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Károly JÁRMAI, Institute of Energy Engineering and
Chemical Industry, University of Miskolc, H-3515
MISKOLC, Hungary,
altjar@uni-miskolc.hu
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PREFACE

The papers in the present and next issues of JCAM are ded-
icated to an excellent scientist: Professor Barna Szabó, who
turned 85 this fall. He was a student of the Faculty of Mining
Engineering of the Technical University for Heavy Industry
in Miskolc (now the University of Miskolc) between 1954 and
1956. For political reasons Professor Szabó had to leave Hun-
gary following the failed Hungarian uprising in 1956. After
emigrating from Hungary he completed his university stud-
ies in Canada, and then obtained a PhD degree and made a
scientific career in the United States. It is worth mentioning
his important contribution to the theory of the finite element
method here. Readers who would like to have more details
concerning Professor Szabó’s scientific activity are referred to paper [1] in JCAM.

One of his fundamental results was the observation of the fact that increasing the
polynomial degree p of elements on a fixed mesh results in a rate of convergence in
energy norm that is faster than if fixed p and uniform or quasi-uniform mesh refine-
ment, known as the h-version, are used. The term “p-version of the finite element
method" first appeared in a 1981 publication [2] in which the theoretical foundations
were established for a discretization strategy whereby the finite element mesh is fixed
and the polynomial degree p of the elements is progressively increased. The results
presented in this paper motivated research in the applied mathematics community on
the properties of high order finite element methods, which still continues.

Szabó recognized that it was of fundamental importance from the engineering and
scientific perspectives to formulate mathematical problems that simulate some spe-
cific aspects of a physical reality with sufficient reliability to justify basing engineering
decisions on them.

In 1989 Szabó co-founded a company called Engineering Software Research and
Development, Inc. (ESRD). The mission of this company is “to create and market
software tools for the advancement of the quality, reliability and timeliness of infor-
mation that serves the engineering decision-making process1". ESRD produces and
markets the software StressCheck, which is the only finite element analysis software
tool designed to meet the technical requirements of simulation governance [3]. It is
used primarily in the aerospace sector.

Szabó has published over 150 papers and two textbooks [4],[5]. The second edi-
tion of book [4] is coming out soon. He is a founding member and Fellow of the US

1www.esrd.com
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Association for Computational Mechanics. Among his honors are election to the Hun-
garian Academy of Sciences as External Member in 1995 and Doctor Honoris Causa,
University of Miskolc in 1998.

Professor Szabó has never forgotten about his roots. He used to say that "Half of
my heart beats for the country that helped me to become who I am now and the second
part of my heart beats for my homeland Hungary." Since the early seventies – the
communist authorities in Hungary had not allowed him to visit his homeland earlier
– there has been a living cooperation between him and members of the Institute of
Applied Mechanics at the Miskolc University. We are very grateful for his continuous
support and the help he has been providing us even now.

Miskolc, November 15, 2020 László Baranyi, István Páczelt and György Szeidl
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edgar.bertoti@uni-miskolc.hu

[Received: August 18, 2020; Accepted: September 26, 2020]
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Abstract. Considering the power series expansion of the three-dimensional variables with
respect to the shell thickness coordinate, an equilibrated stress space for the first Piola-
Kirchhoff stress vectors is derived in convective curvilinear coordinate system. The infinite
series of the two-dimensional translational equilibrium equations are satisfied by introducing
two first-order stress function vectors expanded into power series. For the important case
of thin shells, the infinite number of two-dimensional equilibrium equations is truncated
to obtain a ‘first-order’ model, where the equilibrated stress-space requires three vectorial
stress function coefficients only. The formulation presented for thin shells is compared to the
nonlinear equilibrium equations of the classical shell theories, written in terms of the first
Piola-Kirchhoff stress resultants and stress couples and satisfied by the introduction of three
first-order stress function vectors.

Mathematical Subject Classification: 05C38, 15A15
Keywords: shell theory, equilibrated stress space, first-order stress functions

1. Introduction

A self-equilibrated stress space in elasticity can be generated by stress functions
through differentiation. A divergence-free second-order stress tensor requires first-
order stress functions and the stress components are obtained by the combinations of
their first-order derivatives. When the symmetry of the stress tensor is also a priori
required, second-order stress functions are needed. In that case the stress compo-
nents are generated by the combinations of the second-order derivatives of the stress
functions.

The terminology ‘first-order’ and ‘second-order’ for describing stress functions has
been introduced by Fraeijs de Veubeke [1–3]. A self-equilibrated divergence-free stress
space requires six non-zero components of the tensor of first-order stress functions [2,
4, 5], whereas a symmetric and divergence-free stress space requires three non-zero
components of a second-order stress-function tensor [2, 6]. The main advantage in
the use of first-order stress functions, from the point of view of finite element analysis,
is that they require C0-continuous approximations, in contrast to the C1-continuity

©2020 Miskolc University Press
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requirement for second-order stress functions. In addition, the use of first-order stress
functions “not only simplifies the construction of stress elements by a reduction to C0

continuity but opens the field to the three- or two-dimensional stress elements with
curved boundaries” [2].

The stress function approach and the related complementary energy-based varia-
tional principles have been successfully applied in the finite element analysis of two-
dimensional elasticity problems, see, e.g., [2, 7–9]. For three-dimensional problems,
however, no efficient finite element model exists, which is due mainly to the C1-
continuity requirement for the second-order stress functions on the one hand, and to
the structure of the zero-energy modes and the difficulties with their suppression for
the case of first-order stress functions, on the other hand [10].

Complementary energy-based equilibrium models using stress functions have also
been developed for structural members like plates and shells. Considering the anal-
ogy between the special forms of the linear kinematic equations and the equilibrium
equations for shells, stress functions were introduced for cylindrical shells by Schaefer
[11] and for general shells by Günther [12] and Goldenveizer [13]. The relationship
between those shell stress functions and the Maxwell-Morera-type second-order stress
functions has been investigated by Yamamoto [14]. Based on the Kirchhoff-Love kine-
matical assumption, a nonlinear shell theory with finite rotation and stress function
vectors was proposed by Simmonds and Danielson [15] and later, using alternate stress
and conjugate strain measures, by Atluri [16]. In those works the membrane equi-
librium equation is satisfied by one first-order stress function vector and the bending
strains are described by one rotation vector. The mixed variational principles pro-
posed in those works rely on both the bending strain energy and the complementary
membrane energy of the shell.

An equilibrium finite element model for plates has been developed by Punch and
Atluri [17]. The intrinsic shell theory formulated by Valid [18] is also based on the
Kirchhoff-Love kinematical assumption and assumes the existence of a two-dimen-
sional surface complementary strain energy density. The linearized equilibrium equa-
tions, written in the terms of stress resultants and stress couples, are satisfied by the
introduction of a first-order and a second-order stress function vector. For the nonlin-
ear equilibrium equations of the shell theory considered in [18], however,
“every attempt to find SA (statically admissible) stresses would be illusory”, as stated
on page 75 of [18]. Dual-mixed hp finite element models for cylindrical shells using
first-order stress functions and rotations have been developed in [19] and [20].

The main goal of this paper is to derive an equilibrated stress space for nonlinear
shell problems without any a priori -made kinematical assumptions for the deforma-
tion. Considering the shell as a three-dimensional body, the starting point of the
derivation is the three-dimensional equilibrium equations for the first Piola-Kirchhoff
stress vectors. The dimensional reduction procedure is based on the Taylor-series
expansions of the variables, describing the geometry and the mechanical state of the
shell, with respect to the thickness coordinate.

In Section 2 the basic concepts and the notation necessary for understanding the
paper, are summarized. Section 3 presents a dimensional reduction procedure for the
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derivation of an equilibrated stress space for the first Piola-Kirchhoff stress vectors
in convective curvilinear frame, attached to the shell middle surface. The infinite
series of the two-dimensional translational equilibrium equations, written in terms
of the expanded stress coefficients, are satisfied by introducing two first-order stress
function vectors expanded into power series. The equilibrated stress spaces are given
for two cases: equilibrium without and with satisfied stress boundary conditions on
the shell faces. Section 4 considers the important case of thin shells, for which a ‘first-
order model’ is derived. The equilibrated stress space for the finite number of stress
coefficients is compared to the equilibrated stress space derived for stress resultants
and stress couples of the classical shell models, and the relationships between the
first-order stress function vectors are derived.

2. Geometric preliminaries

This section summarizes some fundamental concepts used in shell theories and intro-
duces the notation applied throughout the paper. Both invariant and index notations
are applied. When the index notation is used, the summation convention is applied.
Latin indices, as usual, take the range of values 1,2,3 and the Greek indices of the
values 1 and 2. The scalar product between two tensors is indicated by one dot. The
tensorial or dyadic product between two tensors of any order has no special sign.

2.1. Reference domain. To describe the deformation of the shell as a three-dimen-
sional (3D) body, we define first a simply connected two-dimensional (2D) reference
domain, a plain denoted by S̄, which is bounded by a sufficiently smooth boundary
curve ¯̀and parametrized by the coordinates ξα. Let a 3D reference domain be defined
as

V = {ξ | ξα ∈ S̄, |ξ3| < d/2}, (2.1)

where the coordinate ξ3 is measured along a straight line perpendicular to the coor-
dinate lines ξα at each point of S̄, and d is the thickness of the domain (Figure 1).
It is assumed that d is independent of ξα, i.e., the thickness of V is constant. The
surface S̄ described by the equation ξ3 = 0 is called the middle surface of V . The
boundary surface of V , denoted by S, consists of the top and bottom surfaces

S± = {ξ | ξα ∈ S̄, ξ3 = ±d/2} (2.2)

and the lateral surface
S× = {ξ | ξα ∈ ¯̀, |ξ3| ≤ d/2} (2.3)

for which the relations S = S± ∪ S×, S± ∩ S× = ∅ hold.

