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R. Ivan LEWIS, Room 2-16 Bruce Building, Newcastle University,
NEWCASTLE UPON TYNE, NE1 7RU, UK
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Abstract. Under the plane strain condition a mixed type boundary value problem of
a curved beam with rectangular cross section is investigated. The mixed type boundary
value problem describes a bending problem of the curved beam made of linearly elastic
polar orthotopic material. A minimum strain energy property is proven for the considered
bending problem. The solution is based on Castigliano’s principle. One- and two-layered
curved beams are analysed. The results obtained are compared with those computed by
commercial FEM software (Abaqus).
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1. Introduction

Figure 1 shows the linearly elastic curved beam of rectangular cross section. The
governing equations and boundary conditions are formulated in the cylindrical coor-
dinate system Orϕz. The plane z = 0 is the symmetry plane of the curved beam for
the geometrical and loading properties. The space occupied by the curved beam is
B = B ∪ ∂B. The points of B are given by the prescriptions:

B =
{

(r, ϕ, z)
∣∣ a < r < b, 0 < ϕ < π, −t < z < t

}
, ∂B =

6⋃
i=1

∂Bi,

∂Bi =
{

(r, ϕ, z)
∣∣ a ≤ r ≤ b, ϕ = ϕi, −t ≤ z ≤ t, i = 1, 2, ϕ1 = 0, ϕ2 = π

}
,

∂Bi =
{

(r, ϕ, z)
∣∣ r = ri, 0 ≤ ϕ ≤ π, −t ≤ z ≤ t, i = 3, 4, r3 = a, r4 = b

}
,

∂Bi =
{

(r, ϕ, z)
∣∣ a ≤ r ≤ b, 0 ≤ ϕ ≤ π, z = zi, i = 5, 6, z5 = −t, z6 = t

}
.

Unit vectors of the cylindrical coordinate system Orϕz are denoted by er, eϕ and ez
(Figure 1).

Since the beam is in plane strain the displacement vector is of the form u =
u(r, ϕ)er + v(r, ϕ)eϕ. It is assumed that the material of the curved beam obeys
Hooke’s law. Its inverse is given by the equations

εr =
∂u

∂r
= S11σr + S12σϕ, (1.1)

c©2017 Miskolc University Press
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Figure 1. Bending of an orthotropic curved beam of rectangular cross
section by radial loads

εϕ =
1

r

(
u+

∂v

∂ϕ

)
= S12σr + S22σϕ, (1.2)

γrϕ =
1

r

(
∂u

∂ϕ
− v
)

+
∂v

∂r
= S66τrϕ, (1.3)

where εr, εϕ, γrϕ are the strains, σr, σϕ, τrϕ are the stresses and S11, S12, S22 and S66

are material constants. S11, S12, S22 are called reduced flexibility coefficients. Their
determination is based on the equations [1, 2]

S11 = s11 −
s213
s33

, S12 = s12 −
s13s23
s33

, S22 = s22 −
s223
s33

in which s11, . . . , s33 are the stiffness components. We would like to emphasize that
all quantities, i.e., the displacements, strains and stresses, which appear in equations
(1.1), (1.2), (1.3) depend only on the polar coordinates r and ϕ.

We shall assume that there are no body forces. The considered bending problem
is defined by the following boundary conditions (Figure 1)

u(r, 0) = 0, σϕ(r, 0) = 0, a ≤ r ≤ b, (1.4)

u(r, π) =
π

2
C, σϕ(r, π) = 0, a ≤ r ≤ b, (1.5)

σr(a, ϕ) = σr(b, ϕ) = τrϕ(a, ϕ) = τrϕ(b, ϕ) = 0, 0 ≤ ϕ ≤ π. (1.6)

In equation (1.5), C is a given constant (C 6= 0).

The stress resultants at the end cross sections ϕ = 0 and ϕ = π should meet the
following conditions:

F ′ = 2t

b∫
a

τrϕ(r, π)dr, F ′′ = −2t

b∫
a

τrϕ(r, 0)dr. (1.7)

If the local equilibrium equations are all satisfied are then

F ′ = −F ′′ = F, (1.8)
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since there are no body forces and the surface segment ∂B3 ∪ ∂B4 is stress free. It
is also obvious that there exists a linear relationship between the stress resultant F
and displacement constant C.

2. Minimum strain energy property

We consider a new boundary value problem of curved beams made of orthotopic
linearly elastic material. The boundary conditions of the new problem are as follows:

ũ(r, 0) = 0, σ̃ϕ(r, 0) = σ̃ϕ(r, π) = 0, a ≤ r ≤ b, (2.1)

F = 2t

b∫
a

τ̃rϕ(r, π)dr, (2.2)

σ̃r(a, ϕ) = σ̃r(b, ϕ) = τ̃rϕ(a, ϕ) = τ̃rϕ(b, ϕ) = 0, 0 ≤ ϕ ≤ π. (2.3)

The radial displacement u at ϕ = π is not specified but the stress resultant at the
cross section ϕ = π is fixed. This boundary value problem has many solutions, it is
a relaxed version of the boundary value problem governed by equations (1.4), (1.5),
(1.6),(1.7). One solution of the relaxed boundary value problem (2.1), (2.2), (2.3)
is ũ = u, where u = u(r, ϕ) is the unique solution of the bending problem if the
boundary conditions are given by equations (1.4), (1.5), (1.6) and (1.7).

Denote U the strain energy of the curved beam. The next theorem formulates a
minimum strain energy property of the considered bending problem. Sternberg and
Knowles [3] characterized the Saint-Venant extension bending, torsion and flexures
problems in terms of certain associated minimum strain energy properties. Here,
a similar characterization is formulated for the considered bending problem of the
curved beam.

Theorem. For any F (F 6= 0) it holds that

U(u) ≤ U(ũ), (2.4)

where ũ = ũ(r, ϕ) is an arbitrary solution of the plane strain boundary value problem
determined by equations (2.1), (2.2) and (2.3).

Proof. From the definition of the strain energy [4] it follows that

U(ũ) = U(u) + U(ũ− u, u) + U(ũ− u). (2.5)

Here, U(ũ − u, u) denotes the mixed strain energy defined on the equilibrium dis-
placement fields û = ũ− u and u (see [4]).

According to Betti’s theorem [4] we have

U(ũ− u, u) =
π

2

∫
∂B2

[τ̃rϕ(r, π)− τrϕ(r, π)] C dr dz =

=
π

2

2t

b∫
a

τ̃rϕ(r, π) dr − 2t

b∫
a

τrϕ(r, π) dr

 C =
π

2
(F − F )C = 0. (2.6)
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Combination of equation (2.5) with equation (2.6) yields

U(ũ) = U(u) + U(ũ− u). (2.7)

Equation (2.7) is the proof of statement (2.4) since the strain energy is always
non-negative [4]. Hence U(ũ− u) ≥ 0.

3. Application of Castigliano’s principle

The local equilibrium equations for our problem are given by

∂σr
∂r

+
1

r

∂τrϕ
∂ϕ

+
σr − σϕ

r
= 0, a < r < b, 0 < ϕ < π, (3.1)

∂τrϕ
∂r

+
1

r

∂σϕ
∂ϕ

+
2τrϕ
r

= 0, a < r < b, 0 < ϕ < π. (3.2)

An equilibrated stress field can be obtained from formulae

σr =
V (r)

r2
sinϕ, σϕ =

1

r

dV

dr
sinϕ, τrϕ = −V (r)

r2
cosϕ (3.3)

in which V = V (r) is a stress function. Note that the stress boundary conditions
(1.4)2, (1.5)2 and the equilibrium equations (3.1), (3.2) are all satisfied. The stress
boundary conditions given by (1.6) are also satisfied if

V (a) = V (b) = 0 . (3.4)

Then the stress field in terms of V (r) is statically admissible. The total complemen-
tary energy of the curved beam can be written in the form [4, 5, 6]

Πc(V ) = U(V )−Wu, (3.5)

where

U(V ) =
πt

2

b∫
a

[
S11

(
V

r2

)2

+ 2S12
V

r3
dV

dr
+ S22

1

r2

(
dV

dr

)2

+ S66

(
V

r2

)2
]
r dr,

(3.6)

Wu =

∫
∂B2

u(r, π)τrϕ(r, π) dr dz = Cπt

b∫
a

V

r2
dr. (3.7)

According to the well known Castigliano’s principle [5, 6]

δΠc = 0 (3.8)

where the stress function V = V (r) is to be varied. We emphasize that the boundary
condition (3.4) should also be satisfied.

A detailed computation leads to the following boundary value problem

− S22r
2 d2V

dr2
+ S22r

dV

dr
+ (S11 + 2S12 + S66)V = C r, a < r < b, (3.9)

V (a) = 0, V (b) = 0. (3.10)
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The general solution of differential equation (3.9) is

V (r) = α1r
λ1 + α2r

λ2 +
C

S11 + 2S12 + S22 + S66
r (3.11)

where α1 and α2 are unknown integration constants and

λ1 = 1 +

√
S11 + 2S12 + S22 + S66

S22
, (3.12)

λ2 = 1−
√
S11 + 2S12 + S22 + S66

S22
. (3.13)

Substitution of equation (3.11) into (3.10) yields

α1 =
abλ2 − baλ2

(aλ2bλ1 − aλ1bλ2) (S11 + 2S12 + S22 + S66)
C , (3.14)

α2 =
aλ1b− abλ1

(aλ2bλ1 − aλ1bλ2) (S11 + 2S12 + S22 + S66)
C . (3.15)

The connection between the displacement constant C and stress resultant F can be
derived from the following equation:

F = 2t

b∫
a

τrϕ(r, π) dr = 2t

b∫
a

V

r2
dr. (3.16)

A detailed computation gives

F =
2tC

S11 + 2S12 + S22 + S66

{
ln
b

a
+

+
1

aλ2bλ1 − aλ1bλ2

[(
abλ2 − aλ2b

) (
bλ1−1 − aλ1−1

)
λ1 − 1

+

+

(
aλ1b− abλ1

) (
bλ2−1 − aλ2−1

)
λ2 − 1

]}
. (3.17)

Formulae for the stresses are as follows:

σr =

(
α1r

λ1−2 + α2r
λ2−2 +

C

(S11 + 2S12 + S22 + S66) r

)
sinϕ, (3.18)

σϕ =

(
α1λ1r

λ1−2 + α2λ2r
λ2−2 +

C

(S11 + 2S12 + S22 + S66) r

)
sinϕ, (3.19)

τrϕ = −
(
α1r

λ1−2 + α2r
λ2−2 +

C

(S11 + 2S12 + S22 + S66) r

)
cosϕ. (3.20)

If the beam is isotropic it holds that

S11 = S22 =
1− ν2
E

, S12 = −ν(1 + ν)

E
, S66 =

2(1 + ν)

E
, (3.21)
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where E is the Young’s modulus and ν is the Poisson number. A simple computation
gives

S11 + 2S12 + S22 + S66 =
4(1− ν2)

E
(3.22)

λ1 = 3, λ2 = −1. (3.23)

Inserting equations (3.22) and (3.23) into expressions (3.18), (3.19) and (3.20) set up
for the stresses, we obtain

σr =
(
α1r +

α2

r3
+
α3

r

)
sinϕ, (3.24)

σϕ =
(

3α1r −
α2

r3
+
α3

r

)
sinϕ, (3.25)

τrϕ = −
(
α1r +

α2

r3
+
α3

r

)
cosϕ, (3.26)

where

α3 =
E

1− ν2 C. (3.27)

Equations (3.24), (3.25) and (3.26) are identical to those which were derived by
Timoshenko and Goodier [7], and Lurje [6] for curved beams made of isotropic mate-
rials.

4. Two-layered curved beam

Figure 2 shows a two-layered curved beam made of two different linearly elastic or-
thotopic materials. The boundary conditions for this compound structure are given
by equations (1.4), (1.5) and (1.6). The elastic constants for material i (i = 1, 2),
which occupies the region Bi, are denoted by Si11, Si12, Si22 and Si66. The region Bi
is uniquely determined by the following relations:

Bi =
{

(r, ϕ, z)
∣∣∣ ai < r < bi, 0 ≤ ϕ ≤ π, −t ≤ z ≤ t; i = 1, 2;

a1 = a, b1 = c; a2 = c, b2 = b
}
.

F F

ϕ = π
2 ϕ = π

2

z

z = −t z = t

b

c

ϕ = π

1

2

O

ϕ = 0a

O

Figure 2. Two-layered curved beam of rectangular cross section.
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The connection between the beam components on the common cylindrical surface
r = c is perfect, i.e. neither the displacements u, v nor the stresses σr, τrϕ have jumps
if r = c. Consequently

u1(c, ϕ) = u2(c, ϕ), v1(c, ϕ) = v2(c, ϕ), 0 ≤ ϕ ≤ π, (4.1)

σ1r(c, ϕ) = σ2r(c, ϕ), τ1rϕ(c, ϕ) = τ2rϕ(c, ϕ), 0 ≤ ϕ ≤ π. (4.2)

We can obtain a solution to the boundary value problem constituted by equations
(1.4), (1.5), (1.6), (4.1) and (4.2) if we apply again the principle of minimum com-
plementary energy. Let us denote the stress function for region Bi by Vi = Vi(r)
(i = 1, 2). The statically admissible stress fields should satisfy both the equations of
equilibrium (3.1), (3.2) and the stress boundary conditions (1.4)1, (1.5)1, (1.6). It is
obvious that the traction continuity conditions given by equations (4.2) should also
be fulfilled. Formulae for the statically admissible stresses are as follows:

σir =
Vi(r)

r2
sinϕ, σiϕ =

1

r

dVi
dr

sinϕ, τirϕ = −Vi(r)
r2

cosϕ, (i = 1, 2),

(4.3)
where

V1(a) = 0, V2(b) = 0 V1(c) = V2(c). (4.4)

The total complementary energy for the curved two-layered beam is of the form:

Πc(V1, V2) =

=
πt

2


c∫
a

[
S111

(
V1
r2

)2

+ 2S112
V1
r3

dV1
dr

+ S122
1

r2

(
dV1
dr

)2

+ S166

(
V1
r2

)2
]
r dr +

+

b∫
c

[
S211

(
V2
r2

)2

+ 2S212
V2
r3

dV2
dr

+ S222
1

r2

(
dV2
dr

)2

+ S266

(
V2
r2

)2
]
r dr−


− Cπt


c∫
a

V1
r2

dr +

b∫
c

V2
r2

dr

 . (4.5)

By means of Castigliano’s principle [5, 6] we get from equation (4.5) that

δΠc = 0 (4.6)

where the stress functions V1 = V1(r) and V2 = V2(r) should be varied under condi-
tions (4.4). After some paper and pencil calculations (details are omitted), equation
(4.6) results in the following stationary conditions:

− Si22r
2 d2Vi

dr2
+ Si22r

dVi
dr

+ (Si11 + 2Si12 + Si66)Vi = Cr,

ai ≤ r ≤ bi, (i = 1, 2), a1 = a, b1 = c; a2 = c, b2 = b, (4.7)
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S122
1

c

(
dV1
dr

)
r=c

+ S112
V1(c)

c2
− S222

1

c

(
dV2
dr

)
r=c

− S212
V2(c)

c2
= 0. (4.8)

The general solution of the differential equation (4.6) is

Vi(r) = αi1r
λi1 + αi2r

λi2 + Ci r, (4.9)

where (i = 1, 2) and

Ci =
C

Si11 + 2Si12 + Si22 + Si66
, (4.10)

λi1 = 1 +

√
Si11 + 2Si12 + Si22 + Si66

Si22
, (4.11)

λi2 = 1−
√
Si11 + 2Si12 + Si22 + Si66

Si22
. (4.12)

The unknown integration constants in the expressions for the stress functions can be
computed from the following system of linear equations, which are based on boundary
conditions (4.4) and (4.8):

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



α1

α2

α3

α4

 =


β1
β2
β3
β4

 . (4.13)

Here

α1 = α11, α2 = α12, α3 = α21, α4 = α22 (4.14)

β1 = −C1a, β2 = (C2 − C1)c,

β3 = [C2(S212 + S222)− C1(S112 + S122)]c, β4 = −C2b,
(4.15)

a11 = aλ11 , a12 = aλ12 , a13 = a14 = 0, (4.16)

a21 = cλ11 , a22 = cλ12 , a23 = −cλ21 , a24 = −cλ22 , (4.17)

a31 = (S112 + λ11S122)cλ11 , a32 = (S112 + λ12S122)cλ12 ,

a33 = −(S212 + λ21S222)cλ21 , a34 = −(S212 + λ22S222)cλ22 ,
(4.18)

a41 = a42 = 0, a43 = bλ21 , a44 = bλ22 . (4.19)

The determination of the connection between the stress resultant F and displace-
ment constant C can be obtained from

F = 2t

 c∫
a

τ1rϕ(r, π)dr +

b∫
c

τ2rϕ(r, π)dr

 = 2t

 c∫
a

V1
r2

dr +

b∫
c

V2
r2

dr

 . (4.20)

A combination of equations (4.9), (4.14) with equation (4.20) gives the final formula
for the stress resultant:

F = 2t

[
α1

λ11 − 1

(
cλ11−1 − aλ11−1

)
+

α2

λ12 − 1

(
cλ12−1 − aλ12−1

)
+ C1 ln

c

a
+
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+
α3

λ21 − 1

(
bλ21−1 − cλ21−1

)
+

α4

λ22 − 1

(
bλ22−1 − cλ22−1

)
+ C2 ln

b

c

]
. (4.21)

Formulae for stresses σir, σiϕ and τirϕ (i = 1, 2) are as follows:

σir =

(
αi1r

λi1−2 + αi2r
λi2−2 +

Ci

r

)
sinϕ, (4.22)

σiϕ =

(
αi1λi1r

λi1−2 + αi2λi2r
λi2−2 +

Ci

r

)
sinϕ, (4.23)

τirϕ = −
(
αi1r

λi1−2 + αi2r
λi2−2 +

Ci

r

)
cosϕ. (4.24)

Following the method presented here we can generalize the two-layered solution for
the case of more than two layers.

