according to the direction of sliding; sample
line Sd in the direction of depth; sample line Sp in direction across
the tread) (Zwierczyk [4])

appearance of the micro-cracks on and under the surface. The calculation method was
verified with control FE analyses and the results were compared with measurements
which are available in the literature.

4. Conclusions

The joint effect of contact and thermal stresses was studied with transient thermal-
elastic-plastic FE models. The coupled stress state caused plastic behavior in deeper
layers compared to the “pure” thermal stress computations. The former stress max-
imums migrated from the surface to deeper layers (0.2–0.3 mm under the surface).
The results show that the two independent effects, i.e. the “pure” thermal stress and
contact stress generation, should be analysed at the same instant because of their joint
impact on micro-crack development. Our intention was to present the numerical algo-
rithm (i.e. multistage FE modelling method), introduced in [24]. The thermal aspect
of the thesis was published in [22]. The coupled aspect of the transient thermal and the
non-linear thermal stress analysis was published in [21]. Combined contact+thermal
stress results have not been published yet. Each stage of the multistage FE modelling
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Figure 8. Distribution of von Mises stress below the tread (Sd il-
lustrated in Figure 7) under different loading conditions during the
1st revolution (the red dotted line represents the yield strength as
a function of temperature, t1c represents the common effect of the
thermal and mechanical load)

method was validated and/or verified with analytical and numerical analyses, further-
more the results were confronted with the results of measurements which can be found
in the literature. The results shows that with the help of these coupled models the
background of this thermo-mechanical problem can be investigated using a normal
personal computer.

References

1. Knothe, K. and Liebelt, S.: Determination of temperatures for sliding contact with
applications for wheel-rail systems. Wear, 189, (1995), 91–99.

2. Tanvir, M. A.: Temperature rise due to slip between wheel and rail—an analytical
solution for hertzian contact. Wear, 61, (1980), 295–308.

3. Spiryagin, M., Lee, K. S., Yoo, H. H., Kashura, O., and Popov, S.: Numerical
calculation of temperature in the wheel–rail flange contact and implications for lubricant
choice. Wear, 268, (2010), 287–293.

4. Zwierczyk, P. T.: Thermal and stress analysis of a railway wheel rail rolling sliding
contact. Ph.D. thesis, Budapest University of Technology and Economics, 2015.

5. Tian, X., Kennedy, J., and Francis, E.: Average flash temperatures in sliding con-
tacts. J. Tribol., 116, (1994), 167–174.

6. Gupta, V., Hahn, G. T., Bastias, P. C., and Rubin, C. A.: Calculations of the
frictional heating of a locomotive wheel attending rolling plus sliding, 4th International



FE modelling of a rail-wheel contact 75

Conference on Contact Mechanics and Wear of Rail-Wheel Systems. Wear, 191, (1996),
237–241.

7. Ertz, M. and Knothe, K.: A comparison of analytical and numerical methods for the
calculation of temperatures in wheel/rail contact. Wear, 253, (2002), 498–508.

8. Kennedy, T. C., Plengsaard, C., and Harder, R. F.: Transient heat partition factor
for a sliding railcar wheel. Wear, 261, (2006), 932–936.
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Abstract. Three different mathematical modeling and numerical simulation approaches –
the Finite Volume Method (FVM-CFD), Smoothed-Particle Hydrodynamics-Finite Element
Method (SPH-FEM) and the Discrete Element Method (DEM) – are used to predict the draft
forces of a plow moldboard interacting with cohesive granular material. In situ draft force
and pressure field measurement data and simulation results are compared to investigate the
efficiency of the applied mathematical models and numerical methods to predict the behavior
of the soil flow around the studied plow moldboard. In the case of SPH-FEM modeling three-
dimensional explicit dynamic computations have been carried out in AUTODYN ANSYS
Workbench 12 environment. The soil has been modeled as SPH solid body. Failure behavior
of the soil has been described with the Drucker-Prager model. In the case of DEM modeling,
the soil has been described as an assembly of large number of individual particles. For
modeling the mechanical behavior of the soil, the Hertz-Mindlin with bonding contact model
was used. The micromechanical parameters describing the granular assembly have been
determined by a calibration method based on the standard shear test. In the case of FVM-
CFD modeling a three dimensional, multiphase flow computations have been carried out in
the Ansys CFX 11 environment. The developed soil stress and pressure field on the surface of
the plow moldboard and the induced draft force have been studied to gain more information
about the entire physical process. The rheological behavior of the soil has been characterized
as a Bingham plastic model. Comparison of the efficiency of different simulation approaches
has been carried out to gain information on the efficiency of the different mathematical
modeling techniques and the numerical calculations.

Keywords: Soil-tool interaction, finite volume method, smoothed-particle hydrodynamics
method, discrete element method

1. Nomenclature

Latin symbols
A(r) arbitrary scalar or vector field of a physical quantity (SPH)
〈A(r)〉 approximation of the field variable (SPH)
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c cohesion (Pa) (SPH)
Ch, Cj speed of sound at the i-th and j-th particles (m s−1) (SPH)
E specific internal energy (J) (SPH)
E0, E1, E3 Young’s moduli (GPa) (DEM)
FTD total draft exerted on the tillage tool (N)
G0, G1, G3 equivalent sheer stresses (GPa) (DEM)
h smoothing length (m) (SPH)
k mean viscosity value of the non-Newtonian material

model (Pa s) (CFD)
mi mass of th i-th elements (kg) (SPH)
n,m = 1, 2, 3 indices for spatial directions
ri mass center of the i-th element
un, um spatial components of the velocity vector (m/s) (SPH, CFD)
xm spatial coordinate (m) (SPH, CFD)
w(u, h) interpolation kernel function (SPH)
Greek symbols
α share angle (deg)
β rake angle (deg)
γ sheer strain rate of the soil (s−1) (CFD)
δ(r) Dirac delta function (SPH)
φ angle of internal friction
η dynamic viscosity of the fluid (air, soil) (N s m−2, Pa s) (CFD)
µr, µρ coefficient of the rolling and static friction (DEM)
ρ density function of the fluid (air, soil) (kg/m3) (CFD, SPH)
σ normal stress (Pa) (SPH)
σnm an element of the Cauchy stress tensor (Pa) (SPH)
τ shear strength (Pa) (SPH)
τ0 yield stress (soil) (Pa) (CFD)

