HU ISSN 15862070

JOURNAL OF COMPUTATIONAL AND
APPLIED MECHANICS

An Open Access International Journal

Published by the University of Miskolc

VOLUME 11, NUMBER 2 (2016)

S
8
SR

MISKOLC UNIVERSITY PRESS






HU ISSN 15862070

JOURNAL OF COMPUTATIONAL AND
APPLIED MECHANICS

An Open Access International Journal

Published by the University of Miskolc

VOLUME 11, NUMBER 2 (2016)

MISKOLC UNIVERSITY PRESS






EDITORS

Laszl6 BARANYI, Institute of Energy Engineering and Chemical Machinery, University of Miskolc,
H-3515 I\/JISKOLC, Hungary, e-mail: arambl@uni-miskolc.hu
Istvan PACZELT, Institute of Applied Mechanics, University of Miskolc, H-3515 MISKOLC, Hungary

e-mail: mechpacz@uni-miskolc.hu

Gyorgy SZEIDL, Institute of Applied Mechanics, University of Miskolc, H-3515 MISKOLC, Hungary

e-mail: Gyorgy.SZEIDL@Quni-miskolc.hu

EDITORIAL BOARD

Edgar BERTOTI, Institute of Applied Mechanics,
University of Miskolc, H-3515 MISKOLC, Hungary,
e-mail: edgar.bertoti@uni-miskolc.hu

Attila BAKSA, Institute of Applied Mechanics, Uni-
versity of Miskolc, H-3515 MISKOLC, Hungary,
attila.baksa@uni-miskolc.hu

Istvan ECSEDI, Institute of Applied Mechanics, Uni-
versity of Miskolc, H-3515 MISKOLC, Hungary,
mechecs@uni-miskolc.hu

Ulrich GABBERT, Institut fiir Mechanik, Otto-von-
Guericke-Universitat Magdeburg, Universitatsplatz
2, 39106 MAGDEBURG, Germany,
ulrich.gabbert@mb.uni-magdeburg.de

Zsolt GASPAR, Department of Structural Mechan-
ics, Budapest University of Technology and Eco-
nomics, Miiegyetem rkp. 3, 1111 BUDAPEST,
Hungary, gaspar@ep-mech.me.bme.hu

Robert HABER, Department of Theoretical and Ap-
plied Mechanics, University of lllinois at Urbana-
Champaign, 216 Talbot Lab., 104 S. Wright St.,
URBANA, IL 61801, USA,
r-haber@uiuc.edu

Csaba HéS, Department of Hydraulic Machines, Bu-
dapest University of Technology and Economics,
Miiegyetem rkp. 3, 1111 BUDAPEST, Hungary,
hoscsaba®vizgep.bme.hu

Karoly JARMAL, Institute of Energy Engineering and
Chemical Industry, University of Miskolc, H-3515
MISKOLC, Hungary,
altjar@uni-miskolc.hu

Laszlé6 KOLLAR, Department of Structural Engineer-
ing, Budapest University of Technology and Eco-
nomics, Miiegyetem rkp. 3. K.11.42., 1521 BU-
DAPEST, Hungary, lkollar@eik.bme.hu

Jézsef  KOVECSES, Mechanical  Engineering
Department 817 Sherbrooke Street West,
MD163 MONTREAL, Quebec H3A 2K6

jozsef.kovecses@mcgill.ca

Marta KURUTZ, Department of Structural Me-
chanics, Budapest University of Technology and
Economics, Miiegyetem rkp. 3, 1111 BUDAPEST,
Hungary, kurutzm®@eik.bme.hu

Herbert MANG, Institute for Strength of Materials,
University of Technology, Karlsplatz 13, 1040 VI-
ENNA, Austria, Herbert.Mang®@tuwien.ac.at

Sanjay MITTAL, Department of Aerospace Engi-
neering, Indian Institute of Technology, KANPUR,
UP 208 016, India, smittal@iitk.ac.in

Zenon MROZ, Polish Academy of Sciences, Insti-
tute of Fundamental Technological Research, Swi-
etokrzyska 21, WARSAW, Poland
zmrozQippt.gov.pl

Gyula PATKO, Institute of Machine Tools and
Mechatronics, University of Miskolc, H-3515
MISKOLC, Hungary,
patko@uni-miskolc.hu

Jan SLADEK, Ustav stavbenictva a architektdry,
Slovenskej akadémie vied, Dubrévska cesta 9,
842 20 BRATISLAVA, Slovakia, usarslad@savba.sk

Gabor STEPAN, Department of Applied Mechanics,
Budapest University of Technology and Economics,
Miegyetem rkp. 3, 1111 BUDAPEST, Hungary,
stepan@mm.bme.hu

Barna SZABO, Department of Mechanical Engineer-
ing and Materials Science, Washington University,
Campus Box 1185, ST. LOUIS, MO 63130, USA,
szabo@wustl.edu

Baldzs TOTH, Institute of Applied Mechanics, Uni-

versity of Miskolc, 3515 MISKOLC, Hungary,
balazs.toth@uni-miskolc.hu

HONORARY EDITORIAL BOARD MEMBERS
Imre KOZAK, Institute of Applied Mechanics, University of Miskolc,

H-3515 Miskolc-Egyetemvaros, Hungary

Tibor CZIBERE, Department of Fluid and Heat Engineering, University of Miskolc,

H-3515 Miskolc-Egyetemvaros, Hungary

R. Ivan LEWIS, Room 2-16 Bruce Building, Newcastle University,

NEWCASTLE UPON TYNE, NE1 7RU, UK

Gabor HALASZ, Department of Hydraulic Machines, Budapest University of Technology and Economics,

Miiegyetem rkp. 3, 1111 BUDAPEST, Hungary,






Journal of Computational and Applied Mechanics, Vol. 11., No. 2., (2016), pp. 107-122
DOI: 10.32973/jcam.2016.008

THE DRAG COEFFICIENT IN POWER-LAW
NON-NEWTONIAN FLUID OVER MOVING SURFACE

GABRIELLA BOGNAR
Institute of Machine and Product Design, University of Miskolc
H-3515 Miskolc-Egyetemvaros, Hungary
v.bognar.gabriella@uni-miskolc.hu

[Received: April 17, 2016]

Abstract. This paper deals with a solution to the boundary layer problem of a non-
Newtonian power-law fluid flow along a moving flat surface. Two cases are investigated: one
when the surface is moving in a fluid flow, the other when the surface is moving through an
otherwise quiescent fluid. Applying similarity transformation to the system of the governing
partial differential equations, the boundary value problem of one nonlinear ordinary differen-
tial equation on [0, c0) is derived. Numerical solutions obtained for the velocity components
and the drag coefficient parameter depending on the velocity ratio and on the power-law
exponent are exhibited.

Mathematical Subject Classification: 34B10, 34B15
Keywords: Non-Newtonian fluid, boundary layer, moving surface, similarity method, itera-
tive transformation method, spectral method

NOMENCLATURE
f [-] similarity velocity
g [-] function
h, h* [-] parameters
K [Pa s™] consistency coefficient
n [-] power-law exponent
u, v [-] non-dimensional velocity components
U [m/s]  fluid velocity
Uy [m/s]  wall velocity
x,y  [-] non-dimensional variables
Greek symbols
V0 Ky i [ -] parameters
r [-] function
7 [-] similarity variable
p [kg/m3] density of the fluid
P [-] non-dimensional stream function
Tyz [Pa] shear stress
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Tw [Pa] wall shear stress
A [-] velocity ratio, U, /Us
Ae [-] critical velocity ratio

1. INTRODUCTION

In fluid dynamics, the drag force or force component in the direction of the flow
velocity is proportional to the drag coefficient, to the density of the fluid, to the area
of the object and the square of the relative speed between the object and the flow
velocity. Blasius applied the similarity method to investigate the model arising for
a laminar boundary layer of a Newtonian media [I]. Fluids such as molten plastics,
pulps, slurries and emulsions, which do not obey the Newtonian law of viscosity,
are increasingly produced in the industry. The first analysis of the boundary layer
approximations to non-Newtonian media with power-law viscosity was published by
Schowalter [2] in 1960. The author derived the equations governing the fluid flow.
Numerical solutions to the problem of a laminar flow of the non-Newtonian power-law
model past a two-dimensional horizontal surface were presented by Acrivos at al. [3].
When the geometry of the surface is simple the system of differential equations can
be examined in details and fundamental information can be obtained about the flow
behavior of a non-Newtonian fluid in motion (e.g., to predict the drag).

The production of sheeting material, which includes both metal and polymer sheets,
arises in a number of industrial manufacturing processes. The fluid dynamics due
to a continuous moving solid surface appears in aerodynamic extrusion of plastic
sheets, cooling of a metallic plate in a cooling bath, the boundary layer along material
handling conveyers, boundary layer along a liquid film in condensation processes, etc.
Much theoretical work has been done on this problem since the pioneering papers by
Sakiadis [4] and Tsou et al. [5], and extensive references can be found in the papers
by Magyari and Keller [6], [7], Liao and Pop [§], and Nazar et al. [9].

Various types of non-Newtonian fluids are nano fluid, Casson fluid, viscoelastic
fluid, couple stress fluid, micro polar fluid, power-law flow, etc. [I0]. These include
pseudo plastic, dilatant, blood, foodstuff, slurries, paints, cosmetics and toiletries.
Heat transfer in boundary layer over a stretching sheet has important applications
in extrusion of plastic sheets, polymer, spinning of fibers, cooling of elastic sheets,
etc. ([, [12], [13]). The MHD boundary layer flow of heat and mass transfer
problems about an stretching sheet have become important research topics in view
of its significant applications in industrial manufacturing processes such as plasma
studies, petroleum industries, magneto-hydrodynamics power generator, cooling of
nuclear reactors, boundary layer control in aerodynamics, glass fiber production and
paper production ([I4], [15]).

Several numerical methods have been developed and introduced for the solution
of these type of fluid mechanics’ problems. It was shown in [16] that a non-iterative
Topfer-like transformation can be applied for the determination of the dimensionless
wall gradient on a stationary flat surface. Due to the challenging problem of the
solution of the boundary value problem to nonlinear differential equation(s) on infinite
interval, it is beneficial to obtain the solution with different numerical simulations for
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comparison. The aims of the paper are to give numerical results on the drag coefficient
in non-Newtonian media along moving flat surfaces for two cases and to introduce
two numerical methods, an iterative transformation method and a spectral method,
for the numerical evaluation.

2. MATHEMATICAL MODEL

Consider an incompressible uniform parallel flow of a non-Newtonian power-law fluid,
with a constant velocity U,, along an impermeable semi-infinite flat plate whose
surface is moving with a constant velocity U, in the opposite direction to the main
stream. The z—axis extends parallel to the plate, while the y-axis extends upwards,
normal to it. Applying the necessary boundary layer approximations, the continuity
and momentum equations are [I7]:

ou Ov
2 + 3 0, (2.1)

ou ou 1 OTya

Yor oy T ooy

where u, v are the velocity components along x and y coordinates, respectively. The
shear stress and the shear rate relation is assumed to be the power-law relation

(2.2)

-1
"7 Ou

ou
K 873/’

Tyx = 67y

where K stands for the consistency and n is called the power-law index; that isn < 1
for pseudoplastic, n = 1 for Newtonian, and n > 1 for dilatant fluids. Therefore,

differential equation (2.2)) is rewritten as
n—1
ou
a 2.3
ay) (23)

o ou_ 0 (o
Ox oy Oy fe Jy

where p. = K/p.

2.1. Fluid flow of velocity U,,. In the first case, the surface is placed in a fluid flow
of velocity U,,. The wall is impermeable and no-slip boundary condition is supposed.
For the investigated model, the boundary conditions are formulated as

uly_g=—Uw, v|,g=0, u =Us. (2.4)

y=+oo

2.2. Flow in an otherwise quiescent fluid. In the second case, the ambient fluid
velocity is zero and we suppose that the plate is moving at a constant velocity; there-
fore:

ul,—g=—Uu, v|,_o=0, ul,_\ o, = 0. (2.5)
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2.3. Introduction of stream function. The continuity equation (2.1 is automat-
ically satisfied by introducing a stream function ¢ as

_ %
_ N
V= (2.7)

The momentum equation can be transformed into an ordinary differential equation
by the similarity transformations

B(a,y) = I (Uw) " 2™ f(), (2.8)

2-—n
n= T (Uk) T ya (2.9)
where 7 is the similarity variable and f(n) is the dimensionless stream function for the
boundary value problem (2.1), (2.3)) and (2.4). Equation (2.3) with the transformed

boundary conditions can be written as
mn—1 ' 1 "
(1F71h ) + g it =0, (2.10)
fF0)=0, f1(0)==A [f'(o0) = lim f'(n) =1, (2.11)
n—00

where the prime denotes the differentiation with respect to the similarity variable
7n, and the velocity ratio parameter is A = U, /Us. Equation is called the
generalized Blasius equation and the case A = 0 corresponds to the Blasius problem.
It should be noted that for A > 0, the fluid and the plate move in opposite directions,
while they move in the same directions if A < 0. Now, the dimensionless velocity
components have the form:

U(CL‘7 y) = Uoofl(n)v (212)
U , 75, o
v(z,y) = oyl (nf'(m) = f(n), (2.13)
and L
n= Re;+1 y/x, (2.14)
where
Re, = Ufo_"x"/uc (2.15)

is the local Reynolds number.
For U, = 0, X is not defined. Here the momentum equation can be transformed
into an ordinary differential equation by the similarity transformations

2n-l 1
Pl y) = nET U) " 2 ), (2.16)
2—
= le NG n“ yx T (2.17)
for the boundary value problem , 1-) and . The transformed form of
equation (2.3) has the same form as ([2.10]), but the boundary conditions (2.5)) are

formed by
fO)=0, f(0)=1, f'(o00)= lim f'(n)=0. (2.18)

7—00
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The dimensionless velocity components can be given as:

u(e,y) = Uaf (), o(ey) = ~ 2R (i () = S0), (219
and
n= Re,, w1 y/x, (2.20)
where
Re, = U2 "2"/ ue.. (2.21)

Since the pioneering work by Acrivos at al. [3], different approaches have been
investigated for f”(0) = ~ in the case of non-Newtonian fluids. It has a physical
meaning in drag force or force due to skin friction. It is a fluid dynamic resistive
force, which is a consequence of the fluid and the pressure distribution on the surface
of the object. The skin friction parameter « originates from the non-dimensional drag
coefficient

Cp=(n+ 1)"%1 Ren 1 ||t y, (2.22)

and it is involved in the wall shear stress

anUBn ﬁ _
Tw(x) = [mnm] "y (2.23)
for Uy, # 0 and
O e (2.24)
for Uy
The boundary value problem (2.10) , (2.11] i is defined on a semi-infinite interval.
For Newtonian fluids (n = 1), equatlon (2.10) is equal to the well-known Blasius
equation:
1
"+ 3 ff’=o. (2.25)

For non-Newtonian fluids on steady surfaces (A = 0), the boundary value problem
(2.10]), (2.11]) was investigated in [T6]. A non-iterative Tépfer-like transformation was
introduced for the determination of ~y, when

F(n) = A@n=D/3g (7(2‘")/377) (2.26)

and ¢ is the solution of the initial value problem

(lg//|n—1 g//) + %gg () (2.27)
9(0)=0, ¢ (0)=0, ¢"(0)=1. (2.28)

By analogy with the Blasius description of Newtonian fluid flows [I], here the goal is to
study the similarity solutions and investigate the model arising in the study of a two-
dimensional laminar fluid flow with power-law viscosity. A Topfer-like transformation
is applied for the determination of ~.
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3. PREVIOUS RESULTS

The existence and uniqueness of Blasius’ boundary layer solution to ,
with A = 0 was rigorously proved by Weyl [I§]. The properties of similarity solutions
to the boundary layer problem on a moving surface (A # 0) for Newtonian fluids, have
been examined by Hussaini and Lakin [19], Hussaini et al. [20]. It turned out that
for a semi-infinite plate, the existence of solutions depends on the ratio of the plate
surface velocity U, to the free stream velocity U,,. When n = 1, A < 0, the existence,
uniqueness and analyticity of solution to , were proved by Callegari and
Friedman [2I] using the Crocco variable formulation. If A > 0, Hussaini and Lakin
[19] proved that there is a critical value A, such that a solution exists to ,
only if

A< A (3.1)

(see [19]). Dual solutions exist for
0 <A< A (3.2)

The numerical value of \. was found to be 0.3541... for n = 1. The non-uniqueness
and analyticity of the solution for

A< A (3.3)

has been proved by Hussaini et al. [19], [20]. For non-Newtonian fluids ( n # 1) with
A = 0, the existence, uniqueness and some analytical results for problem ,
were established when 0 < n < 1 by Nachman and Callegari [22]. The existence and
uniqueness result for n > 1 was considered by Benlahsen et al. [17] via Crocco variable
transformation. For non-Newtonian fluids the numerical calculations also show that
there is a critical value A, for each n such that solution exists only if

A< A (3.4)

(see [23]). The variations of f”(0) and A. with A for different values of n are given in
[24).

In this paper an iterative transformation method is introduced for the determina-
tion of v involved in the drag coefficient and the calculation of the boundary layer
thickness for different values n and .

4. NUMERICAL SOLUTIONS

For the determination of the solution to boundary value problems (2.10)), (2.11) and
(2.10]), (2.18]) two different methods are applied. The problems are solved on truncated
intervals instead of on [0, c0).

4.1. Iterative transformation method for the case U, # 0. This section is
devoted to the application of the scaling concept to numerical analysis of (2.10]),
(2.11)). Solving this problem, proper boundary conditions are not available at infinity.
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In the case of A = 0 a non-iterative transformation method called Topfer or Topfer-
like method is be used for solving (2.10)), either for n =1 [7] or for n # 1 [24].
The figure of the velocity gradient parameter near the wall f”/(0) is exhibited in Figure
depending on n [24].

Here an iterative transformation method is described. Non-iterative and itera-
tive transformation methods for boundary value problems were introduced by Fazio
[25]. The idea behind the present method is to consider the “partial” invariance of
(2.10)), (2.11)) with respect to a scaling transformation in the sense that the differential
equation and one of the boundary conditions at 0 are invariant, while the other two
boundary conditions are not invariant. Therefore, the problem modified by introduc-
ing a numerical parameter h. Now, equation is to be solved with boundary
conditions

7 (0) = =\, (4.1)
FO)=0, f(o0) = lim f'(m) =1, (4.2)
where h is involved, to ensure the invariance of the extended scaling group.
0.8
0.7 4
0.6 -
f H(o)
0.5+
0.4

Figure 1. Velocity gradient parameter near the wall f”(0) = ~
against n for A =0

A Topfer-like transformation is introduced by
g=0"f, (4.3)
nt=on (4.4)
to convert the boundary value problem to an initial value problem. Equation (5) is

scaling invariant if
(2-n)k=(1-2n)u. (4.5)
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Figure 3. Drag coeflicient parameter f”(0)™ against A for different
values of n
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Then, one gets

n— ! 1
(‘9”\ ' g”) + mggﬁ = 0. (4.6)

Let us choose o = 7, then

g"(0) = 72 (4.7)

and with x — 2 + 1 = 0 one can obtain the appropriate boundary conditions as
k=01-2n)/3, u=(2-n)/3:

9(0) =0, ¢'(0)=-An", ¢"(0)=1, (4.8)
where
h* =~ "5 h. (4.9)

The initial value problem , is solved with the so-called iterative transfor-
mation method. A numerical parameter h is applied so that the asymptotic boundary
condition remains invariant. By starting with a suitable value of h*, a root finder al-
gorithm is used to define a sequence h; for j = 0,1,.... The group parameter o is
obtained by solving numerically the initial value problem after the iterations. The
sequence is defined by

'hy=h—-1=0. (4.10)
An adequate termination criteria must be used to verify whether
r'hf)—0 (4.11)

as ¢ — oco. The solution of the original problem can be received by rescaling to h = 1.

It is important to note that similarity solution exists only for —1 < A < A.. If
A > A, then the flow separates, the boundary layer structure collapses and the
boundary layer approximations are no longer applicable.

Figure |2| provides an upper bound for the critical velocity parameter for non-
Newtonian fluids.