In the subsequent analysis it is assumed that an arbitrary tensor quantity T (ξi),
defined at the point ξi ∈ V , can be differentiated sufficient number of times with
respect to ξ3 and can be expanded into Taylor-series around the point ξ3 = 0:

T (ξi) = T (ξα, 0) +
∂T

∂ξ3

∣∣∣∣
ξ3=0

ξ3 +
1

2

∂2T

∂(ξ3)2

∣∣∣∣
ξ3=0

(ξ3)2 + · · ·

= 0T (ξα) + 1T (ξα) ξ3 + 2T (ξα) (ξ3)2 + · · · =
∞∑
n=0

nT (ξα) (ξ3)n, (2.4)



84 E. Bertóti

where the left subscript n = 0, 1, 2, ... refers to the coefficient of the n-th power of ξ3.
Note that the coefficients nT (ξα), n = 0, 1, 2, ... depend on the coordinates ξα only.

2.2. Initial and current configuration of the shell. The initial and the current
configuration of the shell are denoted by 0V and tV , respectively, the material points
of which are labeled by the Cartesian coordinates XA and xa (Figure 1). The 3D
domains 0V and tV are obtained as one-to-one nonlinear mappings from the reference
configuration V , according to the equations

X = X(ξ), XA = XA(ξi) (2.5)

and
x = x(ξ, t), xa = xa(ξi, t), (2.6)

where ξi are the convective coordinates. The deformation of the shell is described by
the nonlinear mapping

x = x(X, t), xa = xa(XA, t). (2.7)

The relationships between the mapping functions (2.5)-(2.7) are given by x(ξ, t) =
x [X(ξ), t ] and x(X, t) = x [ ξ−1(X), t ]. The faces of the shell in the initial and the

ξ
1

ξ

ξ3

2

ξ1

ξ

ξ

ξ

ξ

3ξ

2

2

1

1

X , x
2

3X , x

2

3

X , x
1

3

S
V

V

V

S

S

t

0

0

t

t

0

Figure 1. Initial and current configurations of the shell

current configuration are denoted, respectively, by 0S± and tS±, the lateral surfaces
by 0S× and tS×, the middle surfaces by 0S̄ and tS̄, and their boundary curves by 0¯̀
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and t¯̀ (Figure 1). The unit normals to the shell faces are denoted by 0n± and tn±,
and those to the lateral surfaces by 0n× and tn×.

Applying the material description of the deformation, the mapping (2.5) that de-
fines the initial configuration 0V is assumed, without loss of generality, to be a linear
function of ξ3:

X(ξi) = 0X(ξα) + 1X(ξα) ξ3. (2.8)

The coordinate lines ξ3 in 0V are straight and assumed to be perpendicular to the
middle surface 0S̄. The mapping (2.6) that gives the current configuration tV is, in
general, a non-linear function of ξ3 and can be given as

x(ξi) = 0x(ξα) + 1x(ξα) ξ3 + 2x(ξα) (ξ3)2 + ... (2.9)

with an unknown number of coefficients nx(ξα), n = 0, 1, 2, ... . This means that the
coordinate line ξ3 in tV is usually neither straight nor perpendicular to the deformed
middle surface tS̄.

Remark. Classical plate and shell models are usually based on kinematical assump-
tions that can be considered as restrictions to the mapping (2.6) and its Taylor series
(2.9). The Reissner-Mindlin plate model [21, 22] and the Naghdi shell model [23, 24],
for example, assume that the mapping (2.9) is linear in ξ3. The Kirchhoff-plate model
[25] and the Love-Novozhilov-Sanders-Koiter shell model [26–29] assume, in addition,
that the coordinate line ξ3 is perpendicular to the deformed middle surface, according
to the Kirchhoff-Love hypothesis.

2.3. Convective base vectors. The convective covariant base vectors in the initial
configuration are given by

Aa(ξi) =
∂X

∂ξa
(2.10)

which, using (2.8), can be written as

Aα =
∂ 0X

∂ξα
+
∂ 1X

∂ξα
ξ3 = 0Aα(ξα) + 1Aα(ξα) ξ3, (2.11)

A3 = 1X(ξα) = 0A3 (ξα), (2.12)

where 0Aa(ξα) denotes the (convective, covariant) tangent base vectors to the middle
surface 0S̄ (see Figure 2). According to (2.11)-(2.12), the variation of Aα in ξ3 is lin-
ear, whereas A3 = 0A3 is constant in ξ3. Since the coordinate line ξ3 is perpendicular
to the middle surface 0S̄, A3 = 0A3 is the unit normal to the surfaces ξ3 = constant
in the initial configuration.

Taking into account (2.12), the coefficients 1Aα in the power series (2.11) can be
expressed by the base vectors 0Aβ as

1Aα =
∂ 1X

∂ξα
=

∂ 0A3

∂ξα
= −Bβα 0Aβ , (2.13)

where

B = Bβα 0Aβ 0A
α = − 1Aα 0A

α, Bβα = − 1Aα · 0Aβ (2.14)
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Figure 2. Base vectors in the reference and the current configuration

is the (symmetric) curvature tensor of the middle surface 0S̄ . Taking into account
(2.13), equation (2.11) can be rewritten in the form

Aα = (δβα −Bβα ξ3) 0Aβ . (2.15)

Introducing the shifter tensor as

µ ba = Aa · 0Ab, µβα = δβα −Bβα ξ3, µβ3 = µ3
α = 0, µ3

3 = 1, (2.16)

µ = µ ba 0Ab 0A
a = Aa 0A

a (2.17)

and its inverse

(µ−1)ba = 0Aa ·Ab, µ−1 = (µ−1)ba Ab A
a = 0AaA

a µ · µ−1 = 1, (2.18)

the relationships between the covariant base vectors (2.12) and (2.15) can be given
by

Aa = µ ba 0Ab, 0Aa = (µ−1)baAb , (2.19)

and those between the contravariant base vectors by

Ab = (µ−1)ba 0A
a, 0A

b = µbaA
a. (2.20)

The determinant of the shifter µ in terms of the curvature tensor is given by

µ = detµ = 1− (trB) ξ3 + (detB) (ξ3)2, (2.21)

where trB = Bαα and detB is the determinant of B. For thin shells the approxima-
tions

µ = 1, µ ba = δ ba , µ = 1 (2.22)
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can be applied for the shifter. The derivative of the shifter (2.16) and its determinant
(2.21) with respect to ξ3 are proportional to the curvature of the shell, i.e., they
cannot be neglected either for thin shells.

The covariant components of the metric tensor at the arbitrary point of the shell in
the initial configuration are given by Akl = Ak ·Al, and on the middle surface 0S̄ by

0Akl = 0Ak · 0Al. Their determinants, denoted by A = det Akl and 0A = det 0Akl,
respectively, are related to each other by

√
A = µ

√
0A, (2.23)

where
√
A is also known as the Jacobian of the mapping X = X(ξ). Using the

contravariant metric components Aij and 0A
ij , the relationships between the co-

and contravariant base vectors are given by

Ai = AijAj , 0A
i = 0A

ij
0Aj . (2.24)

The convective covariant base vectors in the current configuration are defined by

ap(ξ
i) =

∂x

∂ξp
. (2.25)

Taking into account (2.9), they can be written as

ap( ξ
i) = 0ap(ξ

α) + 1ap(ξ
α) ξ3 + 2ap(ξ

α) (ξ3)2 + ... , (2.26)

where 0ap(ξ
α) are the base vectors on the deformed middle surface tS̄ (Figure 2).

As can be seen from (2.26), ap is, in general, a nonlinear function of ξ3. When the
deformation gradient

F =
∂x

∂X
= apA

p (2.27)

is known, the convective base vectors in the current configuration can be obtained as

ap = F ·Ap, aq = F−T ·Aq. (2.28)

3. Equilibrated stress space of the shell

Nonlinear dual-mixed finite element models based on equilibrated stress spaces
can be constructed by satisfying the translational equilibrium equation for the first
Piola-Kirchhoff stress tensor through the introduction of first-order stress functions.
The rotational equilibrium, i.e., the symmetry of the Cauchy stress tensor, is satisfied
in a weak sense through the variational formulation and by the corresponding finite
element model. For shells with arbitrary geometry, the construction of an equilibrated
stress space in convective curvilinear coordinates requires special considerations. As
will be shown in this section, the key issue is the use of the vectorial form of the
translational equilibrium equation in the shell coordinate space. The Taylor-series
expansion of the stress vectors leads to a sequence of two-dimensional translational
equilibrium equations that can be satisfied by introducing first-order stress function
vectors.
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3.1. Vectorial equilibrium equations.

3.1.1. Translational equilibrium. The three-dimensional translational equilibrium
equation for the first Piola-Kirchhoff stress tensor P = P k`akA` in the convective
coordinate system is given by

P · 0∇+ 0ρb = 0 X ∈ 0V, (3.1)

where
0∇ = Ai ∂

∂ξi
(3.2)

is the differential operator in the initial configuration, 0ρ is the mass density in the un-
deformed state and b is the prescribed body force density per unit mass. Introducing
the first Piola-Kirchhoff stress vectors as

p` = P ·A`, P = p`A` (3.3)

and making use of the identity

P · 0∇ =
∂p`

∂ξ`
+

1√
A

∂
√
A

∂ξ`
p` (3.4)

for the divergence of the second-order tensor P (see, e.g., [30]), the equilibrium equa-
tion (3.1) can be rewritten in vectorial form:

1√
A

(
√
A p`),` + 0ρb = 0 X ∈ 0V. (3.5)

Note that equation (3.1) contains the covariant derivative of the stress components
P k`, whereas the vectorial equation (3.5) contains the partial derivative of the stress
vectors p`. This is an important fact when the construction of an equilibrated stress
space is needed in a general curvilinear coordinate frame.