2. Introduction

The study of tillage tool interaction on different types of soil is an important phase of
tool design and development. The total draft of a tillage tool is an important factor
of the overall efficiency of soil tillage. Moldboard plowing is one of the most impor-
tant and most energy consuming processes of agricultural production; for this reason
adequate knowledge on draft forces and the developing pressure field on the surface of
the tillage tool is necessary to improve the efficiency of the design process. Until now
large amount of research has been conducted to study the dependency of draft force
on the soil properties and tillage tool geometry. Generally three different properties
are used to characterize the efficiency of a tillage tool, according to Karmakar and
Kushwaha et al. [1]. These are the draft to operate the tillage tool – in this case the
plow – the soil loosened and the total energy requirement. Several different attempts
have been carried out in the last couple of decades to develop an analytical description
of the soil tool interaction and formulation of the draft force. According to Godwin’s
review [2] the following two components of the soil forces must be taken into account:
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the horizontal (draft) force that is required to pull the tool through the soil and the
vertical force, which assists or prevents the tool’s penetration into the soil. These
forces are the function of rake angle β, tine depth d, tool width w and tillage velocity
v. Most of the analytical predictions of draft forces acting on wide tines are based on
the equation presented by Godwin and O’Dogherty [3] which is sometimes referred as
the Universal Earthmoving Equation

F =

(
γd2Nγ + cdNc + cadNca + qdNq +

γv2

g
dNa

)
w (1)

where F is the draft force, γ is the specific weight of soil, g is the gravitational
acceleration, c is cohesion, ca is adhesion, q is surcharge pressure and v is the working
velocity. Nγ , Nc, Nca, Nq and Na are dimensionless factors. According to Onwualu
and Watts [4] the average deviation of the analytically predicted draft force from
the experimental one varies from 6% to 160%. The aim of this study is to test
the applicability of different soil modeling methodology and numerical approaches
simulating the soil moldboard plow interaction. This paper presents a comparison and
evaluation of the studied mathematical models and numerical methods simulating a
plowing process.

3. Mathematical models

3.1. Main features of the two models considered. The mechanical behavior of
agricultural soils is an extremely difficult area of research due to the complexity of soil
parameters and operating conditions. Two basically different mathematical modeling
approaches exist to describe the behavior of soil flow: these are continuum and discrete
element modeling. The continuum model is based on the Eulerian modeling concept
of the solid and fluid material assembled with infinitely small deformable and flexible
cubes. The discrete element method is based on Lagrangian description, i.e., the
mechanical interaction and motion of the individual particles is modeled.

3.2. Finite volume method (continuum modeling). Many different studies have
shown that agricultural soils are approximately show brittle fracture mechanical be-
havior during soil tillage (see Chandler [5], Aluko and Chandler [6]). Several other
studies hypothesized different type of soil mechanical behavior: the visco-elastic model
has been used and studied by Kocher and Summers [7], the hypo-elastic model has
been investigated by Rosa and Wulfsohn [8] and the elastic- perfectly plastic model
has been tested by Mouazen and Neményi [9]. Soil failure and pressure patterns for
flat cutting blades in soils of different strengths have been examined by Elijah and
Weber [10] to gain more knowledge about the soil cutting blade interaction. Finite
element modeling of the interaction of the cutting edge of tillage implements with soil
has been conducted and the results compared with previously measured tillage forces
(see Fielke [11]). In several different investigations the method of computational fluid
dynamics (CFD) has been used to model soil tillage tool interaction. Formato et
al. [12] determine a virtual material able to quantitatively reproduce the distribution
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of pressure field on the working surface of a plow. Karmakar et al. [1] report a success-
ful application of the Bingham plastic model to investigate the interaction between
the soil and a flat tillage tool in a wide range of tool operating velocities. The physical
problem is a steady, three-dimensional flow of a two-phase fluid where the first one
is the air and the other one is the soil phase. The momentum equation of the fluid
is based on the three-dimensional Navier-Stokes equations. A simple finite volume
method is applied to solve the momentum and continuity equations. The dependent
variables that describe the present flow situation are the pressure P and the velocity
components U1, U2, U3 in the x1, x2, x3 directions, respectively. The following set of
partial differential equations for U1, U2, U3 and P as functions of x1, x2, x3 describes
the flow field around the moldboard plow in steady state flow condition.

(a) Continuity equation. By using tensorial notations in a Cartesian coordinate
system for the continuity equation we can write

∂ρ

∂t
+

∂

∂xi
ρUi = 0 . (2)

(b) Momentum equations. The following equation system is the representation of
the momentum equations in the Cartesian coordinate system:

∂

∂t
ρUj +

∂

∂xi
ρUjUi = − ∂P

∂xj
+

∂

∂xi

(
η
∂Uj
∂xi

)
(3)

Here η is the dynamic viscosity and ρ stands for the density.
(c) Applied material models. Modeling the mechanical behavior of different soil

types is a difficult task because of the extreme complexity of soil structure.
Mechanical properties of different soil types depend on the soil texture, mois-
ture content, soil compaction level and several other factors occurring in the
field. The applied material model in the numerical calculations is the Bing-
ham plastic model, which considers the cohesion effect of the soil. A Bingham
plastic substance is a viscoplastic material that behaves as a rigid body at low
stresses (below the yield stress). Above the yield stress the Bingham plastic
material flows as a viscous fluid. Bingham plastic materials require two dis-
tinct parameters, the yield stress and the plastic viscosity. Equation (4) shows
the mathematical formulation of the Bingham fluids:

γ =
∂Ui
∂n

=

 0 , |τi,j | < τ0 ,
τi,j − τ0

η
, |τi,j | > τ0

(4)

where τ0 is the yield stress of the soil, η is the plastic viscosity and ∂Ui/∂n is
the shear strain rate.

(d) Domain discretization and the applied computational grids. A schematic di-
agram of the plow indicating one of the applied grids for the computational
domain is shown in Figure 1. The size of the calculation domain is chosen
so that the wall effect can be neglected and some test calculations have been
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Figure 1. Computational domain

carried out to check the independence of the numerical result from the horizon-
tal and vertical size of the domain. A careful check for the grid-independence
of the numerical calculation has been created to ensure the accuracy and valid-
ity of the numerical calculations. Four different grids have been used to check
the grid independence of the numerical scheme. The total draft of the plow
has been applied to test the grid independence of the numerical calculations.