5. Analysis of the displacement continuity conditions at the interface

There are two independent continuity conditions the displacements should fulfill on
the common cylindrical boundary surface of the two curved beam components. By
the use of the displacement continuity conditions (4.1) we can derive two independent
new continuity conditions that can be expressed in terms of strains and stresses. It
follows from equation (1.2) that

ε1ϕ(c, ϕ) = ε2ϕ(c, ϕ), 0 ≤ ϕ ≤ π, (5.1)

that is

c S112 σ1r(c, ϕ) + c S122 σ1ϕ(c, ϕ) = c S212 σ2r(c, ϕ) + c S222 σ2ϕ(c, ϕ). (5.2)

By using (4.3) we can rewrite this equation in terms of the stress functions V1, V2:

S112
V1(c)

c
+ S122

(
dV1
dr

)
r=c

− S212
V2(c)

c
− S222

(
dV2
dr

)
r=c

= 0. (5.3)

We remark that this equation is one of the stationarity conditions for the total com-
plementary energy – see equation (4.8).

The exact solutions should satisfy the two independent displacement continuity
condition if r = c. Next, we formulate a new displacement continuity conditions in
terms of stresses. Starting from equations (1.1), (1.2) we can write

∂2v

∂r∂ϕ
=

∂

∂r
[r (S12 σr + S22 σϕ)]− S11 σr − S12 σϕ. (5.4)

It follows from equation (1.3) that

∂2v

∂r∂ϕ
= S66

∂τrϕ
∂ϕ
− 1

r

(
∂2u

∂ϕ2
− ∂v

∂ϕ

)
. (5.5)
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A combination of equation (4.19) with equation (5.5) yields

q(r, ϕ) =
1

r

(
∂2u

∂ϕ2
− ∂v

∂ϕ

)
= S66

∂τrϕ
∂ϕ
− ∂

∂r
[r (S12 σr + S22 σϕ)] + S11 σr + S12 σϕ.

(5.6)

If equation (4.1) is satisfied at every point on the common cylindrical boundary
surface of the curved beam components then it follows that

q1(c, ϕ) =
1

c

(
∂2u1
∂ϕ2

− ∂v1
∂ϕ

)∣∣∣∣
r=c

= q2(c, ϕ) =
1

c

(
∂2u2
∂ϕ2

− ∂v2
∂ϕ

)∣∣∣∣
r=c

(5.7)

in which 0 ≤ ϕ ≤ π.

Substitute the stress functions V1 = V1(r) and V2 = V2(r) into equation (5.7) by
utilizing equations (4.7) and (5.6). After some manipulations we get

−
[
S122

1

c

(
dV1
dr

)
r=c

+ S112
V1(c)

c2

]
+
C

c
= −

[
S222

1

c

(
dV2
dr

)
r=c

+ S212
V2(c)

c2

]
+
C

c
.

(5.8)
or

S112
V1(c)

c
+ S122

(
dV1
dr

)
r=c

− S212
V2(c)

c
− S222

(
dV2
dr

)
r=c

= 0, (5.9)

Hence we have proved that two independent displacement continuity conditions
(5.1), (5.7) are all satisfied since they can be transformed into equation (4.8) which
follows from the stationary condition (4.6).

6. Examples

6.1. Example 1. The geometrical and material data of the considered single curved
beam are as follows:

a = 35 mm, b = 70 mm, t = 10 mm;

S11 = 0.5525 · 10−5
1

MPa
,

S12 = S21 = −0.1547 · 10−5
1

MPa
,

S22 = 0.9709 · 10−5
1

MPa
,

S66 = 0.1359 · 10−5
1

MPa
.

The displacement constant C = −1 mm. The force resultant which belongs to C is
F = −53.59065 kN. This value is obtained by the application of formula (3.17).

The stresses are calculated by using equations (3.18), (3.19), (3.20). They can also
be obtained from a FEM solution which is based on the application of the commercial
program Abaqus. The results are listed in Table 1.
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Table 1. Stresses in single curved beam. Comparison of theoretical
and FEM solutions.

Position σr [MPa] σϕ [MPa] τrϕ [MPa]

r [mm] ϕ [rad] Eq. (3.18) FEM Eq. (3.19) FEM Eq. (3.20) FEM

35.0 0.0 0.0000 0.0178 0.0000 0.0843 0.0000 0.5754
40.0 0.0 0.0000 0.0094 0.0000 -0.0089 90.4089 90.6799
50.0 0.0 0.0000 0.0084 0.0000 -0.0046 115.5556 115.676
60.0 0.0 0.0000 0.0080 0.0000 -0.0025 66.9516 67.0311
70.0 0.0 0.0000 0.0124 0.0000 0.0939 0.0000 -0.0049

35.0 0.7854 0.0000 -0.4065 -683.5371 -683.1990 0.0000 0.4068
40.0 0.7854 -63.9287 -64.1205 -425.3195 -425.3140 63.9287 64.1204
50.0 0.7854 -81.7101 -81.7951 -68.1447 -68.1905 81.7101 81.7950
60.0 0.7854 -47.3419 -47.3982 169.8475 169.8050 47.3419 47.3982
70.0 0.7854 0.0000 0.0000 341.7685 341.8760 0.0000 -0.0355

35.0 2.3562 0.0000 -0.4065 -683.5371 -683.1990 0.0000 -0.4068
40.0 2.3562 -63.9287 -64.1205 -425.3195 -425.3140 -63.9287 -64.1204
50.0 2.3562 -81.7101 -81.7951 -68.1447 -68.1905 -81.7101 -81.7950
60.0 2.3562 -47.3419 -47.3982 169.8475 169.8050 -47.3419 -47.3982
70.0 2.3562 0.0000 0.0000 341.7685 341.8760 0.0000 -0.0035

35.0 3.1416 0.0000 0.0178 0.0000 0.0843 0.0000 -0.5754
40.0 3.1416 0.0000 0.0094 0.0000 -0.0089 -90.4089 -90.6799
50.0 3.1416 0.0000 0.0084 0.0000 -0.0046 -115.5556 -115.6760
60.0 3.1416 0.0000 0.0080 0.0000 -0.0025 -66.9516 -67.0311
70.0 3.1416 0.0000 0.0124 0.0000 0.0939 0.0000 0.0049

6.2. Example 2. Two-layered curved beam. The geometrical and material data of
the considered two-layered curved beam made of two different materials are as follows:

a = 35 mm, b = 70 mm, c = 50 mm, t = 10 mm;

S111 = 0.5525 · 10−5
1

MPa
, S211 = 7.14 · 10−5

1

MPa
,

S112 = S121 = −0.1547 · 10−5
1

MPa
, S212 = S221 = −3.19 · 10−5

1

MPa
,

S122 = 0.9709 · 10−5
1

MPa
, S222 = 43.76 · 10−5

1

MPa
,

S166 = 0.1359 · 10−5
1

MPa
, S266 = 50.70 · 10−5

1

MPa
,

The displacement constant is again C = −1 mm. The force resultant for C is F =
−17.525 kN. For calculating F we have applied formula (4.21).

The stresses calculated with equations (4.22), (4.23), (4.24) are compared to those
of a FEM solution obtained by using the commercial program Abaqus. The results
are listed in Table 2.
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Table 2. Stresses in two-layered curved beam. Comparison of theo-
retical and FEM solutions.

Position σr [MPa] σϕ [MPa] τrϕ [MPa]
r [mm] ϕ [rad] Eq. (4.22) FEM Eq. (4.23) FEM Eq. (4.24) FEM

35.0 0.0000 0.0000 0.0163 0.0000 0.0477 0.0000 0.4494
40.0 0.0000 0.0000 0.0108 0.0000 -0.0069 40.6747 0.0409
50.0 0.0000 0.0000 0.0113 0.0000 0.0440 6.5699 6.6233

50.0 0.0000 0.0000 0.0079 0.0000 0.0026 6.5699 6.5695
60.0 0.0000 0.0000 0.0004 0.0000 0.0000 2.9508 2.9528
70.0 0.0000 0.0000 0.0005 0.0000 0.0036 0.0005 -0.0007

35.0 0.7854 0.0000 -0.3167 -383.7897 -383.4140 0.0000 0.3177
40.0 0.7854 -28.7614 -28.9218 -124.6154 -124.5690 28.7614 28.9216
50.0 0.7854 -4.6456 -4.6862 237.5746 237.7650 4.6456 4.6834

50.0 0.7854 -4.6456 -4.6454 2.4758 4.9515 4.6456 4.6453
60.0 0.7854 -2.0865 -2.0879 6.9181 9.6141 2.0865 2.0879
70.0 0.7854 0.0000 0.0004 10.3726 13.2767 0.0000 -0.0004

35.0 2.3562 0.0000 -0.3167 -383.7897 -383.4140 0.0000 0.3177
40.0 2.3562 -28.7614 -28.9218 -124.6154 -124.5690 -28.7614 -28.9216
50.0 2.3562 -4.6456 -4.6862 237.5746 237.7650 -4.6456 -4.6834

50.0 2.3562 -4.6456 -4.6454 2.4758 4.9515 -4.6456 -4.6453
60.0 2.3562 -2.0865 -2.0879 6.9181 9.6141 -2.0865 -2.0879
70.0 2.3562 0.0000 0.0004 10.3726 13.2767 0.0000 0.0004

35.0 3.1416 0.0000 0.0163 0.0000 0.0477 0.0000 -0.449
40.0 3.1416 0.0000 0.0108 0.0000 -0.0069 -40.6747 -40.9013
50.0 3.1416 0.0000 0.0113 0.0000 0.0440 -6.5699 -6.6233

50.0 3.1416 0.0000 0.0079 0.0000 0.0026 -6.5699 -6.5695
60.0 3.1416 0.0000 0.0004 0.0000 0.0000 -2.9508 -2.9528
70.0 3.1416 0.0000 0.0005 0.0000 0.0036 0.0000 0.0007

(Avg: 75%)

S, S11

−120.45
−110.41
−100.37
 −90.34
 −80.30
 −70.26
 −60.22
 −50.18
 −40.14
 −30.10
 −20.06
 −10.02
   0.02

Figure 3. Stress σr in a curved beam of rectangular cross section (one layer)
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(Avg: 75%)

S, S11

−42.53
−38.98
−35.44
−31.89
−28.35
−24.80
−21.26
−17.71
−14.17
−10.62
 −7.07
 −3.53
  0.02

Figure 4. Stress σr in a curved beam of rectangular cross section
(two-layered)

(Avg: 75%)

S, S22

−966.19
−845.38
−724.58
−603.77
−482.96
−362.16
−241.35
−120.55
   0.26
 121.07
 241.87
 362.68

Figure 5. Stress σϕ in a curved beam of rectangular cross section (one layer)
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(Avg: 75%)

S, S22

−542.23
−469.02
−395.82
−322.61
−249.40
−176.20
−102.99
 −29.78
  43.42
 116.63
 189.84
 263.04
 336.25

Figure 6. Stress σϕ in a curved beam of rectangular cross section
(two-layered)

(Avg: 75%)

S, S12

−120.45
−100.38
 −80.30
 −60.23
 −40.15
 −20.08
   0.00
  20.08
  40.15
  60.23
  80.30
 100.38
 120.45

Figure 7. Stress τrϕ in a curved beam of rectangular cross section
(one layer)
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(Avg: 75%)

S, S12

−42.53
−35.44
−28.35
−21.27
−14.18
 −7.09
  0.00
  7.09
 14.18
 21.27
 28.35
 35.44
 42.53

Figure 8. Stress τrϕ in a curved beam of rectangular cross section
(two-layered)

Figures 3 and 4 depict a single curved beam and a beam with two layers. Both
figures show the stress distribution of the normal stress σR. Observe that the com-
puted σϕ stress distribution is discontinuous, as is expected, only on the two-layered
curved beam (see Figures 5 and 6 for details).

The computed stress distribution τrϕ is illustrated for the single curved beam in
Figure 7, and for the two-layered beam in Figure 8.

According to results shown in Tables 1 and 2 the theoretical and FEM solutions
are in good agreement in both examples.

7. Conclusions

Under the plane strain conditions a mixed type boundary value problem of a curved
beam with rectangular cross section is analysed. One- and two-layered curved beams
made of polar orthotopic materials are considered. The mixed type boundary value
problems are bending problems. For isotropic, homogeneous curved beams this prob-
lem was first solved by Golovin [8].

The present paper applies a minimum strain energy property for finding the equa-
tions of the considered bending problem. Formulae for the stresses are obtained by
means of Castigliano’s principle. A detailed analysis is presented for the displacement
continuity conditions on the common cylindrical boundary surface of the two-layered
curved beam. By applying the method presented in the paper the solutions for the
two-layered beam can easily be generalized for the case of beams with more than two
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layers. The results of the theoretical computations are in good agreement with the
FEM solution.
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Abstract. In the open literature we have found no report on the Green function matrices of
curved beams except papers [1, 2, 3] by Szeidl at al. These works assume that the material
of the beam is homogeneous and isotropic. In the present paper we assume that the beam
is made of heterogeneous material in such a way that the material properties depend on the
cross-sectional coordinates. Under this condition we have the following aims: (1) we would
like to determine the Green function matrices in a closed-form for (a) fixed-fixed, (b) pinned-
pinned and (c) pinned-fixed circular beams. (2) With the knowledge of the Green function
matrices we can reduce those eigenvalue problems which provide the natural frequencies
of the free vibrations to eigenvalue problems governed by homogeneous Fredholm integral
equations. Our goal in this respect is to solve the latter eigenvalue problems numerically
and compare the results obtained with the results of finite element (FE) computations. Our
numerical solutions show a good agreement with the commercial FE computations.

Mathematical Subject Classification: 74G60, 74B15
Keywords: Circular beam, nonhomogeneous material, Green function matrices, problem of
free vibrations

1. Introduction

Curved beams are often used as various structural elements because of their favoura-
ble load-carrying capabilities. We mention, for instance, arch bridges and the role of
curved beams as stiffener elements in roof- and shell structures. Nowadays, it is
gradually getting cheaper to manufacture nonhomogeneous (heterogeneous or inho-
mogeneous) curved beams, such as composites, laminates and sandwich structures.
The benefits of such structural members can be the reduced weight and the higher
strength. A class of inhomogeneity (heterogeneity) is called cross-sectional inhomo-
geneity which means that the material parameters (the Young modulus E and the
Poisson number) are functions of the cross-sectional coordinates – these material pa-
rameters can change continuously on the cross-section, or can be constant over each
segment of the cross-section.

In the present paper we will focus on the free vibrations of heterogeneous curved
beams using a Green function matrix technique.

c©2017 Miskolc University Press

http://dx.doi.org/10.32973/jcam.2017.002
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As regards the preliminaries it is worthy to mention that Den Hartog [4] is known
to be the first to have dealt with the free vibrations of curved beams. Other early
but relevant results, considering the inextensibility of the centerline, were achieved
in [5, 6, 7]. A more recent research by Qatu and Elsharkawy [8] presents an exact
model and numerical solutions for the free vibrations of laminated arches. With the
differential quadrature method, Kang et al. [9] determine the eigenfrequencies for the
in- and out-of-plane vibrations of circular Timoshenko arches with rotatory inertia
and shear deformations included. Tüfekçi and Arpaci [10] obtain exact solutions
for the differential equations which describe the in-plane free harmonic vibrations of
extensible curved beams. Krishnan and Suresh [11] tackle the very same issue with a
shear-deformable finite element (FE) model. Paper [12] by Ecsedi and Dluhi analyse
some dynamic features of nonhomogeneous curved beams and closed rings assuming
cross-sectional heterogeneity. Elastic foundation is taken into account in [13]. Survey
paper [14] by Hajianmaleki and Qatu collects a bunch of references up until the early
2010s in the topic investigated. Kovács [15] considers layered arches with both perfect
and even imperfect bonding between any two adjacent layers. Article [16] by Juna et
al. uses the trigonometric shear deformation theory. The dynamic stiffness matrix is
obtained from the exact solutions of the related differential equations.