The influences of A and n on the skin friction parameter - are represented in Figure
It can be noticed that there are two solutions for 0 < A < A, (see Figure |3).
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f'(n)

Figure 4. Velocity distribution for n = 1.5 and A = 0.3

Figure 5. Velocity distribution for n = 0.5 and A = 0.15
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Figures [A}f] show the influence of the positive parameter A for different power-law
exponent n on ™. It can be seen that f’ monotonically increases from —\ to 1
for both the lower and upper solutions. These results are in good agreement with
those reported in [23]. Figures exhibit the upper and lower solutions for velocities
f = u(z,y)/Us as a function of i for some values of n and A to show the effect
of the velocity parameter A and power-law exponent n. The figures show that f’
monotonically increases from —\ to 1 for both the lower and upper solutions. This
phenomenon shows that the velocity component u is monotonically increasing in the
boundary layer.

pd
/
/
/
7
o

Figure 6. Velocity distribution for n =1 and A = 0.25

4.2. Spectral method for the case U, = 0. In this section a different method is
introduced for the numerical solution to , as the iterative transformation
method applied in Section 4.1 is not suitable for this case.

With the advent of the spectral element method, complicated domains can be
handled. In spite of being mainly used in fluid mechanics, nowadays, this method is
more and more frequently utilized in biomechanics, astrophysics and in the study of
electromagnetic waves.

We use a spectral method for the determination of the solution to , .
Spectral methods are able to provide very accurate results when the solution is smooth
enough. More precisely, if the solution is differentiable to all orders, an exponential
(or infinite order or spectral) convergence is achieved.
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All three versions of spectral methods (collocation, Galerkin and tau) belong to the
method of weighted residuals and the main classification is carried out according to
the type of trial functions used. Trial functions in the Galerkin method are the same
as the weight functions and satisfy some of the boundary conditions. In spectral
collocation, the trial functions are Dirac-delta functions located at the collocation
points while the tau method, similarly to the Galerkin method, operates in the weak
form but the trial functions generally do not satisfy the boundary conditions. In
our calculations, the collocation method is used. During collocation we determine
the function values of the interpolating polynomial at the collocation points (nodal
approximation), as opposed to the other two methods, which give results for the
coefficients of the truncated approximating series (modal approximation). The n-th
order Chebyshev polynomial of the first kind, T}, (z) is defined on [-1; 1] and can be
expressed by the recursion

To(z) =1, Th(z) = =,
Tn(x) = anL—l(w) - Tn—Q(x)a n>1

The modal approximation of function u(z) is calculated by T,,(z). The nodal ap-
proximation of u(z) can be evaluated in the Lagrange base. The spectral differentia-
tion for Chebyshev polynomials can be carried out either by a matrix-vector product
or by using the Fast Fourier Transform (FFT). We implement the matrix-vector mul-
tiplication method because of the relatively low number of collocation points. One
of the methods for solving a boundary value problem on an infinite or semi-infinite
interval is the so-called domain truncation. Performing the truncation and the linear
mapping we have

nel0,00) >£€[0,L] > (el0,1] -z e[-1,1].

Introducing
f@)=fn(@)), (4.12)
the boundary value problem (2.10)), (2.18]) is written as

8 1 4 FlFm|2—m
oy () FIFF =

f(-1n) =0, f(-1)=L/2, f(1)=0.

After the discretization, N 4+ 2 number of algebraic equations are at our disposal.
The differential equation approximated at the N —1 inner nodes and the three bound-
ary conditions. However, the number of unknowns is only N+1, therefore the resulting
system is overdetermined. One possible solution is to take an interpolant that already
satisfies some of the boundary conditions. Let us seek function k such that

f(@)=P(@)k(z), P(Z)=af®+bi+ec. (4.13)
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Figure 8. Velocity distribution for different values of n for Uy, = 0

If conditions
P(-1)=0, P'(-1)=1L/2 (4.14)
and P’ (1) = 0 are satisfied, then a, b, ¢ can be obtained as follows

a=LJ8, b=L/4, c¢=3L/s. (4.15)
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Now the differential equation is reformulated for k£ under boundary conditions
k(-1)=1, K (1)=0. (4.16)

The boundary value problem is solved with the Chebyshev spectral technique. After
the discretization of k (Z) and its derivatives, the resulting system of nonlinear equa-
tions is solved with the Levenberg-Marquardt algorithm in Matlab. The numerical
results for different power-law exponents are shown in Figure 7] where f’ is shown,
which is proportional to u(x,y). The figure shows that with larger values of n the
boundary layer thickness decreases and shorter interval is enough for the truncation.
Because f”(0) < 0, both the drag coefficient and the wall shear stress are influenced
by |f”(0)|" and this is exhibited in Figure

5. CONCLUSIONS

In this paper the determination of the drag coefficient is shown for two-dimensional,
incompressible, laminar non-Newtonian fluid flow along a moving surface. The power-
law non-Newtonian approximation is used. The governing partial differential equa-
tions are transformed into a third order ordinary differential equation together with
the boundary conditions applying the similarity technique. Two main cases are con-
sidered: if the velocity U, of the ambient fluid flow is zero or non-zero. For Uy, # 0,
an iterative transformation method is used for the determination of the numerical
results. If Uy, = 0, a spectral method is applied for the simulations. The values of
f"(0) =~ and the influence on it of the power-law exponent n and the velocity ratio
A on it are exhibited in Figures [THg]
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Abstract. This paper presents two methods for modeling the response of a direct spring
operated pressure relief valve: one approach uses one-dimensional gas dynamical equations
coupled with the equation of motion of a one degree-of-freedom oscillator, while the other
employs deforming mesh CFD simulations to fully resolve the flow field. We found that if
the force and flow rate characteristics of the valve are implemented into the reduced order
model, it yields approximately the same results as the CFD computations.

Mathematical Subject Classification: T6N15, 76-04
Keywords: CFD, linear stability, nonlinear vibrations, pressure relief valve

1. INTRODUCTION

Pressure relief valves (PRVs) are used as the last line of defense against overpressure
in industrial environments. There are two main parameters of these valves regarding
their operation: the set pressure (pset), which is the minimum pressure at which the
valve opens, and the capacity, that is by definition the flow rate through the valve at
full lift and at 110% of the set pressure. The latter describes how fast the overpressure
can be reduced to the desired level and maintaining full capacity is critical from a
safety point of view. It is possible that under certain circumstances instabilities arise,
which reduce the capacity, endangering the whole system. The goal of this paper is to
investigate the behavior of a direct spring operated PRV in gas service with a focus
on stability. This configuration consists of a disc pressed against the seat at the pipe
end by a pre-compressed spring. The advantage of this simple design is that the set
pressure can be easily adjusted through the pre-compression of the spring, and the
probability of mechanical failure can be kept at a minimal level due to the low number
of moving parts. In order to avoid exceeding the time available for blowdown, adding
any kind of artificial damping is forbidden by the current industrial standards [IJ.
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Based on this, the valve disc can be modeled as a one degree-of-freedom oscillator,
which — due to the force acting on it— is described by a non-linear differential
equation. This means that dynamic instabilities must be taken into account. The
RP520 standard of the American Petroleum Institute distinguishes three different
kinds of instabilities for direct spring operated PRVs. The first is the so-called cycling,
during which the set pressure slowly builds up after the valve closes, resulting in small
frequency (< 1Hz) vibrations. Contrary to this, both flutter and chatter are large
frequency (> 10Hz) self-excited vibrations — the difference between them is that
during chatter the amplitude is so large that the disc usually impinges on the seat
and upper stopper, resulting in not only a decrease in capacity but mechanical damage
as well. Cycling is well-understood and means to avoid it are already included in the
standards. However, the reasons behind flutter and chatter are not completely clear
according to API, but it is mentioned that these are due to the acoustic coupling
of the valve disc and the pipe end. Ongoing research activities aim to gain a better
understanding of these phenomena |2} [3]. The goals of this paper are (a) to provide a
steady-state CFD model for the evaluation of the force acting on the valve disc and
the capacity, (b) to study the transient valve response by a deforming mesh CFD
model and (c) to compare the results of unsteady CFD runs against a simplified ODE
(ordinary differential equation) model including quasi-steady fluid force characteristics.

2. THEORETICAL BACKGROUND

The system under analysis consists of a straight pipe section and the valve itself. The
governing equations describing the behavior of these components are derived in this
section.

2.1. The valve. As stated before, the valve disc can be modeled as an oscillator:
mi + k& + s(x + x0) = Fiotal, (2.1)

where m is the reduced mass of the system, z is the valve lift, k is the damping
coefficient, s is the spring stiffness, xg is the pre-compression of the spring and Figta
is the total force acting on the valve. The force can be traced back to three physical
phenomena: force acts because of the pressure difference between the upstream and
downstream pressures, due to the change in the momentum of the out-flowing gas,
and originates from viscous effects, i.e.

Fiotal = Fpres + From + Fvisc7 (22)

where the force from the pressure distribution is

Fpres = Apipe(pv - pb)7 (23)

where Apipe is the cross-sectional area of the pipe, p, is the pressure upstream of the
valve and py, is the back pressure. The problem is that Fi,om and Fyise cannot be
calculated analytically, as neither the velocity nor the direction of the flow are known.
Their effects can be taken into account through the effective area, which supposes that
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the total force can be evaluated as a multiplication of the static pressure difference
and an area function [2], that is

Ftotal($7pv) = Aeff (I) (pv - pb); (24)

where Acg is the effective area function. As there is no flow when the valve is seated,
i.e. © = 0, the effective area for that position equals the cross-sectional area of the
pipe, resulting in

Aer(0) = Apipe- (2.5)
Substituting the effective area into Equation (2.1)) gives
mi + ki + s(z + x9) = Aesr () (Py — Db)- (2.6)

It can be seen that this equation is indeed a non-linear ordinary differential equation.
One of the goals of the stationary mesh CFD simulations presented later is to obtain
the Aog(x) function for the given PRV.

2.2. Stability of the linearized system. The first step in the linear stability
analysis is finding the equilibria zeq from equation (2.6)), taking into account that
Teq =0 and g =0, i.e.

Act (Teq)

Teq = f(pv,cq - pb) — Zo. (27)
Linearizing the effective area around this point results in
dA £l
Aeti(z) = Aet(Teq) + ZT() (x — Teq), (2.8)

which can be substituted back into Equation (2.6) to get

%f;(x) (T = Teq) | (Py=pb)-

‘ (2.9)

ME+ki+$[(T—Teq)+Teqt+To] = (Aeff(l'eq) +

Utilizing that zq is an equilibrium solution and introducing ( = x — x4 gives

dAcf‘f

mé+ké+<s

(pv —pv) | C=0. (2.10)
T=Teq
This differential equation is linear, and the role of the effective area is highlighted: the
linearised force decreases the coefficient of the displacement, i.e. the spring stiffness.
The term in the brackets can be regarded as an “effective spring stiffness”, and loss
of stability occurs when it becomes negative, i.e.

dAcq

5 —
dx

(pv —pb) < 0. (2.11)

T=Teq

Therefore, the stability of an equilibrium solution for a given pressure difference and
spring stiffness can be determined from the derivative of the effective area at the
equilibrium displacement, meaning that knowing the A.g(x) function is crucial from
the point of stability as well.
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2.3. Mass flow rate through the valve. As stated before, the mass flow rate
through the valve is one of the most important parameters. Two cases must be
distinguished based on the ratio of the pressure at the pipe end and the back pressure.
The flow is said to be choked if this ratio is above the critical pressure ratio [4], which

for air (y =1.4) is
) AN
(p) - (H> T = 1.8929, (2.12)
Pb / critical 2

and the formula for the mass flow rate [4] is

9 \¥1
Mout = CDAref\/'YPvpv (y—l) ) (2.13)
where p, is the density upstream of the valve and the reference area equals
Avet = DpipeTt. (2.14)

The most problematic part of Equation is the discharge coefficient Cp — the
other main goal of the stationary mesh CFD simulations is to investigate its values at
various valve lifts and pipe end pressures. Similarly, the equation for the mass flow
rate for compressible non-choked flows [5] is

2 y+1
Y Y
Thout = CDAref 2pvpv (’Y‘Y—l) [(ZE) - <§E> ‘| (215)

2.4. Interaction between the valve and the seat. There is also the possibility
of the valve disc hitting the end of the pipe, which phenomenon is not covered by the
equations listed above. This event can have two outcomes: either the disc bounces
back with a set loss of kinetic energy or it sticks to the pipe end. As these are not
covered by the deforming mesh simulations, their modelling can be omitted if the sole
goal of the 1D model is to produce a comparable output to the CFD results.

2.5. The pipe. The flow in the pipe can be regarded as a one-dimensional, unsteady,
subsonic, compressible gas flow with wall friction, which is described by the following
system of partial differential equations [6]. The continuity is

Op  Opv

—+ = =0, 2.16

ot T o (2.16)
the 1D equation of motion with pipe friction looks like

dpv | D (p*+p)  Aw)p
oy - 2.1
or T o 2D (2.17)

and the adiabatic energy equation is

Ope n d (pve + pv)
ot o

where p is the pressure, v is the velocity, e is the specific energy, t is the time, £ is
the spatial coordinate along the pipe, A is the Darcy friction factor and Dppe is the

=0, (2.18)
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diameter of the pipe. The friction factor was defined as a function of the velocity
using Blasius’ approximation for turbulent flows [7], which is

A(v) = 0.316 (Re(v)) %% = 0.316 <”D;P> o (2.19)

2.6. Numerical solution of the system. All of these equations were implemented
in the 1D model. Equation was solved using a 4th/5th order Runge-Kutte
solver, while the Lax-Wendroff method [§] was applied to Equations to .
A constant total pressure reservoir boundary condition was defined for one end of
the pipe, while the other was coupled with the valve. The compressible method of
characteristics was used for the numerical implementation of both [6].

3. STEADY-STATE CFD SIMULATIONS

The goal of the steady-state CFD simulations is to investigate the flow properties
at various fized lifts and reservoir pressures. With these information it will also be
possible to obtain the A (x) and Cp values required for the 1D model. However,
it must be noted that this method of approach assumes that even though these
parameters refer to dynamic processes, they can be approximated from steady-state
solutions. All the CFD simulations were done using ANSYS-CFX.

Both [9] and [10] investigate the general flow parameters of valves, while [11] uses
an approach similar to this work, as it also approximates the dynamic properties from
results of fixed lift solutions. An advanced version of this method can be seen in [12]:
the authors generated individual meshes for a large number of lifts, and their solver
chooses from them based on the calculated displacement values. Its advantage is that
the process more or less retains its dynamic nature; however, the valve lifts can only
be discrete values and the resolution depends on the number of prepared meshes.

The axisymmetry of both the geometry and the boundary conditions were taken
into account, therefore only a wedge shaped domain was generated with a central
angle of 5°. This also means that all of the results had to be rescaled for the full
360° geometry. The dimensions of the modeled valve correspond to the measuring
equipment located in the laboratory of the Department of Hydrodynamic Systems
in order to ease the comparison of the calculated and the measured results in the
future. This includes a pipe with an inner diameter of 40.2mm (corresponding to
11/2” nominal) and a valve disc diameter of 55.7mm. The length of the pipe was set
to 10Dpipe.

3.1. Simulation settings. Due to the axisymmetry, a wedge shaped domain with
one cell in the radial direction was sufficient for the modeling of the problem. The
block structured mesh was created using ICEM and consists of 90, 787 nodes. The
domain, the boundary conditions and the element numbers are illustrated in Figure
[[] The thinner lines denote the edges of the blocks. A mesh dependency study was
also carried out, which is presented at the end of this section.
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Figure 1. The domain, the boundary conditions and the element
numbers (not a proportional illustration)

The opening pressure was set to 1bar (absolute), while the temperatures at both
the inlet and the opening were 293 K. The inlet total pressure was varied between
1-6 bar and the valve lift range of 0.01-0.35Dpipe was resolved. To ease the notation,
relative values for the lift will be used from now on with

T = -T/Dpipe- (31)

As the steady-state solver only produced converging residuals at very low pressure
ratios, a transient solver was used in most cases. These simulations were stopped
after both the force acting on the valve and the inlet mass flow rate had converged.
The medium was set to air with the ideal gas assumption. High Resolution and
Second Order Backward Euler schemes were used for the advection and the time
stepping, respectively. The k-¢ model was chosen for turbulence, because its scalable
wall function supposedly provides reasonable accuracy for the boundary layer even
without its full numerical resolution [I3]. A turbulence model dependency study was
also concluded, which is presented at the end of this section. The time step is variable
and is automatically adjusted by the solver to maintain a set number of inner loop
iterations (between 5 and 9) .
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3.2. Results for the discharge coefficient. The discharge coefficients are obtained
from Equation (2.13]) by substituting the mass flow rates from the CFD simulations
(Mout = Mout,crD), resulting in

mout,CFD

Cp = . (3.2)

y+1

Aref\/ypvpv,CFD (%) v

The pipe end pressures were also taken from the CFD simulations, while the densities
were calculated from the inlet temperature, as experience showed that the variations
in density along the pipe are negligible. The discharge coefficients can be seen in
Figure 2] Note that the above formula for the mass flow rate is only valid for choked
flows, i.e. when the pressure ratio at the valve is above critical, therefore it is not
expected to be constant in the non-choked range. After averaging the results in the
choked range, a value of Cp = 0.8778 was obtained for the discharge coefficient.

3.3. Results for the effective area. Equation (2.4) gives the effective areas by
substituting the total force acting on the valve and the static pressure from the results
of the CFD simulations, that is

Aug = Fiotal,cFD . (3.3)
Pv,CFD — Pb

The back pressure (py,) is known from the boundary condition, therefore the effective
area can be obtained. The ratio of the effective area and the cross-sectional area of the
pipe is shown in Figure[3] It confirms that it is reasonable to assume that the effective
area depends only on the lift, as it does not significantly vary with the pressure. The
Aegr(2) function can be calculated by averaging the values corresponding to the same
lifts, which can be seen in Figure[d] It also includes the piecewise cubic interpolation
of the function.
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3.4. Equilibrium and stability. First, the equilibrium points must be calculated
from Equation (2.7). The pre-compression can be expressed from the set pressure by
substituting z.q = 0 and utilizing that Aes(0) = Apipe:

Apipe (pset - pb) (34)
S

o =
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The characteristic curves, i.e. the py eq(Teq) functlons corresponding to various set
pressures can be formulated using Equations (2.7) and (3.4). The stability of the
points on the p,—z plane was obtained from Equatlon (2.11)). The equilibrium curves
for different set pressures and the boundary of stability (b.o.s.) are shown in Figure
The equilibria to the left of the b.o.s. are stable. All of these calculations were
made with a spring stiffness of s = 12500 N/m.

3.5. Mesh and turbulence model dependency study. To reduce computational
time, both the mesh and the turbulence model dependency studies were only concluded
at around the corner points of the investigated inlet total pressure and valve lift
domain, i.e. at pymin = 1.5bar and pymax = 6.0bar, and at zmin = 0.05Dpip. and
ZTmax = 0.35Dpipe. For the mesh dependency study a mesh was generated with two
times as many elements on all edges. The relative differences in both the forces acting
on the valve and the inlet mass flow rates were under 0.5%, indicating that the domain
had been sufficiently resolved by the original mesh. The effect of turbulence modelling
was investigated by repeating the simulations in the aforementioned corner points with
both the baseline k-w and the k-« SST models, and their results were compared to
those from the original simulations, where k-¢ had been used. The largest relative
differences were 3.67% for the force and 5.40% for the mass flow rate, both of which
are sufficiently small.