3.1.2. Rotational equilibrium. The symmetry of the Cauchy stress tensor σ = J−1P ·
F T in terms of the first Piola-Kirchhoff stress vectors is expressed by the vectorial
equation

a` × p` = 0, (3.6)

where a` are the base vectors defined by (2.25). Satisfaction of the rotational equi-
librium equation (3.6) is not required a priori in the stress-based dual-mixed shell
model under consideration, it is given here only for the sake of completeness.

3.2. Equilibrated stress vectors. To derive an equilibrated space for the first
Piola-Kirchhoff stress vectors p` in the convective coordinate system, the three-
dimensional translational equilibrium equation (3.5) is rewritten first by making use
of (2.23):

1√
0A

(
√

0A µp
`),` + 0ρµb = 0 (3.7)

in which
√

0A depends on ξα only. The stress vectors µp `(ξi) and the body force vector
0ρµb are expanded next into power series with respect to the coordinate ξ3 ≡ ζ:

p̂` := µp`(ξα, ζ) =

∞∑
n=0

np̂
`(ξα) ζn, (3.8)
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b̂ := 0ρµb(ξα, ζ) =

∞∑
n=0

nb̂(ξ
α) ζn. (3.9)

Inserting (3.8) and (3.9) in (3.7), the three-dimensional equilibrium equation is re-
placed by a series of two-dimensional equations, according to the powers of ζ:

1√
0A

(
√

0A np̂
λ),λ +(n+ 1) n+1p̂

3 + nb̂ = 0, n = 0, 1, 2, 3, ... . (3.10)

Equilibrium equations in (3.10) can be satisfied by introducing two arbitrary but
differentiable first-order stress function vectors, denoted by ψ and χ, and expanding
them into power series with respect to ζ as

ψ(ξα, ζ) =

∞∑
n=0

nψ(ξα) ζn, (3.11)

χ(ξα, ζ) =

∞∑
n=0

nχ(ξα) ζn. (3.12)

Then the equilibrium equations (3.10) are identically satisfied by the following stress
vectors:

np̂
λ = 0ε

λβ
nψ,β − (n+ 1) 0ε

3λ
n+1χ −

1

2
√

0A
nf

λ, n = 0, 1, 2, 3, ... , (3.13)

np̂
3 = 0ε

3β
nχ,β , n = 1, 2, 3, 4, ... , (3.14)

where 0ε
λβ and 0ε

3β are two-dimensional permutation symbols defined by√
0A 0ε

λβ =

{
1, if λ = 1, β = 2
−1, if λ = 2, β = 1

,
√

0A 0ε
3β =

{
1, if β = 1
−1, if β = 2

, (3.15)

and

nf
λ =

∫
(ξλ)

√
0A nb̂ dξλ, n = 0, 1, 2, ... (3.16)

are known load vectors obtained from the prescribed body forces by integration along
the coordinate lines ξ1 and ξ2. Note that 0p̂

3 does not appear in (3.10) and, therefore,
in (3.14), its value is arbitrary, at least from the point of view of equilibrium.

Dual-mixed finite element models based on the above stress space require the sat-
isfaction of the stress boundary conditions on the top and bottom faces, as well as
on the lateral surfaces of the shell. These boundary conditions can be satisfied by
applying the Lagrange multiplier technique, i.e., using hybridized elements.

3.3. Equilibrated stress vectors with satisfied stress boundary conditions on
the faces. In the classical, dimensionally reduced shell models it is generally assumed
that on the top and bottom faces of the shells only surface loads are present and the
prescribed tractions are naturally included in the equilibrium equations written in
terms of stress resultants and stress couples. Considering the equilibrium equations
in the form (3.10), the prescribed loads on the faces of the shell can be taken into
account as follows.
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3.3.1. Stress boundary conditions on the faces of the shell. The stress boundary con-
ditions for the first Piola-Kirchhoff stress vectors (3.3) at the top and bottom faces
0S± of the shell with outward unit normals 0n± = ±A3 = ±A3 are given by

± p3 = 0p̃± X ∈ 0S±, (3.17)

and on the lateral surface 0S×p with outward unit normal 0n× = 0n×λA
λ is given by

0n×λ p
λ = 0p̃× X ∈ 0S×p , (3.18)

where 0p̃± and 0p̃× are prescribed tractions.

3.3.2. Vectorial equilibrium including the surface load components. In view of the left
side of (3.8), the stress boundary conditions (3.17), prescribed on the top and bottom
faces of the shell for the first Piola-Kirchhoff stress vector p3, take the form

± p̂3 = µ± 0p̃± X ∈ 0S± (3.19)

which, taking into account (3.8), is rewritten as

0p̂
3 +

d

2
1p̂

3 + (
d

2
)2 2p̂

3 + ...+ (
d

2
)n np̂

3 + ... = ±µ± 0p̃± . (3.20)

Subtracting and adding the two equations corresponding to the signs ± in (3.20), the
equations

0p̂
3 + (

d

2
)2 2p̂

3 + (
d

2
)4 4p̂

3 + ... =
1

2
(µ+ 0p̃+ − µ− 0p̃−), (3.21)

1p̂
3 + (

d

2
)2 3p̂

3 + (
d

2
)4 5p̂

3 + ... =
1

d
(µ+ 0p̃+ + µ− 0p̃−) (3.22)

are obtained. For the sake of compact notation, let the load vector components

0p̃(ξα) =
1

2
(µ+ 0p̃+ − µ− 0p̃−), (3.23)

1p̃(ξα) =
1

d
(µ+ 0p̃+ + µ− 0p̃−) (3.24)

be introduced. Then the load vector defined by

p̃ = 0p̃ + 1p̃ ζ (3.25)

at ζ = ± d/2 takes the values of the prescribed loads on the top and bottom surfaces:

p̃(ξα, ± d/2) = ±µ± 0p̃± . (3.26)

Taking into account (3.23)-(3.24), the coefficients 1p̂
3 and 2p̂

3 can be expressed from
the stress boundary conditions (3.21)-(3.22) as

1p̂
3 = 1p̃−

∞∑
i=1

(d
2

)2i
2i+1p̂

3, (3.27)

2p̂
3 =

4

d2
( 0p̃ − 0p̂

3)−
∞∑
i=1

(d
2

)2i
2i+2p̂

3. (3.28)
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Inserting them in the first two equilibrium equations of (3.10) that correspond to
n = 0 and n = 1, the translational equilibrium equations including the prescribed
loads on the faces are given by

n = 0 :
1√
0A

(
√

0A 0p̂
λ),λ −

∞∑
i=1

(d
2

)2i
2i+1p̂

3 + 1p̃+ 0b̂ = 0, (3.29)

n = 1 :
1√
0A

(
√

0A 1p̂
λ),λ − 2

∞∑
i=1

(d
2

)2i
2i+2p̂

3 +
8

d2
( 0p̃− 0p̂

3) + 1b̂ = 0, (3.30)

n ≥ 2 :
1√
0A

(
√

0A np̂
λ),λ + (n+ 1) n+1p̂

3 + nb̂ = 0. (3.31)

Equations (3.31) for the case n ≥ 2 are identical with those in (3.10). Note also that
the value of 0p̂

3 is not arbitrary in this case: due to (3.20) and (3.28), it appears in
the equilibrium equations.

3.3.3. Equilibrated stress vectors. Equilibrium equations (3.29)-(3.31) can identically
be satisfied by the stress function vectors ψ and χ, introduced in Section 3.2. Consid-
ering their power series expansion (3.11)-(3.12) with respect to ξ3 ≡ ζ, the equilibrated
stress vectors are given by

0p̂
λ = 0ε

λβ
0ψ,β − 0ε

3λ
∞∑
i=1

(d
2

)2i
2i+1χ −

1

2
√

0A
1f

λ, (3.32)

1p̂
λ = 0ε

λβ
1ψ,β +

8

d2
0ε

3λ
0
χ − 2 0ε

3λ
∞∑
i=1

(d
2

)2i
2i+2χ −

1

2
√

0A
0f

λ, (3.33)

np̂
λ = 0ε

λβ
nψ,β − (n+ 1) 0ε

3λ
n+1χ −

1

2
√

0A
nf

λ, n = 2, 3, 4, ..., (3.34)

np̂
3 = 0ε

3λ
nχ,λ, n = 0, 3, 4, 5, ... , (3.35)

where

0f
λ =

∫
(ξλ)

√
0A (

8

d2
0p̃ + 1b̂) dξλ, (3.36)

1f
λ =

∫
(ξλ)

√
0A ( 1p̃ + 0b̂) dξλ (3.37)

are known load vectors obtained from the prescribed body forces and surface loads by
integration along the coordinate lines ξ1 and ξ2. The load vectors nf

λ, n = 2, 3, ....
in (3.34) are defined by (3.16) and the permutation symbols 0ε

λβ and 0ε
3β by (3.15).

Note that since the stress vectors 1p̂
3 and 2p̂

3 are computed in this case from the
stress boundary conditions on the faces, according to (3.27) and (3.28), the equili-
brated stress space (3.32)-(3.35) does not require the use of the stress function coef-
ficients 1

χ and 2
χ. This means that the finite element models based on the stress

space (3.32)-(3.35), with satisfied stress boundary condition on the faces, are more
efficient than those based on (3.13) and (3.14) of Section 3.2. The fact that the num-
ber of the unknown stress function components is less by 6 for the present case has
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a special advantage in the modeling of thin shells, where a first-order approximation
with two equilibrium equations from (3.10) is usually enough for an accurate solution
(see Section 4).