It seems that, meanwhile the Green function is commonly used for various straight
beam problems [17, 18, 19, 20, 21], it is somehow not preferred for the free vibrations
of curved beams. There are really a few exceptions. Szeidl in his PhD [1] investigates
how the extensibility of the centerline affects the free vibrations of planar, radially
loaded circular beams. One of the developed numerical techniques is based on the
use of the Green function matrix since its knowledge makes it possible to transform
the eigenvalue problem set up for the eigenfrequencies into an eigenvalue problem
governed by a system of homogeneous Fredholm integral equations where the Green
function matrix is the kernel. Similarly in [2], the authors determine the natural
frequencies of pinned-pinned and fixed-fixed circular arches under distributed load.
Kelemen [3] seeks how the natural frequencies are related to a constant distributed
external force system.

On the base of all that has been said the present paper has two main objectives.
First, to determine the Green function matrices for heterogeneous curved beams for
three support arrangements, i.e., for (a) fixed-fixed, (b) pinned-pinned and (c) pinned-
fixed circular beams. Then to investigate the vibratory behaviour of such beams. The
paper is organized into seven sections. After the introduction, the most important
hypotheses and assumptions are presented with the governing equations of the vibra-
tory issue. Then, the properties and the definition of the Green function matrices
are given in Section 3. This is followed by the numerical results and evaluation. The
article is closed by some conclusions, an appendix and the list of references. The
appendix contains the Green function matrices in closed-form.
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2. Kinematical, constitutive and motion equations

Here we summarize the most important hypotheses and governing equations of the
model we have established to tackle the vibratory problem. A thorough description
is available, e.g., in [22, 23, 24].

e
e

e



s  



Ce

R

Figure 1. Coordinate system

We use a curvilinear coordinate system whose orthogonal unit vectors eξ; eη; eζ are
attached to the E-weighted centerline which intersects the cross-section at the point
Ce. R is the initial (constant) radius of the centerline and the included angle of the
beam is ϑ̄ = 2ϑ. The infinitesimal line element is ds = Rdϕ where ϕ is the angle
coordinate. The cross-sections are uniform and symmetric with respect to the axis
η not only in the geometry but also in the material composition. Hence, the Young
modulus fulfills the condition E(η, ζ) = E(−η, ζ). It is obvious that the axis ζ is a
principal axis of inertia. The axis η is selected in such a way that the E-weighted
first moment with respect to this axis vanishes:

Qeη =

∫
A

E(η, ζ)ζdA = 0.

Under the conditions of the Euler-Bernoulli hypothesis the axial strain [8, 25] is
given by

εξ =
R

R+ ζ
(εoξ + ζκo) , (1)

where

εoξ =
duo
ds

+
wo
R
, ψoη =

uo
R
− dwo

ds
and κo =

dψoη
ds

. (2)

In these equations εoξ, uo and wo are the axial strain as well as the tangential and
normal displacement components on the centerline. Besides, ψoη and κo are the
rotation and the curvature of the centerline.

The material is linearly elastic, isotropic and, by assumption, it holds that σξ �
ση, σζ . Thus, the constitutive equation is Hooke’s law in the following form: σξ =
E(η, ζ)εξ. Making use of Hooke’s law and the kinematic relations (1)-(2) we can set
up the following equations for the axial force N and the bending moment M – as
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regards the details the reader is referred to [22, 23]:

N =

∫
A

σξdA =
Ieη
R2

mεoξ −
M

R
, M =

∫
A

σξζdA = −Ieη
(

d2wo
ds2

+
wo
R2

)
. (3)

Here [12]

Ae =

∫
A

E(η, ζ) dA , Ieη =

∫
A

E(η, ζ) ζ2dA; m =
AeR

2

Ieη
− 1 (4)

are the E-weighted area and the E-weighted moment of inertia. Moreover, m is a
dimensionless geometry-heterogeneity parameter.

The equilibrium equations can be obtained from the principle of virtual work [22].
It can be given in the following form:∫

V

σξδεξdV =

∫
L

(fnδwo + ftδuo) ds. (5)

Here the virtual quantities are denoted by the symbol δ while fn, ft are distributed
loads in the normal and tangential direction. The principle of virtual work yields two
non-linear equilibrium equations [23]:

d

ds

(
N +

M

R

)
− 1

R

(
N +

M

R

)
ψoη + ft = 0 , (6)

d

ds

[
dM

ds
−
(
N +

M

R

)
ψoη

]
− N

R
+ fn = 0 . (7)

Let us drop the non-linear terms and substitute (3)1,2 for N and M then (2)1 for εoξ.
If, in addition to this, we introduce the dimensionless displacements

Uo =
uo
R
, Wo =

wo
R

we get the following differential equations [22, 24]:[
0 0
0 1

] [
Uo
Wo

](4)
+

[
−m 0

0 2

] [
Uo
Wo

](2)
+

+

[
0 −m
m 0

] [
Uo
Wo

](1)
+

[
0 0
0 m+ 1

] [
Uo
Wo

](0)
=
R3

Ieη

[
ft
fn

]
. (8)

Here and now on, the n-th derivative of a quantity (. . .) in terms of ϕ is denoted by
(. . .)(n). For the problem of free vibrations the distributed loads are forces of inertia.
Thus

ft = −ρaA
∂2uo
∂t2

; fn = −ρaA
∂2wo
∂t2

, (9)

where ρa is the average density over the cross-section of area A and t denotes time.

For time-harmonic and undamped vibrations equation system (8) assumes the fol-
lowing form:
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0 0
0 1

] [
Û

Ŵ

](4)
+

[
−m 0

0 2

] [
Û

Ŵ

](2)
+

+

[
0 −m
m 0

] [
Û

Ŵ

](1)
+

[
0 0
0 m+ 1

] [
Û

Ŵ

](0)
= λ

[
Û

Ŵ

]
(10)

where Û and Ŵ are the dimensionless vibration amplitudes and

λ = ρaA
R3

Ieη
α2 (11)

is the unknown eigenvalue which belongs to the eigenfrequency α of the free vibrations.
As regards the left side of equation (10), the effect of cross-sectional heterogeneity
appears through the parameter m.

3. The Green function matrix

This section presents the definition of the Green function matrix for a class of
boundary value problems governed by a system of degenerated ordinary differential
equations. The definition is taken from a thesis – see [1] or paper [3] for details. First,
we shall rewrite equation (10) into the following matrix form:

K(y) =

4∑
ν=0

ν

P(ϕ)y(ν)(ϕ) = r(ϕ) =

=

[
0 0
0 1

]
︸ ︷︷ ︸

4
P

[
Û

Ŵ

]
︸ ︷︷ ︸

y(4)

(4)

+

[
−m 0

0 2

]
︸ ︷︷ ︸

2
P

[
Û

Ŵ

]
︸ ︷︷ ︸

y(2)

(2)

+

[
0 −m
m 0

]
︸ ︷︷ ︸

1
P

[
Û

Ŵ

]
︸ ︷︷ ︸

y(1)

(1)

+

+

[
0 0
0 m+ 1

]
︸ ︷︷ ︸

0
P

[
Û

Ŵ

]
︸ ︷︷ ︸

y(0)

= λ

[
Û

Ŵ

]
︸ ︷︷ ︸

r

3

P =

[
0 0
0 0

]
. (12)

Remark 1.: Differential equation (12) is called degenerated since the matrix
3

P has
no inverse.
Remark 2.: For equilibrium problems, the right side r is given by equation (10)
which means that r represents a dimensionless distributed load.

We shall assume that (12) is associated with homogeneous linear boundary condi-
tions of the form

Uµ(y) =

3∑
ν=0

[
Aνµy(ν)(−ϑ) + Bνµy(ν)(ϑ)

]
=

=

3∑
ν=0


 11

Aνµ
12

Aνµ
21

Aνµ
22

Aνµ

[ y1(−ϑ)
y2(−ϑ)

](v)
+

 11

Bνµ
12

Bνµ
21

Bνµ
22

Bνµ

[ y1(ϑ)
y2(ϑ)

](v) =

[
0
0

]
(13)
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where µ = 1, . . . , 4. The constant matrices Aνµ and Bνµ fulfill the conditions

11

Aνµ =
21

Aνµ =
11

Bνµ =
21

Bνµ = 0.

For equilibrium problems equations (12), (13) constitute a boundary value problem.
With the knowledge of the Green function matrix the solution sought can be given
by the integral:

y(ϕ) =

∫ ϑ

−ϑ
G(ϕ, γ)r(γ)dγ (14)

in which G(ϕ, γ) is the Green function matrix and ϕ, γ are angle coordinates. The
Green function matrix is defined by the following four properties [1, 23]:

1. G(ϕ, γ) is a continuous function of the angle coordinates ϕ and γ in each of
the triangular domains −ϑ ≤ ϕ ≤ γ ≤ ϑ and −ϑ ≤ γ ≤ ϕ ≤ ϑ. Moreover,

G11(ϕ, γ), G12(ϕ, γ) [G21(ϕ, γ), G22(ϕ, γ)]

are 2 [4] times continuously differentiable with respect to ϕ. The derivatives

∂νG(ϕ, γ)

∂ϕν
= G(ν)(ϕ, γ) (ν = 1, 2)

∂νG2i(ϕ, γ)

∂ϕν
= G

(ν)
2i (ϕ, γ) (ν = 1, 2, . . . , 4; i = 1, 2)

are also continuous in ϕ and γ.
2. For any γ in −ϑ, . . . , ϑ the derivatives

G11(ϕ, γ); G
(1)
12 (ϕ, γ); G

(ν)
21 (ϕ, γ) (ν = 1, 2, 3); G

(ν)
22 (ϕ, γ) (ν = 1, 2)

are continuous at ϕ = γ, except G
(1)
11 (ϕ, γ) and G

(3)
22 (ϕ, γ) – these later two

have a jump that is

lim
ε→0

[
G

(1)
11 (ϕ+ ε, ϕ)−G(1)

11 (ϕ− ε, ϕ)
]

=
1

P−111 (ϕ), (15a)

lim
ε→0

[
G

(3)
22 (ϕ+ ε, ϕ)−G(3)

22 (ϕ− ε, ϕ)
]

=
4

P−122 (ϕ). (15b)

3. Let α be an arbitrary constant vector. Then, for any γ, G(ϕ, γ)α as a function
of ϕ (ϕ 6= γ) satisfies the equation

K [G(ϕ, γ)α] = 0.

4. The vector G(ϕ, γ)α as function of ϕ should satisfy the boundary conditions
as well:

Uµ [G(ϕ, γ)α] = 0, µ = 1, . . . , 4.

If the Green function matrix exists (an existence proof can be found in [1]) the
column vector (14) satisfies differential equation (12) and the boundary conditions
(13), i.e., integral (14) is really the solution of the boundary value problem (12), (13).
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The general solution to the homogeneous part of equation (12) is given by the
equation

y =

[
4∑
i=1

Y
(2×2)

i C
(2×2)

i

]
e

(2×1)
(16)

where Ci is a constant non-singular matrix, e is a constant column matrix and

Y1 =

[
cosϕ 0
sinϕ 0

]
, Y2 =

[
− sinϕ 0

cosϕ 0

]
, (17a)

Y3 =

[
− sinϕ+ ϕ cosϕ (m+ 1)ϕ

ϕ sinϕ −m

]
, Y4 =

[
− cosϕ− ϕ sinϕ 1

ϕ cosϕ 0

]
. (17b)

It follows from Property 3 that the Green function matrix has the following math-
ematical form:

G(ϕ, γ) =

4∑
i=1

Yi(ϕ) [Ai(γ) + Bi(γ)] ϕ ≤ γ, (18a)

G(ϕ, γ) =

4∑
i=1

Yi(ϕ) [Ai(γ)−Bi(γ)] ϕ ≥ γ. (18b)

Here Ai(γ) and Bi(γ) are 2×2 matrices. We remark that the coefficients Bi(γ) can be
determined by using Properties 1 and 2 of the definition while the coefficients Ai(γ)
can be obtained by using Property 4 of the definition, i.e., the boundary conditions

Uµ

[
4∑
i=1

Yi(ϕ)Ai(γ)α

]
= ∓Uµ

[
4∑
i=1

Yi(ϕ)Bi(γ)α

]
. (19)

Calculation of the Green function matrix and the results of the calculations for
fixed-fixed, pinned-pinned and pinned-fixed beams are presented in Appendix A.1
and A.4.

Consider now the system of differential equations

K[y] = λy (20)

where λ is a parameter (the unknown eigenvalue). Assume that differential equations
(20) are associated with the homogeneous linear boundary conditions (13). Equa-
tions (20) and (13) constitute an eigenvalue problem with λ as the eigenvalue. Since
the eigenvalue problem (20) and (13) is self-adjoint [1, 23] it follows that the Green
function matrix is cross-symmetric [1]:

G(ϕ, γ) = GT (γ, ϕ).

Recalling (14) the eigenvalue problem (20), (13) can be replaced by the homogeneous
Fredholm integral equation

y(ϕ) = λ

∫ ϑ

−ϑ
G(ϕ, γ)y(γ)dγ . (21)
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Eigenvalue problem (21) can be solved numerically if we follow the solution procedure
detailed in [23, 26].

4. Numerical results – free vibrations

We have developed a Fortran 90 program for solving numerically the algebraic
eigenvalue problem derived from eigenvalue problem (21). Three support arrange-
ments were considered: (a) fixed-fixed beams, (b) pinned-pinned beams and (c)
pinned-fixed beams. The results are the same as those in thesis [22] obtained un-
der the condition that the central force acting on the beam is equal to zero.

Table 1. Typical values of Ci,char

i = 1 i = 2 i = 3 i = 4

Fixed-fixed beams 2.266 6.243 12.23 20.25

Pinned-pinned beams 1 4 9 16

Pinned-fixed beams 1.556 5.078 10.541 17.97

Consider a straight beam with the same length ` as that of the curved beam we deal
with. The eigenfrequencies αi str. (i = 1, 2, ...) of the straight beam are well-known –
see for instance [1, 22] – and are given by

αi str. =
Ci, charπ

2√
ρaA
Ieη

`2
. (22)

The constant Ci, char depends on the ordinal number of the frequency – see Table 1
— and ` = 2Rϑ is the length of the beam. Recalling now equation (11), as detailed
in [23], we get

Ci,char
αi

αi str.
=

√
λi√

ρa A
Ieη

R2

π2√
ρa A
Ieη

`2

=
ϑ̄ 2
√
λi

π2
. (23)

This quotient is plotted in the next three diagrams for the above mentioned three
support conditions. The eigenfrequencies of the curved beams we have considered
are therefore compared to the first eigenfrequency of straight beams with the same
length and same material composition. It is worth emphasizing that the material
composition is incorporated into the model via the parameter m.

4.1. Fixed-fixed supports. The quotient (23) is plotted in Figure 2 against the
central angle ϑ̄ of the beam. The picked values of m are 750, 1 000, 1 300, 1 750, 2 400,
3 400, 5 000, 7 500, 12 000, 20 000, 35 000, 60 000, 100 000 and 200 000. The outcomes
are identical to those of [1] valid for homogeneous beams. Thus, it turns out that the
ratio of the even frequencies do not depend on m. Another important property is that
a frequency shift can be observed: in terms of magnitude, the first/third frequency
becomes the second/fourth one if the central angle is sufficiently great.
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Figure 2. Eigenfrequencies for fixed-fixed beams [27]

Table 2. FE verifications, fixed-fixed beams, m = 1 200, R/b = 10

ϑ
α1 New model

α1 Abaqus

α2 New model

α2 Abaqus

α3 New model

α3 Abaqus

α4 New model

α4 Abaqus

0.5 1.019 1.115 1.193 1.314

1 1.031 1.037 1.021 1.075

1.5 1.014 1.025 1.039 1.037

2 1.008 1.015 1.022 1.032

2.5 0.971 1.010 1.015 1.022

Some finite element computations were carried out for verification reasons us-
ing the commercial software Abaqus. In Abaqus 6.7 we used the Linear Pertur-
bation, Frequency Step. The model consisted of B22 (3-node Timoshenko beam)

elements. Further, we chose E = 2 · 1011 Pa and ρa = 7800 kg/m
3
. R/b is the
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centerline radius/cross-sectional height ratio. The frequency ratios of the new model
(αiNew model) and Abaqus (αiAbaqus) are gathered in Tables 2 and 3. Generally, there
is a very good agreement.

Table 3. FE verifications, fixed-fixed beams, m = 10 800, R/b = 30

ϑ
α1 New model

α1 Abaqus

α2 New model

α2 Abaqus

α3 New model

α3 Abaqus

α4 New model

α4 Abaqus

0.5 1.014 1.007 1.018 1.039

1 1.004 1.006 1.010 1.014

1.5 1.002 1.003 1.006 1.009

2 1.001 1.002 1.003 1.005

2.5 1.000 1.001 1.002 1.004

3 1.000 1.001 1.002 1.004

Recalling the results gathered in Tables 1 and 4 in article [10], we can make some
additional comparisons as shown in Tables 4 and 5. We assume a rectangular cross-
section (A = 0.01 m2; Iη = 8.33·10−6 m4) and that E = 2·1011 Pa, ρa = 7 800 kg/m3.
In Tables 4 and 5 Ref. [10] col. 1 and Ref. [28] consider axial extension and rotatory
inertia effects, while in Ref. [10] col. 2, none of these is incorporated. Moreover, Ref.
[10] col 5. is the most accurate model: axial extension, rotatory inertia and transverse
shear effects are all assumed. In general, the agreement is quite good between the
current and even with the most accurate model.