4. DEFORMING MESH CFD SIMULATIONS

During the calculations of the previous section a method of determining the equilibria
and their stability for a direct spring operated pressure relief valve was shown, but
it involved the major assumption that the total force acting on the valve can be
accurately approximated from steady-state fixed valve results. To investigate the
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effect of unsteadiness, another CFD model was assembled in which the valve disc
is free to move in the direction of the pipe axis. The spring is taken into account
through the Rigid Body option of CFX with its built-in spring feature. Its stiffness
and the reduced mass of the moving bodies had to be defined. As the simulated
domain has a centre angle of 5° (instead of the full 360°), both of them had to be
rescaled appropriately, i.e. multiplied by 5°/360°. The unloaded position of the spring
must also be set, which can be calculated from the pre-compression and the initial
position. The movement of the valve disc results in a change in the fluid domain,
which is handled by allowing the deformation of the mesh. The Mesh Stiffness was
set in a way that the larger the cell volume, the less it deforms in order to preserve the
mesh quality at the critical regions (at the walls, in the free jet) as much as possible.
The chosen value for the stiffness was

1 m?
mesh — I 4.1
Smesh Veenl [ s } (4.1)

Even though this setting permits large displacements from the initial position of the
valve, experience showed that the mesh still suffers a significant loss of quality, to
the point that sometimes negative cell volumes would occur. To prevent this, the
ICEM CFD replay script based remeshing feature was used, which is covered in detail
in [I4], only its basics will be summarized here. First of all, a condition for the
remeshing has to be defined through an Interrupt Condition — when this expression
becomes true, the solver stops. In these simulations it happens when the area average
of the Total Mesh Displacement at the valve reaches 1 mm. It proved to be a good
quantity to monitor, as its value resets to zero after every remeshing. The remeshing
itself is set in a Configuration, which is triggered by the Interrupt Condition. Its
ICEM CFD Replay option requires the geometry file (*.tin) of the initial position, a
replay script for the meshing (*.rpl), the mapping of the moving part between ICEM
and CFX, and a monitor for the total displacement. The area average of the Total
Centroid Displacement at the valve was used for the latter (it is not reset during the
remeshing). The unit conversion between ICEM and CFX (i.e. from millimeters to
meters in our case) is handled by the ICEM CFD Geometry Scale, which was set to
0.001. A remeshing step goes as follows:

1. The Interrupt Condition is fulfilled.

2. The solver stops and ICEM is called.

3. The geometry file is loaded into ICEM and is shifted with the value of the
corresponding monitor.

4. The meshing replay script is run on the modified geometry.

5. A new simulation — with the new mesh — is initialized with the results of the
stopped one.

This way the required mesh quality can be maintained even for extremely large
deformations, as long as no change occurs in the topology. An example for the
latter would be the seating of the valve, which is not covered by this model. A
similar approach, albeit without remeshing, can be found in [I5], but in their case the
reservoir was also implemented in the CFD model.



CFD simulations on the dynamics of a pressure relief valve 133

5. COMPARISON OF VALVE RESPONSES

To check whether the steady-state assumption of the effective area was correct,
1D simulations based on the model described in the first section were compared
to the results of the deforming mesh CFD method. The spring stiffness was set
to 12500N/m, and its pre-compression was defined such that the valve was in an
equilibrium position at the start. The discharge coefficient was also set according
to the steady-state simulations (Cp = 0.8778), while the damping was neglected
(k = 0). Two cases were simulated with the same inlet total pressure jump but
with different jump durations. The valve responses and the pressure profiles are
illustrated in Figure [6] The correspondence is satisfactory, as the displacement from
the 1D model closely follows that of the deforming mesh solution, even though some
difference can be observed in the new equilibria, and also the response seems to be
significantly delayed in the case of the slower pressure jump.

30
—. 20
=
= 10
0 0
0 0.2 0.4 0 0.2 0.4
t [s] t [s]
3.06 ‘ 3.06
3.05 ‘ 3.05
= 3.04 o = 3.04
® ®
=303 | | £3.03
£8.02p | £38.02
3OLp | 3.01
3 3
0 0.2 0.4 0 0.2 0.4
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Figure 6. Valve responses of the deforming mesh CFD (cont. line)
and the 1D (dashed line) models in the case of a sudden (left) and
slow (right) pressure jumps
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As the most important modeled parameter is the effective area, it is beneficial to
compare the piecewise cubic interpolation of its steady-state result to those from the
two deforming mesh simulations. The various effective areas can be seen in Figure
The difference between the two deforming mesh cases is negligible, indicating that
the rate of change in the pressure had no effect on the effective area in this parameter
range. Since the steady-state curve also runs close to the other curves, it is strongly
implied that the basic assumption, i.e. the independence of the effective area from the
pipe end pressure was correct for the case of exponentially decaying solutions. The
steady-state forces are also somewhat higher, which explains the higher equilibrium
lifts of the 1D model in Figure [6]

Flutter usually occurs in configurations where long upstream piping is present
[2]. Indeed, unstable behaviour was observed at pse; = 3bar, Lpipe = 38Dpipe and
pi(t) = 3.2bar. The valve responses can be seen in Figure While the vibration
frequencies are similar, there is a significant difference in the amplitudes. Whether
this is due to the absence of some damping effect in the one-dimensional model or the
overdamping of pressure waves in the CFD code (which is common for solvers based
on the finite volume method) requires further studies and is beyond the scope of this

paper.
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Figure 8. Flutter resolved by the deforming mesh CFD (cont. line)
and the 1D (dashed line) models.

6. CONCLUSIONS

The stationary mesh simulations proved to be computationally cost-effective in mapping
a large segment of the py — & plane both in terms of the effective area and the
discharge coefficient. These also made possible the linear stability analysis of various
equilibrium solutions. The piecewise cubic interpolation of the effective area and the
averaged value of the discharge coefficient were also useful for the 1D model. The
deforming mesh CFD results confirmed that the approximation of the effective area
from steady-state flow fields is indeed accurate enough to be used for the modeling
of pressure jump scenarios, and that it is also able to qualitatively — and to some
extent, quantitatively — produce the same dynamically unstable valve responses as
well. Therefore, the 1D model turned out to be an effective and fast tool for transient
calculations, albeit strongly depending on the aforementioned input parameters. This
behavior also gives flexibility, i.e. it can be easily modified to simulate the response of
other PRVs if these parameters are known from CFD simulations or measurements.
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Abstract. Entrance region flow in concentric annuli with rotating inner wall for Bingham
non-Newtonian fluid has been studied numerically. The inner cylinder is assumed to be
rotating with a constant angular velocity w and the outer cylinder to be stationary. Finite
difference analysis is used to obtain the velocity components U, V, W and the distribution
of pressure P along the radial direction R. With Prandtl’s boundary layer assumptions, the
continuity and momentum equations are solved iteratively using a finite difference method.
Computational results are obtained for various non-Newtonian flow parameters and geomet-
rical considerations. The development of the axial velocity profile, radial velocity profile,
tangential velocity profile and pressure distribution in the entrance region have been ana-
lyzed. Comparison of the present results with the results available in literature for various
particular cases has been done and found to be in agreement.
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NOMENCLATURE
k consistency index (Pa.s),
m number of radial increments in the numerical mesh net-
work,
P pressure (Pa),
Do initial pressure (Pa),
P dimensionless pressure, (p — po)/(pu?),
T radial coordinate (m),
z axial coordinate (m),
0 tangential coordinate (rad),
R=r/Ry dimensionless coordinate in the radial direction,
Z =2z(1 — N)/(RaRe) dimensionless coordinate in the axial direction,
Ry radius of the inner cylinder (m),
Rs radius of the outer cylinder (m),

B = 19R2/(kuo) Bingham number,
Re = 2p(Ry — R1)ug/k  Reynolds number,

(©2016 MiSkOLC UNIVERSITY PRESS
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T, Taylor number
N =Ri/Rs dimensionless aspect ratio of the annulus,
u velocity components in z direction (m/s),
v velocity components in r direction (m/s),
w velocity components in 6 direction (m/s),
U uniform inlet velocity (m/s),
U =u/ug dimensionless velocity component in z direction,
V = pvRs/p,.  dimensionless velocity component in r direction,
W =w/(wRy) dimensionless velocity component in 6 direction,
p density of the fluid (kg/m?),
I apparent viscosity of the model (Pa.s),
To yield stress (Pa),
w regular angular velocity (rad/s),
AR dimensionless mesh size in the radial direction,
AZ dimensionless mesh size in the axial direction.

1. INTRODUCTION

The problem of entrance region flow in concentric annuli with rotating inner wall for
non-Newtonian fluids is of practical importance in engineering applications such as the
design of cooling systems for electric machines, compact rotary heat exchangers and
combustion chambers, axial-flow turbo machinery and polymer processing industries.
In the nuclear reactor field, laminar flow conditions occur when the coolant flow rates
are reduced during periods of low power operation. Many important industrial fluids
are non-Newtonian in their flow characteristics and are referred to as rheological fluids.
These include blood, various suspensions such as coal-water or coal-oil slurries, glues,
inks, foods, polymer solutions, paints and many others. The fluid considered here is
the Bingham model, which is of the ‘time-independent yield stress’ fluid category.

The problem of entrance region flow of non-Newtonian fluids in an annular cylin-
ders has been studied by various authors. Mishra et al. [I] studied the flow of the
Bingham plastic fluids in the concentric annulus and obtained results for boundary
layer thickness, centre core velocity, pressure distribution. Batra and Bigyani Das
[2] developed the stress-strain relation for the Casson fluid in the annular space be-
tween two coaxial rotating cylinders where the inner cylinder is at rest and outer
cylinder is rotating. Maia and Gasparetto [3] applied a finite difference method for
the Power-law fluid in the annuli and found differences in the entrance geometries.
Sayed-Ahmed and Hazem [4] applied a finite difference method to study the laminar
flow of a Power-Law fluid in the concentric annuli with rotating inner wall. Recently,
Kandasamy and Srinivasa Rao [§] investigated entrance region flow in concentric an-
nuli with a rotating inner wall for Herschel-Bulkley Fluids. The constitutive equation
for Bingham fluid is given by Bird et al. [6]

(1.1)

-
Tij = (M+ f) €ij (T = 70)



Entrance region flow of Bingham fluid 139

where

1 1
T = iTijTij and g = §5ij5ij
where 7 is the yield stress, 7;; and €;; are the stress tensor and the rate-of-strain

tensor, respectively. and p is the viscosity of the fluid.

Moreover, Kandasamy [7] investigated the entrance region flow heat transfer in
concentric annuli for a Bingham fluid and presents the velocity distributions, temper-
ature and pressure in the entrance region. Round and Yu [§] analyzed the developing
flows of Herschel-Bulkley fluids through concentric annuli. Flow of Casson fluid in a
narrow tube with a side branch was investigated by Misra and Ghosh [9]. Flow of
Casson fluid in a pipe filled with a homogeneous porous medium has been considered
by Dash et al. [I0]. Ahmed and Attia [11] investigated Magneto hydrodynamic flow
and heat transfer of a non-Newtonian fluid in an eccentric annulus. An analytical
solution for the entrance region blood flow in a concentric annuli was obtained by
Batra and Jena [12] assuming blood to obey Casson model.

Further, Manglik and Fang [I3] numerically investigated the flow of non-Newtonian
fluids through annuli. Nouar et al. [14] reported the results of numerical analysis of
the thermal convection for Herschel-Bulkley fluids. Poole and Chhabra [I5] reported
the results of a systematic numerical investigation of developing laminar pipe flow of
yield stress fluids. Entropy generation in Non-Newtonian fluids due to heat and mass
transfer in the entrance region of ducts was investigated by Galanis and Rashidi [16].
Rhashidi et al. [I7] studied the investigation of heat transfer in a porous annulus with
pulsating pressure gradient by the homotopy analysis method. Recently, Rekha and
Kandasamy [18] investigated the entrance region flow of Bingham fluid in an annular
cylinder.

In the present work, the problem of entrance region flow of Bingham fluid in con-
centric annuli has been investigated. The analysis has been carried out under the
assumption that the inner cylinder is rotating and the outer cylinder is at rest. With
Prandtl’s boundary layer assumptions, the equation of conservation of mass and mo-
mentum are discretized and solved using linearized implicit finite difference technique.
The system of linear algebraic equations thus obtained has been solved by the Gauss-
Jordan method. The development of axial velocity profile, radial velocity profile,
tangential velocity profile and pressure distribution in the entrance region have been
determined for different values of non-Newtonian flow characteristics and geometrical
parameters. The effects of these on the velocity profiles and pressure distribution are
discussed.

2. FORMULATION OF THE PROBLEM

The geometry of the problem is shown in Figure The Bingham fluid enters the
horizontal concentric annuli with inner and outer radii Ry and Rs, respectively, from
a large chamber with a uniform flat velocity profile ug along the axial direction z and
with an initial pressure pg. The inner cylinder rotates with an angular velocity w and
the outer cylinder is at rest. The flow is steady, laminar, incompressible, axisymmetric
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Flow region

Rotating cylinder

Fixed cylinder

Figure 1. Geometry of the Problem

and of constant physical properties. We consider a cylindrical polar coordinate system
with the origin at the inlet section on the central axis of the annulus, the z-axis along
the axial direction and the radial direction r perpendicular to the z-axis. Under the
above assumptions with the usual Prandtl’s boundary layer assumptions [19], the
governing equations in a polar coordinate system (r, 0, z) for a Bingham fluid in the
entrance region are:

Continuit, tion : =0 2.1
ontinuity equation : — + Ep (2.1)
2 10
7 — momentum equation : Tt (2.2)
r p Or
f — momentum equation : va—w + ua—w + - Lo r? |0 + krﬁ(g)
d " or 0z r pr2or 70 or'r
(2.3)
1 1
z — momentum equation : v% + u% = 7;% + E% (’I‘ |:T0 + kgﬂ) (2.4)

where u, v, w are the velocity components in the directions z, r, 6, respectively, p is
the density of the fluid, k is the consistency index and p is the pressure.

The boundary conditions of the problem are given by

forz > Oandr=R;, v=u=0and w=wRy,

forz = Oand Ry <r < Rs, u=ug, (2.5)

forz > Oandr=Rs, v=u=w=0,

atz = 0, p=po.
Using the boundary conditions (2.5)), the continuity equation (2.1)) can be expressed

in the following integral form:

R2
2/ rudr = (R3 — R})ug (2.6)
Ry
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It is worth introducing the following dimensionless variables and parameters:

A Ty
Ry Uo fir
w Ry P — Po 2z(1—=N)
wRy’ Ry’ pud ' RoRe '’

(wR1) T — 2w2p2R%(R2 — R1)3
P pr (R + Re)

Here B is the Bingham number, Re is the Reynolds number, Ty, is the Taylor number,
1 is known as reference viscosity and N is the aspect ratio of the annulus.

Equations (2.1)) to (2.4) and (2.6 in the dimensionless form are given by

ov. V. oU
—+—=4+—=0 2.7
oR "R oz 2.7)
KQ - ReQ(l—N)aj (2.8)
R 2(14+N)T,0R '
ow ow VW oW 10w W 2B
Vet lU—+—=——+ =7 — =+ — 2.9
orR "9z "R ~orE "Ror R R (2.9)
oUu oUu OP 10U 0*°U B
V4 Ut = -2 = =+ = 2.10
or "9z "9z "ROR or "R (2.10)
and )
2/ RUdR = (1 - N?) (2.11)
N
The boundary conditions (2.5) in the dimensionless form are:
forZ > O0Oand R=N, V=U=0and W =1,
for Z > 0Oand R=1, V=U=W=0,
forZ = 0Oand N<R<1l, U=1, (2.12)
at Z = 0, P=0.

3. NUMERICAL SOLUTION

The numerical analysis and the method of solution adopted here can be considered
as an indirect extension of the work of Coney and El-Shaarawi [20]. Considering the
mesh network of Figure |2 the following difference representations are made. Here
AR and AZ represent the grid size along the radial and axial directions, respectively.

N +iAR
Viti1j+1 = Vi j+1 (]\H—(H—l)AR) -
AR (2N +(2i+ AR
1AZ \ N+ (i+1)AR
Wi _ (1=N)RE Pyjir — Py jin
N+iAR  2T,(1+ N) AR

> Uit1,j41 + Ui j41 —Uit1,;, — Ui ;) (3.1)

(3.2)
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Figure 2. Grid formation for finite difference representations

A Wit g1+ Wi ;= Wisa i —Wiog Wi =W ViiWij;
VirJ [ IAR eI = Az | TN viaR
Wi A Wi = 2Wij = 2Wi i + Wioa i + Wi n
2(AR)?
Witjor A Winj = Wicaj = Wicrjn - Wi L 2B (3.3)
(N + iARJAAR (N +iAR)? ' N1iAR
Uit1,j41 = Uiz, o | Uij+1 — Ui
Vi, j [ TN 1”“} +Ui,j {’jiz ’j] =
_ PP +Ui+1,j+1 —Uic111 +Ui+1,j+1 —2Uijr1+Uic1jn L B
AZ (N +iAR)2AR (AR)? N +iAR
(3.4)

where i =0at R=N andi=m at R =1.
The application of the trapezoidal rule to equation (2.11)) yields

AR i _ 1— N2
T(NUOJ +Unj)+ AR Z; Ui j(N +iAR) = ( 5 )

The boundary condition (2.12)) gives Uy ; = Up, ; = 0 and then the above equation

reduces to
m—1

AR ; Ui j(N +iAR) = <1 2N2) (3.5)

The set of difference equations (3.1)) to (3.5)) have been solved by the iterative proce-
dure. Starting at the column j = 0 (annulus entrance) and applying equation (3.3




Entrance region flow of Bingham fluid 143

for 1 <i < m —1, we get a system of linear algebraic equations. This system has
been solved by using the Gauss-Jordan method to obtain the values of the velocity
component W in the second column j = 1. Then applying equations and
for 1 <7 < m —1 and equation , we get a system of linear equations. Again
solving this system by Gauss-Jordan method, we obtain the values of the velocity
component U and the pressure P in the second column j = 1. Finally, the values of
the velocity component V in the second column j = 1 are obtained from equation
by Gauss-Jordan method using the known values of U. Repeating this proce-
dure, we can advance, column by column, along the axial direction of the annulus
until the flow becomes axially and tangentially fully developed.

4. RESULTS AND DISCUSSION

Numerical calculations have been performed for all admissible values of Bingham
number B, aspect ratio N and various parameters as shown in Table|[l| Here, the ve-
locity profiles and pressure distribution along the radial direction during the rotation
of the inner wall of the annuli are shown in Figures [3}26]

Table 1. List of various parameters used

Various values of parameters
Aspect Radial Axial Rt Bingham
Ratio N | position R | position Z number B
0.3 0.1 0.02, 0.03 | 0,20 |0, 10, 20, 30
0.5 0.1 0.02, 0.03 | 0,20 | 0, 10, 20, 30
0.8 0.05 0.02, 0.03 | 0,20 | 0, 10, 20, 30

Figures |3| to [§] show the development of the tangential velocity profile component
W for N = 0.3, 0.5, 0.8 at axial positions of Z = 0.02, 0.03 and for different values of
Bingham numbers B. Here, the parameter Rt, which is the ratio of Reynolds number
to Taylor number, is fixed as 20. The values of tangential velocity decrease from
the inner wall to outer wall of the annulus. Also, it is found that with the increase
of aspect ratio N, the tangential velocity profile increases. That is, the tangential
velocity is higher when the gap of the annuli is small. Further, it is found that
with the increase of Bingham number, the tangential velocity profile increases. This
means the tangential velocity tends to increase for thick viscous fluids when the inner
cylinder is rotating. From the computed results corresponding to various values of
Rt, it is observes that the effect of the parameter Rt is negligible for the tangential
velocity.

Figures 0] to [I4] show the development of the axial velocity profile component U for
N = 0.3, 0.5, 0.8 at axial positions of Z = 0.02, 0.03 and for different values of the
Bingham numbers B. The computation was done for various values of the parameter
Rt to study the effect of rotation of inner cylinder. The values corresponding to
Rt = 0 and 20 are depicted in these figures. It is found that the velocity component
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Figure 4. Tangential velocity profile for NV = 0.5 at Z = 0.02

U increases with the increase of Bingham number B as well as aspect ratio N. For
both stationary (Rt = 0) as well as the rotating inner cylinder (Rt = 20), it is
observed that the velocity profile takes the parabolic form when Bingham number B
reaches zero (Newtonian fluid). However, the rotational effect on the axial velocity
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Figure 5. Tangential velocity profile for NV = 0.8 at Z = 0.02

Figure 6. Tangential velocity profile for N = 0.3 at Z = 0.03

component is very small as per the observed results. Here, our results corresponding
to B = 0 match with the results of Coney and El-Shaarawi [20] and Rt = 0 with
various Bingham numbers match with the results of Kandasamy [7].
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Figure 8. Tangential velocity profile for N = 0.8 at Z = 0.03

The radial velocity profile component V for N = 0.3, 0.5 and 0.8, for different values
of Bingham number B at axial positions of Z = 0.02, 0.03 are shown in Figures[T5] to
Again, the values of the parameter Rt are taken as 0 and 20 for computational
purposes. The values of radial velocity are negative in the region near the outer wall,
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Figure 10. Axial velocity profile for N = 0.5 at Z = 0.02

since it is in the opposite direction to the radial coordinate R, and it has positive
values near the inner wall because it has the same direction of the radial coordinate.
The values of the radial velocity decreases with increase of Rt and Bingham number
B at any cross section of the axis. The results of particular cases like Rt = 0 (without
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Figure 12. Axial velocity profile for N = 0.3 at Z = 0.03

rotation) and B = 0 (Newtonian fluid) match fully with earlier research work [7, [20],
respectively.