3.4. Equilibrated stress components. The equilibrated components of the first
Piola-Kirchhoff stress tensor can be obtained from the definitions of the stress vectors
(3.3) and (3.8). Introducing the components of the stress vector p̂` with respect to
the base vectors 0Ak as

p̂` = P̂ k` 0Ak, P̂ k` = p̂` · 0Ak = µp` · 0Ak, (3.38)

the power series of p̂` in (3.8) can be rewritten as

p̂` =

∞∑
n=0

np̂
` ζn =

∞∑
n=0

nP̂
k`

0Ak ζ
n, (3.39)

from which the coefficients np̂
` are obtained as

np̂
` = nP̂

k`
0Ak, n = 0, 1, 2, 3, ... . (3.40)

Considering the stress function vectors (3.11) and (3.12) in the expanded forms

ψ = ψk 0Ak =
( ∞∑
n=0

nψ
k ζn

)
0Ak, (3.41)

χ = χk
0Ak =

( ∞∑
n=0

nχ
k
ζn
)

0Ak, (3.42)

the equilibrated stress coefficients nP̂
k` for the case of Section 3.2 are obtained by

inserting (3.40)-(3.42) in (3.13) and (3.14):

nP̂
kλ = 0ε

λβ
nψ

k
|β − (n+ 1) 0ε

3λ
n+1χ

k − 1

2
√

0A
n(fk)λ, n = 0, 1, 2, 3, ... , (3.43)

nP̂
k3 = 0ε

3β
nχ

k
|β, n = 1, 2, 3, 4, ... , (3.44)

where n(fk)λ, n = 0, 1, 2, 3, ... are the components of the load vectors (3.16) with
respect to the base vectors 0Ak, and the sign | in the right subscript followed by
β refers to the three-dimensional covariant derivative on the middle surface 0S̄ with
respect to ξβ :

nψ
k
|β = nψ

k
,β + nψ

` Γ̄k`β (3.45)

with Christoffel-symbols Γ̄k`m = 0A`,m· 0Ak, defined on the middle surface of the shell
in the initial configuration.

The components of the equilibrated stress space for the case of Section 3.3 can be
obtained from equations (3.32)-(3.35) by inserting (3.40)-(3.42) in them:

0P̂
kλ = 0ε

λβ
0ψ

k
|β − 0ε

3λ
∞∑
i=1

(d
2

)2i
2i+1χ

k − 1

2
√

0A
1(f

k)λ, (3.46)

1P̂
kλ = 0ε

λβ
1ψ

k
|β +

8

d2
0ε

3λ
0
χk − 2 0ε

3λ
∞∑
i=1

(d
2

)2i
2i+2χ

k − 1

2
√

0A
0(f

k)λ, (3.47)
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nP̂
kλ = 0ε

λβ
nψ

k
|β − (n+ 1) 0ε

3λ
n+1χ

k − 1

2
√

0A
n(fk)λ, n = 2, 3, 4, ..., (3.48)

nP̂
k3 = 0ε

3λ
nχ

k
|λ, n = 0, 3, 4, 5, ... , (3.49)

where n(fk)λ, n = 0, 1, 2, 3, ... are the components of the load vectors (3.36)-(3.37)

and (3.16) with respect to the base vectors 0Ak. The stress components 1P̂
k3 and

2P̂
k3 are obtained from equations (3.27)-(3.28):

1P̂
k3 = 1p̃

k −
∞∑
i=1

(d
2

)2i
2i+1P̂

k3, (3.50)

2P̂
k3 =

4

d2
( 0p̃

k − 0P̂
k3)−

∞∑
i=1

(d
2

)2i
2i+2P̂

k3. (3.51)

The shifted components P̄ km of the first Piola-Kirchhoff stress tensor with respect to
the base vectors 0Ai can be obtained using the definition

P = P̄ km 0Ak 0Am (3.52)

and the relations (3.3), (3.8), (3.38) and (2.19):

P = p`A` =
1

µ
p̂`A` =

1

µ
P̂ k` 0AkA` =

1

µ
µm` P̂

k`
0Ak 0Am. (3.53)

On comparing (3.52) and (3.53) the relation

P̄ km =
1

µ
µm` P̂

k` (3.54)

is obtained. The expanded coefficients of the equilibrated stress components P̄ k`

can be derived from (3.54) by inserting (3.43)-(3.44) or (3.46)-(3.51). The resulting,
rather lengthy, expressions are not listed here.

4. The special case of thin shells

In the previous sections there was no limitation on the thickness of the shell. The
number of the stress coefficients in the power series has been considered to be infinite,
which resulted in an infinite number of two-dimensional equilibrium equations of the
shell. When the numerical solution of a shell problem is needed, however, only a finite
set of equations can be considered and solved efficiently. Depending on the number
of the two-dimensional equilibrium equations chosen, a large variety of dimensionally
reduced shell models can be derived, and hierarchic sets of shell models can also be
constructed. In this section an equilibrated stress space for thin shells is derived. It is
assumed that the stress boundary conditions on the shell faces are a priori satisfied,
just like in the classical shell models, which means that the procedure described in
Section 3.3 can be applied.
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4.1. Equilibrated stress space for thin shells. In the case of thin shells, let
the first two equilibrium equations of (3.10) be selected and let the other equations,
corresponding to the higher powers of ξ3 ≡ ζ, be neglected with the assumption that
they are identically satisfied. The two equations for n= 0 and n= 1 are

1√
0A

(
√

0A 0p̂
λ),λ + 1p̂

3 + 0b̂ = 0, (4.1)

1√
0A

(
√

0A 1p̂
λ),λ + 2 2p̂

3 + 1b̂ = 0. (4.2)

According to these equations, the first Piola-Kirchhoff stress vectors p̂`, defined in
(3.8), are approximated across the thickness of the shell by linear and quadratic
polynomials in ζ:

p̂λ(ξα, ζ) = 0p̂
λ(ξα) + 1p̂

λ(ξα) ζ, (4.3)

p̂3(ξα, ζ) = 0p̂
3(ξα) + 1p̂

3(ξα) ζ + 2p̂
3(ξα) ζ2. (4.4)

Following now the method applied in Section 3.3, the coefficients 1p̂
3 and 2p̂

3 can be
expressed from the stress boundary conditions (3.21)-(3.22) prescribed on the shell
faces: in view of (4.4), equations (3.27)-(3.28) simplify to the form

1p̂
3 = 1p̃, (4.5)

2p̂
3 =

4

d2
0p̃ −

4

d2
0p̂

3. (4.6)

Substituting (4.5)-(4.6) into (4.1)-(4.2), the equilibrium equations for the first Piola-
Kirchhoff stress vectors 0p̂

` and 1p̂
λ take the form

1√
0A

(
√

0A 0p̂
λ),λ + 1p̃ + 0b̂ = 0, (4.7)

1√
0A

(
√

0A 1p̂
λ),λ −

8

d2
0p̂

3 +
8

d2
0p̃ + 1b̂ = 0. (4.8)

These equations can be deduced from (3.29)-(3.30), as well, by neglecting the higher-
order terms. The equilibrated stress vectors, satisfying (4.7)-(4.8) are obtained from
(3.32)-(3.35):

0p̂
λ = 0ε

λβ
0ψ,β −

1

2
√

0A
1f

λ, (4.9)

0p̂
3 = 0ε

3λ
0
χ,λ , (4.10)

1p̂
λ = 0ε

λβ
1ψ,β +

8

d2
0ε

3λ
0
χ − 1

2
√

0A
0f

λ , (4.11)

where 0f
λ and 1f

λ are defined by (3.36)-(3.37). From (4.9)-(4.11) it follows that the
power series of the stress function vectors (3.11)-(3.12) are restricted now to linear
and constant functions, according to

ψ(ξα, ζ) = 0ψ(ξα) + 1ψ(ξα) ζ, (4.12)

χ (ξα, ζ) = 0
χ (ξα), (4.13)
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i.e., only three first-order stress function vectors, 0ψ, 1ψ and 0
χ, are required in this

model for thin shells.

The equilibrated first Piola-Kirchhoff stress components can be obtained from equa-
tions (3.46)-(3.51) of Section 3.4 by taking into account the stress function space (4.12)
and (4.13):

0P̂
kλ = 0ε

λβ
0ψ

k
|β −

1

2
√

0A
1(f

k)λ, (4.14)

1P̂
kλ = 0ε

λβ
1ψ

k
|β +

8

d2
0ε

3λ
0
χk − 1

2
√

0A
0(f

k)λ, (4.15)

0P̂
k3 = 0ε

3λ
0
χk
|λ, (4.16)

1P̂
k3 = 1p̃

k, (4.17)

2P̂
k3 =

4

d2
0p̃
k − 4

d2
0P̂

k3, (4.18)

where i(f
k)λ, i = 1, 2 are the components of the load vectors (3.36)-(3.37) with

respect to the base vectors 0Ak. According to (4.14)-(4.18), the components P̂ k`

of the first Piola-Kirchhoff stress tensor are approximated by linear and quadratic
polynomials across the thickness:

P̂ kλ(ξα, ζ) = 0P̂
kλ(ξα) + 1P̂

kλ(ξα) ζ, (4.19)

P̂ k3(ξα, ζ) = 0P̂
k3(ξα) + 1P̂

k3(ξα) ζ + 2P̂
k3(ξα) ζ2. (4.20)

This approximation is consistent with the stress state obtained from the classical
shell models and equivalent with the stresses obtained from the three-dimensional
equilibrium equations through a posteriori integration across the thickness of the
shell.

The shifted components P̄ k` of the first Piola-Kirchhoff stress tensor can be derived
using relation (3.54). When the approximations (2.22) for the shifter tensor and

its determinant are applied, the equality P̄ k` = P̂ k` is valid for the shifted stress
components.