Table 1. Draft force and its relative error on the grids studied

Studied grids I. II. III. IV.
(Number of cells) 332 5486 591 6506 731 7622 1259 1842
Draft force F [N] 4208.17 4191.27 4178.19 4176.81
Relative error of the force F

0.750 0.346 0.033 –
100

∣∣∣∣Fcoarser − Ffinest grid

Ffinest grid

∣∣∣∣%
The generated grid is much finer near the leading edge of the plow-share than
near the outer boundary of the computational domain. Comparison of the
results of the calculation on the different grids is shown in Table 1.

Relative error was calculated according to the assumption that the result
of the finest grid is approximately ideal. The calculated results show that the
difference between the induced draft forces on the finest grids is less than 0.03%.
This means that a grid resolution for the applied calculation domain finer than
the third (III) grid is acceptable to produce physically realistic calculation
results independent from the numerical grid.

(e) Multiphase flow computation, initial and boundary conditions. The investi-
gated flow situation is a free surface flow problem which is a special case of
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multiphase flow computation where the fluids are separated by a distinct re-
solved interface. Both fluids (soil and air) share a common flow field. The
working fluids are not mixed in the micro-scale rather they are mixed on a
macroscopic scale with a discernible interface between the fluids. A homoge-
neous multiphase model has been incorporated into the flow simulation because
the interface between the two fluids remains well defined and none of the dis-
persed phase becomes entrained in the continuous phase. The soil flow on the
upstream side of the plow is subcritical and the downstream conditions are
not known but can be estimated. Simulation of free surface flow usually re-
quires defining boundary and initial conditions to set up appropriate pressure
and volume fraction fields. Simulating the soil-tool interaction the following
conditions are set. At the inlet boundary the volume fraction above the free
surface is 1 for air and 0 for soil and below the free surface it is 0 for air and 1
for soil. Furthermore the height of the soil at the inlet and outlet locations is
defined with hin = 0.3 m and hout = 0.3 m. With the defined height of the soil
in the computation domain the inlet, outlet and initial pressure distribution
can be specified Pup = ρsoil g hin, Pd = ρsoil g hout where Pup and Pd are the
upstream and downstream pressure at the inlet and outlet. The initial velocity
field is zero everywhere in the calculation domain. A uniform, constant veloc-
ity profile is assumed at the inlet position. The gradient of the velocity profile
is assumed to be zero at the end of the outlet location. A free-slip boundary
condition has been applied at the bottom and the left and right wall of the
computational domain. At the top of the calculation domain a free-surface
boundary condition is specified. The initial values of the air and soil volume
fraction are also supplied with an assumption that the virtual field contains a
furrow before the plow in the appropriate location.

3.3. Discrete element method (discrete element modeling). By the
use of Discrete Element modeling technique (DEM), the problem is solved
by applying and solving the equation of motion on each individual particle
of the bulk material assembly [13]. For modeling the mechanical behavior of
the soil, EDEM has been applied as a discrete element software using “the
Hertz-Mindlin with bonding” contact model [14]. In this model, the parti-
cles are glued with a finite sized bond. In the discrete element model from
the beginning of the simulation until “turning on the bonded contacts” the
simulation evaluates the contact forces according to the Hertz-Mindlin no slip
contact model: the material and interaction parameters have their effect on
the normal- and tangential forces. The normal force has the following form

Fn =
4

3
E0δ

3
2

√
R0 − 2

√
5

6

lnCr√
ln2Cr + π2

√
2E0

4
√
R0δ
√
m0vnrel (5)

where

1

E0
=

1− ν2
1

E1
+

1− ν2
2

E2
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is the equivalent Young modulus of the two interacting soil particles and δ is the
overlap between these two soil particles. This normal overlap represents the normal
deformation of a particle. The normal overlap δ between two particles i and j at
positions xi and xj (where xj − xi is the distance measured on the line connecting
the centers of the two overlapping particles) with radii Ri and Rj is defined as:
δ = Ri +Rj − (xj − xi).

R0 =
R1R2

R1 +R2
and m0 =

m1m2

m1 +m2

are the equivalent radius and mass while vrel is the relative velocity of the soil particles.
The tangential force is given by the following equation

Ft = −8G0

√
R0δδt − 2

√
5

6

lnCr√
ln2 Cr + π2

√
2G0

4
√
R0δ
√
m0vtrel (6)

where
1

G0
=

2− ν1

G1
+

2− ν2

G2

is the equivalent shear modulus of the two interacting soil particles, δt is the tangential
overlap between the two particles and vtrel is the tangential component of the relative
velocity of the soil particles. The tangential overlap is the tangential displacement of
the contact point up to the point at which the contact ends or the particle begins to
roll or slip. The tangential overlap represents the tangential deformation of a particle.
The tangential force is limited by the Coulomb friction µs Fn where µs is the coefficient
of static friction. The moment from rolling friction is Mr = −µrFNRiωi, where Ri is
the distance of the contact point from the centre of the i-th soil particle and ωi is the
unit angular velocity vector, which is a dimensionless quantity representing only the
direction of rotation of the i-th soil particle. µr is the coefficient of rolling friction.
The tangential force also has moment on the particle: Mt = FtRi. From t > tbond

(from that time when bonding is “turned on”, i.e., the particles are glued together)
the bonding forces/moments acting on the particles are set to zero initially, and after
that are incremented every time step:

δFn = −vnSnAδt , δFt = −vtStAδt , δMn = −ωnStJδt , δMt = −ωtSn
J

2
δt

(7)
where

A = R2
Bπ , J =

1

2
R4
bπ .

RB is the radius of the bonding glue, Sn, St are the normal and shear stiffness per unit
area, δt is the time step, vn, vt are the normal and tangential velocities of the particles
and ωn, ωt are the normal and tangential components of the angular velocity vector.
The bond is broken when the normal and tangential stresses exceed some predefined
value:

σmax < −
Fn
A

+
2Mt

J
RB , τmax < −

Ft
A

+
Mt

J
RB . (8)

These bonding forces/torques are added to the standard Hertz-Mindlin forces. Dur-
ing the simulations, the linear and angular momentum theorem is used to write the
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equation of motion for all the individual particles, resulting in a large number of
differential equations to be solved in a sufficiently large number of time steps. The
applied time step has great impact on the stability of the numerical calculation. For
the simulation 25% of the Rayleigh-type time step has been selected:

δt = 0.25TR = 0.25 · (0.1631ν + 0.8766)
−1
πR

(
ρp
Gp

) 1
2

. (9)