Figures [21] to[26] show the distribution of the pressure P along the radial coordinate
R for the same chosen values of parameters. It is found that the value of P increases
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Figure 14. Axial velocity profile for N = 0.8 at Z = 0.03

from a minimum at the inner wall to a maximum at the outer wall. Further, it is
found that with increase of Bingham numbers the pressure values P increase. This
is because the pressure will tend to be higher for thick viscous fluids. Moreover, it is
observed that the pressure slowly becomes independent of the radial coordinate in the
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Figure 16. Radial velocity profile for N = 0.5 at Z = 0.02

region close to the outer wall. The effect of inner wall rotation on the fluid pressure
seems to be very low at any cross section. Here also, the results corresponding to
B =0 and Rt =0 are in agreement with the earlier results [7, 20], respectively.
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Figure 23. Pressure distribution for N = 0.8 at Z = 0.02
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5. CONCLUSION

Numerical results for the entrance region flow in concentric annuli with rotating
inner wall for Bingham fluid were presented. The effects of the parameters N, B
and Rt on the pressure distribution, the velocity profiles are studied. Numerical
calculations were performed for all admissible values of Bingham number B, aspect
ratio N and the parameter Rt. The velocity distributions and pressure distribution
along radial direction R were presented geometrically. The present results are found
to be in agreement with the results corresponding to various particular cases available
in literature.

From this study, the following can be concluded.

1. Tangential velocity decreases from the inner wall to the outer wall of the an-
nulus.

2. Increasing the aspect ratio IV, the axial velocity component U increases at all

values of Bingham numbers B.

Radial velocity is found to be dependent only on the axial coordinate.

4. Pressure increases from a minimum at the inner wall to a maximum at the
outer wall of the annulus and pressure does not vary much with respect to the
radial coordinate in the region near the outer wall.

5. The effect of the inner wall rotation on all these flow characteristics seems to
have little significance.

@«
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Abstract. This article is on a study of the behavior of MHD flow and heat transfer in the
presence of heat source and chemical reaction over a flat plate. The steady two dimensional
partial differential governing equations are transformed using standard dimensionless vari-
ables resulting in a coupled nonlinear ordinary differential equation with some embedded
parameters. The Homotopy Perturbation Method (HPM) is employed to solve the system of
dimensionless equations and the approximate analytical solutions obtained are further ana-
lyzed using MAPLE 17 symbolic platform. It is observed that the flow velocity within the
boundary layer decreases with increasing magnetic field. Further parametric analysis shows
that the temperature increases with increasing Hartmann number while it decreases with
increasing Prandtl number. Further observation reveals that temperature profile increases
rapidly with increasing heat source and chemical reaction parameters while the concentration
profile decreases with increasing heat source and chemical reaction parameters. Graphical
demonstrations of these solutions shed more lights on the behavior of the system.
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1. NOMENCLATURE

a [1/s] stretching rate,
B, [-] applied uniform transverse magnetic field strength,
(magnetic induction)
C  [mol/ m?’] dimensional species concentration of the fluid,
C, [J/(kgK)] specific heat capacity at constant pressure,
Cyp [mol/m”]  species concentration of the fluid along the sheet wall,
Cs [mol/m®]  species concentration of the fluid far away from the sheet wall,
D [m?/s effective diffusive coeflicient or mass diffusion coefficient,

(©2016 MiSkOLC UNIVERSITY PRESS
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F o [-] fuel,

M -] Hartmann number,

P [N/m? pressure,

Pr [-] Prandt]l number,

Q 7 internal heat generation term,

Qo [J dimensional heat absorption or generation coefficient,

Re [-] Reynolds number,

Sc [-] Schmidt number,

T [°Cor K] dimensional temperature of the fluid,

Ty [°C or K] temperature of the sheet wall,

T [°C or K] dimensional or free stream temperature of the fluid far away from
the sheet wall,

U [m/s] velocity distribution in the boundary layer for external stream,

u,v  [m/s] velocity components in the directions x and y,

a,0 [-] dimensionless velocity components in the directions x and y,

x [m] axial or vertical coordinate also used as characteristic length,

Y [m transverse/horizontal coordinate or non- dimensional distance to

the surface.
Greek Symbols

a  [m?/s] thermal diffusivity,

0 [-] dimensionless temperature,

k  [kgm/°Cs®] constant thermal conductivity,

A [-] heat source/sink parameter,

1 [kg/ms] dynamic viscosity,

v [m?/§ kinematic fluid viscosity,

p  [kg/m?3] fluid density,

o [ohm~'m™1] electrical conductivity of fluid,

T [-] chemical reaction parameter,

@ [-] dimensionless concentration.
Subscripts and Superscripts

j [-] streamwise pressure gradient parameter,

n [-] order of reaction,

w [-] condition at the wall.

2. INTRODUCTION

The study of heat and mass transfer between a moving surface and a fluid dates back
to the 1960s when Sakiadis [I} [2] published his first article and pioneering work on
boundary layer flow on a continuous moving surface. This area of fluid dynamics
has continued to receive attention of many researchers due to its wide applications in
many engineering and geophysical applications such as geothermal reservoirs, drying
of porous solids, thermal insulation, enhanced oil recovery, packed-bed catalytic reac-
tors, cooling of nuclear reactors and underground energy transport [3} 4, [5]. Raviku-
mar [6] investigated the heat and mass transfer effect on MHD flow of viscous fluid
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through non-homogeneous porous medium in the presence of temperature dependent
heat source. The equations governing the flow are solved by a simple perturbation
technique and numerical evaluation of the analytical result is reported. As expected,
increasing the magnetic parameter reduces the primary profiles and the secondary
velocity profiles.

Kandasamy et al. [7] studied the effects of chemical reaction, heat and mass transfer
on boundary layer flow over a wedge with heat radiation in the presence of suction or
injection using the Runge-Kutta Gill method. The result shows that in the presence of
heat radiation the velocity and temperature of the fluid decreases and concentration
of the fluid increases with increase in chemical reaction parameter. Furthermore, the
velocity profiles show that the velocity increases near the plate and thereafter remains
uniform. In both cases of suction and injection, it was seen that skin friction increases
as chemical reaction increases. Devi and Kandasamy [8] studied the effects of heat
and mass transfer on nonlinear boundary layer flow over a wedge with suction or
injection. An approximate numerical solution is obtained using the Gill method. The
result obtained shows that the flow field is influenced appreciably by the magnetic
field and suction or injection at the wall of the wedge.

Muthucumaraswamy [9] investigated the effects of heat and mass transfer on a
continuously moving isothermal vertical surface with uniform suction taking into ac-
count the homogeneous chemical reaction of first order. A theoretical solution of the
problem is obtained in terms of exponential functions. It is observed that the veloc-
ity increases during the generative reaction and decreases in the destructive reaction
while the concentration increase in the presence of the generative reaction. Sharma
[10] discussed in detail the effect of variable thermal conductivity and heat source
and sink on MHD flow near a stagnation point on a linearly stretching sheet. The
numerical solution shows that the rate of heat transfer at the sheet increases due to
the increase in the thermal conductivity parameter, while it decreases due to increase
in stretching parameter in the absence of magnetic field and volumetric rate of heat
source/sink parameter.

Devi et al. [I1] analyzed a steady MHD boundary layer flow due to an exponentially
stretching sheet with radiation taking into account heat source/sink. By using a fourth
order Runge-Kutta method along with shooting technique, they obtained a numerical
solution which shows that the momentum boundary layer thickness decreases while
both thermal and concentration boundary layer thicknesses increase with an increase
in the magnetic field intensity and the radiation reduces the temperature. Gangadhar
and Bhaskar [I2] analyzed the problem of chemically reacting MHD boundary layer
flow of heat and mass transfer over a moving vertical plate in a porous medium with
suction. The heat source/sink effects in thermal convection are significant where high
temperature differences exist between the surface (e.g. space craft body) and the
ambient fluid.

Yih [I3] presented an analysis of the forced convection boundary layer flow over a
wedge with uniform suction/blowing. The non-similar equations are solved using an
implicit finite difference method. It was found that both suction and blowing lead to
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a decrease in the values of the local skin friction coefficient and the Nusselt number.
Watanabe [14] investigated the behavior of the boundary layer over a wedge with
suction or injection in forced flow. The boundary layer equations along a wedge are
transformed from partial differential equations into the ordinary differential equations
and the non-similar solution are obtained by means of the difference method. The
solutions of the resulting equations are expressed in the form of integral equations
which are in turn solved by iterative numerical quadratures. Watanabe [I4] also
reported that “increasing the suction/injection parameter results in wider velocity
distribution and narrower temperature distribution, while decreasing the pressure
gradient parameter broadens both distributions”.

Bhattacharyya [I5] analyzed the effect of heat source/sink on MHD flow and
heat transfer over a shrinking sheet with mass suction. Employing the finite dif-
ference method using quasilinearization technique, it was found that velocity inside
the boundary layer increases with increase of wall mass suction and magnetic field
and accordingly the thickness of the momentum boundary layer decreases. The tem-
perature decreases with Hartmann number, Prandtl number and heat sink parameter
and the temperature increases with heat source parameter. Furthermore, for a strong
heat source, heat absorption at the sheet occurs.

Ajadi [I6] studied the isothermal flow of a dusty viscous incompressible conducting
fluid between two types of motion in the boundary — oscillatory and non-oscillatory,
under the influence of gravitational force. Within the framework of some physically
realistic approximations and suitable boundary conditions, closed form solutions were
obtained. It was observed that the velocity profile of the fluid decreases with increas-
ing time and the particles respond faster to changes in the magnetic field and gravity
than in the fluid. Also the skin friction decreases with increasing magnetic field. Du-
lal et al. [I7] analyzed the influence of temperature-dependent viscosity and thermal
radiation on MHD forced convection over a non-isothermal wedge. A transformed
set of non-similar equations was obtained and solved by the Runge-Kutta-Fehlberg
Scheme with shooting technique. The velocity and local skin friction coefficient in-
crease with pressure gradient and magnetic field. The temperature profile increases
with increasing time-dependent viscosity parameter for liquids while the temperature
is higher in the case of gas viscosity parameter is positive, than for liquid viscosity
parameter is negative for all values of thermal radiation parameter.

Baoheng [18] presented approximate analytical solution to Falkner-Skan wedge flow
with a permeable wall of uniform suction. Comparisons of results from the Homo-
topy Analysis Method are made with the numerical method by 4th-order Runge-Kutta
method combined with Newton-Raphson technique which established validity of the
results. It is observed that the velocity profile increases with increasing suction pa-
rameter and decreases with increasing pressure gradient parameter.

This present work is undertaken to study the behavior of velocity, temperature and
concentration profiles in the presence of a heat source and chemical reaction using
the Homotopy Perturbation Method (HPM). The approximate analytical solutions
obtained are further analyzed using MAPLE 17 symbolic package. Analysis involving
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other important parameters such as Schmidt number, Prandtl number and Hartmann
is carried out.

3. FORMULATION OF THE PROBLEM

Let us consider a steady, the non-isothermal, unsteady, two-dimensional flow of an
electrically conducting fluid with a reaction source based on the one-step exothermic
reaction mechanism of the form:

F 4+ O — Product + Energy,

where F' is the fuel and O is the oxidizer. The boundary layer is assumed flat, while
the reaction source is placed in the viscous region as shown in Figure ]
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Figure 1. Schematic diagram of the flow

The governing equations of the MHD boundary layer flow in the presence of uniform
transverse magnetic field in the viscous region are

ou  Ov
—+—=0 3.1
oz " oy (3-1)
ou ou O*u 0B} 10P
A P A DYl 3.2
u&’c—H}@y yayQ p b p Ox’ (3:2)
or ~ oT  k 0*T . Q, Qo £
Ty B T —Ty) + 22 Cnewr, 3.3
“az+vay pCpay2+pCp( Hpc,, e T (3.3)
2
¢ 9C¢ _ D OC  som -5 (3.4)

U +v =
ox oy  pCy, 0y?
The boundary conditions for the velocity components, temperature and concentration
are given by:

u=0, v=-v, $6=C, T=T, at y =0, (3.5)
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u=U, =ax™, C—Csx, T— T as Yy — 0o. (3.6)
where, u, v, Ue, v, > 0 are the z-component of velocity, y-component of velocity, free
stream velocity and prescribed distribution of wall mass suction through the porous
plate, respectively.

Introducing the stream function v, the velocity components v and v can be written
as:

0 0
u= 8—15 and v= (';i' (3.7)
We now introduce the following dimensionless variables:
v = Vvaz " f(n), = LV Re = [ 2ya,
T v
m T-Tx C—-Cx
The transformed momentum equatlon becomes
f/// Jr ff// +m [ (f/)Z] o M2f/ — 0, (3.9)
f():S,f():O,f’(oo):l. (3.10)
The energy equation (3.3 reduces to
0" + Pr ( f0’+)\0+7¢>e > =0, (3.11)
0(0) = 1,0(c0) =0, (3.12)
and the specie equation (3.4)) gives
¢" + Sc (f¢ TR6¢69) =0, (3.13)
¢(0) = 1,¢(c0) =0, (3.14)
where prlmes denote the differentiation with respect to 1 and
M:(UPBO) Re——: a™ ! P :MC - )\_pCa’T:%

and S = 5 > 0 is the mass suctlon parameter

av)l/
4. MATHEMATICAL PROCEDURE AND SOLUTION

The Homotopy Perturbation Method (HPM) is based on the concept of topology,
which has been discovered to be an effective and efficient tool for solving non-linear
equations [19-21]. To illustrate Homotopy Perturbation Method, we consider the
nonlinear equation:

A(u) — f(r)=0, r e, (4.1)

with the boundary conditions:

B (u, f;:) =0, rel, (4.2)
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where A is a general differential operator, B is a boundary operator, f(r) is a known
analytic function, and I' is the boundary of domain Q2. The operator A are generally
divided into two parts; L and N, where, L and N are linear and nonlinear parts of A
respectively. Therefore, equation may be written as

L(u) + N(u) — f(r) =0. (4.3)

We construct a Homotopy v(r,p) : Q x [0,1] = R
H(v,p) = [L(v) = L(uo)] + pL(uo) + p[N(u) — f(r)] = 0, (4.4)
H(v,p) = [L(v) = L(uo)] + p[A(u) — f(r)] = 0. (4.5)

Where, p € [0,1] is called the homotopy parameter and ug is an initial approximation
of equation (4.3]). At the two extremes p =0 and p = 1, we have
H(v,0) = [L(v) — L(up)] =0 and H(v,1) = [A(u) — f(r)]. (4.6)

In the interval 0 < p < 1, the homotopy H(v,p) deforms from L(v) — L(ug) to
A(u) — f(r). Thus, the solution of equtions (3.9, (3.11)) and (3.13)may be expressed

as

v = Vg 4+ 1P + vap? + v3p® + vap® + ... (4.7)
Eventually, at p = 1, the system takes the original form of the equation and the final
stage of deformation gives the desired solution. Thus taking limits

u:lirrllv:vo+v1+v2+v3+v4+... (4.8)

g

We start by applying the Homotopy Perturbation Method to equations (3.9) to (3.14))
and we define the homotopy as

P S (A A L= ()] - M) =0, (49)
0" — 00 + pby + p|Pr (m +1 0"+ X0 + Toe )] =0, (4.10)
¢" — ¢o + oy + plSc (m+1f¢ 7R6¢69>} =0. (4.11)
Suppose that the solutions of f, 8 and ¢ take the form
Fm) = fo) + Lmp + fa(mp? + f3(n)p® + fa(m)p* + ..., (4.12)
0(n) = 0o(n) + 1 (n)p + 02(n)p” + s(n)p” + 0a(n)p* + .., (4.13)
o(n) = do(n) + o1 ()p + G2(m)p® + ¢3()p* + pa(m)p* + .., (4.14)

substituting equation (4.12)) into equation (4.9) and picking terms in order of p, we
have

P’ fon) — fo(n) =0, (4.15)
P R T oy mll — () - M) =0, (416)
7o (fof FASY) - m@f) — MAF) =0, (417)

fo( ) =0, f5(0) =0, fo(o0) = 0.
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From the momentum equation and the boundary conditions, we take our initial guess
to be

fo(n) =n—(1—e€"). (4.18)
Solving equation (4.16) we get

fr = et =T (1 em)en il — (1 €] 4 M2 (g — (1 — ") =0, (4.19)

1 1 1 1
fi= —1—66_2"771 + ie_nm + 3me” + 1—66_2’7 + 56_7777 + M?2e™"

1 1
+ 6M2173 + §D1n2 + Dan+ D3. (4.20)

Using the boundary condition, we have

1 1 1 1 1
fi= —Ee_znm + §e_nm + 3me” + 1—66_27’ + 56_"77 + M2 + 6M2773

11 9 1 9 1 3
- *MQ —4_7M2_7 -8 e —4 — -8 et —4
+oGMe g 32¢ Mgt Mt ge  Tge
3 19 , 19 3 , 47 1
A M2+ 2= Sy M2 — 2 - = (421
t3p T (M em =) 6" 15 (42
From equation (4.17))
111 m+1 1! 1! ! p! 2 pl
2 :—T(f0f1 + fufy) +m2fo f1) + M= f)). (4.22)

The solutions of fo, f3 and f4 have been obtained by integration using MAPLE 17
symbolic package. Hence, the fourth order approximation is given by

f=lo+fitfatfs+fat. (4.23)
Similarly, substituting equations (4.12)) and (4.13) into equation (4.10|) and picking

terms in order of p, we have

P’ bg(n) —065(n) =0, (4.24)
1
pt: 0 +0)+Pr (m;foe{, + Ao + 7'(90690> =0, (4.25)
1
p2 : 9/2I + Pr <Tn;_(f00/1 + fl%) + )\91 —+ T¢1690> = 0, (426)

60(0) = 1,60(c0) = 0.
Similarly, from the boundary conditions we take our initial guess to be
Oo(n) = €. (4.27)
Solving equation

m+1
9;/—-9;;-1%(

2

fobh — Mo — 790690> . (4.28)
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Similarly, substituting (4.18) and (4.27)), then by integration, we obtain

1 1 1 1
0, = —§P7“77me_’7 — §Prme_" — §Prne_’7 — §Pre_77 — e
1 1 1
—Te " — §P7“77me_2’7 —e - gPrne_z’7 - 16_2777' + Ein+ Ey. (4.29)
Using the boundary conditions we have

1 1 1 1
0, = fiPrnme*” - §Prmef77 — §Prne*’7 — iPre*" —de T —Te"

1 1 1 5 1 5
— gPrnme*z’7 —e "= §P7“77€72” — 1672777' + (gPrme*4 + —me 8Pr+4+ —e *Pr

32 8
1 1 1 1 1 1 5 5 1 5
de g Sret b e Prd —re et -~ - —Prm— —Pr—-\— —
AT R v L v L L St AUt Ll A TARL
5 5 5
+-Prm+ -Pr+X+-7+1. (4.30)
8 8 4
From equation (|4.26))
1
0y = —Pr (m;(foeg + f100) + N0y +T¢1690) ) (4.31)

Similarly, the solutions of 65,03 and 6, are obtained but have not been written here
for space economy. The fourth order approximation is given by

0 =00+ 01+ 05+ 05+ 04 + ... (4.32)

Similarly, substituting (4.12)-(4.14]) in (4.11)) and picking terms in order of p, we have

P’ gg(n) —d5(n) =0, (4.33)
1
Pl ¢+ o+ (m;—Scfo(bf) - TSCR6¢069°) =0, (4.34)
1
prr Y+ <m;_Sc(f09/1 + f16p) — TScRe¢169°> =0, (4.35)

$(0) =1,¢(c0) = 0.
Similarly, from the boundary conditions we take our initial guess to be
$o(n) = €. (4.36)

Similarly, solutions of ¢1, ¢, ¢3 and ¢4 are obtained but have not been written here
for space economy. The fourth order approximation is given by

¢ =0+ 1+ P2+ P3+ Pa+ ... (4.37)
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5. RESULTS AND DISCUSSION.