Table 4. Comparison of the eigenfrequencies, 2ϑ = π/2, fixed-fixed
supports

m Ref. [28] Ref. [10] col. 1 Ref. [10] col. 2 Ref. [10] col. 5 New model

10 000 α1 63.07 63.06 63.16 62.62 63.1

10 000 α2 117.22 117.19 120.76 115.85 117.5

10 000 α3 217.13 217.08 218.41 213.28 218.2

10 000 α4 249.26 345.21 322.26 247.96 249.8

2 500 α1 251 251 252.66 244.24 251.89

2 500 α2 399.68 399.65 483.04 390.09 401.16

2 500 α3 613.25 613.33 873.64 600.7 617.25

2 500 α4 847.24 847.07 1289.06 795.82 859.02

Table 5. Comparison of the eigenfrequencies, 2ϑ = π, fixed-fixed
supports

m Ref. [28] Ref. [10] col. 1 Ref. [10] col. 2 Ref. [10] col. 5 New model

10 000 α1 12.23 12.23 12.24 12.21 12.24

10 000 α2 26.89 26.89 26.95 26.80 26.92

10 000 α3 49.93 49.93 50.03 49.70 50.07

10 000 α4 76.43 76.44 76.84 75.95 76.85

2 500 α1 48.87 48.86 48.96 48.51 48.9

2 500 α2 106.85 106.85 107.78 105.53 107.1

2 500 α3 198.57 198.51 200.13 194.94 199.5

2 500 α4 299.61 299.59 307.37 292.46 302.13



Green’s functions for nonhomogeneous curved beams 29

4.2. Pinned-pinned supports. In Figure 3 the ratio (23) is plotted against the
central angle ϑ̄ of the circular beam. The curves run similarly as for fixed-fixed beams
and the character of the curves plotted are the same. The quotients are generally
smaller for the same parameters meaning that the pinned supports are softer.

Figure 3. Eigenfrequencies for pinned-pinned beams [26]

Table 6. FE verifications, R/b = 10; m = 1 200

ϑ
α1 New model

α1 Abaqus

α2 New model

α2 Abaqus

α3 New model

α3 Abaqus

α4 New model

α4 Abaqus

0.5 1.001 1.053 1.109 1.179

1 1.014 1.029 1.004 1.053

1.5 1.007 1.014 1.028 1.006

2 1.004 1.008 1.014 1.022

2.5 1.003 1.005 1.010 1.015
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When comparing these numerical results to the Abaqus computations (the settings
were the same as mentioned in relation with fixed-fixed beam) once again, we find a
really good agreement. See Tables 6 and 7 for the computational results.

Table 7. FE verifications, R/b = 30 ,m = 10 800

ϑ
α1 New model

α1 Abaqus

α2 New model

α2 Abaqus

α3 New model

α3 Abaqus

α4 New model

α4 Abaqus

0.5 1.006 1.010 1.005 1.025

1 1.002 1.004 1.007 1.011

1.5 1.001 1.002 1.003 1.006

2 1.000 1.001 1.002 1.003

2.5 1.000 1.001 1.002 1.003

3 1.001 1.001 1.001 1.002

Some further comparisons with Tables 5 and 8 in [10] are provided hereinafter. The
data are the same as for fixed-fixed members. The results are presented in Tables 8
and 9.

Table 8. Comparison of the eigenfrequencies, 2ϑ = π/2, pinned-
pinned supports

m Ref. [28] Ref. [10] col. 1 Ref. [10] col. 2 Ref. [10] col. 5 New model

10 000 α1 38.38 38.38 38.42 38.28 38.41

10 000 α2 89.57 89.56 90.46 89.08 89.77

10 000 α3 171.42 171.41 172.17 169.75 172.18

10 000 α4 244.96 244.94 269.26 243.05 245.82

2 500 α1 152.93 152.93 153.7 151.45 153.48

2 500 α2 343.01 342.76 361.85 336.46 345.31

2 500 α3 552.15 552.17 688.7 549.84 552.28

2 500 α4 675.71 675.83 1077.01 651.82 685.38

Table 9. Comparison of the eigenfrequencies, 2ϑ = π, pinned-pinned
supports

m Ref. [28] Ref. [10] col. 1 Ref. [10] col. 2 Ref. [10] col. 5 New model

10 000 α1 6.33 6.33 6.33 6.32 6.33

10 000 α2 19.31 19.31 19.33 19.28 19.32

10 000 α3 38.98 38.97 39.02 38.87 39.05

10 000 α4 63.53 63.53 63.71 63.29 63.79

2 500 α1 25.28 25.28 25.31 25.21 25.3

2 500 α2 77.01 76.99 77.31 76.57 77.18

2 500 α3 155.24 155.25 156.09 153.75 155.96

2 500 α4 251.86 251.82 254.83 248.12 253.81
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4.3. Pinned-fixed supports. The curves are similar to the two previous cases and
the frequencies are always between the typical values valid for pinned-pinned and
fixed-fixed members. Abaqus computations [29] verified the validity of these numerical
results just for the two previous support arrangements.

Figure 4. Eigenfrequencies for pinned-fixed beams [23]

5. Conclusions

We list our conclusions below:

1. We have investigated the free vibrations of circular beams with cross-sectional
heterogeneity. For the three support arrangements, i.e., for fixed-fixed, pinned-
pinned and pinned-fixed curved beams we have determined the Green function
matrices in closed form.
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2. With the knowledge of the Green function matrices we have reduced the self-
adjoint eigenvalue problems, the solution of which results in the natural fre-
quencies sought, to eigenvalue problems governed by homogeneous Fredholm
integral equations. These integral equations were solved numerically.

3. It has turned out that, for any support arrangement, the even natural frequen-
cies are independent of the heterogeneity-geometry parameter m while the odd
ones do depend on it for smaller central angles.

4. The numerical results were verified by commercial finite element calculations
and by comparing them to other models from the literature. A good agreement
is found.

5. Let r be a dimensionless distributed load of the beams. With the knowledge
of the Green function matrices the corresponding equilibrium problems can be
solved in a closed form which is given by equation (14).

Acknowledgement. This research was supported by the National Research, Development
and Innovation Office - NKFIH, K115701.

Appendix A. Elements of the Green function matrix

The definition of the Green function matrix in Section 3 was published in thesis
[1]. It is worth mentioning that Lin [30] introduced the concept of a generalized
Green function for a class of ordinary differential equations for finding particular
solutions to nonhomogeneous boundary value problems (equilibrium problems). In
contrast to this work, integral (14) provides the complete solution to the boundary
value problem considered if we know the corresponding Green function matrix. In
the sequel we detail its calculation.

Recalling (18) and (17) we can give the Green function matrix in the following
form:

G(ϕ, γ)︸ ︷︷ ︸
(2×2)

=

[
cosϕ 0
sinϕ 0

] {[ 1

A11

1

A12

0 0

]
±

[
1

B11

1

B12

0 0

]}
+

[
− sinϕ 0

cosϕ 0

] {[ 2

A11

2

A12

0 0

]
±

[
2

B11

2

B12

0 0

]}
+

[
− sinϕ+ ϕ cosϕ (m+ 1)ϕ

ϕ sinϕ −m

]
 3

A11

3

A12
2

A21

2

A22

±
 3

B11

3

B12
3

B21

3

B22

+

[
− cosϕ− ϕ sinϕ 1

ϕ cosϕ 0

]
 3

A11

3

A12
3

A21

3

A22

±
 3

B11

3

B12
3

B21

3

B22

 .

The sign is [positive](negative) if [ϕ ≤ ψ] (ϕ ≥ ψ).



Green’s functions for nonhomogeneous curved beams 33

A.1. Solutions for the matrices Bi. Fulfillment of Properties 1 and 2 yields the
unknown elements of the matrices Bi. The discontinuities are taken from a compari-
son of (12) and (15a). The equation system to be solved is obviously independent of
the boundary conditions:


cos γ − sin γ − sin γ + γ cos γ (1 +m)γ − cos γ − γ sin γ 1
sin γ cos γ γ sin γ −m γ cos γ 0
− sin γ − cos γ −γ sin γ 1 +m −γ cos γ 0
cos γ − sin γ γ cos γ + sin γ 0 −γ sin γ + cos γ 0
− sin γ − cos γ −γ sin γ + 2 cos γ 0 −γ cos γ − 2 sin γ 0
− cos γ sin γ −γ cos γ − 3 sin γ 0 γ sin γ − 3 cos γ 0




1

B11

1

B12
2

B11

2

B12
3

B11

3

B12
3

B21

3

B22
4

B11

4

B12
4

B21

4

B22


=



0 0
0 0
1

2m
0

0 0
0 0

0 −1

2


. (24)

The solutions are given by the following equations:

1

B11 =
1

2
sin γ − 1

4
γ cos γ

2

B11 =
1

4
γ sin γ +

1

2
cos γ

3

B11 =
1

4
cos γ

3

B21 =
1

2m
4

B11 = −1

4
sin γ

4

B21 = −1

2
(1 +m)

γ

m

and

1

B12 = −1

4
cos γ − 1

4
γ sin γ

2

B12 =
1

4
sin γ − 1

4
γ cos γ

3

B12 =
1

4
sin γ

3

B22 = 0
4

B12 =
1

4
cos γ

4

B21 =
1

2
.

(25)

In what follows, let us introduce simplified notations as shown

a =
1

B1i; b =
2

B1i; c =
3

B1i; d =
3

B2i; e =
4

B1i; f =
4

B2i.

A.2. The matrices Ai – fixed-fixed supports. The boundary conditions are of
the form

Û
∣∣∣
±ϑ

= Ŵ
∣∣∣
±ϑ

= Ŵ (1)
∣∣∣
±ϑ

= 0

thus, Property 3 yields the equations
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[
cosϑ sinϑ sinϑ− ϑ cosϑ −(m+ 1)ϑ − cosϑ− ϑ sinϑ 1
cosϑ − sinϑ − sinϑ+ ϑ cosϑ (m+ 1)ϑ − cosϑ− ϑ sinϑ 1

]


1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=

[
−a cosϑ− b sinϑ− c (sinϑ− ϑ cosϑ) + d(m+ 1)ϑ+ e (cosϑ+ ϑ sinϑ)− f
a cosϑ− b sinϑ+ c (− sinϑ+ ϑ cosϑ) + d(m+ 1)ϑ+ e (− cosϑ− ϑ sinϑ) + f

]
,

[
− sinϑ cosϑ ϑ sinϑ −m −ϑ cosϑ 0
sinϑ cosϑ ϑ sinϑ −m ϑ cosϑ 0

]


1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=

[
a sinϑ− b cosϑ− cϑ sinϑ+ dm+ eϑ cosϑ
a sinϑ+ b cosϑ+ cϑ sinϑ− dm+ eϑ cosϑ

]
,

[
cosϑ sinϑ − sinϑ− ϑ cosϑ 0 cosϑ− ϑ sinϑ 0
cosϑ − sinϑ sinϑ+ ϑ cosϑ 0 cosϑ− ϑ sinϑ 0

]


1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=

[
−a cosϑ− b sinϑ+ c (sinϑ+ ϑ cosϑ)− e (cosϑ− ϑ sinϑ)
a cosϑ− b sinϑ+ c (sinϑ+ ϑ cosϑ) + e (cosϑ− ϑ sinϑ)

]
.

Hence, the equation system to be solved is
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
cosϑ sinϑ sinϑ− ϑ cosϑ −(m+ 1)ϑ − cosϑ− ϑ sinϑ 1
cosϑ − sinϑ − sinϑ+ ϑ cosϑ (m+ 1)ϑ − cosϑ− ϑ sinϑ 1
− sinϑ cosϑ ϑ sinϑ −m −ϑ cosϑ 0
sinϑ cosϑ ϑ sinϑ −m ϑ cosϑ 0
cosϑ sinϑ − sinϑ− ϑ cosϑ 0 cosϑ− ϑ sinϑ 0
cosϑ − sinϑ sinϑ+ ϑ cosϑ 0 cosϑ− ϑ sinϑ 0





1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=


−a cosϑ− b sinϑ− c (sinϑ− ϑ cosϑ) + d(m+ 1)ϑ+ e (cosϑ+ ϑ sinϑ)− f
a cosϑ− b sinϑ+ c (− sinϑ+ ϑ cosϑ) + d(m+ 1)ϑ− e (cosϑ+ ϑ sinϑ) + f

a sinϑ− b cosϑ− cϑ sinϑ+ dm+ eϑ cosϑ
a sinϑ+ b cosϑ+ cϑ sinϑ− dm+ eϑ cosϑ

−a cosϑ− b sinϑ+ c (sinϑ+ ϑ cosϑ)− e (cosϑ− ϑ sinϑ)
a cosϑ− b sinϑ+ c (sinϑ+ ϑ cosϑ) + e (cosϑ− ϑ sinϑ)

 .

By introducing the notations

D1 = ϑ cos2 ϑ− sinϑ cosϑ+ ϑ sin2 ϑ = ϑ− sinϑ cosϑ (26a)

and

D2 = m sinϑ (ϑ cosϑ− 2 sinϑ) + (1 +m)ϑ2 + ϑ cosϑ sinϑ (26b)

the solutions are as follows:

1

A1i =
1

D1

[
−b cos2 ϑ+ cϑ2 + dm (cosϑ− ϑ sinϑ)

]
, (27a)

2

A1i =
1

D2

[
a (1 +m)ϑ sin2 ϑ+ 2am sinϑ cosϑ− 2emϑ+

+e (1 +m)ϑ3 + fm (ϑ cosϑ+ sinϑ)
]
, (27b)

3

A1i =
1

D2

[
a (1 +m)ϑ+ e (1 +m)ϑ cos2 ϑ− 2em sinϑ cosϑ+ fm sinϑ

]
, (27c)

3

A2i =
1

D2
[2a sinϑ− 2eϑ cosϑ+ f (ϑ+ sinϑ cosϑ)] , (27d)

4

A1i =
1

D1

(
b− c sin2 ϑ− dm cosϑ

)
, (27e)

4

A2i =
1

D1

[
2b cosϑ− 2cϑ sinϑ+ d (1 +m)ϑ2 − d (1 +m)ϑ sinϑ cosϑ− 2dm cos2 ϑ

]
.

(27f)
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A.3. The matrices Ai – pinned-pinned supports. The boundary conditions are

Û
∣∣∣
±ϑ

= Ŵ
∣∣∣
±ϑ

= Ŵ (2)
∣∣∣
±ϑ

= 0.

Since only the last two boundary conditions are different in contrast to the case of
the fixed-fixed beams, the equation system to be solved is


cosϑ sinϑ sinϑ− ϑ cosϑ −(m+ 1)ϑ − cosϑ− ϑ sinϑ 1
cosϑ − sinϑ − sinϑ+ ϑ cosϑ (m+ 1)ϑ − cosϑ− ϑ sinϑ 1
− sinϑ cosϑ ϑ sinϑ −m −ϑ cosϑ 0
sinϑ cosϑ ϑ sinϑ −m ϑ cosϑ 0
sinϑ − cosϑ 2 cosϑ− ϑ sinϑ 0 2 sinϑ+ ϑ cosϑ 0
− sinϑ − cosϑ 2 cosϑ− ϑ sinϑ 0 −2 sinϑ− ϑ cosϑ 0





1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i



=


−a cosϑ− b sinϑ− c (sinϑ− ϑ cosϑ) + d(m+ 1)ϑ+ e (cosϑ+ ϑ sinϑ)− f
a cosϑ− b sinϑ+ c (− sinϑ+ ϑ cosϑ) + d(m+ 1)ϑ− e (cosϑ+ ϑ sinϑ) + f

a sinϑ− b cosϑ− cϑ sinϑ+ dm+ eϑ cosϑ
a sinϑ+ b cosϑ+ cϑ sinϑ− dm+ eϑ cosϑ

−a sinϑ+ b cosϑ− c (2 cosϑ− ϑ sinϑ)− e (2 sinϑ+ ϑ cosϑ)
−a sinϑ− b cosϑ+ c (2 cosϑ− ϑ sinϑ)− e (2 sinϑ+ ϑ cosϑ)

 .
If we define D1 and D2 by the equations

D1 = sin2 ϑ (28a)

and
D2 = mϑ+ 2 (1 +m)ϑ cos2 ϑ− 3m sinϑ cosϑ (28b)

the solutions are
1

A1i =
1

2D1
[2b sinϑ cosϑ+ 2cϑ− dm (2 sinϑ+ ϑ cosϑ)] , (29a)

2

A1i =
1

D2

[
a
(
2(1 +m)ϑ sinϑ cosϑ−m sin2 ϑ+ 2m cos2 ϑ

)
+

+e
(
3mϑ2 + 2ϑ2 − 2m

)
− fm (ϑ sinϑ− 2 cosϑ)

]
, (29b)

3

A1i =
1

D2

(
am− e

(
m cos2 ϑ− 2m sin2 ϑ+ 2(1 +m)ϑ sinϑ cosϑ

)
+ fm cosϑ

)
,

(29c)
3

A2i =
2

D2

[
a cosϑ+ e (ϑ sinϑ− cosϑ) + f cos2 ϑ

]
, (29d)