4.2. Relationship with resultant-based shell equations. In this section, first-
order stress function vectors generating equilibrated stress resultants and stress cou-
ples used in classical shell theories are introduced and their relationships to the stress
function vectors (4.12)-(4.13) that generate equilibrated stress vectors are investi-
gated.

4.2.1. Equilibrated stress resultants and stress couples. The vectorial equilibrium equa-
tions for the first Piola-Kirchhoff stress resultants and stress couples can be derived
from the three-dimensional equilibrium equations (3.7), rewritten in the form

1√
0A

(
√

0A µpλ),λ + (µp3),3 + 0ρµb = 0. (4.21)
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Introducing the infinite number of first Piola-Kirchhoff stress resultant vectors as

iN(ξα) =

∫
(d)

ζiµp`dζ, i = 0, 1, 2, 3, . . . , (4.22)

the ‘classical’ stress resultants and stress couples are obtained for i = 0 and i = 1:

N `(ξα) := 0N
` =

∫
(d)

µp`dζ, (4.23)

Mλ(ξα) := 1N
λ =

∫
(d)

ζ µpλ dζ. (4.24)

Note that 1N
3 = M3 = 0.

Integrating equation (4.21) with respect to the thickness coordinate ζ and taking
into account the stress boundary conditions on the faces, the vectorial equilibrium
equation

1√
0A

(
√

0AN
λ),λ + p = 0 (4.25)

is obtained for the first Piola-Kirchhoff stress resultants Nλ, where the load vector p
is given by

p(ξα) = µ+ 0p̃+ + µ− 0p̃− +

∫
(d)

0ρµbdζ . (4.26)

Multiplying equation (4.21) by ζ, integrating it then with respect to ζ and taking
into account the stress boundary conditions on the faces again, the vectorial moment
equilibrium equation is obtained:

1√
0A

(
√

0AM
λ),λ −N3 + m = 0, (4.27)

where the moment load vector m is given by

m(ξα) =
d

2
(µ+ 0p̃+ − µ− 0p̃−) +

∫
(d)

ζ 0ρµbdζ . (4.28)

Equilibrium equations (4.25) and (4.27) can identically be satisfied by introducing
three arbitrary but differentiable first-order stress function vectors, denoted by F(ξα),
G(ξα) and H(ξα), according to

Nλ = 0ε
λβ F ,β −

1

2
√

0A

∫
(ξλ)

√
0A pdξλ , (4.29)

N3 = 0ε
3λ G,λ , (4.30)

Mλ = 0ε
λβH,β + 0ε

3λ G − 1

2
√

0A

∫
(ξλ)

√
0A mdξλ. (4.31)

Note that in the works [15] and [16], the stress function vector F is already used
to satisfy the membrane equilibrium equation (4.25), according to (4.29). However,
the stress function vectors G and H are not introduced and used, for satisfying the
bending equilibrium equation (4.27) in the works mentioned, as the bending moments
were derived from the bending strains through constitutive equations.
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4.2.2. Relationships for the stress functions. The relationships between the first-order
stress function vectors 0ψ(ξα), 0

χ(ξα), 1ψ(ξα), introduced in Section 4.1, and F(ξα),
G(ξα), H(ξα) introduced above can be obtained as follows. Substituting (4.3)-(4.4)
into (4.23)-(4.24), the relations between the stress vectors and the stress resultants
are obtained:

0p̂
λ =

Nλ

d
, 1p̂

λ = 12
Mλ

d3
, (4.32)

0p̂
3 =

3

2

N3

d
− 1

2
0p̃, 1p̂

3 = 1p̃, 2p̂
3 =

6

d2
( 0p̃−

N3

d
). (4.33)

Inserting (4.32) in (4.3) and (4.33) in (4.4), the relations

p̂λ =
Nλ

d
+ 12

Mλ

d3
ζ , (4.34)

p̂3 =
3

2

N3

d
(1− 4

d2
ζ2)− 0p̃ (

1

2
− 6

d2
ζ2) + 1p̃ ζ (4.35)

are obtained, which are partially known from the classical shell theories.

The relationships between the first-order stress function vectors F , G, H and 0ψ,

0
χ, 1ψ are obtained by substituting (4.29)-(4.31) into (4.32)-(4.33) and comparing

the result with (4.5)-(4.6) and (4.9)-(4.11):

0ψ =
F
d
, (4.36)

1ψ = 12
H
d3
, (4.37)

0ε
3λ( 0

χ −3

2

G
d

),λ +
1

2
0p̃ = 0. (4.38)

On inserting the relations (4.36) and (4.37) in (4.12), it follows that

ψ(ξα, ζ) =
F
d

+ 12
H
d3
ζ, (4.39)

and, thus,

F(ξα) =

∫
(d)

ψ(ξα, ζ) dζ, (4.40)

H(ξα) =

∫
(d)

ζ ψ(ξα, ζ) dζ, (4.41)

which indicate that F and H can be considered as two-dimensional stress function
resultants obtained from the three-dimensional stress function vector ψ.

Equation (4.38) is a partial differential equation for 0
χ and G. For the special case

when the loads on the shell faces are zero, the relation

0
χ =

3

2

G
d

(4.42)

holds for them.
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5. Concluding remarks

The equilibrated stress space given in this paper for nonlinear deformation of shells
can serve as a starting point for the derivation of a stress-based nonlinear shell theory
and a dual-mixed, complementary energy-based finite element model for shells. The
variational background of this theory and the related finite element model is Fraeijs
de Veubeke’s variational principle for 3D elasticity problems [31]. The dimensional
reduction procedure for the present shell model relies on a priori assumptions re-
garding the variation of the stress space across the thickness, instead of the standard
Kirchhoff-Love or Reissner-Mindlin type kinematical assumptions on the deformed ge-
ometry of the shell. Since the transverse shear and the transverse normal stresses are
also present in the formulation, three-dimensional constitutive equations can directly
be applied. Beside this fact, the main advantage of the stress-based models and the
related dual-mixed finite elements for shells is their expected locking-free behavior,
i.e., their superior performance in those cases, when the classical, displacement-based
models and elements exhibit different types of numerical over-stiffening phenomenon.
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Abstract. The Széchenyi Chain Bridge is a 170-year-old historical structure located in the
downtown of Budapest. The superstructure of the bridge was reconstructed several times in
its history and currently the renewal process of the bridge is under consideration. Accord-
ing to the current plans main girders, chain elements and cross-girders will remain the old
structure and the deck system will be replaced by a new orthotropic steel deck. The Bu-
dapest University of Technology and Economics, Department of Structural Engineering was
involved in the design process and in the assessment of the remaining elements’ condition
within the last 5 years. During the project authors were faced with numerous specific impor-
tant and challenging structural problems, modelling specialties, advanced design methods
and research interest. The main part of these unusual characteristics come from the layout of
the historical structure, long time traffic and corrosion problems. One of the most important
questions during the structural analysis is the condition and rotational capacity of the pins
between the chain elements. The chain system is more than 100 years old and the rota-
tional capacity of the pins is questionable due to corrosion and friction. This phenomenon
significantly influences the static behaviour of the chain elements and the whole suspending
system. The current paper presents the numerical and on-site experimental program on the
investigation of the rotational capacity of the pins. A second important question was related
to the condition of current deck system. Significant corrosion damage was observed on the
steel stringers which might cause damage or local collapse of the bridge deck under pub-
lic transportation loads. Advanced numerical model using probabilistic analysis (FORM)
and measurement based corrosion models are applied to make a risk assessment of the deck
system’s capability to maintain and keep the current traffic on the bridge before the deck
will be replaced. Via this bridge inspection and investigation project the authors would like
to demonstrate the application of advanced numerical modelling based design techniques
and the industrial application of research models for lifetime assessment and risk analysis of
historical structures.
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1. Introduction

The Széchenyi Chain Bridge (Figure 1) is an almost 170-year-old historical structure of
Budapest, a major attraction of the downtown over the Danube River. Although the
bridge is a historical monument of Hungary and popular place for tourists, significant
daily roadway traffic crosses the bridge and it is also used by the Budapest public
transportation. The superstructure of the bridge was reconstructed several times in
the history, but the chain elements have reached their 100-year-lifetime and the deck
system is more than 70-year-old. The renewal process of the bridge is currently under
organization. Főmterv Co. and MSc Ltd. made the design of the reconstruction work.
The independent static check and the expert reports concerning the renewal process
and damage assessment of the remaining structural elements have been completed
by the Budapest University of Technology and Economics, Department of Structural
Engineering in cooperation with the designers.

Figure 1. The Széchenyi Chain Bridge [1]

The strategy of the currently planned reconstruction is that the old bridge deck
system (concrete slab and longitudinal steel stringers) will be replaced by a new or-
thotropic steel deck system (Figure 2). In longitudinal direction the deck system
replacement will be made step-by-step, minimizing the geometry change of the sus-
pension system during construction. The chain elements, the steel stiffening girder
and the cross-girder system will remain unchanged, only the corrosion protection is
planned to be renewed. Therefore, the evaluation of the structural condition of the
remaining elements is an important task of the renewal process to determine their
load carrying capacity and remaining lifetime.

The current paper introduces how an advanced numerical model can be used for
the evaluation of the load carrying capacity of a historical structure in combination
with on-site measurements and probabilistic design approach. The assessment of two
structural elements are presented: (i) corroded chain elements whose pins cannot
rotate due to friction and/or corrosion, (ii) old deck system with significant corrosion
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Figure 2. Planned cross-section after reconstruction [2]

damage whose risk of failure is evaluated for a short time period till reconstruction is
started.