In our computation, the following values have been selected, Prandtl number (Pr)
is taken to be 0.72 which corresponds to air and the values of Schmidt number (Sc)
is chosen as 0.62 and 0.78 representing diffusing chemical species of H,O and N H3,
respectively at 25°C and 1 atm, while m = 0.1,M = 0.2,A\ = 0.01, Re = 1 and
7 = 0.2, unless stated otherwise.

renes p=_002
m=-0.01
=== 0.00
=m= 0.0l
m= 002
m= 0.10
—_—m= 020

= m= 040

—m= 060

16
14
12

— M=0

1 —_— =01

. —_—M=02

fos — -M=03

—-M=04

0.8 - =05

— M=10.6

(1 N | ' 7T M=10.7

oz{§F

Figure 3. Graphs of f’ vs 5 for some M

Graphical results for the velocity profiles are displayed in Figures [2] and [3] for the
influence of m and M, respectively.
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Figure 4. Graphs of 6 vs n for some M

— = Pr=050
== Pp=1063
—— Pr=10.72
----- Pr=10.80
— Pr= 100

Figure 5. Graphs of € vs n for some Pr without chemical reaction

It is observed in Figure 2| that the velocity profiles for m > 0 is higher than m < 0,
noting that the velocity profiles is convex for m > 0. This is because for a positive

value of m, pressure gradient is negative and for a negative value of m, pressure

gradient is positive (—%%—5 =U, déf = m). A negative pressure gradient occurs as

a result of pressure decreases in the direction of fluid flow across the boundary layer.
Thus the fluid within the boundary layer has enough momentum to overcome the
resistance which is trying to push it backward and the flow accelerates. For a positive
pressure gradient the pressure increases in the direction of flow, the fluid within the
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Figure 6. Graphs of 6 vs n for some Pr with chemical reaction
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Figure 7. Graphs of ¢ vs n for some Sc at M = 0.5

boundary layer has little momentum to overcome this resistance which could make
the flow retarded and possibly lead to flow reversal.

The impacts of the Hartmann number M on the velocity and temperature profiles
are very significant from a practical point of view. In Figures[3|and[d] the variations in
velocity field and temperature distribution for several values of M are presented. The
dimensionless velocity f’'(n) decreases with increasing values of M. This is because the
application of transverse magnetic field will result in a resistive force (Lorentz force)
similar to drag force which tends to resist the fluid flow thus reducing its velocity, as
established by [6] and [8]. On the other hand, Figure {4 shows that the temperature



MHD flow and heat transfer over a flat plate 171

=200
=100
- 50
- 0.1

0.1
02

Figure 9. Graphs of 6 vs n for some 7

profiles 6(n) increases with increase in M due to the same reason. Similar behavior
is observed in Figure [10| for concentration profiles ¢(n).

The effect of Prandtl number on the temperature profile in the absence of chemical
reaction is shown in Figure |5l It is observed that an increase in the Prandtl number
(Pr) decreases the temperature profile. This is justified in that higher values of
Prandtl number are equivalent to decrease in the thermal conductivity of the fluid
and therefore heat flow is reduced. Hence, there is a reduction in temperature. Figure
[6] shows the similar temperature profile pattern with increasing Prandtl number as
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Figure 10. Graphs of ¢ vs 7 for some M

Pr=10.63
—=Pr=072
— — Pr=0.80
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Figure 11. Graphs of ¢ vs 7 for some Pr

seen in [6], except for the temperature peaks in the interval 0 < n < 1.5, which may
be regarded as the reaction zone — a point where the reactant is completely consumed.

Figure [7] shows the effect of Schmidt number on the concentration profile. It is
observed that higher Schmidt number reduces the concentration profile. Figure [§|
shows that an increase in pressure gradient (m) decreases the temperature profile,
which confirms that negative pressure gradient implies accelerated flow, leading to
easy convection of heat and hence decrease in temperature.
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Figure 13. Graphs of 8 vs n for some A

From Figures [0] and [I2] it is clear that increasing the chemical reaction term in-
creases the temperature profile while it decreases concentration profile, respectively
which is in agreement with the result of Kandasamy [7]. This is because an exother-
mic reaction involves the release of heat to the surroundings while depletion of the
reactant is in process. Figures [7] and show that concentration profile decreases
and increases with Schmidt number (S¢) and Prandtl number (Pr) respectively. This
is because a large Schmidt number occurs as a result of decrease in mass diffusiv-
ity, which reduces concentration across the boundary layer and in general reduces
concentration of reactant within the boundary layer.
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Figure 15. Suction effects on velocity profile

In Figure Prandt]l number (Pr) has a negligible effect on concentration ¢(n).
Figures and [I4) show the variation of heat source parameter on temperature and
concentration, respectively. It is quite interesting to note that a relatively high heat
source term results in a very high temperature at the reaction zone, while it decreases
the concentration profile. The velocity profiles for various values of suction parameter
S are depicted by Figure It is noted that the velocity profiles increase as applied
suction increases and this makes the momentum boundary layer thinner.

From Figure[16]it is seen that the wall suction affects the temperature distribution:
increase in suction decreases the temperature, meaning that the thermal boundary
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Figure 16. Suction effects on temperature profile
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Figure 17. Suction effects on concentration profile

layer thickness reduces. Also, Figure shows the suction effects on concentration
profile.

The behavior of the local skin friction coefficient(—f”(0)), Nusselt number(6’(0))
and Shearwood number(—¢'(0)) with respect to the embedded parameters in the
system were also carried out as shown in Table
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Table 1. Computation showing f”(0), ¢’(0) and ¢’(0)

m |M | Pr|Sc|t | X |-f7(0) 6'(0) -¢'(0)

0.2101]02(0.2]|0.1]0.1|0.638110901 | -0.025503349 | 0.2440132260
02101]02|0.2]|0.1]0.3|0.638110901 | 1.030907124 | 0.2440132260
0.2]0.1/0.2]0.2]0.2|0.1]|0.638110901 | 2.835536353 | 0.8162211665
0.2]0.1|0.2{0.2(0.3|0.1]|0.638110901 | 3.431586291 | 0.9354311542
0.2|01]02(0.3]|0.1]0.1|0.638110901 | -0.025503349 | 0.2916972210
0.2|01]02|04]|0.1]0.1|0.638110901 | 0.125412432 | 0.1254124320
0.2101]03(0.2]|0.1]0.1|0.638110901 | 0.125412432 | 0.1254124320
0.2]0.1]|04]02]0.1/|0.1]|0.638110901 | 0.188537086 | 0.1885370865
02]102]02|0.2]|0.1]0.1|0.644682861 | 0.125412432 | 0.1254124320
021]03]0.2]0.2]0.1|0.1/|2.206428834 | 0.125412432 | 0.1254124320
0.3103]0.2(0.2]0.1]0.1|0.735052197 | 0.127516587 | 0.1275165872

From the table it can be seen that the skin friction and the Nusselt number in-
crease with increasing pressure gradient m while the Shearwood number decreases.
The heat source parameter has no significant effect on local skin friction coefficient
and Shearwood number but increases Nusselt number. Also the local skin friction
coefficient is not affected or influenced by the chemical reaction parameter, Prandtl
number or Schmidt number; Nusselt number increases with increasing chemical re-
action parameter, Prandtl number and Schmidt number; Sherwood number increases
with increasing chemical reaction parameter and Prandtl number but decreases with
increasing Schmidt number. Furthermore the Nusselt and Sherwood numbers are
not influenced in any way by Hartmann number M but the skin friction coefficient
increases with increasing M. This is because Hartmann number M represents the
relative influence of the magnetohydrodynamic drag force (Lorentz body force) and
the momentum force on the flow.

6. CONCLUSION

This present study investigated the behavior of MHD flow and heat transfer in
the presence of heat source and chemical reaction over a stretching sheet. The gov-
erning continuity, momentum, energy and concentration equations of the flow are
non-dimensionalized by introducing some standard dimensionless variables. The re-
sulting equations were solved by employing Homotopy Perturbation Method (HPM).
The approximate analytical solutions obtained are further analyzed using MAPLE 17
symbolic package. Analyses involving some important parameters such as Schmidt
number, Prandtl number, Hartmann number, pressure gradient, chemical reaction
and heat source parameters were carried out. The results are summarized as follows

e The temperature increases while concentration decreases with increasing heat
source parameter.

e The concentration profile reduces with increasing Schmidt number .

e The magnetic field and Prandtl number enhance the temperature profile.

e Increasing suction parameter increases velocity but decreases temperature.
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e The skin friction coefficient is not affected or influenced by chemical reaction
parameter, Prandtl number or Schmidt number; the Nusselt number increases
with increasing chemical reaction parameter, Prandtl number, Schmidt num-
ber; the Sherwood number increases with increasing chemical reaction param-
eter and Prandtl number but decreases with increasing Schmidt number.
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Abstract. The cavity tone at low speed is simulated by a hybrid aeroacoustic approach.
Thereby, a rectangular, open cavity with a length-to-depth ratio 2 is investigated at a Mach
number of about 0.05. We compared various source formulations (velocity, pressure, diver-
gence of Lighthill tensor, Lamb vector) to each other. The simulations were carried out
by ANSYS CFX and the in-house code CFS++. The results indicate that velocity based
formulations provide better results.
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1. INTRODUCTION

In this paper cavity tone is investigated, which is one of the fundamental aeroacous-
tic flow configurations (Figure . The “cavity” is a rectangular cutout in a surface,
typically a plane. If there is flow over the cavity, a shear layer is formed, which can
lose its stability. The instability wave propagates from the leading edge to the down-
stream (trailing) edge, while the amplitude of the wave continuously increases; thus,

(©2016 MiSkOLC UNIVERSITY PRESS
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a feedback mechanism develops between the leading and trailing edge. The pressure
fluctuation at the trailing edge perturbs the shear layer at the leading edge, where the
previously mentioned instability waves are generated. This feedback mechanism leads
to oscillations that are sometimes even audible. Apart from the generated sound, this
phenomenon usually leads to unwanted mechanical vibrations and also to increased
drag force.

G Unstable
flow ¢ shear layer Trailing
/ edge
———— OITIIIIIIIIIT?
Leading D=5mm
edge
L= 10 mm

Figure 1. The investigated configuration of cavity-tone

The first studies on cavity noise concerned aeronautic applications in the 1950-1960s
[I]. The motivation of research was that the oscillations appeared in the weapon bays
of military aircraft. This oscillation can excite the vibrational modes of the aircraft
structure, which can quickly lead to structural fatigue issues inside the aircraft [2]
and can significantly increase the drag force, too. The speed of the flow was high
subsonic to supersonic in these cases. The need to investigate configurations at lower
velocities appeared in the 1970s mainly because aircraft wheel wells were seen to be an
important source of aerodynamic noise during the landing and take-off of airplanes
[3, 4]. In the meantime many other technical applications have been discovered:
door gaps and sunroofs in automobiles, closed side branches in gas pipelines, slotted
flumes, slotted wall wind and water tunnels, bellows-type pipe geometries [5], canal
locks, harbor entries and gaps between wagons or the pantograph of trains [6].

In this paper a fundamental open cavity with length-to-depth ratio of 2 is inves-
tigated at a flow speed of about 0.05 Ma (Mach-number, defined as the ratio of far
field velocity of the flow and the speed of sound). At such a low Mach number the
disparity of scales of the acoustic and the flow field is significant. The grid of the
flow simulation must be fine enough to resolve the boundary layer and small vor-
tices to provide sufficiently accurate results. Usually the desired grid resolution for
acoustic computation can be much coarser because the acoustic wavelength is much
larger than the vortices or even the cavity. In addition, there are several orders of
magnitude differences in the aerodynamic and acoustic variables. E.g. a 1 m/s ve-
locity fluctuation is not extreme in flows, while the amplitude of the acoustic velocity
fluctuation at a particle velocity level of 80 dB is only 0.5 mm/s. The human hearing
threshold at 1 kHz is around 0 dB sound pressure level, corresponding to 20 pPa
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in air, which is again several orders of magnitude smaller than an average pressure
fluctuation in aerodynamics (10-100 Pa). These orders of magnitude differences be-
tween the variables increase the numerical noise, which can spoil the whole acoustic
simulation [7]. To reduce these errors it is typical to separate the acoustic and the
aerodynamic flow fields. The common name for these approaches is hybrid Computa-
tional AeroAcoustics (CAA). If the two fields are separated, the crucial point of the
computation is to determine the coupling between them. The idea is to derive equa-
tions for the acoustic field (model the acoustic field) and then to define source terms,
which are based on the independently solved flow field. The optimal formulation of
these equations and source terms is still under research. In this paper various source
terms are investigated for the acoustic wave equation. Some of them are valid only for
incompressible fluid. The compressibility in our cavity configuration does not play an
important role, allowing us to carry out incompressible flow simulations and to use
coupling formulations that are valid only for incompressible flow. At the same time
a compressible flow simulation was also carried out to verify the previous statement
and to investigate the effect of compressibility to the sources.

In Section [2] the governing equations of fluid dynamics are presented briefly and
based on them the various formulations of the source terms are introduced. In Section
the CFD simulations are described and their acoustic source fields are compared to
each other. In Section [4] the acoustic simulations are presented. Finally, in Section
we make some concluding remarks.

2. SOURCE TERM FORMULATION

2.1. The acoustic wave equation with general sources. The basic equations,
which describe both the flow and acoustic field, are the conservation equations of
mass, momentum and energy

dp 7
3¢ TV (n) =0, (2.1)
8§E)+V-(pu®g)=vg, (2.2)
%Jrv-(peg) =V (—pu+71u)+ V- (AVT), (2.3)

where p is the density, ¢ is the time, V is the "nabla” operator, u is the velocity vector,
T is the stress tensor, e is the total energy, p is the pressure, 7 is the viscous stress
tensor, T is the temperature. The following expressions hold if the fluid is Newtonian

(equation ([2.4))) and an ideal gas is assumed (equation (2.5)))

T_—(P+§MV‘U>I+H(V®U+(V®U)T>a (2.4)
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p u?

74_7,
ply=1) 2

e =

(2.5)

where y is the dynamic viscosity, [ is the identity tensor. Now let us split the variables
into mean (time averaged) and fluctuating components as

f(t,2) = f(z) + f(t,2) (2.6)

and neglect the viscous and non-linear terms. Then the following expression can be
obtained

10p
*E +V- u = Deont, (27)

8pu
o0 +Vp =D om- (2.8)
where ®.ont and ®,,,,, are general sources for the equations and ¢y is the speed of

sound.

Let us take the time derivative of (2.7) and the divergence of (| .7 and assume
the fluctuating variables to be purely acoustlc denoted by superscript “a” (see [§]

for details). Then the velocity can be eliminated and we get the well-known wave
equation for the acoustic pressure with the sources (S) on the right-hand side

—A ‘=0 — V-2, (2.9)

1
3:5 T ot

S

2.2. The Lighthill analogy. The first, most famous and still widely used analogy
is the one proposed by Lighthill in 1951 [9]. The basic idea of Lighthill was that the
terms, neglected during the derivation (linearization) of the wave equation, act as
sources for the acoustic equation, i. e.

S=V P =V-V-T, . (2.10)

The original form of the Lighthill-tensor is

Lou =pu@u+tpl-r-cf(p—po)l (2.11)

where pg is the ambient density. Lighthill assumed that if the viscous terms are small
(the Reynolds-number is high), the process is close to isentropic and the main sources
of sound are vortices, then the tensor can be approximated by

I, ,~puu (2.12)

In what follows, we shall also employ the above simplification.

2.3. Approximation of the Lighthill analogy. The following approximations of
the Lighthill tensor can be found in [§].
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2.3.1. The Lamb vector. Let us decompose the velocity field according to Helmholtz
into an irrotational and a solenoidal vector field. If we assume that the Lighthill
source term is based on the incompressible velocity the following relation holds

. . . 1 . .
S=V-V-(pu“®@u*)=V-(pwxu*)+V-V (quw u) , (2.13)
where u¢ is the solenoidal part of the velocity after Helmholtz decomposition.

2.3.2. The Laplacian of the pressure. The Lighthill tensor can be approximated by
the incompressible pressure in the following way. Let us neglect the viscous terms in
equation (2.2]) and take its divergence, which leads to

V~<8g;u)>+v-v~(pu®u):—Ap. (2.14)

In an incompressible fluid the first term on the left-hand side is zero because of
the incompressible continuity equation and the symmetry property of the spatial and
temporal derivatives. The second term on the left-hand side is the approximation of
the previously mentioned Lighthill tensor,

V.V.-T ,~=V-V-(pudu)~—-Ap. (2.15)

This relation is valid only, if the viscous terms are negligible, i.e. the Reynolds-number
is high.

2.3.3. The time derivative of the pressure. The following source term formulation
and a detailed, exact derivation of it can be found in [7], we give here only a short,
rudimentary derivation. If a quiescent medium is assumed,equation is still valid
for fluctuating variables. First, let us split the fluctuating pressure into acoustic
and incompressible pressure. Then, we take the time derivative and rearrange the
incompressible pressure to the right-hand side. This term can be conceived as the
source term for the continuity equation,

1 apzc
Pt = ————. 2.16
If we substitute into equation ([2.9)), the source term can be calculated as
aq)cont 1 a2pic
S = I . 2.17
ot 2 ot? 2.17)

3. CFD SIMULATIONS AND ACOUSTIC LOAD

3.1. The CFD simulation domain. In the first step 2D CFD simulations were
performed using ANSYS CFX. The cavity dimensions were the following: the length
of the cavity was L = 10 mm; the depth of the cavity was D = 5 mm. The simulation
domain was defined to be a length of 2L before the cavity, a length of 3L after the
cavity and 3L above the cavity. A sponge layer around the simulation domain was
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necessary in the compressible simulation to avoid reflection at the boundaries. The
thickness of this layer was 4.5L in both horizontal and vertical directions. The mesh
was generated by ANSYS ICEM. The finest mesh resolved the cavity by 166x106
cells. The monitor point was placed 0.07D below the corner on the rear cavity wall,
which is the most favorable place (experimentally measurable, smaller residuals, larger
pressure signal) for the investigation (see [1I [10]).

Table 1. The main parameters of the CFD simulations

Name Value
Mach number 0.05
Far-field velocity 17.306 m/s
Length of cavity 10 [mm]
Depth of cavity 5 [mm]
Boundary layer thickness at leading edge 1.22 [mm]
Kinematic viscosity 1.545 x107° [m?/s]
Reynolds number (Rey,) ~ 11200
Density 1.185 [kg/m3]
Reference temperature 25 [°C]
Flow model Laminar flow was assumed

Opening

Main
domain

point

Figure 2. The CFD domain

The CFD domain with the applied boundary conditions can be seen in Figure [2|
The velocity inlet boundary condition (BC) was a prescribed velocity profile. This
velocity profile was calculated by an in-house MatLab code that generates the Blasius
profile. This code provides the prescribed value of boundary layer thickness at the



Acoustic source term formulations in the cavity tone 185

leading edge. It was 1.22 mm in these simulations. The walls at the bottom were
modeled as adiabatic “no-slip walls”. At the outlet and the top of the domain the
so-called “opening” boundary condition was used [I1], which prescribes the relative
pressure (0 Pa) and the flow direction (normal to the boundary). However, if the
pressure is rigorously constant in a compressible simulation, the acoustic waves are
reflected from the boundary. The solution to avoid such a problem will be discussed
in the next subsection. The advection scheme was set to ”"High Resolution” (second
order scheme) while second order backward Euler transient scheme was applied. Two
constant timestep sizes were applied: 1e=% s and 2.5e~" s, meaning the rms Courant-
Friedrich-Levy number were around 0.53 and 0.14, respectively. Between the two
results no significant difference was obtained. During the solution the convergence
criteria for the iteration was that the root mean square of the residuals had to be
smaller than 107°.

Table 2. Mesh parameters of the CFD simulations

Case Resolution of cavity | Smallest element edge length | Number of elements
Coarse 141x71 20 pm ~ 104000
Medium 151x91 7 pm ~ 133000

Fine 166x106 3.5 pm ~ 174000

The mesh investigations in the classical CFD sense were already carried out by
Farkas et al. in [I2] and [I0] on the same configuration. The meshes were investigated
in this work too, because the resolution of the CFD grid is usually not sufficient for
acoustic coupling. Mesh refinement was applied only close to the trailing edge (the
main acoustic source), which differs from the usual uniform method, because in the
aerodynamic sense the mesh was already appropriate. The comparison was made
based on the original Lighthill source term formulation only and the main parameters
of the investigated meshes can be found in Table 1. The observations are the following:
the difference in the results between the coarse and medium mesh is significant. The
main acoustic source is not well resolved on the coarse grid. Further improvement is
hardly noticeable between the medium and the fine mesh. Based on these results, the
medium mesh is selected for further simulations.