4

A1i =
1

2D1
(−2c sinϑ cosϑ+ dm sinϑ) , (29e)

4

A2i =
1

2D1
[−2b sinϑ− 2c (sinϑ+ ϑ cosϑ) +

+d
(
mϑ cos2 ϑ+ 3m sinϑ (cosϑ+ ϑ sinϑ) + 2ϑ sin2 ϑ

)]
. (29f)
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A.4. The matrices Ai – pinned-fixed supports. Finally, for the third support
arrangements

Û
∣∣∣
±ϑ

= Ŵ
∣∣∣
±ϑ

= Ŵ (1)
∣∣∣
ϑ

= Ŵ (2)
∣∣∣
−ϑ

= 0

are the boundary conditions. Hence


cosϑ sinϑ sinϑ− ϑ cosϑ −(m+ 1)ϑ − cosϑ− ϑ sinϑ 1
cosϑ − sinϑ − sinϑ+ ϑ cosϑ (m+ 1)ϑ − cosϑ− ϑ sinϑ 1
− sinϑ cosϑ ϑ sinϑ −m −ϑ cosϑ 0
sinϑ cosϑ ϑ sinϑ −m ϑ cosϑ 0
sinϑ − cosϑ 2 cosϑ− ϑ sinϑ 0 2 sinϑ+ ϑ cosϑ 0
cosϑ − sinϑ sinϑ+ ϑ cosϑ 0 cosϑ− ϑ sinϑ 0





1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=


−a cosϑ− b sinϑ− c (sinϑ− ϑ cosϑ) + d(m+ 1)ϑ+ e (cosϑ+ ϑ sinϑ)− f
a cosϑ− b sinϑ+ c (− sinϑ+ ϑ cosϑ) + d(m+ 1)ϑ− e (cosϑ+ ϑ sinϑ) + f

a sinϑ− b cosϑ− cϑ sinϑ+ dm+ eϑ cosϑ
a sinϑ+ b cosϑ+ cϑ sinϑ− dm+ eϑ cosϑ

−a sinϑ+ b cosϑ− c (2 cosϑ− ϑ sinϑ)− e (2 sinϑ+ ϑ cosϑ)
a cosϑ− b sinϑ+ c (sinϑ+ ϑ cosϑ) + e (cosϑ− ϑ sinϑ)


is the equation system to be solved. With

D = −4m+ 11m cos2 ϑ− 7m cos4 ϑ− 4mϑ sinϑ cos3 ϑ−
− 2mϑ sinϑ cosϑ+ 2ϑ cosϑ sinϑ− 4ϑ cos3 ϑ sinϑ+ 3mϑ2 + 2ϑ2 (30)

the solutions are as follows:

1

A1i = − 1

D

{
a
[
−2ϑ2 (m+ 1) cos2 ϑ+ 2mϑ cosϑ sinϑ

]
+

+ b
[
−2ϑ2m sinϑ cosϑ− 2ϑ2 sinϑ cosϑ−mϑ cos2 ϑ+ 4mϑ cos4 ϑ−
− 7m sinϑ cos3 ϑ+ 4m sinϑ cosϑ− 2ϑ cos2 ϑ+ 4ϑ cos4 ϑ

]
+

c
[
−2ϑ3 − 2ϑ3 (m+ 1) cos2 ϑ− 3ϑ3m+ 4mϑ sin2 ϑ+mϑ2 sinϑ cosϑ− 2ϑ2 sinϑ cosϑ

]
+ d

[
m (m+ 1)ϑ3 cosϑ− 4m2ϑ cosϑ+m2ϑ cos3 ϑ+ 2ϑm cosϑ−

− 4ϑm cos3 ϑ− 4m2 sinϑ+ 7m2 sinϑ cos2 ϑ+

+ 3m (m+ 1)ϑ2 sinϑ cos2 ϑ+ 2mϑ2 sinϑ+ 3m2ϑ2 sinϑ
]

+

+ e
[
−2 (m+ 1)ϑ3 sinϑ cosϑ− 4ϑm cosϑ (ϑ cosϑ− sinϑ)− 2ϑ2 cos2 ϑ

]
+

+ fmϑ cosϑ [ϑ− sinϑ cosϑ]} , (31a)

2

A1i = − 1

D

{
a
[
−2ϑ−mϑ+ 6ϑ cos2 ϑ− 4 (m+ 1)ϑ cos4 ϑ+ 3mϑ cos2 ϑ−

− 5m cosϑ sinϑ+ 7m sinϑ cos3 ϑ− 2ϑ2 (m+ 1) sinϑ cosϑ
]

+

+ b
[
2m sin2 ϑ− 2mϑ sinϑ cosϑ− 2 (m+ 1)ϑ2 sin2 ϑ

]
+
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+ c
[
4mϑ sinϑ cosϑ+ 2m cos2 ϑ− 2ϑ2 cos2 ϑ− 2mc−

2 (m+ 1)ϑ3 sinϑ cosϑ+ 2mϑ2 − 4mϑ2 cos2 ϑ+ 2ϑ2
]

+

+ d
[
mϑ2 cosϑ sin2 ϑ+ 2m2ϑ2 cosϑ sin2 ϑ−m2ϑ sinϑ sin2 ϑ−

− m2 cosϑ sin2 ϑ+m (m+ 1)ϑ3 sinϑ
]

+

+ e
[
6mϑ− 5mϑ3 + 2ϑ2 sinϑ cosϑ+ 2mϑ3 cos2 ϑ− 4ϑ3−

− 2m sinϑ cosϑ+ 3mϑ2 cosϑ sinϑ− 4mϑ cos2 ϑ+ 2ϑ3 cos2 ϑ
]

+

+f
[
−2m sinϑ+ 4m sinϑ cos2 ϑ− 5mϑ cosϑ+ 3mϑ cos3 ϑ+ ϑ2m sinϑ

]}
, (31b)

3

A1i =
1

D

{
a
[
2ϑ− 2ϑ (m+ 1) cos2 ϑ−m cosϑ sinϑ+ 3mϑ

]
+

+ b
[
2m sin2 ϑ− 2 (m+ 1)ϑ sinϑ cosϑ

]
+

+ c
[
4mϑ sinϑ cosϑ− 2m sin2 ϑ− 2 (m+ 1)ϑ2 cos2 ϑ+ 2ϑ sinϑ cosϑ

]
+

+ d
[
m (m+ 1)ϑ sinϑ cos2 ϑ+m (m+ 1)ϑ2 cosϑ−m2ϑ sinϑ−m2 sin2 ϑ cosϑ

]
+

+ e
[
mϑ cos2 ϑ− 4mϑ cos4 ϑ− 2 (m+ 1)ϑ2 sinϑ cosϑ−

− 6m sinϑ cosϑ+ 7m sinϑ cos3 ϑ+ 2mϑ+ 4ϑ cos2 ϑ sin2 ϑ
]

+

+f
[
2m sinϑ− 3m sinϑ cos2 ϑ+mϑ cosϑ

]}
, (31c)

3

A2i =
1

D

{
2a
(
−3 sinϑ cos2 ϑ+ 2 sinϑ+ ϑ cosϑ

)
+ 2b

(
− cosϑ+ cos3 ϑ+ ϑ sinϑ

)
+

+ 2c
(
−ϑ sinϑ cos2 ϑ+ ϑ2 cosϑ− ϑ sinϑ− cos3 ϑ+ cosϑ

)
−

− dm
(
ϑ2 − cos2 ϑ+ cos4 ϑ

)
+ 2e

(
3ϑ cos3 ϑ− 4ϑ cosϑ+ ϑ2 sinϑ+ sinϑ cos2 ϑ

)
+

+2f
(
−2 sinϑ cos3 ϑ+ sinϑ cosϑ+ ϑ

)}
, (31d)

4

A1i =
1

D

{
−2a

(
−m sin2 ϑ+ (1 +m)ϑ sinϑ cosϑ

)
+

+ b
(
2mϑ cos2 ϑ− 3m sinϑ cosϑ+mϑ+ 2ϑ cos2 ϑ

)
−

− c
[
mϑ− 7m sin3 ϑ cosϑ+ 3mϑ cos2 ϑ− 4mϑ cos4 ϑ+

+2 (m+ 1)ϑ2 sinϑ cosϑ+ 4ϑ cos2 ϑ sin2 ϑ
]

+

+ dm
(
ϑ cosϑ− 2m sinϑ+ 5m sinϑ cos2 ϑ+ (m+ 1)ϑ2 sinϑ− 3 (m+ 1)ϑ cos3 ϑ

)
+

+ 2e
(
−ϑ2 sin2 ϑ+ 2m sin2 ϑ−mϑ2 sin2 ϑ− ϑ sinϑ cosϑ− 2mϑ sinϑ cosϑ

)
+

+fm
(
ϑ sinϑ− cosϑ+ cos3 ϑ

)}
, (31e)

4

A2i =
1

D
a
[
2m sin2 cosϑ− 2ϑ2 (m+ 1) cosϑ− 2ϑ2 cosϑ+

+4mϑ2 cos5 ϑ+ 2mϑ sinϑ− 2 (m+ 1)ϑ sinϑ cos2 ϑ
]

+

+ b
[
−2ϑ cosϑ+ 6bϑ cos3 ϑ− 10m sinϑ cos2 ϑ−
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−2mϑ2 sinϑ+ 6mϑ cos3 ϑ− 2ϑ2 sinϑ+ 4m sinϑ
]

+

+ c
[
−2 (m+ 1)ϑ3 cosϑ− 2ϑ sin2 ϑ cosϑ− 2ϑ2 sinϑ− 4mϑ2 sinϑ+ 4m sinϑ−
−4m sinϑ cos2 ϑ+ 8mϑ cosϑ sin2 ϑ− 6 (m+ 1)ϑ2 sinϑ cos2 ϑ

]
+

+ d
[
2ϑ3 + 4mϑ

(
mϑ2 − 1

)
+ 6mϑ

(
ϑ2 −m

)
+ 14m (m+ 1)ϑ sin2 ϑ cos2 ϑ+

+12m2 sinϑ cos3 ϑ− 4ϑ2 (m+ 1)
2

sinϑ cos3 ϑ+

+2
(
ϑ2m2 − 3m2 + ϑ2 + 2mϑ2

)
cosϑ sinϑ

]
+

+ e
[
2ϑ3 sinϑ+ 2 (m+ 1)ϑ2 cos3 ϑ− 4ϑ2 cosϑ+ 4m cosϑ sin2 ϑ−

−4mϑ sinϑ cos2 ϑ− 2ϑ sinϑ cos2 ϑ+ 4mϑ sinϑ− 6mϑ2 cosϑ− 2ϑ3m sinϑ
]

+

+ fm
(
ϑ2 − cos2 ϑ+ cos4 ϑ

)
. (31f)
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Ákos József Lengyel
Departmrent of Applied Mechanics, University of Miskolc

H-3515 Miskolc-Egyetemváros, Miskolc, Hungary
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Abstract. The paper provides a new analytical method for determining the eigenfrequences
of composite beams with interlayer slip provided that the beam is subjected to an axial load.
Application of the d’Alembert principle yields the equations of motion. The axial and rotary
inertia are taken into account. This formulation leads to a general eigenvalue problem whose
solution is illustrated by a numerical example.
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1. Introduction

Layered composite structures, especially layered beams, are widely applied in building
and bridge engineering since the advantages of the layers made of different elastic
materials can be complement each other, while their disadvantages can be reduced
or eliminated. Therefore it is very important to understand the mechanical behavior
of the layered composite beams and the influence of the connection between the
layers for the mechanical properties. In a number of industrial applications the layers
of composite beams are joined to each other by different shear connectors such as
nails, screws or rivets. Because of the elastic deformation of those connectors two
phenomena can occur between the layers. In normal direction the layers can separate
(it is called uplift) and in axial direction an interlayer slip can happen. In this paper
it is assumed that the connection is perfect in normal direction, viz. uplift is not
allowed, whilst the connection is imperfect in axial direction so interlayer slip can
appear.

There are a lot of works in connection with composite beams with interlayer slip [1]-
[18] The first studies were published in the 1950’s [1, 2, 3]. The pioneering and most
cited work is Newmark et al. [1]. They elaborated an analytical solution for composite
beams with interlayer slip based on the Euler-Bernoulli beam theory. The problem
was governed by a linear differential equation of second order in the longitudinal force
resisted by the top element, and the other unknowns were the longitudinal force and

c©2017 Miskolc University Press
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the expression for moment along the beam. Girhammar and Gopu [5] proposed a
formulation for the exact first- and second-order analyses of composite beam columns
with partial shear interaction subjected to transverse and axial loading. Ecsedi and
Baksa [6] also deduced the governing equation of the problem in terms of the slip and
the vertical displacement.

There exist several works in connection with the dynamic analysis of composite
beams with interlayer slip [7, 8, 9, 10, 11]. An exact and an approximate analysis of
composite members with partial interaction and subjected to general dynamic loading
was presented by Girhammar and Pan [7]. Adam et al. [8] analysed the flexural vibra-
tion of composite beams with interlayer slip using the Euler-Bernoulli beam theory.
The governing sixth order initial-boundary value problem was solved by separating
the dynamic response in a quasi-static and in a complementary dynamic response.
Heuer and Adam extended the previous model for composite beams made of piezo-
electric materials in [9]. The partial differential equations and general solutions for
the deflection and internal actions and the pertaining consistent boundary conditions
were presented for composite Euler–Bernoulli members with interlayer slip subjected
to general dynamic loading in [10]. Wu et al. [11] derived the governing differential
equations of motion for the partial-interaction composite members with axial force.
All these works neglected the influence of axial and rotary inertia.

The elastic stability problems of composite beams with weak shear connection
were also investigated [12, 13, 14, 15, 16]. Challamel and Girhammar [12] analysed
the lateral-torsional stability of vertically layered composite beams with interlayer
slip based on a variational approach. An analytical method was presented for the
delamination buckling using the Timoshenko beam theory by Chen and Qiao [13].
Grognec et al. [14] utilized the Timoshenko beam theory as well. Schnabl and Planinc
[15] presented a detailed analysis of the influence of boundary conditions and axial
deformation on the critical buckling loads and the same authors took into account
the effect of the transverse shear deformation on buckling [16].

In this paper the free vibration of layered composite beams with interlayer slip
is investigated while an axial force is acting on the considered beam. During the
formulation of the equations of motion axial and the rotary inertia is also taken into
account. The results from papers by Lengyel and Ecsedi [17, 18] are compared with
those deriving from the presented method.

2. Equations of motion

The considered two-layer composite beam with interlayer slip is shown in Figure 1.
It is assumed that each layer separately follows the Euler-Bernoulli hypothesis and
the load-slip relation for the flexible shear connection is a linear relationship. In
the reference configuration, the composite beam occupies the 3D region B = A ×
[0, L] generated by translating its symmetrical cross section A along a rectilinear axis,
orthogonal to the cross section. The cross-section A is divided into two parts A1

and A2, that is A = A1 ∪ A2 and the common boundary A1 and A2 is denoted by
∂A12. The components B1 and B2 are defined as Bi = Ai× [0, L], ∂Bi = ∂Ai× [0, L],
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Figure 1. Two-layered beam with weak shear connection

∂Ai = ∂A0i ∪ ∂A12, (i = 1, 2) (Figure 1). Here L is the length of the beam and
∂A0i is the ‘outer’ boundary curve of the cross-section Ai (i = 1, 2). A point P
in B = B ∪ ∂B (∂B = (∂A01 ∪ ∂A02)× [0, L]) is determined by the position vector
r = xex + yey + zez, where x, y, z and ex, ey, ez are referred to the rectangular
coordinate system Oxyz shown in Figure 1. The axis z is located in the E-weighted
centerline of the whole composite beam and the plane yz is the plane of symmetry
for the geometrical and support conditions. The center of Ai is Ci (i = 1, 2) and C is
the E-weighted center of the whole cross-section A = A1∪A2 (Figure 1), furthermore

c1 = |−−→CC1|, c2 = |−−→CC2|. (1)

According to the Euler-Bernoulli beam theory the displacement field u = uex+vey+
wez has the form [6]

u = 0, v = v(z, t), w̃i(y, z, t) = − F

〈AE〉z + wi(z, t)− y
∂v

∂z
,

(x, y, z) ∈ Bi, (i = 1, 2),

(2)

where 〈AE〉 = A1E1 +A2E2 and t is the time. Application of the strain-displacement
relationship of elasticity and Hooke’s law gives

σzi = Eiεi = Ei
∂w̃i
∂z

= Ei

(
− F

〈AE〉 +
∂wi
∂z
− y ∂

2v

∂z2

)
, (i = 1, 2). (3)

The definition of section axial forces provides

Ñi =

∫
Ai

σzidA = −F AiEi
〈AE〉 +AiEi

∂wi
∂z

+ (−1)iciAiEi
∂2v

∂z2
=

= −F AiEi
〈AE〉 +Ni, (i = 1, 2).