3.4. Smoothed-particle hydrodynamics method. The smoothed particle hydro-
dynamics method was originally invented by Monaghan and Gingold [15] for astro-
physical applications. The SPH method has been successfully applied to several dif-
ferent impact problems since that, for example ballistic impact problems have been
investigated by Hayhurst et al. [16], a pseudo-spring based fracture model of impact
dynamics was studied by Chakraborty and Shaw [17], and it was applied to study
complex fluid-solid surface interactions (see Yang et al. [18]). The SPH method has
been found to be useful to study soil flow behavior and interaction with other bodies
or fluids. Bui et al. [19] carried out a numerical simulation to investigate the soil–
water interaction by the SPH method. Lu et al. [20] created a comparative study of
a buried structure in soil subjected to blast load. SPH is effective and accurate at
modeling material deformation as well as adaptable in terms of specific material mod-
els and besides to solve computational fluid dynamic problems, it can be also applied
solving continuum mechanics problems with large deformations like machining prob-
lems. Calamaz et al. [21] studied the tool wear effect through a comparison between
experiments and SPH numerical modeling of machining hard materials. Agricultural
application is a new area of SPH application.

The basic concept of SPH is that the method does not use finite elements and
mesh during discretization. SPH model contains only particles. These particles are
not bodies (like discrete elements) but interpolation points (like nodes of a finite
element). SPH involves the motion of a set of points. Points have masses and velocity
and these values are known. Any field can be described with Dirac delta function:

A (r) =

∫
A (r′) δ (r− r′) dr′ (10)

Function 〈A(r)〉 is an approximation of this field

〈A(r)〉 =

∫
A (r′)w (r− r′, h) dr′ (11)

where w(u, h) is an interpolation kernel function with the following properties:∫
w(u, h) du = 1 (12a)

w (u, h)
δ−−−→

h→0
(u) (12b)

w (u, h) = 0 if |u| > h (12c)

where h is the smoothing length. There are infinitely many possible kernels. The
following manipulation, which does not change the value of integral (11), is a useful
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one:

〈A(r)〉 =

∫
A (r′)

ρ(r′)
w (r− r′, h) ρ(r′) dr′ . (13)

Divide the body into N small volume elements. The mass of the i-th element is mi

and the mass center is ri. Utilizing the quantities introduced we get integral (13) in
the form

〈A(r)〉 =

N∑
i=1

mi
A (ri)

ρ(ri)
w (r− ri, h) . (14)

Conservation equations of continuum mechanics for mass, momentum and energy are

dρ

dt
= −ρ∂u

m

∂xm
, (15)

dUn

dt
= −1

ρ

∂σnm

∂xm
, (16)

dE

dt
= −σ

nm

ρ

∂un

∂xm
(17)

where ρ is the density, E is the specific internal energy. n,m = 1, 2, 3 are indices for
three spatial directions. xm is spatial coordinate, un, um are the spatial components
of the velocity vector and σnm is an element of the Cauchy stress tensor.

4. Model validation

4.1. Measurements. It is important to verify the applicability of the different math-
ematical models and the entire numerical approaches to simulate the soil–plow

Figure 2. Experimentally studied plow moldboard
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moldboard interaction. For this reason a sufficiently well presented experimental test
with the appropriate results has been chosen from the available literature. Formato et
al. [12] investigated experimentally and numerically a plow moldboard and compared
the results. Figure 2 shows the experimentally studied plow moldboard Formato of
et al. [12] The experimental test was carried out with operating velocity 2.86 m/s
and working depth 0.3 m. Table 2 shows the known soil properties of the field where
the experimental test was carried out. The measured draft force was 4150 N and the
total pressure was monitored at 14 different points on the surface of the plow.

Table 2. Soil properties applied in the validation of the numerical
calculations from Formato el al. [10]

Soil texture Sandy loam

Sand [%] 81
Silt [%] 3
Clay [%] 16
Bulk density [kgm−3] 2100
Moisture content [%] 12
Soil-Steel friction angle [deg] 0.4
Soil-Soil friction angle [deg] 0.6

4.2. Validation of the Finite Volume CFD method. The Bingham plastic ma-
terial model has been validated by experimental tests published in the literature. The
necessary mechanical properties of the soil to apply the Bingham model have not been
specified: for this reason the unknown parameters have been specified by parameter
identification. The known draft force and the pressure values on the surface of the
moldboard have been used to specify the unknown yield stress and plastic viscosity
values. Several combinations of the yield stress and plastic viscosity is examined from
values τij = 8 kPa, η = 0.1 Pa s to τ0 = 5 kPa, η = 1 kPa s. Table 3 contains the
values of the necessary parameters applied in the Bingham model. The calculated
draft force with the specified model parameters is 4176.8 N in case of the Bingham
model with visco-plastic parameters τ0 = 7.1 kPa, η0 = 0.1 Pa s. The relative error
is

εF =
|FMeasured − FCalculated|

FMeasured
100 = 0.00646 = 0.646 [%]

between the measured and the calculated results. The value of the soil plastic viscosity
seems very small compared to the measured values η ≈ 50–200 kPa presented by
Karmakar and Kushwaha [22]. The main reason for the difference is that soil visco-
plasticity values were measured for highly compacted conditions because Karmakar
and Kushwaha [23] investigated flat tillage tool geometry where the soil is significantly
compacted at the front region of the tillage tool. Zielinski et al. [24] report three orders
of magnitude smaller plastic viscosity values η ≈ 0.05–1 kPa for dry and wet soil with
different kaolinite content. Plastic viscosity values of different types of soil with fall
cone test has been measured by Mahajan and Budhu [25] and the results show that
the soil viscosity values are in the range η ≈ 0.036–0.328 kPa s similar to the results



Simulation methods for soil tool interaction 87

presented by Zielinski et al. [24]. The soil–moldboard interaction is a completely
different tillage process because the soil is not compacted; it is rather loose in the case
of plowing. This process further reduces the value of the visco-plastic parameters of
the soil. Table 3 shows a quantitative comparison of the measured and calculated
results with a simple statistical measure. Geometrical location of the control points
can be seen in the second, third and fourth columns of Table 3 The following three
columns show the measured and calculated pressure at those points and in the last
column the relative error of the calculations is presented. Relative error of the pressure
values has been calculated with the following formula

εP =
|PMeasured − PCalculated|

PMeasured
100 [%] .