3.2. Reflection avoidance in compressible CFD simulations. In CFX there is
a beta option to turn on acoustic non-reflectivity at the boundaries but it works well
only if the sound waves hit the boundary in the normal direction. (Non-reflective
boundary conditions are implemented in most commercial codes based on the 1D
wave equation [I3].) If the perturbation velocity has also a tangential component at
the boundaries, the non-reflective boundary condition can cause instabilities or reflect
the acoustic waves [I0]. Other passive possibilities to avoid reflections are to artifi-
cially increase the viscosity close to the boundaries or to stretch the grid there. These
options are infeasible because of presence of the wall behind the cavity. Further possi-
bilities are the active damping methods: implicit damping, explicit damping, artificial
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convection and perfectly matched layer. With the exception of implicit damping these
methods cannot be implemented in a commercial code like CFX. The explicit tech-
nique needs a writing access to the state vectors, which is prohibited in CFX, while
the artificial convection and the perfectly matched layer method require changing the
governing equations significantly, which is again not feasible in commercial software.
Furthermore the perfectly matched layers technique is not developed for the Navier-
Stokes equations, according to authors’ knowledge. In our case the implicit damping
method was implemented in CFX for the continuity equation. It can be achieved by
the addition of the following source terms to the governing equations

Sc =—01 (p - pmean) ) (31)

where S¢ is the source terms of continuity equation, ¢y is the amplitude function of
the damping, p is the relative pressure, pmeqn is the prescribed value at any given
grid point, in our case it was 0 Pa.

In the next step o1 has to be specified and based on [14] we apply

B
[ T —xo

o1 —0<Hs —x0> (3.2)
where 6 depends only on non-geometrical variables and the other term provides the
geometrical shape function, x is the running coordinate, x( is the location of the
beginning of the sponge layer, H, is the location of the end of the sponge layer, 5 is
the shape parameter. [ was chosen between 2 and 2.5 in [I3], while in other papers
it was 3 [15]. Here it was chosen to be 2, a similar formula can be used in the y (or
in 3D simulation in the z) direction.

A new expression was derived for ¢ because no suggestion was found in literature
to choose it. Let us write the equation of state of the ideal gas

Pabs
= RT (3.3)

where p is the density, pgps is the absolute pressure, v is the specific heat ratio and R
is the gas constant. Now we split the variables into mean and perturbation part while
assuming constant temperature. It is trivial that the fluctuations of the relative and
absolute pressure are the same because of constant difference.

'y _ P +p)

(p+p T

. (3.4)

The mean variables must satisfy the equation of state, thus they can be subtracted,
which leads to

(3.5)
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The mass flow rate per unit volume can be approximated as
« P
At

o

(3.6)

where At is the time needed for pressure fluctuation to propagate through one cell,
i.e.

Az

Uprop

At =

(3.7)

Here, Az is the cell size in the direction of the propagation, v, is the propagation
velocity of the pressure disturbance, which can be of various physical origin in a
complex flow. The propagation velocity of the acoustic waves is the speed of sound
but in the flow other pressure fluctuations exist: for example the instability waves
along the shear layer or the propagating vortices after the cavity. The speed of these
fluctuations is obviously much less than the acoustic speed so that vy, must be
chosen carefully. Finally, equations - lead to following expression:

& o p/ Uprop _ Q,vprop _ Q,Maprop
YRT Az & Az g Az 7

(3.8)

where Map,qp is the Mach number based on the propagation velocity. If & is greater
than the right-hand side of , the sponge layer is overdamped, causing stability
problems. During the time the pressure fluctuation passes the cell, its value can have
opposite sign and the magnitude can be larger than its value when it entered the cell.
In the simulations, the following expression was used, based on

N p' 1

g = Cl (Mapr()p)%?m 5 (39)
where C7 was the constant with which the sponge layer can be tuned. Its allowable
maximal value is 1 in the case of pure acoustic waves (above the cavity), and it has
to be decreased if other types of pressure fluctuations are present in the sponge layer
(after the cavity).

3.3. The results of CFD simulations. Fast Fourier Transformation (FFT) was
carried out on the pressure signals at the monitor point in the incompressible and
the compressible simulations and the results can be seen in Figure The peaks
are practically the same. The fundamental frequency is 1522 Hz with the amplitude
of 26.4 Pa (122.4 dB) in the incompressible simulation, while in the compressible
simulation the fundamental frequency is 1530Hz and the amplitude was 26.9 Pa (122.6
dB). Although the pressure signal in the compressible simulation was a bit noisier,
there was technically no difference between the two simulations. The compressibility
of the fluid thus can be neglected, as expected.
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Figure 3. The FFT of the pressure signal at the monitor point

3.4. The comparison of various source term formulations. In the next step
the sources were calculated for the acoustic simulation, based on the CFD results.
The sources introduced in Section 2 are compared with each other. In the first inves-
tigation the source field based on the Lighthill tensor was compared to the Laplacian
of the pressure in the incompressible case because the previously introduced pressure
based formulations are valid only for incompressible flow simulations. The time signal
compared inside the cavity can be seen in Figure[d] The monitoring point was placed
in the shear layer at equal distances far from the edges of the cavity. To be precise,
the monitoring point is at = L/2, y = 0, where the origin is the leading edge and
the x direction is the main flow direction.

In Figure [d] it can be clearly seen that the Laplacian of the pressure approximates
well the second derivative of the Lighthill tensor but the signal was noisier in the case
of the pressure-based-formulation. The reason for this phenomenon can be that the
pressure values themselves suffer from higher numerical error, which is further mag-
nified during the calculation of second spatial derivatives. It is difficult to interpret
the results because of the lack of knowledge about how CFX calculates the pressure.

In the next step an FFT is performed on the various sources (Figure[5]). Here, the
spatial distributions (the shapes) of the sources were compared. The Laplacian of the
pressure was excluded from the comparison because no significant difference could be
observed between Laplacian of the pressure and the double divergence of the Lighthill
tensor. Only a small difference was recognized in the compressible computations very
close to the edge. The results of the comparison are summarized in Table [2| for the
incompressible simulations. First, the effect of the mean value (Faseqrn) of the acoustic
load is investigated at a probe location close to the trailing edge in all cases. The zero
frequency component was compared to the fundamental mode component (Fig). It
is probable that this value highly depends on the probe location but the tendencies
can be roughly estimated based on the monitoring point. This ratio was high in the
case of velocity-based source terms (Lighthill tensor, Lamb vector) and was low in
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Figure 4. Comparison of the sources calculated based on the
Lighthill-tensor (continuous line) and the Laplacian of the pressure
(dashed line) in the middle of the shear layer

the case, when the source was calculated based on the time derivative of the pressure.
The high mean value is non-acoustical (only the fluctuating part is considered to be
acoustic) and should be eliminated by the application of filtering. In the next step the
spatial distribution of the source field is investigated. Let us define the nominal size
(A) of the acoustic source as the area, in which the acoustic source strength is larger
than 1% of the maximum acoustic source strength. This investigation was performed
for various ratios of 5%, 10%, 20% and for all cases the tendencies were the same.
The nominal size of the acoustic load was the smallest in the case of the Lighthill
tensor. In the case of Lamb vector formulation the source was larger both in size
(A) (~30 times) and magnitude (Syqz, the maximal load) (~2 times). This does not
mean unambiguously that the usage of Lamb vector produces higher acoustic pressure
in the far field, because the phase relationships also influence the final results. This
observation could mean that the resolution of the source could be better in the case
of Lamb vector formulation and it could be used more effectively on a coarser grid as
well. In the case of time derivative of the pressure formulation the size of the acoustic
source was much larger (3-4 orders of magnitude), while its magnitude was much
smaller. Furthermore, it can be stated that the spatial distribution of the sources
looked very similar in the compressible and incompressible simulations.

4. ACOUSTIC SIMULATION

4.1. The acoustic simulation domain. The significant advantage of the hybrid
approach is that the acoustic simulation domain can be larger than the CFD domain.
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Figure 5. Spatial distribution of the acoustic source (Pa/m2) at the
fundamental frequency. (a) divergence of the Lighthill tensor, (b)
Lamb vector, (c¢) Second time derivative of the pressure

Table 3. Comparison of source terms defined in the incompressible

flow field
Name % A [m?] | Spmaz[Pa/m?]
Lighthill ~66 % | 2.519e-8 5.6e10
Lamb ~133% | 6.116e-7 1.5el1
Time derivative | <1 % | 8.072e-4 2.1ed

The acoustic domain contains three parts in our case. The first one is a small source
region where the sound is generated. Here, the acoustic sources were calculated based
on the flow simulation data and interpolated to the acoustic source grid. In this case
the two meshes (the CFD and acoustic mesh) were identical. The next part is the
propagation region, where the acoustic waves propagate without any amplification or
damping. Within this region, the right-hand side of the acoustic wave equation is
zero. This region was defined as 1 m before, after and above the cavity. The grid size
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here was much coarser (5 mm) and that is why an interpolation technique described
in [16] was used at the border of two regions. The outermost part is the absorption
region. This region was a thin layer at the border of simulation domain, where the
waves were strongly damped to avoid reflections. Here the so-called perfectly matched

layer was defined. Further information about the technique and implementation can
be found in [I7].

2m

Source x Absorption

Figure 6. Parts of acoustic simulation domains: the source region,
propagation and absorption region; and microphone positions

4.2. The results of the acoustic simulation domain. The acoustic simulations
were carried out by CFS++, which is an in-house code at Vienna University of Tech-
nology to solve partial differential equations by the finite element method. First, the
simulations based on the incompressible acoustic source formulations were carried out.
A typical acoustic field of the simulation, which was calculated based on the Lighthill
tensor, can be seen in Figure[7] The directivity pattern can be clearly associated to
a dipole. At the same time the results provided by the second time derivative of the
pressure show an absolutely different radiation pattern, as displayed in Figure

Howe investigated extensively the cavity tone with the same length-depth ratio at
low Mach numbers [I8]. He calculated the acoustic field by Green functions. Ac-
cording to his result, the monopole characteristics of the sound appear only at higher
frequencies and not at the fundamental frequency (which dominates in the time do-
main), if the Mach number is low. In Figure El the directivity patterns were plotted
for different Strouhal numbers.

The monopole part of the sound source plays a significant role only if St 2 20 and
Ma = 0.01, as well as for St 2 2 and Ma = 0.1 according to Howe. Pure dipole pattern
was observed also in [19], where the sound field was calculated based on experimental
data. The directivity pattern can indicate the validity of the source term formulations.
FFT was performed in all cases on the whole acoustic pressure field (Figure. Good
qualitative agreement can be seen with the results of Howe (Figure E[) in Figure
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Figure 7. The instantaneous acoustic pressure field based on Lighthill
analogy (incompressible)

Figure 8. The instantaneous acoustic pressure field based on second
time derivative of the pressure (incompressible)

Figure 9. Directivity patterns at Ma=0.1 and St=0.5, 1, 1.5, 2,2.5 [I§]

In Figure the directivity is evaluated on a circle, with a radius r = 0.4 m
around the trailing edge. It can be seen that the velocity-based analogies (“Lighthill
tensor”, “Lamb vector”) reproduce a dipole radiation better than the pressure-based
ones. In the cases when the sources are based on the Laplacian of the pressure or
the second time derivative of the pressure, the directivity patterns were unrealistic if
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Figure 10. The FFT of the acoustic pressure field at the fundamental
frequency based on Lighthill-analogy (incompressible).

we accept the correctness of the dipole pattern. The worst result was provided by
the second time derivative of the pressure. In this case the sound pressure was low
in upstream and downstream directions, while it was too strong above the cavity. In
the case of Laplacian of the pressure, the results show the weak dipole characteristics
superposed on monopole sound characteristics. Here, the amplitudes of the waves
were in the correct range in both the upstream and downstream directions. The
magnitudes differ slightly between its velocity-based results but this difference was
negligible compared to previous cases.

The same investigation was performed on results based on sources calculated from
the compressible flow simulation. The acoustic field is very similar to the incompress-
ible cases except for the simulation based on the second time derivative of the pressure.
Here a high-frequency noise appeared in the simulation. The radiation pattern looks
like a dipole, while in the incompressible case it is a monopole. However, it has to
be noted that the formulation is only valid for incompressible flows. It is noticeable
that there are no visible differences in the source terms based on compressible and
incompressible simulations (not shown here). After performing FFT on the results,
the directivity patterns were also evaluated along the same circle as before.

In Figure it can be seen that the results were similar to those for the incom-
pressible cases. The main difference appeared in the pressure-based cases, which are
not valid for compressible flow simulation. Here, the calculations based on the Lapla-
cian of the pressure overpredict the sound pressure, as expected, because only the
incompressible part of pressure fluctuation induces the acoustic field. At the same
time the directivity pattern became more realistic in both pressure-based cases. The
reason for this is unclear; maybe the different pressure computation techniques cause
this huge difference, especially in the case of the time derivative of the pressure. The
pressure signals at various microphone positions obtained for compressible and incom-
pressible simulations were compared. In the case of the velocity-based formulations
the differences were negligible, which was expected as these analogies are valid both
in compressible and incompressible flows.
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Figure 11. The directivity of the sound field at the fundamental fre-
quency, sources are calculated based on incompressible data (black,
cont.- Lighthill; black dashed - Lamb; grey, cont. - Laplacian of the
pressure; grey, dashed - second time derivative of the pressure)

Figure 12. The directivity of the sound field at the fundamental fre-
quency, sources are calculated based on compressible data (notation
are the same as in Figure )

5. CONCLUSIONS

In this paper various acoustic source term formulations were compared in the case
of a rectangular cavity. Based on the results the following conclusions can be drawn.
The velocity-based analogies provide better results than the pressure-based analogies
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with respect to the directivity patterns. The Laplacian of the pressure calculation
method provides good results in upstream and downstream directions but strongly
overestimates the acoustic pressure over the cavity. At the same time, no significant
difference was noticed close to the trailing edge during the source term investigation
in Section 2 between the second divergence of the Lighthill tensor and the Laplacian
of the pressure. The second time derivative of the pressure predicts only the sound
pressure in the right order of magnitude. The directivity of the sound field is wrong
and the method highly overestimates the sound pressure level at the higher harmonics.
It must be mentioned that the mesh study was performed only for the Lighthill
analogy-based formulation. The authors are sure that such a big difference cannot
be caused by a poor resolution of the acoustic sources in the case of pressure-based
sources. The acoustic sources were also calculated for the compressible medium. Here,
only the velocity-based analogies are valid, which was confirmed by the results, in spite
of the fact that the compressibility does not play a significant role. To summarize
the results, the analogy based on the Lamb vector seems to be the best. It provided
the finest spatial resolution of the source along the velocity-based analogies on a
same mesh, while it provides similar results to the original analogy based on Lighthill
tensor. The only drawback is that the mean value was high but this can be avoided
by filtering.
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Abstract. A two-dimensional numerical study has been conducted to analyze forced con-
vective confined flow and heat transfer from a pair of side-by-side square cylinders with a
transverse gap ratio (defined as the ratio of the distance between the obstacles to the size of
an obstacle) of 1.5. The flow is steady Newtonian in a viscous dominant flow field, investi-
gated at Reynolds numbers (Re) ranging from 10 to 40 for Prandtl numbers (Pr) = 0.7 and
50. The present results are found to be in the excellent agreement with the literature, with
a maximum deviation of 1.5%. It is observed from the streamlines that the wake formation
increases with Re. The onset of flow separation was observed at Re = 7 and further a
correlation connecting wake length with Re is stated.

Mathematical Subject Classification: 05C38, 15A15
Keywords: Drag coefficient, Nusselt number, side-by-side configuration, square bluff bodies,
wake length

1. NOMENCLATURE

8 [-] ratio of the side of one square cylinder to the channel height (called
here blockage ratio),

p  [kg/m?] fluid density,

w  [Pas]  viscosity of the fluid,

T [Pa] shear stress,

Cp [-] drag coefficient,

Cp [-] pressure coefficient,

Fp [N/m]  drag force per unit length of the obstacle,
[

m] transverse height of the domain,

(©2016 MiSkOLC UNIVERSITY PRESS
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L, [-] recirculation length per unit length of the obstacle,

Nu [-] average Nusselt number,

Pr [-] Prandtl number,

Re [-] Reynolds number,

S [m?] surface area,

T [-] temperature,

Umax [m/s] maximum velocity at the inlet,

Vo[- dimensionless velocity,

X [-] distance between the obstacle boundary and inlet or outlet per
unit size of the obstacle,

¢, [J/kgK]  specific heat capacity of the fluid,

d [m] side length of a square cylinder,

h  [W/m?K] heat transfer coefficient,

k [W/mK] thermal conductivity of the fluid,

n [-] direction vector normal to the plane,

D [-] pressure,

s [m] gap between the two square cylinders,

t [-] time,

x,y [-] position of flow parameters in the domain.

Subscripts and superscripts

d downstream,
U upstream,
]S control surface,
T direction of vectors along horizontal axis,
Y direction of vectors along vertical axis.

2. INTRODUCTION

Ever since the inception of study for fluid flow and heat transfer past a bluff body in
a confined domain, decades have passed for research mainly on an experimental basis,
which has incurred huge cost. As a result several attempts have been made to analyze
this process through numerical modeling and simulation. Modern numerical method-
ologies like finite volume method (FVM), lattice Boltzmann method (LBM), optical
density method, etc. have profound applications in decoding the sets of complicated
partial differential equations which define the flow and heat transfer processes. This
field has heavy application in process heat transfer equipment, structural dynamics
and mechanical, chemical and other related engineering applications.

When two or more bluff bodies are placed in proximity, the intricacy in predicting
momentum and heat transfer around it is aggravated and interference effects are
severe. As a result, the flow and thermal patterns differ from those of a single circular
cylinder.

Valencia and Paredes [I] performed a numerical study to examine the flow and heat
transport characteristics in a plane channel with two square cylinders (or square bars)
placed side-by-side to the impending flow for a transverse gap ratio (s/d) ranging from
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0 to 5 for Reynolds number Re varying from 25 to 125 at a constant blockage ratio
B of 12.5%. The mathematical outcomes divulge the complicated formation of the
flow. The flow remains steady at Re = 200; whereas, periodicity or unsteadiness is
observed as the Re is further increased. Peng [2] studied the fluid flow past two side-
by-side square bluff bodies with a constant gap ratio of 2 in an unconfined domain by
both mathematical simulation as well as investigational flow-visualization methods
at Re = 100. Bi-stable flows were observed, with both in-phase and anti-phase
synchronized patterns, as a result of adjusting the initial conditions. Agrawal et al.
[3] examined the flow over two side-by-side square cylinders using the LBM, identified
regimes with both synchronized and scattered vortex formation, and determined the
type of vortex shed from the square cylinder in either regime for a uniform flow field
at the upstream. Numerical outcomes for two gap ratios of 0.7 and 2.5 for the fixed
Re = 73 and blockage of 5.55% had been reported. Later, Rao et al. [4] carried out
an extension work of Agrawal et al. [3] and performed a quantitative study of the flow
over two side-by-side square bluff bodies, for transverse gap ratio varying from 1 to
2.7 and Re varying from 73 to 200 at the blockage of 5.55%. They revealed that for a
transverse gap ratio lesser than 1.5, the flow demonstrates a flip-flop behavior known
as chaotic; however, for s/d greater than 1.5, the flow tends to synchronize, known
as quasi-periodic and for s/d > 4 synchronized flow was observed. The transition
between chaotic and quasi-periodic regimes occurs at s/d = 1.5. Durga Prasad and
Dhiman [5] analyzed the steady and unsteady laminar flow and heat transfer in a
confined domain for a pair of side-by-side square cylinders for Re = 10 to 100 at
Pr = 0.7 to 50 with the gap ratio from 1.5 to 10 in a transverse domain height of
18d [3, []. It was shown that the overall drag coefficient decreases with increasing
Re and Pr for all values of gap ratios. The enhancement in average Nusselt number
was found more than 76% for the range of settings covered. They also found the
occurrences of in-phase and anti-phase flow past the square cylinders at various Re.
They also found that beyond a gap ratio of 2.5 the steadiness in flow was observed
till Re < 60 which was limited to Re = 50 for a smaller gap ratio.