2. History of the Széchenyi Chain Bridge

The original Széchenyi Chain Bridge was erected between 1839-49 and it was consid-
ered as one of the greatest engineering works of its age (Figure 3). With a maximum
middle span of 202.6 m this bridge was the largest chain bridge at that time; cur-
rently it is still the third one after the Herzilio Luz Bridge (339 m) in Brazil and
Clifton Bridge (214 m) in England. The design was carried out by the English en-
gineer William Tierney Clark while the construction was supervised by the Scottish
engineer Adam Clark. The bridge was opened for traffic in 1849 and operated until
1914. Because the bridge had no stiffening girder and it had a light-weight timber
deck system in this first time period, significant horizontal and vertical vibrations
were observed on the bridge deck, which made the redesign of the construction nec-
essary. The new bridge was built based on the static calculations of the Hungarian
professor Antal Kherndl according to the plans of István Gállik and József Beke.

Figure 3. Planned cross-section after reconstruction [1]

The new supporting structure consisted of 25 carbon steel chain bars between
each node whose length and bearing capacity was doubled compared to the previous
structure (the distance between the suspension bars and the pins increased from 1.8



104 L. Dunai and B. Kövesdi

m to 3.6 m). With the new truss stiffening girder, the mass of the entire built-in
ironwork grown to 5200 t using carbon steel with tensile strength of 48-56 kN/cm2

(fits to the current S355 steel grade). During World War II.the bridge was demolished
(in 1945) and the structure was rebuilt in its original form without any significant
static changes. Two third of the chain elements were re-used, and the entire stiffening
girder and deck system were replaced by new structural elements. The bridge was
opened for traffic in its renewed form in 1949 [1]. In the meantime, no reconstruction
work has been made on the system. Several investigations and measurements are
made on the bridge. A loading test is performed to check the actual forces in the
suspending bars; corrosion measurement were made on the chain elements in 2002;
these results help the current renewal process and design.

3. Numerical modeling and design aspects

The structural behavior of the bridge is studied using a numerical model developed in
the general finite element program Ansys [3]. The new orthotropic deck system and
the old cross-girders are modeled using higher order (8-node) thin shell elements, while
the stiffening truss girder and the suspension system (hangers and chain elements)
are modeled by beam elements. The general layout of the global model is shown in
Figure 4; the global model consists of 193 950 finite elements with a total number
of 1 163 732 degrees of freedom. The erection phases of the bridge are simulated by
birth and death process. The ultimate load calculation and risk analysis of the two
analyzed structural members (chain elements and stringers of the deck system) are
made using local numerical sub-models following the bridge characteristics (corrosion
grade, lifetime, friction between pins and chain).

Figure 4. Global finite element model – combined shell and beam
element model
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In the numerical model the following structural specialties are considered:

– original erection phases having a significant impact on the internal force distri-
bution between the different structural members (stiffening truss girders work
only for traffic loads, self-weight is carried by the chain elements alone),

– second order effects (internal force distribution between the suspension system
and the deck system depends on the pretension force acting in the chains),

– rotational capacity of the pins between the chain elements (chain is subjected
to dominant tension force along the entire length even if pinned joints are
fixed, but significant bending moments can act at the location of the pylon
and at the abutment where chain system slope significantly changes), pins can
get stuck due to corrosion and/or friction resulting in bending moment in the
chain elements,

– corrosion of the chains, which reduces the net cross-section of the tension sys-
tem, leading to reduced tensile strength and introducing stress concentration,
resulting in reduced fatigue lifetime,

– corrosion of the longitudinal steel stringers and reinforcing bars of the concrete
slab, which might influence the load carrying capacity of the deck system,

– uncertainties in the corrosion grade of the bridge and changes in time increasing
the risk of damage under daily traffic.

On the global numerical model geometric nonlinear analysis (GNA) is carried out
in each analyzed load case combination to determine the second order internal forces
and stresses. These internal forces and direct loads are applied on the local sub-
models where the ultimate load of the analyzed structural details are determined by
geometric and material nonlinear analysis using imperfections (GMNIA) according
to EN 1993-1-5 [4]. The design resistance of the analyzed structural members is
determined by first order reliability method (FORM) using Monte-Carlo simulation
technique. This design approach can consider the uncertainties of the input data
based on statistical analysis and able to perform risk assessment of the damaged
structural items. Results of the FORM analysis are (i) the reliability index (β) and
(ii) reliability of the structure calculated by Ps = (1 − Pf ), where Pf is the risk of
failure against the investigated failure mode and design lifetime. If the calculated risk
of failure is larger than the prescribed value (P0), the structure does not fulfill the
design criteria of the applied standard. The reliability index (β) is in correlation with
the risk of the failure, the relationship is given in Table 1 according to the design
philosophy of Eurocode EN 1990 [5].

Table 1. Correlation between reliability index (β) and risk of failure
(Pf ), [5]

Pf 10−1 10−2 10−3 10−4 10−5 10−6 10−7

β 1.28 2.32 3.09 3.72 4.27 4.75 5.20

One of the most important uncertainties in case of the Széchenyi Chain Bridge
is the corrosion grade. In the international literature there are numerous determin-
istic and stochastic corrosion models available [6–8], which have been developed for
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different steel grades and environmental conditions. Authors considered corrosion
using a time-dependent statistical model taken from the international literature using
real measurement data as input parameters. In the current numerical model, the
corrosion model developed by Paik and Kim [7] in 2012 is applied, which was originally
developed for a marine environment and extended for steel bridges by Tohodi and
Sharifi [6] in 2016. In this corrosion model the damage grade is considered by the
Weibull-type density function given by equation (3.1):

dc =
α

β
·
(
Ye
β

)α−1

· exp

[
−
(
Ye
β

)α ]
, (3.1)

where: dc is the corrosion depth, α is the shape factor, β is size factor, Ye = Y −Yc; Y
is the age of the bridge, Yc is the age of the corrosion protection. Further details and
the considered input parameters are given in [6]. This model can consider the change
in the effectiveness of corrosion protection within the lifetime of the structure. On
the other hand, it can also consider how the likelihood of the corrosion depth changes
over time depending on the corrosion grade. In the applied numerical model of the
chain elements, on-site measurement data from 2002 are implemented as initial input
data of the corrosion model. Corroded surface is fitted on a large number of corrosion
measurement data which is implemented in a solid finite element model.

4. On-site measurements on the chain elements

To check the rotational capacity of the pins an on-site loading test is executed on
the bridge. The aim of the test was to determine the change in the normal force and
bending moment within the chain elements. From the measured bending moment,
conclusion could be made on the rotation ability of the pins (thus rotation reduces or
totally eliminates bending moment). Results of the numerical model show the typical
moment diagram of the suspension system (Figure 5b) if all pins become stuck (fixed
connections are assumed in the numerical model). Results prove a significant bending
moment can develop only within the chain elements at the two sides of the pylons
and at the abutments. Therefore, these are the places where stress changes were mea-
sured during the loading test using strain gauges. All the other joints behave quasi-
pinned, even if they are modeled by fixed joints. The bridge was loaded by 12 trucks

  

(a) (b)

Figure 5. a) On-site loading test and b) calculated bending moment
diagram with fixed pins
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(Figure 5a) with an average weight of 200 kN, placed in 13 different loading arrange-
ments simulating partial and total loading situations. The following measurements
are executed within the loading test program:

– deflection measurements to check the global behavior of the system,
– strain measurements at 8 chain elements to determine the normal stress changes

(normal force and bending moments separately),
– influence line measurements on the chain to check the global structural behav-

ior due to moving loads,
– eigenfrequency measurements.

Deformation measurement results show the maximum measured deflection was
slightly smaller than the numerically calculated maximum displacement, which pre-
dicted certain sticking effect and confirmed that the chain system has larger stiffness
than predicted by the numerical model. Strain gauge measurements are also evalu-
ated. Normal force and bending moment changes are determined in each investigated
chain element, which are also compared to the numerical results. Results proved that
from the 8 analyzed pins only one pin could rotate under the applied load. All other
pins got stuck and could not rotate under the applied test load. One example for
the measured normal stresses is presented in Figure 6. The diagram shows the strain
measurement results while 3 trucks are moving on the bridge and take their planned
position. Strain gauges H3/1 – H3/6 are placed on the outermost fiber of the first
chain element next to the abutment and others are located on the second one, serving
as reference measurements (dominant tension force was expected on the second chain
elements). Results give evidence on the developed bending moment resulting from
the stuck pins. Numbering of the strain gauges followed the same strategy at each
measuring location. Strain gauges around the abutment are signed by H4 abutments
are investigated during the on-site measurements marked by H1 – H4 and 10 strain
gauges are placed on the chain elements at each measuring location, resulting in the
code of the strain gauges (e.g. H3/1, etc.).

 

Figure 6. Stress changes in one chain element due to loading by 3
trucks
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Strain measurement results show normal force level difference between the two sides
of the pylon. This can only happen if roller supports cannot move on the top of the
pylons, showing significant friction or sticking effect. This fact can also be seen on
the measured influence lines presented in Figure 7.

Figure 7. Influence line of one chain element

Measurement shows there are no measured strains for the left side span of the
bridge, which can only happen if significant horizontal force is carried by the roller
supports. On-site measurement results gave essential information to the designers and
confirmed chain elements should be checked for bending and normal force interaction
(N+M interaction).

5. Resistance calculation of corroded and stucked chain elements

It is well known that stuck pins change the structural behavior of the chain elements,
which could lead to damage if they are not designed or statically checked. One of the
most serious chain bridge failures occurred in the USA in 1967 and resulted in the
death of 46 people [9]. The Silver Bridge collapsed due to a single chain element failure
initiated from a fatigue crack, resulting in the total collapse of the chain system. The
reason for the failure was the sticking of the pins due to corrosion. Therefore, it is
a crucial point to check the resistance and risk of failure of the chain for combined

Figure 8. Material properties of the chain elements based on coupon
tests
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normal force and bending moment (N+M interaction) considering corrosion and stuck
pins. The corrosion grade, old material properties and other design parameters have
large scatter, which can only be considered in probability based design approaches.
The main part (76%) of the chain elements was manufactured in 1915 [1] with the
characteristic of the contemporary steel manufacturing techniques. Results of 702
coupon tests taken in 1912 were found by the authors in the literature. So, the
mean and characteristic values of the steel material could be determined by statistical
evaluation and probabilistic curve fitting, as shown in Figure 8.