Table 3. Comparison of the measured and the calculated results

Point x [m] y [m] z [m]
Pressure [kPa] Relative error [%]

Measured Calculated Calculated

5 0.1649 0.44 0.30 23.000 20.7768 10.70

7 0.4182 0.68 0.31 12.000 12.5843 4.86

11 0.1477 0.32 0.19 24.000 21.9672 8.47

12 0.2884 0.28 0.09 28.000 25.0045 10.70

13 0.2192 0.20 0.09 30.000 27.0302 9.90

14 0.1460 0.12 0.09 32.000 33.6126 5.03

4.3. Smoothed-particle hydrodynamics. Figure 2 shows the computational do-
main with the investigated plow moldboard geometry. The greatest advantage of this
method is that it is not necessary to calibrate the model if the real soil parameters are
known. In this case the internal friction of soil, friction between soil and tool material,
and the bulk density are known [12]. Bulk modulus, shear modulus are supposed as
average soil, but the cohesion is not known. Calibration of cohesion was done by the
measured draft force at a given speed [12]. Parameters for the SPH model are the
following: coefficient of internal friction is µsoil = 0.3 coefficient of friction between
soil and steel µsoil-steel = 0.4, bulk density of soil ρp = 2100 kgm−3, bulk modulus
Esoil = 9.57 × 106 Pa, shear modulus Gsoil = 2.96 × 106 Pa, cohesion c = 100 Pa,
particle size h = 0.3 m. Modeling the soil–tool interaction with the SPH model a 3m
long segment of a soil bin has been used which was a width of 1.2 m, and the height
was 0.385 m. A small gap is needed between the granular material (SPH model)
and the solid surface of the investigated plow in the SPH discretization which can be
seen in Figure 4. Boundary conditions were not specified at surface of SPH model in
AUTODYN. A 30 mm thick walls were modelled at the bottom and four sides of the
SPH soil model.
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4.4. Discrete element method. Data for the problem. A clump of two spherical
particles having 5 mm radius, with 8 mm distance between their centers was used
as soil particle model. The particle size distribution in the final granular assembly
modeling the soil was randomly changing between 5 mm and 7.5 mm radii. The
following micromechanical parameters were calibrated for the description of the in-
teraction between the soil particles, and between the soil particles and the tool (index
p means soil particle, index t means tool material): Poisson’s ratio νp = 02, νt = 0.3,
shear modulus Gp = 107 Pa, Gt = 8 × 109 Pa, density ρp = 3200 kg/m3, ρt = 7500
kg/m3. Coefficient of restitution: Cr,p−p = Cr,t−p = 0.4, coefficient of static friction
µp−p = 0.9, µp−t = 0.35, coefficient of rolling friction µr,p−p = 0.015, µr,p−t = 0.01.
For the bonded soil model we used: normal stiffness Sn = 109 Nm−3, shear stiff-
ness St = 109 Nm−3, critical normal stress σmax = 1.5 × 106 Pa, critical shear test
τmax = 9× 105 Pa, bonded disk radius RB = 0.005 m.

Draft force prediction. For modeling the soil-tool interaction, the discrete element
model of a 1 m long segment of a soil bin was used. The width of the duct was
the double of the tool width, and in this direction a periodic boundary condition
is used to simulate the effect of the neighboring soil particles. The use of periodic
boundary in the direction perpendicular to the tool displacement direction enabled
us to reduce effectively the size of the simulation domain, and in this way the simula-
tion time requirements. The thickness of granular assembly beneath the tool was the
same as the height of the tool itself. The simulation time step was set to be 25% of
the Rayleigh time step, using the material parameters listed above. The simulation
started with filling the calculation domain of the soil bin model with particles using

Figure 3. Soil-tool interaction DEM model, the tool geometry and
the model bin are shown here, the boundary is periodic in x direction.
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dropping method. We filled the bin with particles by letting their gravitational sed-
imentation form a randomly generated assembly initially filling the whole bin, and
then settling down to a state when it was filling approximately one third of it (Figure
3). One second after this sedimentation process (this time needed to get the particles
to be in a state of rest), we ”turned on” the bonding model, gluing together the soil
particles. After this, the tillage tool started its way through the bin. Only the forces
acting in the middle third section of the model bin were used to evaluate the average
draft force value, to avoid the effect of the end wall, and the effect of increasing the
number of contacts during the tool’s immersion in the soil.

Figure 4. Sample diagram of measured and simulated draft forces

The simulated draft forces showed significantly higher deviation than the measured
ones. This phenomenon is mainly caused by the large particle size used because of
the restrictions in computer simulation capabilities. Sample simulation results can be
seen in Figure 4. It can be seen, that the simulated draft forces are in good agreement
with the measured ones [12]. The average plow forces related to different velocities
are as follows:

v [m/s] F [N]

2.00 3068.474
2.50 3445.344
2.86 3842.261
3.00 3930.810
3.50 4264.764
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5. Results

5.1. Finite volume method. Figures 5 and 6 show some stages of the turnover of
a furrow slice. It can be clearly seen that if the grid resolution is sufficiently fine in
that case the soil-air interface is sharply recognizable.

ba

Figure 5. Perspective view of the furrow and the turn over of the
furrow slice

Figure 6. Front view of the furrow and the turn over of the furrow slice

Figure 7. Perspective view of the flow movement in the case of SPH simulation
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5.2. SPH method. Figure 7 shows the simulated deformation of SPH model of soil
with 30 mm particle size. Predicted deformations are more realistic than DEM. Soil
particles are much smaller than in the other two methods. Hence the SPH particles
(which are not real particles) are better for prediction of deformations.
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Figure 8. Sample diagram of measured and simulated draft forces

The real soil parameters are used in this method so it is not necessary to calibrate
the model. But the uncalibrated model predicts higher draft forces than those mea-
sured. Another advantage of this method is prediction of transient stadium with local
peak (Figure 8).

6. Conclusions

Three different mathematical modeling and numerical computation approaches
have been applied to investigate the soil–tool interaction for a moldboard plow. Com-
parison made between the different modeling approaches to get information about the
efficiency of the applied models was validated by an experimental test available from
the literature. The following general conclusions can be drawn:

1. It can be stated that a validation with only a measured draft force value of a
soil tillage tool is not enough to calibrate the different models correctly because
of the complex behavior and structure of the soil. The models generally need a
lot of measured parameters that have to be calibrated before the computation.
For this reason it can be suggested that more information is needed to validate
a numerical model than a single draft force value. For example pressure distri-
bution on the surface of the tillage tool where the soil interacts with the tool
or local velocity measurements of the flow field of the soil around the tillage
tool can be useful additional information for model validation purposes.