(4)

The mechanical meaning of the first term in the expression of Ñi is as follows (see
Figure 1)

Fi =
AiEi
〈AE〉F, (i = 1, 2), F = F1 + F2. (5)
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Figure 2. Free body diagram for axial forces

The axial force function in the whole beam

N = Ñ1 + Ñ2 = −F +N1 +N2 = −F. (6)

According to this we have

N1 +N2 = A1E1

(
∂w1

∂z
− c1

∂2v

∂z2

)
+A2E2

(
∂w2

∂z
+ c2

∂2v

∂z2

)
= 0. (7)

The moment of normal stress σz about axis x is expressed as

M = M̃1 + M̃2 =

∫
A1

yσz1dA+

∫
A2

yσz2dA =

= E1A1c1
∂w1

∂z
− E2A2c2

∂w2

∂z
− {IE}∂

2v

∂z2
,

(8)

where

{IE} = I1E1 + I2E2, Ii =

∫
Ai

y2dA, (i = 1, 2). (9)

Denote Q the interlayer shear force. The interlayer slip is interpreted as the difference
of the axial displacements of the layers (w1 − w2) so we have for the interlayer shear
force

Q = k(w1 − w2). (10)

Here, k is the so-called slip modulus, which characterizes the rigidity of the connection.
When the value of k is equal to zero (Q = 0) there is no connection between the layers.
If the slip modulus is equal to infinity (w1−w2 = 0) the connection among the layers
is perfect.

The beam elements ∆B1 and ∆B2 assigned by z and z+∆z coordinates are shown
in Figure 2. The force equilibrium equations in axial direction for beam component
∆B1 and ∆B2 can be written in the form

∂Ñ1

∂z
+ n1 − k(w1 − w2) = 0, (11)

∂Ñ2

∂z
+ n2 + k(w1 − w2) = 0. (12)
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Figure 3. A small beam element ∆B1 ∪ ∆B2 with the shear forces
and bending moments

The applied line loads in axial direction are denoted by n1 and n2. A ∆B1 ∪ ∆B2

beam element is illustrated in Figure 3 without the axial forces. According to this
beam element the following equilibrium equations can be deduced

∂V

∂z
+ f = 0,

∂M

∂z
+ F

∂v

∂z
− V +m = 0. (13)

In equation (13) f = f(z, t) is the applied line load, V = V (z, t) is the shear force,
m is the applied distributed moment. From equation (13) the shear force can be
eliminated. In this way we obtain only one equilibrium equation instead of the two
in equation (13)

∂2M

∂z2
+ F

∂2v

∂z2
+
∂m

∂z
+ f = 0. (14)

In equations (11), (12), (13) and (14) furthermore in Figures 2 and 3 the d’Alembert
forces are introduced in the next form

f(z, t) = −(ρ1A1 + ρ2A2)
∂2v

∂t2
, (15)

n1(z, t) = −ρ1A1
∂2w1

∂t2
+ c1ρ1A1

∂3v

∂z∂t2
, (16)

n2(z, t) = −ρ2A2
∂2w2

∂t2
− c2ρ2A2

∂3v

∂z∂t2
, (17)

m(z, t) = −c1ρ1A1
∂2w1

∂t2
+ c2ρ2A2

∂2w2

∂t2
+ {ρI} ∂3v

∂z∂t2
. (18)

Here, ρ1 and ρ2 mean the mass density of beam component B1 and B2, respectively,
and

{ρI} = ρ1I1 + ρ2I2. (19)

Combining equations (4), (8), (11), (12) and (14) with equations (15–18) yields the
system of motion equations for the two-layered composite beam with interlayer slip

E1A1
∂2w1

∂z2
− c1E1A1

∂3v

∂z3
− k(w1 − w2)− ρ1A1

∂2w1

∂t2
+ c1ρ1A1

∂3v

∂z∂t2
= 0, (20)
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Figure 4. Simply supported column with axial load and its buckling shape

E2A2
∂2w2

∂z2
+ c2E2A2

∂3v

∂z3
+ k(w1 − w2)− ρ2A2

∂2w2

∂t2
− c2ρ2A2

∂3v

∂z∂t2
= 0, (21)

c1E1A1
∂3w1

∂z3
− c2E2A2

∂3w2

∂z3
− {IE}∂

4v

∂z4
+ F

∂2v

∂z2
− c1ρ1A1

∂3w1

∂z∂t2
+

+c2ρ2A2
∂3w2

∂z∂t2
+ {ρI} ∂4v

∂z2∂t2
− (ρ1A1 + ρ2A2)

∂2v

∂t2
= 0.

(22)

3. Simply supported beam-column

The considered simply supported column is shown in Figure 4. In this case the
following boundary conditions are valid:

N1(0, t) = N1(L, t) = 0, t > 0, (23)

N2(0, t) = N2(L, t) = 0, t > 0, (24)

M(0, t) = M(L, t) = 0, t > 0, (25)

v(0, t) = v(L, t) = 0, t > 0. (26)

We look for the solution of the boundary value problem (20–22) and (23–26) in the
following form:

w1(z, t) = W1j cos
jπ

L
z cosωjt, (27)

w2(z, t) = W2j cos
jπ

L
z cosωjt, (28)

v(z, t) = Vj sin
jπ

L
z cosωjt, (j = 1, 2, . . .). (29)
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Figure 5. The cross section of the column considered in the example

These functions satisfy the boundary conditions (23–26) for all values of W1j , W2j ,
Vj . Substituting the functions into equations (20–22) the following linear system of
equation can be deduced:

CjXj = ω2
jMjXj , (30)

where
Xj = [W1j ,W2j , Vj ]

T
, (31)

Cj =

 E1A1

(
jπ
L

)2
+ k −k −c1E1A1

(
jπ
L

)3
−k E2A2

(
jπ
L

)2
+ k c2E2A2

(
jπ
L

)3
−c1E1A1

(
jπ
L

)3
c2E2A2

(
jπ
L

)3 {IE}
(
jπ
L

)4 − F ( jπL )2
 , (32)

Mj =

 ρ1A1 0 −c1ρ1A1
jπ
L

0 ρ2A2 −c2ρ2A2
jπ
L

−c1ρ1A1
jπ
L −c2ρ2A2

jπ
L {ρI}

(
jπ
L

)4
+ ρ1A1 + ρ2A2

 . (33)

The non-trivial solution of equations (30) is sought that means

det
(
Cj − ω2

jMj

)
= 0, (j = 1, 2, . . .). (34)

From equation (34) a cubic equation can be formulated for ω2
j (j = 1, 2, . . .) in terms

of F , which means that we have three eigenfrequencies for each value of j for arbitrary
value of the axial load.

4. Numerical example

In this example the simply supported beam illustrated in Figure 4 is considered and
its cross section is shown in Figure 5. The following data were used: h1 = 0.02 m,
h2 = 0.04 m, b = 0.03 m, L = 2 m, E1 = 1010 Pa, E2 = 2 × 1011 Pa, k = 106 Pa,
ρ1 = 4000 kg/m3, ρ2 = 7000 kg/m3.

Substituting the data into equation (34) the eigenfrequencies were investigated for
three different value of axial force. The results are shown in Table 1 for F = 0, in
Table 2 for F = 40, 000 N and in Table 3 for F = 80, 000 N. According to the
results one can see that by increasing the axial load the eigenfrequencies decreases.
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Table 1. The eigenfrequencies of simply supported column without
axial force (F = 0)

j ωj1 1/s ωj2 1/s ωj3 1/s

1 135.42 2566.01 8403.41
2 539.36 5009.04 16796.21
3 1211.79 7478.84 25191.61
4 2151.61 9955.53 33587.91
5 3357.32 12434.99 41984.87
10 13289.8 24844.86 83980.52

Table 2. The eigenfrequencies of simply supported column with axial
force F = 40, 000 N

j ωj1 1/s ωj2 1/s ωj3 1/s

1 95.93 2566.01 8403.41
2 504.36 5009.04 16796.21
3 1177.49 7478.84 25191.61
4 2117.52 9955.53 33587.91
5 3323.33 12434.99 41984.87
10 13256.3 24844.86 83980.51

Table 3. The eigenfrequencies of simply supported column with axial
force F = 80, 000 N

j ωj1 1/s ωj2 1/s ωj3 1/s

1 8.167 2566.01 8403.41
2 466.78 5009.04 16796.21
3 1142.08 7478.84 25191.61
4 2082.86 9955.53 33587.91
5 3289.01 12434.99 41984.87
10 13222.73 24844.86 83980.51

The relation between the axial force and the square of the eigefrequency is a linear
relationship. Applying the presented method a linear function is provided that is
illustrated below. Figures 6, 7, 8, 9, 10 and 11 show the connection between the axial
force and the square of the eigenfrequency for j = 1, j = 2, j = 3, j = 4, j = 5 and
j = 10, respectively. When the axial load is equal to zero the method gives the same
eigenfrequencies (Table 1) as in an earlier study by Lengyel and Ecsedi [18]. In [18]
the authors proposed an analytical method for the free vibration of a composite beam
with interlayer slip without any loading.
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Figure 6. The function of F = F
(
ω2
11

)

Figure 7. The function of F = F
(
ω2
21

)

If the j-th eigenfrequency is equal to zero the j-th critical load can be gained from
the presented method. Lengyel and Ecsedi in [17] deduced a solution method for
determination of the critical buckling load of composite beams with interlayer slip.
During the analysis they derived a closed form for the j-th critical load, which is
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Figure 8. The function of F = F
(
ω2
31

)

Figure 9. The function of F = F
(
ω2
41

)

F crj =
〈IE〉 〈AE〉−1

(
jπ
L

)4
+ k{IE}

(
jπ
L

)2
〈AE〉−1

(
jπ
L

)2
+ k

. (35)

Here,

〈AE〉−1 =
A1E1A2E2

A1E1 +A2E2
, (36)
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Figure 10. The function of F = F
(
ω2
51

)

Figure 11. The function of F = F
(
ω2
101

)

〈IE〉 = {IE} − c2 〈AE〉−1 , c = c1 + c2. (37)

Table 4 illustrates the j-th critical load from the presented method and computed by
equation (35).
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Table 4. The critical loads for the simply supported composite beam
with interlayer slip.

j F crj [N] from equation (34), ωj = 0 F crj [N] from equation (35)

1 80, 292.038 80, 292.038
2 318, 685.949 318, 685.949
3 715, 945.968 715, 945.968
4 1, 272, 101.169 1, 272, 101.17
5 1, 987, 155.398 1, 987, 155.402
10 7, 945, 930.916 7, 945, 930.923

5. Conclusions

The paper proposes a new analytical method for the analysis of free vibration of
composite beams with interlayer slip loaded by axial force. The presented method
takes into account the influence of axial and rotary inertia, from which three different
eigenfrequencies can be obtained for each value of j. The connection between the
axial force and the square of the eigenfrequency is linear. The critical buckling loads
and the eigenfrequencies belonging to the composite beam without axial loading are
also computed by means of the method and the results are in very good agreement
with the results from earlier studies.

Acknowledgement. Supported by the ÚNKP-16-3. New National Excellence Program of
the Ministry of Human Capacities.
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Abstract. The present paper deals with the vibration of circular plates provided that the
plates are prestressed in such a way that the stresses due to the in-plane load are constants.
We have determined the Green functions of the governing equations. The self adjoint eigen-
value problems giving the natural frequencies are replaced by homogenous Fredholm integral
equations for which the symmetric Green functions constitute the kernel. According to the
numerical solution the square of the natural frequencies is linear, or approximately linear
functions of the constant in plane load.
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1. Introduction

It is well known [1] that the natural frequency of a simply supported beam subjected
to a compressive axial force – the beam is in a prestressed state – satisfies the equation

α2

α2
1

= 1− f

f1
(1.1)

in which α and α1 are the first natural frequencies of the loaded and unloaded beam
while f and f1 are the compressive force and its smallest critical value.

Lawther [1] attacks the problem how a prestressed state of the body affects the nat-
ural frequencies in a more general form. He studies finite dimensional multiparameter
eigenvalue problems and comes to the conclusion that for multiparameter problems,
the eigenvalue part of the solution is described by interaction curves in an eigenvalue
space, and every such eigenvalue solution has an associated eigenvector. If all points

c©2017 Miskolc University Press
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on a curve have the same eigenvector then the curve is necessarily a straight line, but
the converse is far more complex.

Boundary element solutions for the plate buckling problem have been published
among others in papers [2, 3, 4, 5, 6]. The authors of the papers cited investigate the
buckling phenomenon under various assumptions and use different mechanical models.
However, it is a common feature of each paper that the fundamental solutions utilized
do not involve the effect of the in-plane stresses directly. The reason for attacking the
problem in this way is simple: the model is applicable for any in-plane load exerted
on the boundary. The price one has to pay for the generality of the model concerning
the in-plane load is the presence of a domain integral which should be handled in
some way. However, there are various cases when the stress state due to the in-plane
load is a constant one. We also remark that the papers cited above are not concerned
with the issue of how the in-plane stresses affect the vibrations of the plate.

Paper [7] is devoted to the issue what vibration characteristics of centrally clamped,
variable thickness disks have if they are subjected to rotational and thermal in-plane
stresses. This paper contains useful references for the most important earlier results
which are not cited here. Pardoen [8] turned his attention to the vibration of pre-
stressed circular orthotropic plates and used a finite element procedure for solving
the problem. In [9] Chotova investigated the effect of a uniformly distributed in-
plane compressive force system – exerted on the outer boundary of the plate – on the
natural frequencies of circular plates assuming axisymmetric behavior. Numerical
solutions were found by determining the zeros of the corresponding frequency deter-
minant, which is regarded as a function of the load. It is also important to cite papers
[10, 11] by Chen and his co-authors who dealt with the large amplitude vibrations
of an initially stressed thick circular plate. They applied energetic methods in order
to clarify how the load influences the vibrations. The results achieved are presented
graphically. Paper [12] is devoted to the stability of parametric vibrations of circular
plates subjected to in-plane forces by using the Liapunov method. Younesian [13]
studied the forced vibrations of annular plates under the action of a transverse load
rotating on the outer boundary.

The main objective of the present paper is to clarify mathematically – by setting
up polynomial relationships – how the constant in plane load influences the vibrations
of clamped, simply supported and spring supported circular plates. We attack the
problem by determining the Green functions of the prestressed plates, which might
also be useful for solving various boundary value problems in a closed form if the
plates are subjected to transverse loads. With the knowledge of the Green functions
the two parameter eigenvalue problems established for the natural frequencies are
reduced to eigenvalue problems governed by homogenous Fredholm integral equations
with symmetric kernels. These formulations are basically the same as those of the
boundary element methods; however the kernels are not singular. After having set up
the eigenvalue problems this way we solve them by the boundary element method.

The paper is organized into seven sections. Section 2 is a collection of the most
important notations and notational conventions. Section 3 presents the governing
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equations of the problem raised. Section 4 outlines the determination of the Green
functions. It is also shown that the third Green function contains the other two
at the limit, i.e., if the spring constant tends to zero or infinity. The algorithm of
the numerical solutions is considered in Section 5. Computational and analytical
(closed form approximate) solutions are presented in Section 6. The last section is
a conclusion. We remark that some preliminary results were published earlier in
Hungarian [14, 2007].

2. Notations and notational conventions

The table below presents the most important notations and notational conventions.

A1/2 =
√

γ
g
R4
o

I1E1
α dimensionless natural frequency

2b thickness of the plate
f radial load in the mid-plane
I1 = 8b3/12 moment of inertia
E Young’s modulus
E1 = E/(1− ν2) modified Young’s modulus

F = R2
o

f
I1E1

dimensionless in-plane load

Fν = F
1−ν modified dimensionless in-plane load

g gravitational acceleration
G(ρ, ξ) = G(ξ, ρ) Green function
Jn, Yn , In ,Kn , n = 0, 1, 2, . . . Bessel functions
kγ spring constant

K =
Rokγ
I1E1

dimensionless spring constant

Kν = 1− K
1−ν modified dimensionless spring constant

pz(ρ) load in the z direction
QR(ρ) shear force
R radius
Ro outer radius of the plate
w(ρ) deflection

∆̃ = d2

dρ2 + 1
ρ differential operator

α natural frequency
γ density
ν Poisson number
ρ = R/Ro dimensionless independent variable
ξ dimensionless independent variable

The text contains further notations defined at the place of their first appearance.
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3. Governing equations

If a circular plate is subjected to a constant radial load f in its plane then the
deflection w due to the load pz(ρ) acting perpendicularly to the middle plane of the
plate should meet the differential equation

∆̃∆̃w ±F∆̃w =
R4
o

I1E1
pz, ∆̃ =

d2

dρ2
+

1

ρ

d

dρ
(3.1)

if axisymmetric deformations are assumed – the sign preceding F is positive for com-
pression and negative for tension – Figure 1 shows a compressive load [15, 2003].
Depending on what the supports are equation (3.1) should be associated with appro-
priate boundary conditions. As regards the outer boundary it is clear from Figure 1
that for a clamped plate

w|ρ=1 = 0 ,
dw

dρ

∣∣∣∣
ρ=1

= 0 , (3.2)

are the boundary conditions. If the plate is simply supported then the boundary
conditions are of the form

w|ρ=1 = 0 ,

(
d2w

dρ2
+
ν

ρ

dw

dρ

)∣∣∣∣
ρ=1

= 0 . (3.3)

f f

z
ff

z

1.

2.

R

R

ff

z

3. R

Ro Ro

Figure 1.