Furthermore, sufficient information is now available in the literature on the flow
around two side-by-side square cylinders in the turbulent regime. For instance, Wong
et al. [6], Kolar et al. [7] and Alam et al. [§] executed experimental investigation of
the wake formation around a pair of side-by-side square cylinders. Harichandan and
Roy [9] displayed the strong dependence of flow characteristics on the transverse gap
ratio and Re, with the former being more dominant than the latter.

Mizushima and Akinaga [I0] studied wake interactions in the flow past a row of
square bars by both numerical replication and experimental determination on the
postulation that the flow is two-dimensional (2D), incompressible. Kumar et al. [11]
reported the presence of synchronous, quasi-periodic, and chaotic flow regimes for
s/d ranging from 0.3 to 12 for nine square cylinders in side-by-side arrangement at
Re = 80. Along the same line, Sewatkar et al. [I2] determined the effects of transverse
gap ratio and Re on the flow around a row of cylinders for Re ranging from 30 to
140 and s/d 1 to 4. Chatterjee et al. [I3] executed numerical simulation for the flow
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around a row of five square bluff bodies kept at a side-by-side display for transverse
gap ratios of 1.2, 2, 3, and 4 at Re = 150.

Thus, from the foregoing argument, one can summarize that no work is available
on the onset of flow separation and the wake length at varying s/d in the confined
flow around two side-by-side square cylinders in a cross flowing domain. Because the
multiple bluff obstacles create a complex flow and thermal structures even at low
Reynolds numbers, and owing to the engineering relevance in various applications
(compact heat exchangers, plate type heat exchangers, etc.); the analysis of flow and
thermal prototype is necessary. A close look at momentum and heat transfer processes
in a highly viscous force dominated steady laminar flow regime (10 = Re = 40) inside
a confined domain has been attempted. It is also seen that very few papers have
mentioned the occurrence of a recirculation zone quantitatively. Hence, an attempt
has been made to study recirculation length from the flow field and domain parameters
Re =10 to 40, Pr = 0.7, 50 and s/d = 1.5.

3. MATHEMATICAL FORMULATION AND SOLUTION METHODOLOGY

Any flow problem involves sets of partial differential equations which need to be
solved using some numerical techniques. The sequence of approaching the solution
methodology involves initial statement of the problem followed by mention of the
governing equations coupled with its boundary conditions. Further, generation of an
optimal grid is solved here using ANSYS FLUENT. The basics regarding these topics
are well explained in Chabra and Richardson [14].

3.1. Problem statement. The following problem has been assumed to be a sim-
plified case of the flow of a fluid past a pair of square cylinders in a 2D domain.

A

|

|

|

|

[
i . ‘ adiabatic
s square cylinders "'H walls
Y I

|

|

|

|

|

Y

Figure 1. Schematic diagram for fluid flowing past side-by-side
square cylinders
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Here, the square cylinders are assumed to be infinitely long and perpendicular to the
main flow. The variation of physical process parameters along this direction is zero
till Re about 150. Following Durga Prasad and Dhiman [5], the domain has been
set in a standardized format, where the upstream distance from the square cylinders,
X, is set at 8.5 and downstream distance, X4 as 16.5. The side length of the square
cylinder, d is set as unity. The transverse gap ratio, s/d, is taken as 1.5.

Figure [I| aptly depicts the aforesaid problem statement. The 2D approximation
is well established in a highly viscous force dominant flow field along with a small
thermal gradient which is significant enough to catch the change in flow and thermal
patterns due to flow around a pair of side-by-side square cylinders with good numerical
accuracy.

3.2. Governing equations. For a 2D convective laminar flow, the corresponding
dimensionless equations are:

Continuity equation for incompressible fluid flow
oV, 9V,
— =0. 1
oz + oy (1)
Momentum equations neglecting the body forces
oV, IV, V, n ovyVy ~ Op 01 <62Vm 82V$)

ot T ox a9y oz Re\ 02 T o

% ov,v, ov,V, _@ g ((')QVy 82Vy) 3)
ot Oox Oy Oy Re \ 0z2 oy? )’
Energy equation neglecting viscous dissipation and considering a pure forced con-
vection heat transfer process
ag ov,r ov,T 01 (62T . 82T>
ot Ox Oy RePr \ 0z2  0y2 )~

(4)

Further
Re = pUpaxd/p and  Pr =cyp/k. (5)

3.3. Boundary conditions. At inlet: for a parabolic velocity inlet:
V,=1—(]1 -28y|)* (for 0<y < H/d, B=d/H),

6

vy =0, T=0. (6)

On the surface of the square cylinders, the standard no-slip and constant wall
temperature conditions are used:

V,=0, V,=0, T=1. (7)

On the upper and lower boundaries, the standard no-slip and adiabatic conditions
are used:
or

Vm:Oa Vy:07 @—0' (8)
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At the exit boundary

96
%—0 9)

where ¢ is a dependent variable, V,, V,, or T

The output parameters are summarized as follows:
Total drag coefficient, as explained by Patnana et al. [I5] for the flow around a
circular cylinder, in a horizontal cross flowing domain is as follows:

Fp 2
P U2, /s PO e /sm 1o
Average Nusselt number:
Nu = ]%d . (11)

3.4. Grid generation and solution technique. Figures 2a and 2b display the
overall grid structure and close view of the grid structure around the square bluff
bodies, respectively. The grid, using quadrilateral cells, generated for this problem
is non-staggered in nature. It is generated using the commercial grid generation tool
ANSYS Workbench. A finer grid size is maintained near the square cylinders to
capture the changes that occur in the flow around the square cylinders. The smallest
grid spacing is kept around the square cylinders and confined walls is of 0.008d, and
the coarsest one is 0.5d which can be seen at the inlet or outlet part of the flowing
domain. The number of grid points placed on each surface of the square cylinders
are 100, following Durga Prasad and Dhiman [5]. The meshing procedure in the zone
connecting the square cylinders and the confined walls is done in a manner which can
take into account the wall effects in flow process.

Figure 2. (a) The overall grid structure and (b) close view of the grid
structure around the square bluff bodies

Following several books [16} [I7], SIMPLE algorithm is used to avoid pressure veloc-
ity decoupling and because it offers good convergence for the type of problem under
consideration. The absolute convergence criteria is set at 10~'® for flow parame-
ters and 10~2° for thermal parameters. Discretization of the convective terms in the
momentum and energy equations is done using QUICK, a third-order upwind scheme.
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4. RESULTS AND DISCUSSION

4.1. Validation. The validation of the results obtained applying the above numerical
method was carried out against those of Durga Prasad and Dhiman [5] for the Re
ranging from 10 to 40 at Pr = 0.7 (resembling air) and 50 (resembling organic polymer
liquids) for a constant transverse gap ratio of 1.5. Tables|l|and [2[show that the values
of drag coefficient and Nusselt number stay well within 0.1% and 3.2%, respectively.

Table 1. Validation of Cp with [5] in a steady laminar flow regime

Cp from Cp from
Re Durga current %
(s/d =1.5) | Prasad and | simulation | deviation
Dhiman [5]
10 3.6034 3.6039 0.02
20 2.6151 2.6153 0.01
30 2.2001 2.1998 0.01
40 1.9646 1.9628 0.09

Table 2. Validation of Nusselt number with [5] in a steady laminar
flow regime

Nu from Nu from
Re Durga current %
(s/d =1.5) | Prasad and | simulation | deviation
Dhiman [5]

Pr=0.7
10 1.4856 1.4918 0.42
20 2.0726 2.0913 0.90
30 2.4446 2.4713 1.09
40 2.7402 2.7749 1.26

Pr =50
10 6.0861 6.1320 0.75
20 8.4173 8.5673 1.78
30 10.2586 10.4862 2.22
40 11.6463 12.0215 3.20

It was seen that the drag coefficient remained the same for both square cylinders
because of the fact that the effect of gravity and the variation of the fluid’s density with
temperature have been neglected in this problem. The Cp values reported above are
those of the upper square cylinder in the flow domain. It is also to be noted that the
average Nusselt number for both upper and lower square cylinders remains constant
owing to similar reasons.

4.2. Fluid flow patterns. Figure [3|shows the streamlines at s/d = 1.5 for Re = 20
and 40. The flow is found to be steady in this flow range and at the same time an
anti-phase pattern (wake structures generated from both square cylinders are equal
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b) Re =40

10k A= ° g 10 11

Figure 3. (a-b) Streamlines along with the magnified views of upper
square cylinder for a transverse gap ratio of 1.5

and oppositely directed in a given plane) is seen. This pattern gradually glorifies as
Re is increased from 20 to 40, which clearly depicts the approaching unsteadiness in
the downstream.

A close look at the magnified image of the streamline contours reveals the formation
of wakes at the rear part of the square bluff bodies, which widen with increasing Re.
Further, it is to be noted that there is no possibility of reverse flow in the domain.
These streamlines also show a marginal interference of stream functions due to the
presence of two square bluff bodies. The transverse gap ratio falls under that needed
to produce a quasi-periodic flow regime in accordance with results from previous
studies [T1].

4.3. Thermal patterns. Figure [f] shows the isotherm contours of the fluid flowing
past the pair of side-by-side square bluff bodies at Re = 20 and 40 for the Pr = 0.7
and 50. Following Merkin [I8], who stated that during the flow process, cooling a
cylinder brings about separation near the stagnation point, this is also evident in this
case by the clusters of isotherms accumulating in front of the frontal surface of the
square bluff bodies. Despite the fact that the domain and flow structures are different
from Merkin [18], the concept of high heat transfer in the front part of the obstacle
stays intact irrespective of domain. In terms of magnitude factor, the results will
always vary with configurations. The observation of the above pattern remains the
same in all the cases in the direction of flow. This eventually leads to an increased
Nusselt number (heat transfer rate) at the front surfaces compared to that of other
surfaces. In fact one can also conclude that the heat transfer is maximum in the front
surface followed by an intermediate degree on surfaces parallel to the flow and the rear
face has the lowest heat transfer rate. The isotherms also seem to be steady and sym-
metric along the centerline with almost no interaction at Pr = 50, but the interaction
prevails at Pr = 0.7. This factor can be explained from the concept of boundary layer
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Figure 4. Isotherms along with the magnified views of upper square
cylinder for a transverse gap ratio of 1.5

theory, where Pr = 0.7 indicates that the hydrodynamic boundary layer is smaller
than the thermal boundary layer, which means that the layers tend to move outward
which in turn leads to interaction of isotherms due to the presence of the two square
cylinders. But at Pr = 50, the thermal boundary layer is smaller than that of its
hydrodynamic counterpart, as a result, the isotherms tend to die down at a close
distance in the downstream from the rear surface of the square cylinders.

The magnified views of the isothermal contours also demonstrates that the wakes
formed at Re = 20 gradually increase in size at Re = 40. These figures also explain
clustering of isotherms near the rear surfaces of the square cylinders, which increases
with increasing Reynolds and Prandtl numbers.

4.4. Recirculation length. This is the distance from the rear surface of the obstacle
to the point of attachment for the near closed streamline on the axis of symmetry.
Figure shows that the recirculation length varies linearly with increasing Re (Table
. It increases with Re and the results fit linearly with a mere 0.001% deviation.
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Table 3. Variation of recirculation length with Reynolds number

10 | 0.4276
20 | 1.0039
30 | 1.6146
40 | 2.2406
e
10 20 Re 30 40

Figure 5. Variation of recirculation length with Reynolds number

The following simple correlation is established for the calculation of wake length
(L), for the intermediate values of physical parameters in the steady confined regime:

L, =0.06Re —0.19  forl0 < Re < 40 (12)

This linearity in recirculation length versus Re plot has also been observed by Sharma
et al. [19] for a single square cylinder.

Further, the variation in recirculation length with the change in transverse gap ratio
was studied with s/d varying from 0.7 to 10 for Re = 40. The recirculation length is
expected to be quite pronounced as compared to the lesser Re values, and at the same
time to maintain the steadiness in the flow. The trends observed from Table [4] show
that the recirculation length increases initially with increase in s/d to a maximum
value beyond which the value decreases with the increase in s/d. Small gap ratio
involves chaotic interactions of wake generated from both square cylinders, thereby
reducing the wake length but as the transverse gap ratio increases the wake formations
are subjected to minimum hindrance from the other body. But with further increase
in s/d, a decrease in wake length is observed, which accounts for a hindrance evolving
out of the confined walls.

Table 4. Variation of recirculation length with transverse gap ratio
(s/d) at Re =40

| s/d [ Lr (at Re = 40) |

0.7 1.3083
1.5 2.2406
2.5 2.2035
5.0 2.1983
10.0 1.4395
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b) Re=7

Figure 6. Streamlines along with magnified view of upper square
cylinder showing absence of any wake at Re = 6 and the onset of
wake formation at Re =7

Furthermore, the onset of the flow separation is determined. It has been observed
that there is no presence of recirculation wake at Re = 6, whereas recirculation com-
mences at Re = 7 (as shown in Figures @a and @), respectively). Hence, one can
infer that a higher the magnitude of viscous dominance in the flow field, the lower
or minimal is the recirculation or wake length formed at the rear side of the square
cylinders.

5. CONCLUSIONS

Summarizing the present study, one can make the observation that the drag coefficient
increases with the increase in Re, whereas Nu increases with the increase in both
Re and Pr as is evident from the stream function and isothermal contours. It has
also been seen that the recirculation length increases linearly with the increase in
Re in steady laminar flow regime (Re = 10 to 40). This paves a way for further
determination of recirculation length for various flow regimes for the flow over a
pair of side-by-side square cylinders. One can also correlate the results with that
their cylindrical counterpart thereby leading to the appropriate justification of choice
of obstacle shape during various industrial operations. The effect of s/d on L, is
determined and the L, correlation with respect to varying Re has been identified.
Finally, the onset of flow separation is determined for the current framework and it
occurs at Re = 7.
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Abstract. In this paper the numerical simulation of the interaction of fluid flow with
a flexibly supported aerofoil is addressed. Particularly, the turbulent flow model with a
laminar-turbulence transition is considered. The transitional model is based on the two
equation k — w turbulence model, where the additional two equations for the intermittency
and transitional onset Reynolds number are included. The motion of the computational
domain is treated with the aid of the arbitrary Lagrangian-Eulerian method. The attention
is paid mainly to the numerical approximation of the complex nonlinear coupled problem.
The numerical results are shown for aeroelastic response of the aerofoil.
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1. INTRODUCTION

Numerical approximation of fluid-structure interaction (FSI) problems has recently
become important in many technical applications in turbomachinery, aerospace engi-
neering, biomechanics. In technical practice particularly the prediction of aeroelastic
instability as flutter is important [2]. The aeroelastic instability region is usually
treated with the aid of a linearized approach [I]. Such an approach can provide
necessary conditions to guarantee safety, but the transient growth induced by exter-
nal excitation can lead to structural failure even though the system is aeroelastically
stable, see [3]. The problem of transient aeroelastic response was addressed in [4],
where the combined aeroelastic behaviour and gust response of a flexible aerofoil was
explored theoretically. In [5] the FSI problem of gust response of a flexible typical
section was investigated in terms of both high- and low-fidelity simulations. The use
of accurate aeroelastic simulations is particularly attractive because it reduces the
development risk, the number of experiments and the possible design modifications.
However, computational efforts associated with high fidelity aeroelastic models cur-
rently precludes their direct use in industry [6]. Acceleration of time-accurate high
fidelity aeroelastic simulation algorithms has therefore become an active area of re-
search. The most common solution strategy is the so-called partitioned approach,

(©2016 MiSkOLC UNIVERSITY PRESS
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which de-couples the original FSI problem and uses specialized solvers for each sub-
problem (see [7]). The coupling is then enforced at the fluid-solid interface by suitable
interface conditions.

The other thing is that for approximation of FSI problem the applied numeri-
cal method should be able to treat the moving domain/meshes. The most popular
method is the Arbitrary Lagrangian-Eulerian (ALE) method, see [8]. There are sev-
eral possibilities how to apply the finite element method (FEM) [9]. Usually in order
to provide higher order accuracy or stability some additional assumptions on the
ALE are required, see [10]. Particularly the so-called geometrical conservation law is
important [IT].

Moreover, in order to apply the FEM for numerical simulation of incompressible
flow problem must overcome several sources of instability. One instability is caused by
the incompatibility of the pressure and velocity pairs of finite elements, cf. [12]. The
other instability is due to the dominating convection terms, see [I3]. There is another
less well-studied instability source in the Galerkin discretization method related to a
possible poor resolution of pressure, see [14], [15], [16].

The numerical simulation of interactions of flow with vibrating aerofoil was con-
sidered in [I7]. Nevertheless the FSI problems usually include high Reynolds number
flows, where the turbulence effects need to be included [18]. In [I9] the interaction
of a three degrees of freedom (DOF) airfoil was addressed with the turbulent flow
modeled by the Reynolds averaged Navier-Stokes (RANS) equations combined with
Spalart-Allmaras or & — w turbulence models. The flow was also modelled by the
RANS equations combined with the k¥ — w turbulence model in the paper [20], where
the developed in-house FEM code was applied to the numerical simulation of the
aeroelastic interaction of flexibly supported 2-DOF aerofoil with the 2D incompress-
ible viscous turbulent flow subjected to a sudden gust. The developed method was
successfully tested comparing the results with the study published in [4], [2I], where
the aerofoil response to the gust was computed by a commercial CFD program code.

The same FSI problem was studied in [22], where the aeroelastic aerofoil response
to the gust computed for the turbulent airflow was compared with the laminar flow. In
this case, the appearance of the flow separation can significantly influence the aeroe-
lastic response. The application of the turbulent model on the other hand consider
the boundary layer to be turbulent on the whole surface of the aerofoil. In reality
the transition from laminar to turbulent flow exists on the surface of the aerofoil.
The transition in technical applications can be modeled with the aid of different ap-
proaches, see [23], [24]. One class of these models is based on the use of an equation
for the intermittency coefficient [25]. For this equation usually empirical correlations
need to be involved with application of some non-local operations (as determination of
the boundary layer thickness). The use of these operations is usually computationally
expensive on non-structured grids. In order to get rid of these non-local operations
another approach was proposed in [26] and also [27]. Here, the intermittency equation
is coupled to the additional modeled variable and onset criteria are then related to
this new local variable.



Numerical simulation of turbulent transitional flow 213

Although there are numerous publications devoted to the transitional model, there
are not as many papers interested in the numerical simulation of FSI problems with
transitional model included. In [28] the unsteady transitional flow over an oscillating
NACA 0012 aerofoil was numerically investigated, showing that the transition from
laminar to turbulent state and relaminarization occur widely in time and in space. In
[29] the 2 DOF bending/torsion flutter characteristics of the NLR 7301 section was
numerically investigated and the natural transition was modelled. In [30] low ampli-
tude self-sustained pitch oscillations in the transitional Reynolds number regime are
studied numerically showing the importance of the laminar separation of the bound-
ary layer near the trailing edge for initiating and sustaining the pitching oscillations.
In [31] the effect of freestream turbulence on small-amplitude limit-cycle oscillations
of an aerofoil is investigated with the aid of a correlation-based transitional model.

In the present paper Menter’s transitional turbulence model is described and ap-
plied for numerical simulation of 2D viscous incompressible flow past a flexibly sup-
ported aerofoil. First, the mathematical model of the considered problem is described
and its numerical approximation is shortly explained. Further, the applicability of
the method is shown on a benchmark problem.

2. MATHEMATICAL DESCRIPTION

2.1. Flow model. The mathematical formulation of the problem consists of the
flow model, the structure model and the interface conditions. We consider the two-
dimensional time dependent computational domain €2; C R? with the Lipschitz con-
tinuous boundary 02, see Figure [I The fluid motion in the domain ; is modeled
using the Reynolds averaged Navier-Stokes system of equations in §2;

ou; N O(usuy) 0 ou;

ot 3xj 87563 (_p(SU + 2VeffS7lj) = 07 8562 = 0, (21)

where u = (u1, uz) is the mean part of the fluid velocity vector, S;; = %(g;:j + g%z) are

the components of S = S(u) the symmetric part of the gradient of u, p is the mean
part of the kinematic pressure (i.e., the pressure divided by the constant fluid density
0)s v . =v+vp, vis the kinematic viscosity of the fluid (i.e. the viscosity divided
by the density p), vr is a turbulent viscosity (obtained by an additional model), see
18], [32].