2. Area of modeling possibilities: The finite volume CFD method effectively de-
scribes the flow behavior of granular materials that can be modeled by nearly
spherical particles. Shortcomings: it is only capable of modeling the flow be-
havior of granular material which consists of nearly spherical particles with
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smaller particle size than the conventional size of agricultural granular prod-
ucts (wheat, maize, barley, etc. The finite volume CFD method cannot be
applied such granular materials where particle geometry significantly differs
from spherical shape like stringy crops. It is difficult to specify correctly the
physical properties of the modeled granular material. The proper value of
the plastic viscosity and yield stress cannot be determined precisely because
these properties are pressure dependent. For this reason the plastic viscosity
and yield stress cannot be characterized with a constant value for computing
soil flow. Computational requirements: the finite volume method needs sig-
nificantly larger amount of computational resources, mostly operative RAM
simulating sufficiently detailed interface between the soil–air and soil–tillage
tool interaction compared to the other two investigated methods. The neces-
sary calculation time takes two or even three times longer than the SPH-FEM
and the DEM method.

3. Area of modeling possibilities: The Smoothed-Particle Hydrodynamics (SPH)
method can be used effectively with flow cases where the flow field has a lot of
separated regions. The SPH method is also sensitive to the particle size, which
has to be chosen properly to avoid physically unacceptable oscillations of the
solution.

4. Area of modeling possibilities: The Discrete Element Method can be consid-
ered the most widely applicable method to describe the flow process of granular
materials, because it can use almost any kind of particle geometry and from
physical modeling point of view it is the most realistic description of a granular
material. For this reason the discrete element method is capable of effectively
modeling the soil-tool interaction process. DEM is capable of simulating draft
force, but the pressure distribution cannot be easily modeled by using DEM.
The simulated draft forces showed significantly higher deviation than the mea-
sured ones. This phenomenon is mainly caused by the large particle size used
because of the restrictions in computer simulation capabilities. There is no
guarantee that the calibrated micromechanical parameters are the only ones
resulting the desired draft force values. Shortcomings: the greatest problem
with this modeling approach is that current computational resources cannot
calculate with the same amount of particle numbers contained in a real gran-
ular material. The most difficult is the proper calibration of the DEM model.
There are 12 parameters (including time step) to be properly calibrated for de-
termining the micromechanical parameters describing the mechanical behavior
of the particle assembly. By using the particle–rigid body interaction model,
the reaction forces acting on the tool are not taken into account as excitations
generating for example the vibration of the tool, which can cause errors in the
modeling results, especially in case of easily vibrating tools. Computational
requirements: computational time requirement is approximately 5 hours on a
dual core P8600-2.4GHz 8GB RAM computer (this relatively short computa-
tional time was the result of low particle shear modulus). The calibration of
micromechanical parameters is a significantly more time consuming procedure,
because of the need for a large number of simulations to be done.
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Abstract. Model creation is the most important challenge for an engineer. Consciously or
intuitively, the engineer always creates models in the course of the creative process. However
this subject is not discussed – or only marginally –, in the classroom or in the literature. The
aim of this article is to contribute to the more conscious model-creating work. For the sake
of this, this paper formulates some underlying principles. These principles must be observed
during the model-creating work, and by presenting them during the university studies we
can help the students to learn this important engineering task. Three of these principles
are universal statements, relating to the recognition of the world, and two of them must be
considered during the creation of a correct model. Three conclusions from the underlying
principles are also conducted; these are important for the technical practice. The methods
of mechanical model creation are shortly discussed at the end.

Keywords: Model creation, underlying principles

1. Task of the engineer and model creation

The engineer summarizes the knowledge of predecessors in order to recognize the
problems of present days and to solve them. All these things are done for the purpose
of building a more human future. Thus the engineer analyzes and describes both
natural and human–made reality. The only way to carry out this task is by creating
models, examining and comparing their results with reality.

Ultimately, the highest task of an engineer is to properly choose models. Nowadays,
tons of calculating methods are available; although it does make a great difference
what kind of model we choose to apply, since we can only apply them on models.

The model is a simplified form of reality, which, regarding the observed phenomenon
and the determined goal, behaves similarly to reality in some features.

So a model must be created. This can be either carried out only into an intuitive
way combined with great experience. Unfortunately this ‘great experience’ cannot be

c©2016 Miskolc University Press
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taught, but still it is highly important to put this knowledge in an integrated form and
share it. At the same time the education of model creation appears barely or not at all
in the engineering studies. So to say, it is quite difficult to teach as well. The author
of this paper made an attempt to fill this need. To this end the author systematized
the model creation method, and tried to draw up in a teachable, learnable form. The
results of this attempt are summarized in this article.

Model creation appears in two ways in practice:

(a) “paid–off way”, normal way, by the use of approximations;
(b) by a lot of experience combined with intuition.

ad a. As in the traditional – manual – calculation, also in the computation calcula-
tions (FEM) there are common models, such as the truss beams, which are modeled
by links, or the design of bolts according to the shear stresses or facial pressure. In
these cases – in a lower or higher level – the engineer carries out a general routine in
the process of solving the problem. The applied theories and methods are mentioned
in the subject of mechanics, machine elements and in other technical sciences during
their studies. In the wide range of application of FEM the user investigates the solu-
tion or output and not the question of the precise approximation or the proper choice
of the boundary conditions. The ‘that’s the way we do it’ way of thinking overtakes
the user, and one will not be aware of the right time to use it differently.

ad b. The other wide field of the engineering model creation is when the problem
is not a routine task but something new. Although too many times the “paid off
way” is used, unfortunately in a wrong way. Professor Barna Szabo made a survey
in the United States about the efficiency of the use of finite element programs in the
industry. According to the results of this survey, approximately half of the results
evaluated by finite element method were wrong. And the error was not related to
the finite element program itself, the source of the error was the wrong model: it did
not described the reality. This is why we need to pay attention to the model creation
problem.

The aim of this paper is not to deal with modeling of a concrete problem. I would
like to summarize and to give methods and general principles for active technical
intellectuals in order to apply and support the most important engineering process:
model creation, based on my experiences acquired during my educational and research
activities.