Finally if the plate is supported by a torsional spring which exerts a bending moment
on the boundary of the plate then

w = 0 ,

(
d2w

dρ2
+
ν

ρ

dw

dρ

)∣∣∣∣
ρ=1

= − Ro
I1E1

kγ
dw

dρ

∣∣∣∣
ρ=1

(3.4)

are the boundary conditions. It is also clear that the deflection at the center of the
plate should meet the conditions

w|ρ=0 = finite ,
dw

dρ

∣∣∣∣
ρ=0

= 0 (3.5)
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as well. For our later considerations we remark that the shear force QR is related to
the deflection via equation

QR
R3
o

I1E1
=

d

dρ

[
d2

dρ2
+

1

ρ

d

dρ
±F

]
w(ρ) . (3.6)

We remark that the boundary conditions and the formula for the shear force are all
taken from Kozák [16].

4. Green functions

4.1. Definition of the Green function. Assume that the plate is subjected to
a uniform load distributed on the circle with radius Roξ (ξ is also a dimensionless
coordinate) – see Figure 1. The resultant of the total load is assumed to be 1. The
deflection due to the load at ρ is denoted by G(ρ, ξ) and is referred to as the Green
function. Observe that the Green function should satisfy the homogenous equation
in (3.1) if 0 ≤ ρ < ξ and ξ < ρ ≤ 1.

4.2. Green functions for a compressive f .

4.2.1. General solution. As is well known the general solution of the homogenous
equation in (3.1) assumes the form

w(ρ) = c1 + c2 ln ρ+ c3Jo(
√
Fρ) + c4Yo(

√
Fρ) , (4.1)

where c1, c2, c3 and c4 are undetermined constants of integration.

Since the Green function should meet conditions (3.5) it assumes the form

G(ρ, ξ) = A1 +A3J0(
√
Fρ) , 0 ≤ ρ ≤ ξ , (4.2a)

G(ρ, ξ) = B1 +B2 ln ρ+B3J0(
√
Fρ) +B4Y0(

√
Fρ) , ξ ≤ ρ ≤ 1 , (4.2b)

where the constants of integration A1, A3 and B1, B2, B3, B4 are to be determined
from the continuity and discontinuity conditions prescribed at ρ = ξ and form the
boundary conditions which are imposed on the boundary ρ = 1.

Observe that the continuity conditions

G(ξ − 0, ξ) = G(ξ + 0, ξ) , (4.3a)

G′(ξ − 0, ξ) = G′(ξ + 0, ξ) , (4.3b)

G′′(ξ − 0, ξ) = G′′(ξ + 0, ξ) (4.3c)

and the discontinuity condition

2πRoξ [QR(ξ + 0)−QR(ξ − 0)] = 2πRoξQR(ξ + 0) = 1 , (4.4)

in which QR(ξ − 0) = 0 from the vertical equilibrium, are all independent of the
supports. Here (a) derivatives with respect to ρ are denoted by primes and (b) it
follows from (3.6) that

QR
R3
o

I1E1
=

d

dρ

[
d2

dρ2
+

1

ρ

d

dρ
+ F

]
G(ξ, ρ) . (4.5)
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4.2.2. Green function for the clamped plate. If the plate is clamped the continuity
and discontinuity conditions are associated with the boundary conditions

G(1, ξ) = 0 , G′(1, ξ) = 0 . (4.6)

In what follows we need the derivatives

G′(ρ, ξ) = −A3

√
FJ1(

√
Fρ) 0 ≤ ρ ≤ ξ , (4.7a)

G′(ρ, ξ) = B2
1

ρ
−B3

√
FJ1(

√
Fρ)−B4

√
FY1(

√
Fρ) ξ ≤ ρ ≤ 1 , (4.7b)

G′′(ρ, ξ) = A3F

J1
(√
Fρ
)

√
Fρ

− J0
(√
Fρ
) 0 ≤ ρ ≤ ξ , (4.8a)

G′′(ρ, ξ) = −B2
1

ρ2
+B3F

J1
(√
Fρ
)

√
Fρ

− J0
(√
Fρ
)+ (4.8b)

+B4F

Y1
(√
Fρ
)

√
Fρ

− Y0
(√
Fρ
) ξ ≤ ρ ≤ 1 , (4.8c)

G′′′(ρ, ξ) = −A3
F3/2

4

[
J3(
√
Fρ)− 3J1(

√
Fρ)

]
=

= A2
F3/2

4

[
1√
Fρ

J2(
√
Fρ)− J1

(√
Fρ
)]

0 ≤ ρ ≤ ξ (4.9a)

and

G′′′(ρ, ξ) =
2

ρ3
B2 −B3

F3/2

4

[
J3(
√
Fρ)− 3J1(

√
Fρ)

]
−

−B4
F3/2

4

[
Y3(
√
Fρ)− 3Y1(

√
Fρ)

]
=

=
2

ρ3
B2 +B3

F3/2

4

[
1√
Fρ

J2(
√
Fρ)− J1

(√
Fρ
)]

+

+B4
F3/2

4

[
1√
Fρ

Y2(
√
Fρ)− Y1

(√
Fρ
)]

ξ ≤ ρ ≤ 1 (4.9b)

obtained by using relations (A.1).

Substituting the Green function and its derivatives into the continuity conditions
(4.3a) and then combining the continuity conditions (4.3b) and (4.3c) we have

A1 +A3J0(
√
Fξ) = B1 +B2 ln ξ +B3J0(

√
Fξ) +B4Y0(

√
Fξ) , (4.10a)

−A3

√
FJ1

(√
Fξ
)

= B2
1

ξ
−B3

√
FJ1

(√
Fξ
)
−B4

√
FY1

(√
Fξ
)
, (4.10b)

A3J0(
√
Fξ) = B3J0(

√
Fξ) +B4Y0(

√
Fξ) . (4.10c)
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It follows from (4.5) that

R3
K

I1E1
QR(ξ + 0) = B2

d

dρ

{
− 1

ρ2
+

1

ρ2
+ F ln ρ

}∣∣∣∣
ρ=ξ

+

+ B3
d

dρ

{[
F
2

[
J2(
√
Fρ)− J0(

√
Fρ)

]
−F J1(

√
Fρ)√
Fρ

]
+ FJ0(

√
Fρ)

}∣∣∣∣∣
ρ=ξ

+ B4
d

dρ

{[
F
2

[
Y2(
√
Fρ)− Y0(

√
Fρ)

]
−F Y1(

√
Fρ)√
Fρ

]
+ FY0(

√
Fρ)

}∣∣∣∣∣
ρ=ξ

=

= B2
d

dρ

{
− 1

ρ2
+

1

ρ2
+ F ln ρ

}∣∣∣∣
ρ=ξ

+

+ B3
d

dρ

{[
F
2

[
J2(
√
Fρ) + J0(

√
Fρ)

]
−F J1(

√
Fρ)√
Fρ

]}
︸ ︷︷ ︸

=zero

∣∣∣∣∣∣∣∣∣
ρ=ξ

+ B4
d

dρ

{[
F
2

[
Y2(
√
Fρ) + Y0(

√
Fρ)

]
−F Y1(

√
Fρ)√
Fρ

]}
︸ ︷︷ ︸

=zero

∣∣∣∣∣∣∣∣∣
ρ=ξ

= B2F
1

ξ
.

Consequently discontinuity condition (4.4) leads to the equation

B2 =
R3
o

I1E1

1

2πξRo

1

F
ξ =

R2
o

I1E1
fR2

o

I1E1

1

2πξ
ξ =

1

2πf
. (4.10d)

The last two equations for the integration constants are obtained from the boundary
conditions (4.6)

B1 + B3J0(
√
F) +B4Y0(

√
F) = 0 , (4.10e)

B2 −B3

√
FJ1(

√
F)−B4

√
FY1(

√
F) = 0 . (4.10f)

Introducing the notations Jnρ = Jn(
√
Fρ), Jnξ = Jn(

√
Fξ), Jn1 = Jn(

√
F) and

Ynρ = Yn(
√
Fρ), Ynξ = Yn(

√
Fξ), Yn1 = Yn(

√
F) we can rewrite equations (4.10) in

the following form:

1 J0ξ −1 − ln ξ −J0ξ −Y0ξ
0 −

√
FJ1ξ 0 − 1

ξ

√
FJ1ξ

√
FY1ξ

0 J0ξ 0 0 −J0ξ −Y0ξ
0 0 0 1 0 0
0 0 1 0 J01 Y01
0 0 0 1 −

√
FJ11 −

√
FY11




A1

A3

B1

B2

B3

B4

 =


0
0
0
1

2πf

0
0

 (4.11)

After solving equation system (4.11) and substituting solutions (B.1) given in the
Appendix into (4.2) we have
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G(ρ, ξ) =
J11 ln ξ + 1√

F (J0ρ + J0ξ − J01) + π
2 J0ρ (J0ξY11 − Y0ξJ11)

2πfJ11
0 ≤ ρ ≤ ξ , (4.12a)

G(ρ, ξ) =
J11 ln ρ+ 1√

F (J0ξ + J0ρ − J01) + π
2 J0ξ (J0ρY11 − Y0ρJ11)

2πfJ11
ξ ≤ ρ ≤ 1 , (4.12b)

which is the Green function for the clamped plate. It can be checked with ease that
the Green function is symmetric, i.e., G(ρ, ξ) = G(ξ, ρ).

4.2.3. Green function for the simply supported plate. If the plate is simply supported
the continuity and discontinuity conditions are associated with the following boundary
conditions:

G(1, ξ) = 0 , G′′(1, ξ) +
ν

ρ
G′(1, ξ) = 0 (4.13)

Observe that only one equation differs from those we used earlier – compare (4.13)2
and (4.6)2. For the sake of brevity we omit the paper and pencil calculations and
present the final result only:

G(ρ, ξ) =
J01 − J0ξ − J0ρ + π

2 J0ξJ0ρ(FνY01 −
√
FY11)

2πf(FνJ01 −
√
FJ11)

+

+
ln ξ − π

2 J0ρY0ξ

2πf
0 ≤ ρ ≤ ξ , (4.14a)

G(ρ, ξ) =
J01 − J0ρ − J0ξ + π

2 J0ρJ0ξ

(
FνY01 −

√
FY11

)
4πf(FνJ01 −

√
FJ11)

+

+
ln ρ− π

2 J0ξY0ρ

2πf
ξ ≤ ρ ≤ 1 . (4.14b)

This Green function is also symmetric, i.e., G(ρ, ξ) = G(ξ, ρ).

4.2.4. Green function for the spring-supported plate. For the spring-supported plate
the continuity and discontinuity conditions are associated with the following boundary
conditions:

G(1, ξ) = 0 , G(1, ξ)′′ +
ν

ρ
G(1, ξ)′ +

Ro
I1E1

kγG(1, ξ)′ = 0 . (4.15)

Without entering into details we have arrived at the following Green function

G(ρ, ξ) =
Kν (J01 − J0ξ − J0ρ) + π

2 J0ρJ0ξ

(
FνY01 −

√
FKνY11

)
2πf(FνJ01 −

√
FKνJ11)

+

+
ln ξ − π

2 J0ρY0ξ

2πf
0 ≤ ρ ≤ ξ (4.16a)
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G(ρ, ξ) =
Kν (J01 − J0ρ − J0ξ) + π

2 J0ξJ0ρ

(
FνY01 −

√
FKνY11

)
2πf(FνJ01 −

√
FKνJ11)

+

+
ln ρ− π

2 J0ξY0ρ

2πf
ξ ≤ ρ ≤ 1 (4.16b)

In the formulae providing the last two Green functions

K =
Rokγ
I1E1

, Fν =
F

1− ν
, Kν = 1− K

1− ν
. (4.17)

It can be shown that (a) for K → 0 the Green function (4.16) coincides with the
Green function (4.14) valid for the simply supported plate and (b) for K → ∞ the
Green function (4.16) coincides with the Green function (4.12) valid for the clamped
plate.

4.3. Green functions for a tensile f .

4.3.1. General solution. If the in-plane load is a tensile load

w(ρ) = c1 + c2 ln ρ+ c3I0

(√
Fρ
)

+ c4K0

(√
Fρ
)

(4.18)

is the general solution we need when determining the Green function – c1, c2, c3
and c4 are again undetermined constants of integration. With the knowledge of the
general solution we assume that the Green function, which satisfies conditions (3.5),
can be given in the following form

G(ρ, ξ) = A1 +A3I0(
√
Fρ) , ρ < ξ , (4.19a)

G(ρ, ξ) = B1 +B2 ln ρ+B3I0(
√
Fρ) +B4K0(

√
Fρ) , ρ > ξ (4.19b)

in which the integration constants are denoted in the same way as for the case of
compressive f – however this may not cause any misunderstanding.

4.3.2. Green function for the clamped plate. When determining the Green function
we need the following derivatives

G′(ρ, ξ) = A3

√
FI1(

√
Fρ) ρ < ξ , (4.20a)

G′(ρ, ξ) = B2
1

ρ
+B3

√
FI1(

√
Fρ)−B4

√
FK1(

√
Fρ) ρ > ξ , (4.20b)

G′′(ρ, ξ) = A3F
(
I0

(√
Fρ
)
− 1√
Fρ

I1

(√
Fρ
))

ρ < ξ , (4.21a)

G′′(ρ, ξ) = −B2
1

ρ2
+B3F

(
I0

(√
Fρ
)
− 1√
Fρ

I1

(√
Fρ
))

+

+B4F
(
K0

(√
Fρ
)

+
1√
Fρ

K1

(√
Fρ
))

ρ > ξ , (4.21b)

G′′′(ρ, ξ) = A3
F3/2

4

[
3I1(
√
Fρ) + I3(

√
Fρ)

]
=



66 N. Szűcs and G. Szeidl

= −A3F3/2

(
1√
Fx

I2

(√
Fx
)
− I1

(√
Fx
))

ρ < ξ . (4.22a)

G′′′(ρ, ξ) = −2B2
1

ρ3
+B3

F3/2

4

[
3I1(
√
Fρ) + I3(

√
Fρ)

]
−

−B4
F3/2

4

[
3K1(

√
Fρ) +K3(

√
Fρ)

]
=

= −2B2
1

ρ3
+B3F3/2

(
1√
Fx

I2

(√
Fx
)
− I1

(√
Fx
))

−B4F3/2

[
1√
Fx

K2

(√
Fx
)

+K1

(√
Fx
)]

ρ > ξ (4.22b)

obtained by utilizing (A.2). Substituting the Green function and its derivatives into
the continuity conditions (4.3a) and combining (4.3b) and (4.3c) we have

A1 +A3I0(
√
Fξ) = B1 +B2 ln ξ +B3I0(

√
Fξ) +B4K0(

√
Fξ) , (4.23a)

A3

√
FI1(

√
Fξ) = B2

1

ξ
+B3

√
FI1(

√
Fξ)−B4

√
FK1(

√
Fξ) , (4.23b)

A3I0(
√
Fξ) = B3I0(

√
Fξ) +B4K0(

√
Fξ) . (4.23c)

By repeating the line of thought resulting in equation (4.10d) discontinuity condition
(4.4) leads to the equation

B2 = −1/2πf . (4.23d)

The last two equations for the integration constants are provided again by the bound-
ary conditions (4.6)

B1 +B3I0(
√
F) +B4K0(

√
F) = 0 , (4.23e)

B2 +B3

√
FI1(

√
F)−B4

√
FK1(

√
F) = 0 . (4.23f)

Let Inρ = In(
√
Fρ), Inξ = In(

√
Fξ), In1 = In(

√
F), Knρ = Kn(

√
Fρ), Knξ =

Kn(
√
Fξ) and Kn1 = Kn(

√
F). Making use of the notations introduced equation

system (4.23) can be cast into the following form:

1 I0ξ −1 − ln ξ −I0ξ −K0ξ

0
√
FJ1ξ 0 − 1

ξ −
√
FI1ξ

√
FK1ξ

0 I0ξ 0 0 −I0ξ −K0ξ

0 0 0 1 0 0
0 0 1 0 I01 K01

0 0 0 1
√
FI11 −

√
FK11




A1

A3

B1

B2

B3

B4

 =


0
0
0
− 1

2πf

0
0

 (4.24)

With the integration constants A1, A3, B1, . . . , B4 equation (4.19) yields the Green
function as

G(ρ, ξ) =
I11 ln ξ + 1√

F
(I01 − I0ξ − I0ρ) + I0ρ (I0ξK11 +K0ξI11)

2I11πf
0 < ρ ≤ ξ ,

(4.25a)
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G(ξ, ρ) =
I11 ln ρ+ 1√

F
(I01 − I0ρ − I0ξ) + I0ξ (I0ρK11 +K0ρI11)

2I11πf
ξ ≤ ρ ≤ 1 .