Advanced solid element based numerical model is developed for the analysis of
the chain elements. Contact elements are applied between the connected surfaces
considering friction and sticking effect. The developed numerical models have the
following capabilities:

– elasto-plastic material behaviour using damage criteria to model tensile frac-
ture of the material,

– friction and sticking between the pin and chain elements, - considering the
measured corrosion grade based on the measured surface properties and its
probability on the surface of the chain elements,

– ultimate load is determined using geometrical and material nonlinear analysis
using imperfections (GMNI analysis),

– coupling GMNI analysis (numerical simulations) with the probabilistic design
approach.

 

 

Figure 9. Model of the corroded surface and its probabilistic distri-
bution

Considering corrosion of the chain elements, measured mean surface is implemented
into the numerical model and distribution function is determined and graded by the
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Kolmogorov-Szmirnov test. Beta distribution function was found to be accurate in
most cases to model the corrosion uncertainties, therefore this probabilistic function
was implemented in the numerical model. The mean corrosion surface and the applied
beta distribution function are presented in Figure 9.

Probabilistic analysis is carried out on the numerical model using the Monte-Carlo
simulation technique, generating pseudorandom values for the defined variable pa-
rameters using Latin hypercube sample selection. In each single case the ultimate
resistance is determined using GMNI analysis by evaluation of the obtained load-
displacement curve. During probabilistic analysis the following variables are consid-
ered:

– depth of the chain elements (using CoV =0.005),
– thickness of the chain elements (using CoV =0.05),
– yield strength of the steel (using CoV=0.03 - based on measurements),
– corrosion grade (using Beta distribution function - based on measurements).

 
a) distribution function of the characteristic 

resistances 

b) typical load-displacement curve and 

obtained failure mode

Figure 10. Results of the combined probabilistic design method with
the GMNI analyses

In the frame of the probabilistic analysis a total of 20 000 numerical analyses (us-
ing the surface fitting method) are executed within the Monte-Carlo simulation at a
confidence level of 95%. One example for the numerical GMNI analysis result is pre-
sented in Figure 10, showing a load-displacement curve around the average resistance
level from all the simulation results. In each calculation, the characteristic resistances
are determined referring to different input values. Based on the obtained results the
average, the characteristic and design values of the resistance are determined by sta-
tistical evaluation, as shown in Figure 10. Results of the probabilistic design showed
that the average value of the resistance is 158% of the actual internal force. The 5%
lower quantile value is equal to 148% representing the characteristic value. The 0.1%
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quantile value is equal by 138% representing the design resistance level. This value
is larger than the design value of the acting loads (135% of the nominal load level).
So the corroded chain element satisfies the design criteria for N+M interaction with
a maximum utilization ratio of 98%.

6. Risk assessment of the deck system

Another structural component where corrosion grade can lead to damage of the struc-
ture is the bridge deck system. The aim of the investigation was to determine the
risk of failure of the deck considering on-site measurement data, real loading situation
with public transportation using a probabilistic design approach. Locations and the
extent of corrosion were taken into consideration in the numerical model based on on-
site measurements carried out in 2019. Two photographs of the corroded longitudinal
stringers are presented in Figure 11 showing the worst case locations.

expansion joint lower flange of longitudinal stringer

Figure 11. Corroded structural details of the deck system

Based on the on-site corrosion measurements, the following average corrosion dam-
age grades (or corrosion waste, i.e., reduction of thickness) are taken into account in
the numerical model:

– upper and lower flanges of the outer longitudinal stringer: 50%,
– web of the outer longitudinal stringer: 30%,
– web, upper and lower flanges of the inner longitudinal stringer: 10%,
– upper and lower flanges of the outer longitudinal stringer near to the expansion

joint: 50%,
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– web of the outer longitudinal stringer near to the expansion joint: 80%,
– reinforcing bars at the bottom of the slab: 30%.

The given values are considered in the initial configuration for deterministic analysis,
while in the stochastic analysis these are considered as mean values of the corre-
sponding probability density function. Two standard cross-sections are analysed: i)
longitudinal stringers near to the expansion joint and ii) internal longitudinal stringers
in general location. Isometric and cross-sectional views of the sub-model are shown
in Figure 12.

 

 

c)

Figure 12. Isometric view of the model a) with and b) without rein-
forced concrete slab, c) cross-sectional view

Our check of the reinforced concrete slab in ultimate limit state is partially based
on analytical calculations as height of the compression zone is pre-calculated in the
analyzed cases, assuming that tensile strength of the concrete can be ignored. Thus,
finite elements in the tensile zones having concrete material models are inactivated.
An automatic algorithm is developed to determine the extension of cracking in all
load cases and the numerical model is rebuilt considering crack locations and relevant
material properties. On-site measurements show the largest damage risk is at the
vicinity of expansion joints, where corrosion grade of the web reaches 80%, traffic
load results in maximum shear force and dynamic effect is also at its maximum due
to the expansion joint. At this location the failure mode obtained by the numerical
calculations is shear buckling of the web, as shown in Figure 13. The numerical
simulation based resistance is interpreted and calculated according to EN 1993-1-5 [4]
recommendations.
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Figure 13. Failure mechanism and von Mises stresses [MPa]

Based on the deterministic calculation the characteristic value of the load factor
is equal to α = 1.05 (considering design load case combination). Deterministic cal-
culations proved that the vicinity of the expansion joint has a high utilization ratio,
therefore risk of failure is also determined. Stochastic analysis is carried out focusing
on the worst case loading situation and corresponding failure mode (shear buckling
of stringer web). The density function of the calculated ultimate load factors based
on Monte-Carlo simulation is shown in Figure 14. The load factors are determined
by GMNI analysis, which is combined with the probability approach.

 

Figure 14. Density function of load factors based on Monte Carlo simulation

A relatively large coefficient of variation is obtained, which is a result of the corro-
sion model, with its high level of uncertainty associated with corrosion damage depth.
The mean value of calculated ultimate load factors, denoting the failure of the struc-
ture, is 1.40, while the standard deviation is 0.206 (maximum axle load of buses in
service on the bridge is 125 kN and considered dynamic amplification factor on the
deck system is 1.40). From the statistical evaluation the calculated reliability index
(β) is equal to 2.43, which corresponds to the failure probability of 0.007448 (1/134).
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7. Summary

The present paper has the aim to demonstrate the application of advanced numeri-
cal modelling techniques and probabilistic design approaches in the civil engineering
praxis. The Széchenyi Chain Bridge is one of the most important monuments and
national symbols of Hungary, and its renewal process is currently under organization.
The executed numerical calculations could help designers and decision makers in the
evaluation of the actual condition, remaining lifetime, risk of damage of the corroded
chain elements and deck system. In the applied numerical calculations a probabilistic
design approach is combined with geometrical and material nonlinear analysis using
imperfections. In the deterministic and stochastic analysis the results of the on-site
measurements are considered regarding the corrosion grade, rotational capacity of the
pins and material properties of the chain elements.

Acknowledgement. The authors would like to express special thanks to the Főmterv Zrt.
design office for providing information related to the historical bridge, and for their cooper-
ation concerning both the expert reports and the evaluation of the on-site measurements.
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1. Introduction

We study the Nelder-Mead simplex method [1] for the solution of the unconstrained
minimization problem

f (x)→ min (f : Rn → R) ,

where f is continuous. Since 1965, the Nelder-Mead algorithm and its later variants
have become highly popular in various application areas and derivative-free optimiza-
tion [2–6]. Although the original paper [1] has a lot of citations (over 31 000 in
Google Scholar on August 3, 2020), notably few theoretical results are known on the
convergence (see Kelley [7] and Lagarias at al. [8, 9]).

In the paper we develop a matrix form of the Nelder-Mead method, discuss the
concept of convergence and its consequences, prove a general convergence theorem
under plausible assumptions and demonstrate the convergence of the algorithm for
low dimensional spaces. This approach partially answers some of the questions raised
by Wright [10] concerning the Nelder-Mead method.

Section 2 contains the description of the algorithm. The next section summarizes
the most important earlier results on the convergence. The matrix reformulation of
the Nelder-Mead method is given Section 4. The concept of convergence and some
of its consequences are developed and discussed in Section 5. The spectra of the
occurring matrices is investigated in Section 6. The general convergence theorem
is developed in Section 7. Finally, the convergence of the Nelder-Mead method is
demonstrated for n = 1, 2, 3 in the last section.

©2020 Miskolc University Press
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2. The Nelder-Mead simplex method

We use the following form of the original method [8]. The vertices of the initial
simplex are denoted by x1, x2, . . . , xn+1 ∈ Rn. It is assumed that vertices x1, . . . , xn+1

are ordered such that

f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1) (2.1)

and this condition is maintained during the iterations of the Nelder-Mead algorithm.
Define xc = 1

n

∑n
i=1 xi and x (λ) = (1 + λ)xc−λxn+1. The related evaluation points

are

xr = x (1) , xe = x (2) , xoc = x

(
1

2

)
, xic = x

(
−1

2

)
.

Then one iteration step of the method is the following.