2. General principles of model creation, a possible description of the
phenomena

Randomness and order govern the universe with the same weight and emphasis. This
duality is the fuel of experimental science. The lack of randomness would cause the
common logic to deterministically describe the universe (and the closer – broader
reality) in its complexity without the need of observation. On the other hand, if this
reality did not include some kind of order and logic, then science would have never
come into existence. Let us take an example to understand this duality more deeply.
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The motions of gas particles in a closed vessel are entirely random, but the relation
between its pressure, volume and temperature can be unequivocally determined. Ran-
domness does not mean that there is no correlation between the motions of particles,
but the initial conditions are random.

According to the unbreakable chain of randomness and order in the universe, in
natural sciences – especially in engineering sciences – experimental and theoretical
methods are mutually applied in research. This fact determines our knowledge about
the physical world, because we can learn about the world based on two, well separated
ways. One of them is direct experience, the other is the rational reasoning. Based on
this, we can word the following:

1st Principle: One investigation must never be absolute according to the function of
theory or experiments. Applying both at the same time will result in an adequate
solution.

Nature is often said to be equal, united, and the world in it appears as a complete
system, where everything is connected together. In a certain view this is true, but
experiments show that even separated parts of reality can be precisely described
without the knowledge of its entirety. What is the cause that gives us adequate
information about the properly chosen parts? The reason is based on two peculiarity
of the world: linearity and locality. A linear system – as is well known – can be
easily investigated and described by two easily applied mathematical tools, addition
and multiplication. However, using linear systems to determine a phenomenon is not
obligatory in order to make the problem simpler. It is advised for use because it is
possible. Naturally none of the systems are exactly linear. That fact raises a question:
How is it possible to handle so many phenomena as a linear system? There are three
reasons:

• In many cases the non-linear effects are very weak,
• The range of influence of non–linear effects is strongly determined,
• Many linear systems are not sensitive to weak perturbances.

Linearity exists in most cases, but it must be identified among the parameters.

The other peculiarity that makes the examination of the properly identified parts
possible without the knowledge of the whole, is the locality. This means that in most
cases the behavior of the physical systems is entirely influenced by the effects (exter-
nal forces, moments, etc) of their very surroundings.

2nd Principle: Reality can be dissembled and information can be gained by only ex-
amining separated parts and not the whole.

According to these observations and the 2nd principle, the following conclusion can
be drawn:

In model creation, a very important step is to make clear what we wish to measure
in what function.

As we mentioned above, there are two, well-separated ways to gain information
about the world. One is direct experience; the other is rational reasoning. The fall
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of an apple can be an example. Sensory perception, which is a direct experience,
can provide measured data about the fall of an apple. It is also possible to gain
more information about this phenomenon, in a different and deeper way. By the
combination of Newton’s laws and some mathematical skills a model can be created
to investigate the falling apple. This model is not based on our sensory perception
but on our mind which – by the use of the earlier universalized experiences and laws
– finds the correlation between the once fallen apple and the deeper, comprehensive
physical processes. Now the examination of the mechanical model is possible with
the applied physical-mathematical model. Although it is unseen, still – in its abstract
way – it is able to provide information about reality in a higher, more general way.
At the same time these laws were and are created by people based on their sensory
perceptions. The 3rd principle is applied to these natural laws. Here it must be highly
emphasized that natural laws were not made by mankind but discovered. The laws
are independent, and they always existed.

3rd Principle: Natural principles are absolute and irrespective of space, entirely valid
in time, and it is possible to involve them in a mathematical form. They are indepen-
dent of the observer, and the condition of the phenomena. The parts of nature are
not abstract mathematical formations.

Thus if we engineers create a model by observing a phenomenon and we lay down
new formulas, these are not natural laws. They do not operate in every case. This
conclusion provides a new principle to engineer researchers:

According to the given results and the model, the limits of applicability of the model
must be determined.

3. Basic principles of model creation

Creating a model raises one question: abstraction. Abstraction is not solely an en-
gineering activity or method but a fundamental skill of humanity. Let us explain it
with an example. If a father tells his child – who probably does not even talk – to sit
down on a chair in a foreign environment, the child will most likely go to a chair and
sit on it. Not on a pillow, ground or a couch, but on a chair. He will sit on a chair
even if he has never seen that chair before, irrespectively of whether the chair has
three or four legs, with or without a back, upholstered or not, smooth, fret worked,
wooden or iron, etc.

Basically he recognizes the chair as an abstracted concept, and he does not look
for a certain object. Abstraction is also the fundamental existence of mathematics.
In order to say ‘five stones and two stones are seven stones’ we have to neglect the
form, material structure and color. The concept of stone must be abstracted, where
the stones are isolated substances.

Obviously the concept of the examined or observed object or phenomenon must
be determined by taking into consideration the observing purpose. Let us investigate
this statement with another simple example. If we wish to analyze a chair, furniture
or other wooden structure, different denotations must be addressed to each of them.
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All of them have different models. Some peculiarities are highlighted and concerned
dominant and others are neglected according to the purpose of modeling.

When we examine a phenomenon, not only the phenomenon itself, but the aim of
our investigation is also important. The limits of applicability must also be taken into
account based on this.

4th Principle: The model is also determined by the aim of investigation.

Ultimately let us talk in general about the relation of model and reality. As we have
already declared, the model is a simplified form of reality which behaves similarly
to reality in some features. Similarly, but not entirely exactly! The difference is the
error of the model creation. What is the origin of this error or difference between the
model and reality? Firstly, the model describes the order of reality and neglects its
randomness. Secondly, the model only takes into account order determining param-
eters respective to the chosen observing aims, so we are not talking about an entire
analogy. Thirdly, there can be differences in the calculations of the created model,
since there are approximations in the equations and so also in the solutions.

Ultimately the result is not the same between reality and the model. The cause of
the difference must be found in the model, not in the natural laws. Let us verify it with
an old, astromechanic example. The law of mass attraction is well known. Taking
into account the Sun and the planets of our solar system, a model was created about
the motion track of Neptune. According to the model – taking into account the law
of mass attraction – the calculated result did not correspond with the astronomers’
observation. Maybe the law of mass attraction did not work there? Or some important
feature was neglected in the model? Eventually, they came to the following conclusion:
one external effect caused the anomaly in the motion. Then they appointed a certain
position at a certain time in the sky looking for the mysterious perturbance. Thus
they discovered Pluto. Therefore the model was incorrect for determining the motion
track of Neptune. That is why the calculated result did not correspond with reality.

5th Principle: The created models provide new information about the world, but these
results must be always compared with reality and the chosen aim. Decisions about the
adequateness of the model must be based on the collective results.