(4.25b)

4.3.3. Green function for the simply supported plate. We present the Green function
without providing details concerning the paper and pencil calculations

G(ρ, ξ) =
I0ξ + I0ρ − I01 − I0ρI0ξ

(√
FK11 + FνK01

)
2πf(FνI01 −

√
FI11)

+

+
ln ξ + I0ρK0ξ

2πf
0 < ρ ≤ ξ , (4.26a)

G(ρ, ξ) =
I0ρ + I0ξ − I01 − I0ξI0ρ

(√
FK11 −FνK01

)
2πf(FνI01 −

√
FI11)

+

+
ln ρ+ I0ξK0ρ

2πf
ξ ≤ ρ ≤ 1 . (4.26b)

4.3.4. Green function for the spring supported plate. The Green function is given
below again without presenting the calculations

G(ρ, ξ) =
Kν (I0ξ + I0ρ − I01)− I0ρI0ξ

(
FνK01 +

√
FKνK11

)
2πf(FνI01 −

√
FKνI11)

+

+
ln ξ + I0ρK0ξ

2πf
0 < ρ ≤ ξ , (4.27a)

G(ξ, ρ) =
Kν(I0ρ + I0ξ − I01)− I0ξI0ρ

(
FνK01 +

√
FKνK11

)
2πf(FνI01 −

√
FKνI11)

+

+
ln ρ+K0ρI0ξ

2πf
ξ ≤ ρ ≤ 1 . (4.27b)

If K → 0 (4.27) coincides with (4.25). Similarly if K → ∞ (4.27) coincides with
(4.26).

4.4. Solutions of statical boundary value problems. Given the Green functions,
the deflection due to an axisymmetric load pz(ρ) can always be calculated as

w(ρ) = 2πR2
o

∫ 1

0

G(ρ, ξ)pz(ξ) ξ dξ . (4.28)
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5. Integral equation for the natural frequencies

5.1. Integral equation of the problem. Under the assumption of harmonic
vibrations the amplitude W (ρ) of the vibrations w(ρ, t) should satisfy the differential
equation (

d2

dρ2
+

1

ρ

d

dρ

)[(
d2

dρ2
+

1

ρ

d

dρ

)
W + FW

]
=

R4
o

I1E1

γ

g
α2W (5.1)

where γ is the plate weight for the unit area of the middle surface and g is the gravita-
tional acceleration. The eigenvalue problems defined by equation (5.1) and boundary
conditions (3.2), (3.3) and (3.4) are all self adjoint. Since α2γW/g corresponds to
pz in equation (3.1) it follows from equation (4.28) that the amplitude W (ρ) should
satisfy the integral equation

W (ρ) = λ

∫ 1

0

Ĝ(ρ, ξ)W (ξ) ξ dξ where λ =
γ

g
α2 , Ĝ(ρ, ξ) = 2πR2

oG(ρ, ξ) ,

(5.2)
which can be manipulated into the following form:

W (ρ) =
γ

g
α2

∫ 1

0

R2
o

f
G̃(ρ, ξ)W (ξ) ξ dξ =

γ

g

α2R4
o

I1E1︸ ︷︷ ︸
A

∫ 1

0

1

fR2
o

I1E1︸ ︷︷ ︸
F

G̃(ρ, ξ)W (ξ) ξ dξ . (5.3)

Here A and F are dimensionless quantities: A is proportional to the square of a
natural frequency, F is proportional to the load. If we introduce a new unknown
function

y(ρ) =
√
ρW (ρ) (5.4)

then we have

√
ρW (ρ)︸ ︷︷ ︸
y(ρ)

= A
∫ 1

0

√
ρ
G̃(ρ, ξ)

F
√

(ξ)︸ ︷︷ ︸
G(ρ,ξ)

√
ξW (ξ)︸ ︷︷ ︸
y(ξ)

dξ , labelV ibr50 (5.5)

that is

y(ρ) = A
∫ 1

0

G(ρ, ξ)y(ξ)dξ . (5.6)

The above equation is a homogenous Fredholm integral equation with a symmet-
ric kernel. At the same time this equation is an eigenvalue problem with A as an
eigenvalue, which is a function of the dimensionless in-plane load F .

5.2. Computational algorithm. A numerical solution to the eigenvalue problem
(5.6) can be sought by quadrature methods [17]. Consider the integral formula

J(φ) =

∫ 1

0

φ(ξ)dξ ≡
n∑
j=0

wjφ(ξj) , ξj ∈ [0, 1] , j = 0, 1, . . . , n , (5.7)
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where φ(ξ) is a scalar and the weights wj are known. Making use of the above equation
we obtain from (5.6) that

n∑
j=0

wjG(ρ, ξj) y(ξj) = χy(ρ) , χ = 1/A , x ∈ [0, 1] , j = 0, 1, . . . , n (5.8)

the solution of which yields an approximate eigenvalue A = 1/χ and an approximate
eigenfunction y(ρ). After setting ρ to ρi (i = 0, 1, 2, . . . , n) we have

n∑
j=0

wjG(ρi, ξj) y (ξj) = χy(ρi) χ = 1/A x ∈ [0, 1] (5.9)

or

GDỹ = χ ỹ , (5.10a)

where G = [G(ρi, ξj)] is symmetric,

D = diag(w0| . . . |wk| . . . |wn|) and ỹT = [y(x0)|y(x1)| . . . |y(xn)]. (5.10b)

After solving the algebraic eigenvalue problem (5.10) we have the approximate eigen-
values χr and eigenvectors ỹr (r = 0, 1, . . . , n). The corresponding eigenfunction is
obtained by substituting back into equation (5.8):

y(ρ) =
1

χr

n∑
j=0

wjG(ρ, ξj) y(ξj) . (5.11)

Divide the interval [0, 1] into equidistant subintervals of length h and apply the in-
tegration formula to each subinterval. By repeating the line of thought leading to
equation (5.10) one can show that the algebraic eigenvalue problem obtained is of the
same structure as that of equation (5.10).

It is also possible to attack the integral equation (5.1) as a boundary integral
equation and to apply isoparametric approximation in the subintervals, i.e., on the
elements. If this is the case one can approximate the eigenfunction on the e-th element
(on the e-th subinterval which is mapped onto the interval η ∈ [−1, 1] and is denoted
by Le) as

e
y(η) = [N1(η)|N2(η)|N3(η)]


e
y1
e
y2
e
y3

 , (5.12)

where quadratic local approximations are assumed,

N1 = 0.5η(η − 1), N2 = 1− η2, N3 = 0.5η(η + 1) ,

and
e
yi is the value of the eigenfunction y(ρ) at the left endpoint, the midpoint and the

right endpoint of the element, respectively. Substituting equation (5.12) into equation
(5.6) we have

y(ρ) = A
nbe∑
e=1

∫
Le

G [ρ, ξ (η)] [N1(η)|N2(η)|N3(η)]J (η)dη


e
y1
e
y2
e
y3

 , (5.13)
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where nbe is the number of elements (subintervals), J (η) is the Jacobian. Using
equation (5.13) as our point of departure and repeating the line of thought leading to
(5.10) we shall arrive again at an algebraic eigenvalue problem. A program has been
developed in Fortran 90 which solves the algebraic eigenvalue problem formulated in
this way.

6. Computational results

6.1. Clamped plate. Let us introduce the following dimensionless quantities

Aoi =
γ

g

R2
o

I1E1
α2
oi , Ai =

γ

g

R2
o

I1E1
α2
i (6.1a)

and

Fo1 =
γ

g

R2
o

I1E1
f1 . (6.1b)

where αoi and αi are the i-th (i = 1, 2, . . .) natural frequencies of the unloaded and
loaded plates, while f1 is the first critical load. The computational results for i = 1
are presented in Table 1.

Table 1

F/Fo1 0.068 0.136 0.204 0.272 0.341 0.409 0.477
A/Ao1 – compression 0.929 0.863 0.796 0.730 0.663 0.595 0.528
A/Ao1 – tension 1.061 1.127 1.193 1.258 1.324 1.389 1.454

F/Fo1 0.545 0.613 0.681 0.749 0.817 0.886 0.954
A/Ao1 – compression 0.460 0.392 0.324 0.255 0.186 0.117 0.048
A/Ao1 – tension 1.5189 1.584 1.648 1.713 1.777 1.841 1.906

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0
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y
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A1/Ao1

Figure 2.
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With the knowledge of computational results we have fitted the following curves
onto the discrete points – these are denoted by diamonds in Figure 2 (Ao1 = 104.85,
Fo1 = 14.68 )

A1

Ao1
= 0.994 99− 0.965 94

F
Fo1
− 2.851 4× 10−2

(
F
Fo1

)2

(6.2a)

A1

Ao1
= 0.995 61 + 0.968 14

F
Fo1
− 1.474 2× 10−2

(
F
Fo1

)2

(6.2b)

Observe that the approximate solution (6.2) is practically linear in the interval F/Fo1 ∈
[0, 1].

6.2. Simply supported plate. For a simply supported plate the computational
results are presented in Table 2 under the assumption that i = 1. These are denoted
by diamonds in Figure 3.

Table 2

F/Fo1 0.070 0.140 0.210 0.280 0.350 0.420 0.490
A/Ao1 – compression 0.930 0.860 0.790 0.720 0.650 0.580 0.510
A/Ao1 – tension 1.071 1.141 1.211 1.281 1.351 1.421 1.491

F/Fo1 0.560 0.630 0.700 0.770 0.817 0.840 0.910
A/Ao1 – compression 0.440 0.370 0.300 0.230 0.159 0.089 0.019
A/Ao1 – tension 1.561 1.631 1.701 1.771 1.841 1.911 1.981

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

x

y
A1/Ao1

F/Fo1

Figure 3.

The approximate solutions obtained again by fitting a curve onto the computational
results are practically linear functions. These are are also shown in Figure 3 (Ao1 =
24.838, Fo1 = 4.285).
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A1

Ao1
= 1.0004− 1.0007

F
Fo1
' 1.000− 1.000

F
Fo1

(6.3a)

A1

Ao1
= 1.0004 + 1.0007

F
Fo1
' 1.000 + 1.000

F
Fo1

(6.3b)

The square of the first natural frequency of the plate when unloaded and the first
critical load can be calculated by using equation (6.1a).

6.3. Spring supported plate. For a spring supported plate the results depend on
the dimensionless spring constant K as well. If i = 1 the table below shows the results
we have obtained for Ao1(K) and Fo1(K).

Table 3

K 0.0 1.00 5.00 10.00 50.00 100.00 1000.00 K →∞
Ao1 24.838 37.36 63.118 76.677 96.791 100.41 103.97 104.85
Fo1 4.285 6.498 10.481 12.182 14.115 14.397 14.657 14.68

Observe that for K = 0 and K → ∞ Table 3 contains the values valid for simply
supported and clamped plates. For a compressive f the following curves can be fitted
onto the results obtained:

K =1.00
A1

Ao1
=0.9937− 1.0067

F
Fo1

(6.4a)

K =5.00
A1

Ao1
=1.000− 0.99119

F
Fo1
− 8.786 3× 10−3

(
F
Fo1

)2

(6.4b)

K =10.00
A1

Ao1
=1.000 − 0.982 23

F
Fo1
− 1.776 3× 10−2

(
F
Fo1

)2

(6.4c)

K =50.00
A1

Ao1
=1.000− 0.972 1

F
Fo1
− 2.783 9× 10−2

(
F
Fo1

)2

(6.4d)

K =100.00
A1

Ao1
=1.000− 0.9712

F
Fo1
− 2.82× 10−2

(
F
Fo1

)2

(6.4e)

K =1000.00
A1

Ao1
=0.999 97− 0.971 08

F
Fo1
− 2. 882 7× 10−2

(
F
Fo1

)2

(6.4f)

For a tensile f equations (6.5) are the polynomials we have fitted onto the compu-
tational results.

K =1.00
A1

Ao1
= 0.993 64 + 1.006 8

F
Fo1

(6.5a)

K =5.00
A1

Ao1
= 1.000 2 + 0.992 03

F
Fo1
− 4.511× 10−3

(
F
Fo1

)2

(6.5b)

K =10.00
A1

Ao1
= 1.000 4 + 0.983 59

F
Fo1
− 8.652 4× 10−3

(
F
Fo1

)2

(6.5c)
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K =50.00
A1

Ao1
= 1.000 6 + 0.974 11

F
Fo1
− 1.400 3× 10−2

(
F
Fo1

)2

(6.5d)

K =100.00
A1

Ao1
=1.000 6 + 0.973 60

F
Fo1
− 1.454 6× 10−2

(
F
Fo1

)2

(6.5e)

K =1000.00
A1

Ao1
= 1.004 7 + 0.945 10

F
Fo1

+ 1.868 7× 10−2
(
F
Fo1

)2

(6.5f)

Observe that functions (6.4) and (6.5) are almost linear functions. For this reason
Table 4 presents the computational results if K = 100.0 only.

Table 4

F/Fo1 0.069 0.139 0.208 0.278 0.347 0.417 0.486
A/Ao1 – compression 0.933 0.865 0.796 0.729 0.659 0.590 0.521
A/Ao1 – tension 1.068 1.136 1.203 1.270 1.337 1.404 1.471

F/Fo1 0.556 0.625 0.695 0.764 0.834 0.903 0.972
A/Ao1 – compression 0.452 0.382 0.312 0.241 0.171 0.100 0.028
A/Ao1 – tension 1.537 1.604 1.670 1.736 1.802 1.868 1.934

Figure 4 shows function (6.4e) and (6.5e) fitted onto the above results.

F/Fo1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Figure 4.

7. Concluding remarks

We have dealt with the vibrations of circular plates subjected to a constant radial
load in its plane on the outer boundary. The load can be either compressive or tensile.
When solving the problem we have assumed that the deformations due to the load
are also axisymmetric.
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(a) We have determined the Green functions for three support arrangements – a
clamped plate, a simply supported plate and a plate supported by a torsional
spring on its outer boundary – and for tensile and compressive in-plane loads as
well. With the Green functions, the self adjoint eigenvalue problems giving the
natural frequencies of the vibrations for the circular plates and loads considered
have been replaced by six eigenvalue problems each of which is governed by a
Fredholm integral equation.

(b) If the plate is subjected to a load perpendicular to the middle plane the de-
flections can be determined by integration – see equation (4.28).

(c) The eigenvalue problems governed by the Fredholm integral equations are re-
duced to algebraic eigenvalue problems and the eigenvalues as functions of
the load are computed using the boundary element method and the QZ algo-
rithm. According to the results the square of the first natural frequency can
be approximated with good accuracy (or accurately for a simply supported
plate) by linear functions of the load for the parameters (material constants
and geometrical data) considered.

(d) Though in Section 6 we have presented the computational results for the first
eigenvalues only, it seems probable on the basis of the computational results
that equation

Ai
Aoi
≈ 1.000− 1.000

F
Foi

(7.1)

provides a very good approximation if i > 1.

Finally we remark that investigations for annular plates are in progress. Some
preliminary results for compressive loads were presented earlier [18, 2005], [19, 2005].

Appendix A. Bessel functions – fundamental relations

Let us denote Jn(x) and Yn(x) uniformly by Hn(x). The following relations hold

dH0(x)

dx
= −H1 (x) , (A.1a)

dH1(x)

dx
=

1

x
(H0 (x)x−H1 (x)) = H0 (x)− 1

x
H1 (x) =

1

2
(H0(x)−H2(x)) , (A.1b)

dHn(x)

dx
=

1

2
(Hn−1(x)−Hn+1(x)) , (A.1c)

2n

x
Hn(x) = Hn−1(x) +Hn+1(x) , (A.1d)

and

Yn(x)Jn+1(x)− Yn+1(x)Jn(x) =
2

πx
. (A.1e)

See [20, 1977a] for more details.

As regards the Bessel functions In(x) and Kn(x), use has been made of the following
relations

dI0(x)

dx
= I1(x) ,

dK0(x)

dx
= −K1(x) , (A.2a)

dI1(x)

dx
=

1

x
(xI0 (x)− I1 (x)) = I0 (x)− 1

x
I1 (x) =

1

2
(I0(x) + I2(x)) , (A.2b)
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dIn(x)

dx
=

1

2
(In−1(x) + In+1(x)) , (A.2c)

2n

x
In(x) = In−1(x)− In+1(x) , (A.2d)

dK1(x)

dx
= − 1

x
(xK0 (x) +K1 (x)) = −K0 (x)− 1

x
K1 (x) = −1

2
(K0(x) +K2(x)) ,

(A.2e)

dKn(x)

dx
= −1

2
(Kn−1(x) +Kn+1(x)) , (A.2f)

−2n

x
In(x) = Kn−1(x)−Kn+1(x) , (A.2g)

and

In(x)Kn+1(x) + In+1(x)Kn(x) =
1

x
. (A.2h)

See [20, 1977b] for more details.

Appendix B. Clamped plate – calculation of the integration constants

After solving equation system (4.10) we have

A1 =
1

2πf

(
ln ξ − J01 − J0ξ√

FJ11

)
, A3 =

1

4f

(
2

π
√
FJ11

− Y0ξ +
Y11J0ξ
J11

)
, (B.1a)

B1 =
1

2πf

J0ξ − J01√
FJ11

, , B2 =
1

2πf
, B3 =

1

2πf

(
1√
FJ11

+
πY11J0ξ

2J11

)
(B.1b)

and

B4 = − 1

2fπ

πJ0ξ
2

. (B.1c)

Substitution of the solutions above into (4.2) yields the Green function for the clamped plate.
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14. N. Szűcs: Vibrations of circular plates subjected to an in-plane load. GÉP, LVIII(5-6),
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