The system is equipped with an initial condition w(z,0) = ug(z) for = € Qo
and with boundary conditions prescribed on the mutually disjoint parts I'p, I'o and
I'w¢ of the boundary 02 =Tp UTo Uy

a) u=up onI'p, b) u =wp on Dy, (2.2)
c) —2v,,Sin;+pn; =0 on I'p,

where wp is the velocity of the boundary I'yy; and wp is the prescribed inlet velocity
in the form up = (Uso, V,(t))T. Here Us is the far field velocity and V() is the
vertical gust velocity.
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Figure 1. Sketch of the computational domain € its boundary 0 (left)
and the flexibly supported aerofoil model (right)

2.2. SST turbulence model. In order to enclose the system the turbulent
viscosity is modeled with the aid of SST k — w turbulence model, see [33]. The
transition is treated with the aid of the v — Re,, model is used, see [26]. The SST
turbulence model is a modification of the k — w turbulence model for which the
turbulent viscosity is given by vp = g Here, the turbulent kinetic energy k = k(z, t)
and the turbulent specific dissipation rate w = w(x,t) are modeled by

ok O(usk) N 0 Ok

ot + o, = Ve P — Bwky + oz, <5k: 6$1) ) (2.3)
Ow  O(uw) 5 0 ow

o " om, e o (B ) TP

where the production and the destruction terms are modified due in the first equa-
tion using the effective intermittency coefficient ., and 7_, = max(min(vy,,,1),0.1).
Further, the viscosity coefficients are given by €, = v + oxvr and e, = v + o,vr and
the source terms Py and Cp are defined by

g
Py =vpSi;S;;, Cp= D (

w

ok Ow )+
83% 83% ’

and P, = ®«< P. The closure coefficients 8, 5%, oy, 0., aw, op are chosen from [33],
see also [34] or [18]. Equations ([2.3]) are equipped with boundary conditions

a) k =k, W= Weo onI'p,

b) k=0, W = Wyall on Dyyy, (2.4)
ok ow

c) n =0, n =0, on I'p.

2.3. Transitional model. The transition from laminar to turbulence regimes is
modeled with the aid of Menter’s v — Re,, model, see [20], where the equation for the
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intermittency coefficient v reads

Oy | Oum) 0 vr\ 9y
(‘%Jr 0x; =B Eﬂy+8wi VJraf ox; )’ (2:5)

where P, = P, —c vP, , and E, = c,vE_ |, — E_, are the transition source and
v e Y €. s v

destruction terms, respectively. Here, we set P, = F_ . caS\/YF, ... E,, =
ca2fYF, . Further, § and  are the strain rate and vorticity magnitudes and

the transition onset is modeled by FOnset = (Fm — Fonsets) , where F__
2
min (max (F, .., F* ) ,2), F, .= 72 Tosk—, Rey = 2. Further weset F, ., =
3 .
max (1 - (g—g) ,0), Ry = Vw, and F,  =e ~(Br/4" where y denotes the wall dis-

tance and Re,, is the transition Reynolds number. The following constants for the
intermittency equation were used c.; = 1, cq1 = 2, ce2 = 50, cq2 = 0.06, o5 = 1.
Further, Re,, is the critical Reynolds number given by an empirical correlation, and
another empirical correlation is used for the function F|_ ., , which controls the length
of the transition region. The correlations are based on newly defined transported un-

known Re,, governed by the ALE form of the equation

oRe,,  O(uFe,) 9 6Tz,
ot + oz, =P, + 67% <0911/9ft 8%) ) (2.6)

where the source term P,, is given by

P, :CﬂttL(Rth _Eat) (1_F9t)7

ot

¢y, = 0.03, 0,, = 2, too = 500v/U? is the time scale, U is the local magnitude of the
velocity U = |lul|2 and the blending function F,, is defined as

_1 .
F,, =min (1, max | F_, e*(y/5)4,1 _ 77/62 ’

375Qy E WV _ 5\2

G0 0= 5 P =e (Rew /1077

and Re,, = =/-. The source term P,, on the right hand side of equation (?2.6| includes
also the Reynolds number Re,, glven by an empirical correlations.

The transitional model (2.5) and (2.6) is equipped with the boundary conditions
a) ~v=1, Re, =Re,,__ on I'p,
oy ORe,,

b) a?:o, aTZO OIlFWtUFO

6:

2.4. Empirical correlations. In order to enclose the model, the empirical correla-
tions published in [35] are used. First, the length of the transition is controlled by

length = leugth(Re ). Further, the transitional onset momentum thickness Reynolds
number Re,, is correlated to pressure gradient \g and to turbulence intensity T'u.
Further, the correlation for Re,, and for the critical Reynolds number are specified,
see [35] or [24].
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2.5. ALE formulation. In order to practically treat the motion of the domain €,
the Arbitrary Lagrangian-Eulerian (ALE) method is used, see [§]. The ALE mapping
A Q0 = Q, A= A t) = Ai(€) defined for all t € (0,T) and € € Q7 = Qq is
assumed to be smooth and to have smooth bounded Jacobian J(x,t) Furthermore,
by DA/Dt the ALE derivative is denoted (i.e. the derivative with respect to the
reference configuration) and wp denotes the domain velocity (i.e. velocity of the
point x = A(&,t) with a given reference & € Q. The ALE derivative is then related
to the time derivative by (see also [9])

A
Dth(x,t) g{ (z,t) + wp(z,t) - Vf(z,t). (2.7)

In order to approximate the equatlons on time dependent domains, the time derivative
in equations (2.1 7 D D and -D are replaced by the ALE time derivative
using the formula Wthh also modifies the convection term. In the practical
computation this is not complicated and thus for the sake of brevity this description
is left out.

2.6. Structure model. The flow model is coupled with the structure model repre-
senting the flexibly supported aerofoil (see Figure [1)). The aerofoil can be vertically
displaced by h (downwards positive) and rotated by angle v (clockwise positive). The
nonlinear equations of motion then read (see [9])

mh + Sa @ cos o — Saa? sina + kph = —L(t), (2.8)
Sy hcosa+ Ind + koo = M(t).

where m is the mass of the aerofoil, S, is the static moment around the elastic axis
(EA), and I, is the inertia moment around EA. The parameters kj, and k, denote
the stiffness coefficients. On the right-hand side the aerodynamical lift force L(t) and
aerodynamical torsional moment M (t) are involved, which satisfy

L= —l/ oa;n; dS, M = l/ TNy ort 48, (2.9)
Twe Twt
where 0;; = p[—pd;; + 2vS;5], ¢ = —(x2 — 2FA), 1§ = 21 — 2FA, | denotes the
considered depth of the aerofoil section, and 2P4e = (P4 254) is the p051t10n of EA
of the aerofoil at the time instant ¢, see Figure

3. NUMERICAL APPROXIMATION

In this section, the approximation of the considered mathematical model of tran-
sitional turbulent flow is shown. The time discretization is based on the backward
difference formula and for the spatial discretization the stabilized FEM is used. Fur-
ther, the four equations of the transitional model are discretized in time, linearized
and stabilized using the streamline upwind/Petrov Galerkin (SUPG) method. Let
us moreover mention that in the computations for the k¥ — w equations the (non-
linear) crosswind diffusion is also applied in order to suppress non-physical under-
shoots/overshoots, see [19].



Numerical simulation of turbulent transitional flow 217

3.1. Time discretization. We consider the equidistant partition t; = jA? of the
time interval I with a time step At > 0, and denote the approximations u’ ~ u(-, ti),
p? & p(-,t;) and similarly k7 = k(-,t;), w’ = w(-,t;), v/ = (., t;), Eetj = Re,, (-, t;).
Moreover, we approximate the domain velocity wp at time level ¢; by 'w%. ‘We shall
focus on the description of the discretization at a time instant t,,1, which is kept
fixed throughout this section. For the sake of simplicity the subscript ¢,,+1 shall be
omitted, i.e. =€) . . Farther, we shall denote by ) = L?(£2) the Lebesgue space,
by W = H' (©2) the Sobolev space and by X the space of test functions defined
by X ={zeW:2z=00onTpUTlwy,,, }. Then the time derivatives in equations
are approximated at the time ¢ = ¢,,;1 by the second order backward

difference formula, i.e.

a 3 n+1l _ 4™ n—1
e P & L (3.1)
Ot ltpiq 2At

Here, let us mention that for ALE approach the ALE derivative needs to be approxi-

mated at this place.

3.2. Spatial discretization of flow model. The weak formulation of the time dis-
cretized Reynolds averaged Navier-Stokes equations is obtained by the multiplication
of the equations by a test function z € X, integration over the domain €,, ap-
plication of the Green’s theorem and using approximation . The (spatial) weak
formulation reads: Find U™+l = (u"*! p"*tl) € W x @Q such that u approximately
satisfies the boundary conditions 7b) and

a(U"TH V) = L(V). (3.2)

holds for all V = (z,q) € X x Q. The non-linear form a(-,-) and the linear form L(-)
are defined for any U = (u,p) e W x Q and V = (z,q9) € X x Q,
3u .
a(U, V) = (E + (w - V)’U,7Z)Q + (v, S(u), S(z), + (V- u,q), — (p,V . z)Q7
4

~n—1
L(V) = E(u 3‘2)9_@(’“’ 72)97

where @* = u* o Ay, 0 Ay 1+ .- In order to approximate the problem , the spaces
X, W and @ are approximated by finite element subspaces XA, Wa and Qa, re-
spectively.

Here, the Taylor-Hood family of finite elements are used, defined over an admissible
triangulation Ta of the computational domain Q = Q; _,. In order to stabilize the
method the fully stabilized scheme (see [16]) is used, which consists of SUPG and
pressure stabilizing/Petrov Galerkin (PSPG) stabilization combined with the div-div
stabilization, see [16].

The stabilized discrete problem reads: Find U = (ux™,pkt') € Wa x Qa such
that u" ! satisfies approximately the Dirichlet boundary conditions (2.2la,b) and

a(U; U V) + LU, V) +PWU,V)=L(V)+ F(V),
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holds for all V = (z,q) € XA X Qa, where the terms £ and F are the SUPG/PSPG
terms defined by

Z Oy (E—VA’U,-}—(’U V)u + Vp, ) ,
K

KeTa
Oy (4a™ —a" ), w)
V= 3 ok ),
where the function w == = u* — w%ﬂ stands for the transport velocity, and ¥ =
(ERH -V)z + Vgq. The div-div stabilizing terms P (U, V') read
PUV)= > 7.(V-u,V- z),. (3.3)
KeTa

Here, the following choice of the stabilizing parameters 7, and J, based on the
local element length h, is used for the Taylor-Hood family of finite elements, 7, =
maXgzeQ ||U(CC)||2, 51( = hf(/TK'

3.3. Spatial discretization of the turbulence/transitional model. Further-
more, the complete transitional model consisting of equations , , is
step-by-step time discretized, weakly formulated and stabilized formulation is intro-
duced. The time derivatives in equations 7 ' ) and ( are approximated
using the 2nd order backward difference formula (13.1), the equations for k, w, v and
Re,, are multiplicated by ¢,, ¢, , ¢, and Pz, respectively, integrated over 2,

and Green’s theorem is applied. The function spaces are then approximated by their
finite element counterparts consisting of piecewise linear functions defined over the
triangulation Ta. The stabilized formulation is obtained using a linearization of the
non-linear terms and an application of the SUPG stabilization procedure.

4. NUMERICAL RESULTS

The described method was verified using several test cases of laminar, turbulent
and transitional flow, see [9], [19], [22]. Here, the method was applied to two test
cases of aeroelastic simulation of flow induced aerofoil vibrations and the transient
response to the sudden change of flow conditions (gust).

4.1. Aeroelastic simulations for NACA 0012. First, the numerical simulation of
the fully coupled aeroelastic problem of flow induced vibrations of the aerofoil NACA
0012 was addressed. The following parameters of the flowing air and the profile were
used: m = 8.66 x 1072 kg, S, = —7.797 x 107* kgm, I, = 4.87 x 10~* kgm?,
kn = 105.1 N/m, k, = 3.696 Nm/rad, d = 0.05 m, ¢ = 0.3 m, p = 1.225 kg/m3,
v =15x107° m/s?, see also [9]. The elastic axis EA is located at 40% of the profile.
The numerical simulation was performed for the sub- and also close to critical far
field velocity Us, = 37.7m s~ ! determined by a linear approach.

The verification of the applied numerical method was done with the main attention
paid to the resulting aeroelastic response. Figure 2| shows the aeroelastic response of
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Figure 2. Aeroelastic response of NACA 0012 aerofoil for sub-critical far
field velocity Us = 10m/s
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Figure 3. Aeroelastic response of NACA 0012 aerofoil for sub-critical far
field velocity Us = 20m/s

the fully coupled FSI problem for far field velocity Us, = 10m/s. The aeroelastic
response predict stronger aerodynamical damping for flow velocity Uy, = 20m/s,
see Figure 3| For higher flow velocities closer to the critical velocity the aeroelastic
response seems to predict again decrease of the aerodynamical damping for Uy =
35m/s, see Figure[d] For U, = 38m/s the aeroelastic system is only weakly damped,
see Figure |5 which agrees well with the results in the literature.

4.2. Gust response. The developed numerical method was applied on numerical
approximation of flow around a flexibly supported aerofoil subject to the change
of flow conditions, see [2I]. The results are compared with the previous study of
the authors [20], where turbulent and non-turbulent flows were considered without
modelling of the turbulent-laminar flow transition. The considered aerofoil shape is
given by
B kyr (Cr — 1) b 360 — ar
(Z-D)(Z —c))sr =17 "7 180

where Z = X +1¢Y and z = x+1iy are complex variables describing the unit circle and
the aerofoil shape in X — Y and & — y complex planes, respectively. The constants
Cxr = —0.89 — 0.114 and ar = 2deg determine the aerofoil shape (A1), see Figure

The following values were used m = 2 x 107 *kg, I, = 1.2 x 10~ kg m? and S, =
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Figure 4. Aeroelastic response of NACA 0012 aerofoil for sub-critical far
field velocity Uso = 35m/s
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Figure 5. Aeroelastic response of NACA 0012 aerofoil for sub-critical far
field velocity Us, = 38 m/s

2 x 107%kgm. The aerofoil chord was ¢ = 0.1m, the elastic axis was located at
30 % of the chord, and the depth of the aerofoil section was [ = 0.03m. The stiffness
coefficients of the springs were k, = 26 N/m, k, = 0.29 N m/rad.

The air density was p = 1.225kgm ™ and the air kinematic viscosity was v =
1.453 x 1075m?/s. The inlet turbulence intensity was 1% (k = 1.5 x 1074 U2, w =
10s~! on I'7). The finite element triangular mesh was used, anisotropically refined
nearby the boundary in order to well capture the turbulent boundary layer, wake
and also the separation region. The described stabilized FEM was used, and the
computations were performed on the coarse and the fine mesh. A vertical gust of 1s
duration was considered as a sudden perturbation of the inlet velocity Uy, = 15m/s,
ie.

V() = % (1 + cos(m(t — to))

for ¢t € [to,to + 1] and Vy(t) = 0 otherwise. Here, Vo = 1.5ms™! and Vg = 5ms™!
were considered for the light and heavy gusts, respectively. The aeroelastic aerofoil
responses h(t) and a(t) numerically simulated in the time domain for the light gust
are shown in Figure[6] The numerically simulated aerofoil responses h(t) and a(t) for
the heavy gust are shown in Figure[7] The results for the transitional flow model are
close to the simulations using the turbulence model, but before the gust starts and
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Figure 6. Aeroelastic response to the light gust: Comparison of results
computed by laminar, turbulent and transitional models
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Figure 7. Aeroelastic response to the heavy gust: Comparison of results
computed by laminar, turbulent and transitional models

Figure 8. Comparison of velocity flow patterns for the laminar (left), tur-
bulent (middle) and transitional(right) models just before the gust starts

Figure 9. Comparison of the turbulent kinetic energy k distribution for
the turbulent (left) and transitional (right) models just before the gust
starts
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also when it disappears, the fluid flow becomes almost laminar on the aerofoil surface.
The comparison of the flow velocity patterns just before the gust starts computed
by the laminar, turbulent and transitional model are shown in Figure See also
turbulent kinetic energy pattern at the same time instant shown in Figure [0} where
the most of the turbulent kinetic energy for the transitional model is in a far wake
and almost zero turbulent kinetic energy is at the aerofoil surface. On the other hand

Figure 10. Heavy gust aeroelastic response: comparison of flow velocity
patterns for turbulent (left) and transitional (right) models at three time

instants

the flow velocity patterns shown in Figure [10] indicate that the transitional model is
much closer to the turbulent model for high displacement of the aerofoil.
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5. CONCLUSION

A new original FEM taking into account transition of the laminar to turbulent flow
was developed and successfully applied on the FSI problem of flow induced vibrations
for a 2-DOF aerofoil. The results were computed by the developed in-house software
and the fully coupled FSI problem was solved. In addition to implementation of
the laminar-turbulent flow transition, the developed method was also modified for
application in the case of case of time dependent computational domain using the
ALE method. First, the aeroelastic simulation were performed for the NACA 0012
aerofoil, whose vibrations were induced by the prescribed initial conditions. The
results of the transitional model agree well with the reference results [9]. Further, the
simulation of an 2-DOF aerofoil loaded by a sudden gust was performed. The results
of the described method was compared with reference results [21]. The transitional
model was shown to “switch” between the laminar/turbulent model in dependence
on the displacements, i.e. the results of the transitional model correspond better
to the results of the laminar model for the case of small displacements (light gust),
whereas for large displacements (heavy gust) the results agree better with the results
obtained by the fully turbulent model. This influence is particularly important for
small displacements (light gust case).
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Science Foundation.
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A Short History of the Publications of the University of Miskolc

The University of Miskolc (Hungary) is an important center of research in Central Eu-
rope. Its parent university was founded by the Empress Maria Teresia in Selmecbanya
(today Banska Stiavnica, Slovakia) in 1735. After the first World War the legal pre-
decessor of the University of Miskolc moved to Sopron (Hungary) where, in 1929, it
started the series of university publications with the title Publications of the Mining
and Metallurgical Division of the Hungarian Academy of Mining and Forestry Engi-
neering (Volumes I.-VI.). From 1934 to 1947 the Institution had the name Faculty
of Mining, Metallurgical and Forestry Engineering of the Jozsef Nador University of
Technology and Economic Sciences at Sopron. Accordingly, the publications were
given the title Publications of the Mining and Metallurgical Engineering Division
(Volumes VIL.-XVI.). For the last volume before 1950 — due to a further change in
the name of the Institution — Technical University, Faculties of Mining, Metallurgical
and Forestry Engineering, Publications of the Mining and Metallurgical Divisions was
the title.

For some years after 1950 the Publications were temporarily suspended.

After the foundation of the Mechanical Engineering Faculty in Miskolc in 1949 and
the movement of the Sopron Mining and Metallurgical Faculties to Miskolc, the Pub-
lications restarted with the general title Publications of the Technical University of
Heavy Industry in 1955. Four new series - Series A (Mining), Series B (Metallurgy),
Series C (Machinery) and Series D (Natural Sciences) - were founded in 1976. These
came out both in foreign languages (English, German and Russian) and in Hungarian.

In 1990, right after the foundation of some new faculties, the university was renamed
to University of Miskolc. At the same time the structure of the Publications was
reorganized so that it could follow the faculty structure. Accordingly three new se-
ries were established: Series E (Legal Sciences), Series F (Economic Sciences) and
Series G (Humanities and Social Sciences). The latest series, i.e., the series H (Euro-
pean Integration Studies) was founded in 2001. The eight series are formed by some
periodicals and such publications which come out with various frequencies.

Papers on computational and applied mechanics were published in the
Publications of the University of Miskolc, Series D, Natural Sciences.

This series was given the name Natural Sciences, Mathematics in 1995. The name
change reflects the fact that most of the papers published in the journal are of math-
ematical nature though papers on mechanics also come out.

The series

Publications of the University of Miskolc, Series C, Fundamental
Engineering Sciences

founded in 1995 also published papers on mechanical issues. The present journal,
which is published with the support of the Faculty of Mechanical Engineering and
Informatics as a member of the Series C (Machinery), is the legal successor of the
above journal.
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