According to the 4th and 5th principles a conclusion can be drawn for the technical
practice:

the correct model is as simple as it can be, but properly approximates reality regarding
the aims for examinating.

4. Methods of mechanical model creation

We have already discussed the concept that the phenomena and the examining aims
determine the model, and also that the model is as simple as possible. The purpose of
model creation has been also investigated. Let us discuss what methods are possible to
use in order to create models. The following investigations – regarding the examples
– will be limited to mechanical models. Three methods are adequate to reach our
goals.
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4.1. Analytical ‘exact’ models. The ‘exact’ word in the subhead means that the
error of the model is within the range of the limited margin of error regarding the
aim of examination. In these models the estimation or error is generally based on
hundreds of years engineering experience. The complete model can be obtained by
these experience verified modelparts. Intuition and the engineering experience have a
great relevancy in these cases. Most of the routine engineering models are analytical.

One great feature of the analytical models is the relatively easy parameter identi-
fication. Parameter identification reveals what effects the gradient of the parameters
perform on the phenomena. This method easily allocates the dominant parameters in
a given domain. In addition the parameter identification allows the optimum search
algorithm, which can be essential in economical or feasibility aspects.

4.2. ‘Approximating’ models. Modeling extremely complex phenomena adduces
the application of an initial, but not entirely accurate – regarding the examining aims
– model. Most of the times these models are not created by necessity, but after
mature deliberation. Let us investigate the reasons that may cause the application of
approximating models!

Concept of successive approximation. The engineer does not always find an ade-
quate model. Thus one must start with the model which seems to be the simplest,
and by examining the result, a conclusion must be drawn whether it is necessary
to use a more advanced model. Step by step, the engineer approaches the simplest,
usable and precise enough model. It is also possible if one does not find out all the
approximating models, but creates only the proper model.

Complex solution. One problem can be approached in a complex way as well: this
is the collective application of theoretical and experimental models. This method
is often used in research when the solution of the problem requires experimental
methods. Not even in these cases should we surrender the numerical, mechanical,
theoretical model creation, even if the model is a coarse approximation of reality.
The possible (sometimes really coarse, or just not accurate enough) approximating
model must be created since it can greatly support the description of the phenomena
in two ways:

– to create the possibility of the equation analysis and the application of analogy
laws, or to draw up the model laws which are helpful in the evaluation of the
experimental results.

– to decrease the number of parameters and allow the approximation with product-
function:

y = f1(x11, x12, . . .) f2(x21, x22, . . .)

where the function f2 is the solution of the approximating model, while

y(x11, . . . , x21)

is the experimental result and f1(x11, x12, . . .) is the result of the experiment,
which can be used for the determination of the coefficient f1.
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Let’s see a simple, elementary example to shed light on this, of course, this example
is not a task to be implemented. Suppose that we have a cantilever beam fixed at
one of its ends by screws. We would like to evaluate the deflection of the beam’s
endpoint, because we do not know the rigidity of its support. However, we do not
want to determine the concrete deflection of one given beam, but the behavior of the
whole system. We have a computational model for the determination of the deflection:

y =
f`3

3IE
=

1

3
f2(x21, x22, . . .) (1)

This equation is not a model for the problem, because the number, the size, position
and the screwing torque of the screws and the rigidity of the support can modify the
deflection. Suppose that we would like to describe these effects by measurements, i.e.
we would like to introduce a changing variable instead of the 1/3 multiplier. This
changing variable will be determined as a function of measurements:

y = f1(x11, x12, . . .)
f`3

IE
(2)

Based on this method, we get a general, complex solution. Of course, this method is
not used for such simple problems, this is just an illustrative example.

Model creation for experimental model. In this case not the mechanical but the
experimental is the approximating model. If we wish to verify the behavior of an
existing mechanical structure – taking into consideration the specifications – then the
experimental investigations may turn out to be extremely costly. Thus we carry out
the investigations on – a fairly proper – simpler experimental model. Even in this
case a theoretical model must be created for the description of the approximating
experimental model in order to verify the applicability of the experimental model.

Parameter identification. This is the most peculiar and important case of the ap-
proximating models. The examining aim is so complex that it is impossible to describe
it with an analytical model. Here the possible use of a numerical model makes an
appearance regarding the given mechanical structure. At the same time if the aim is
not verification but design, then first a construction must be achieved. This is often
determined by earlier experience of the designer. Rationally first an approximating
analytically solvable model must be set up in order to carry out parameter identifi-
cation. After the identification, optimization must be undertaken. The construction
designed in this manner now is ready to be investigated with the more precise numer-
ical model. If the results need more modification then it will take far less effort. This
method is quite efficient and successful.

4.3. Numerical models. In the previous subhead the possibility to approximate
reality with numerical models has been already declared. This numerical model can
be either the result of a former approximating model, or a directly created model
as well. Primarily the latter is used in verification, in those cases when not the
mechanical model is dominant in the determination of the construction.

So far, only a few numerical models are suitable for optimization (one example
is the evolutional model), and their capabilities are also limited to a narrow range
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of application. These problems cannot be solved other way. At this moment these
models represent the most complex methods of model creation.

Finally we have to draw attention to the fact that numerical models are not suitable
to solve complex engineering problems in general. They can act as supplement in the
application and they complements the possible applicable tools, but the given results
must be understood, defined, and put into context in the whole by the engineer. The
problem cannot be solved either by computer, or with excellent program systems, but
only by creative engineer.

5. Educational application of the model creation’s basic principles

The author of this article summarized the basic principles in a book titled Model
Creation. This book is the fourth in the textbook series Mechanics for Engineers.
After the detailed exposition of the basic principles and presentation of basic examples,
the book – written by several authors – presents a large number of case studies. These
case studies are the solutions of real industrial problems, and there are references
within them to the basic principles of model creation, and their implementation. The
textbook is for the compulsory subject called Model creation in the MSc engineering
program. After studying the basic principles, all the students had the task of analyzing
a structure and the creation of all of its models. For solving this, the students had
to use all of their mechanical knowledge studied in the previous five semesters and
the information written in the textbook. Thus, they had an integrated, creative task
that could only be solved by participating in large number of personal consultations.
It is my experience and belief, that in this way the students gained knowledge on
the creative engineering tasks, and the earliest possible learning of more effective
engineering work.
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József FARKAS: Comparisons of welded steel structures designed for mini-
mum cost 33–48

Sándor SZIRBIK: Hypersingular boundary integral formulations for plane
elasticity in terms of first–order stress functions 49–66
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