Operation Nelder-Mead simplex method
0. Ordering f (x1) ≤ · · · ≤ f (xn+1)
1. Reflect if f (x1) ≤ f (xr) < f (xn), then xn+1 ← xr and goto 0.
2. Expand if f (xr) < f (x1) and f (xe) < f (xr),

then xn+1 ← xe and goto 0.
If f (xe) ≥ f (xr), then xn+1 ← xr and goto 0.

3. Contract outside If f (xn) ≤ f (xr) < f (xn+1) and f (xoc) ≤ f (xr),
then xn+1 ← xoc and goto 0.

4. Contract inside If f (xr) ≥ f (xn+1) and f (xic) < f (xn+1)
then xn+1 ← xic and goto 0.

5. Shrink xi ← (xi + x1) /2, f (xi) (for all i) and goto 0.

There are two rules that apply to reindexing after each iteration. If a nonshrink
step occurs, then xn+1 is discarded and a new point v ∈ {xr, xe, xoc, xic} is accepted.
The following cases are possible:

f (v) < f (x1) , f (x1) ≤ f (v) ≤ f (xn) , f (v) < f (xn+1) .

If

j =

{
1, if f (v) < f (x1)
max2≤`≤n+1 {f (x`−1) ≤ f (v) ≤ f (x`)} , otherwise

.

then the new simplex vertices are

xnewi = xi (1 ≤ i ≤ j − 1) , xnewj = v, xnewi = xi−1 (i = j + 1, . . . , n+ 1) . (2.2)

This rule inserts v into the ordering with the highest possible index. If shrinking
occurs, then

x′1 = x1, x′i = (xi + x1) /2 (i = 2, . . . , n+ 1)

plus a reordering takes place. By convention, if f (x′1) ≤ f (x′i) (i = 2, . . . , n), then
xnew1 = x1.

Lagarias at al. [9] also investigated a restricted version, where expansion steps are
not allowed.
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We adopt the following notations. The simplex of iteration k is denoted by S(k) =[
x
(k)
1 , x

(k)
2 , . . . , x

(k)
n+1

]
with vertices that satisfy the condition

f
(
x
(k)
1

)
≤ f

(
x
(k)
2

)
≤ · · · ≤ f

(
x
(k)
n+1

)
(k ≥ 0) .

The initial simplex is S(0). The reflection, expansion and contraction points of simplex

S(k) are denoted by x
(k)
r , x

(k)
e , x

(k)
oc and x

(k)
ic , respectively. The function values at the

vertices x
(k)
j and the points x

(k)
r , x

(k)
e , x

(k)
oc and x

(k)
ic are denoted by f

(
x
(k)
j

)
= f

(k)
j

(j = 1, . . . , n + 1), f
(k)
r = f

(
x
(k)
r

)
, f

(k)
e = f

(
x
(k)
e

)
, f

(k)
oc = f

(
x
(k)
oc

)
and f

(k)
ic =

f
(
x
(k)
ic

)
, respectively.

3. A review of the earlier convergence results

In 1998 McKinnon [11] constructed a function f , which is strictly convex and has
continuous first derivatives for certain parameters. He showed that for this f , the
Nelder-Mead simplex algorithm may fail to converge.

Lagarias et al. [8] proved several convergence properties of the simplex method for
one and two-variable strictly convex functions by giving a deep insight look of the
method. They summarize their main results as follows (see p. 114 of [8]):

1. In dimension 1, the Nelder-Mead method converges to a minimizer, and con-
vergence is eventually M -step linear.

2. In dimension 2, the function values at all simplex vertices in the standard
Nelder-Mead algorithm converge to the same value.

3. In dimension 2, the simplices in the standard Nelder-Mead algorithm have
diameters converging to zero.

In 1999 Kelley [7, 12] developed a sufficient decrease condition for the average of the
object function values (evaluated at the vertices) and proved that if this condition is
satisfied during the process, then any accumulation point of the simplices is a critical
point of f . For similar results on other variants of the Nelder-Mead algorithm, see
Tseng [13], Nazareth and Tseng [14], Pryce at all. [15].

For the restricted Nelder-Mead method, Lagarias at al. [9] significantly improved
the results of [8]. Let F denote the class of twice-continuously differentiable functions
R2 → R with bounded level sets and everywhere positive definite Hessian. Lagarias
at al. proved that if the restricted Nelder-Mead algorithm is applied to a function
f ∈ F , starting from any nondegenerate simplex, then the algorithm converges to the
unique minimizer of f .

Wright [10] raised several open questions concerning the Nelder-Mead method such
as

• Why is it sometimes so effective (compared to other direct search methods)
in obtaining a rapid improvement in f?
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• One failure mode is known (McKinnon [11]) – but are there other failure
modes?

• Why, despite its apparent simplicity, should the Nelder-Mead method be dif-
ficult to analyze mathematically?

Our purpose is to analyze and prove the convergence of the method using a matrix for-
malism. This technique will also shed light on these questions, even if only, partially.
The failure modes are the subject of paper [16].

4. The Nelder-Mead simplex method in matrix form

Assume that simplex S(k) =
[
x
(k)
1 , x

(k)
2 , . . . , x

(k)
n+1

]
is such that

f
(
x
(k)
1

)
≤ f

(
x
(k)
2

)
≤ · · · ≤ f

(
x
(k)
n+1

)
.

If the incoming vertex v is of the form

x (α) =
1 + α

n

n∑
i=1

x
(k)
i − αx

(k)
n+1

for some α ∈
{

1, 2, 12 ,−
1
2

}
, we can define the transformation matrix

T (α) =

[
In

1+α
n e

0 −α

] (
e = [1, 1, . . . , 1]

T
)
.

Since S(k)T (α) =
[
x
(k)
1 , . . . , x

(k)
n , x (α)

]
, we have to reorder the matrix columns ac-

cording to the insertion rule (2.2). Define the permutation matrix

Pj = [e1, . . . , ej−1, en+1, ej , . . . , en] ∈ R(n+1)×(n+1) (j = 1, . . . , n+ 1) .

Then S(k)T (α)Pj is the new simplex S(k+1). Particularly, we have the following
cases.

1. If the reflection point x
(k)
r is the new incoming vertex, then

S(k+1) = S(k)T (1)Pj (j = 2, . . . , n) .

2a) If the expansion point x
(k)
e is the new incoming vertex, then

S(k+1) = S(k)T (2)P1.

2b) If the expansion point is the reflection point x
(r)
r , then

S(k+1) = S(k)T (1)P1.

3) If the outside contraction point x
(k)
oc is the new incoming vertex, then

S(k+1) = S(k)T

(
1

2

)
Pj (j = 1, . . . , n+ 1) .

4) If the inside contraction point x
(k)
ic is the new incoming vertex, then

S(k+1) = S(k)T

(
−1

2

)
Pj (j = 1, . . . , n+ 1) .
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5) In the case of shrinking, the new vertices before reordering are

x′i =
(
x
(k)
1 + x

(k)
i

)
/2 (i = 1, 2, . . . , n+ 1) .

Hence
[
x′1, x

′
2, . . . , x

′
n+1

]
= S(k)Tshr, where

Tshr =


1 1

2 · · · 1
2

0 1
2 · · · 0

...
. . . 0

0 · · · 0 1
2

 =
1

2
I +

1

2
e1e

T .

Since the new vertices are subject to the ordering

f
(
x
(k+1)
1

)
≤ · · · ≤ f

(
x
(k+1)
k

)
≤ · · · ≤ f

(
x
(k+1)
n+1

)
,

the new simplex is defined by

S(k+1) = S(k)TshrP,

where P ∈ Pn+1, which is the set of all possible permutation matrices of order n+ 1.

There are only n+ 1 permutation matrices of the type Pj , while there are (n+ 1)!
possible permutation matrices of the type Pn+1

Hence in any of the above cases the new simplex S(k+1) is given by

S(k+1) = S(k)TkP
(k),

where Tk is either T (α) (α ∈
{
− 1

2 ,
1
2 , 1, 2

}
) and P (k) ∈ {P1, . . . , Pn+1} or Tk = Tshr

and P (k) ∈ Pn+1. The number of different TiP
(i) matrices is at most 3n+3+(n+ 1)!

indicating an increasing complexity if n increases.

Observe that matrices T (α), Tshr, T (α)P and TshrP , for any P ∈ Pn+1, have the
property that their column sums are 1. We exploit the following simple results.

Claim 1. (i) If A ∈ Rn×n is a matrix whose column sums are 1, then A has an
eigenvalue λ = 1 and a corresponding left eigenvector x = eT . (ii) If A,B ∈ Rn×n
are two matrices whose column sums are 1, then C = AB also has this property. (iii)
If A ∈ Rn×n is a matrix whose column sums are 1, then ‖A‖ ≥ 1 in any induced
matrix norm.

Proof. By definition eTA = [
∑n
i=1 ai1, . . . ,

∑n
i=1 ain] = 1 ·eT . This implies eTB = eT ,

eTAB = eTB = eT . Since ρ (A) ≥ 1 and ‖A‖ ≥ ρ (A), (iii) also follows. �

Particularly, ‖T (α)‖1 = ‖T (α)P‖1 = |1 + α|+ |α| and ‖Tshr‖1 = ‖TshrP‖1 = 1.

A matrix A is called left stochastic if aij ≥ 0 for all i,j and the column sums are
1. A matrix is called stochastic if aij ≥ 0 for all i,j and both the column sums and
the row sums are 1.

Matrix T (α) is left stochastic for −1 ≤ α ≤ 0. The shrinking transformation

matrix Tshr = 1
2In+1 + 1

2e1e
T is a left stochastic matrix, T kshr = 1

2k
In+1 + 2k−1

2k
e1e

T

and T kshr → e1e
T .
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For any α, β, T (α)T (β) = T (−αβ). Hence T (α)
−1

= T
(
1
α

)
(α 6= 0) and

T (α)
k

= T
(

(−1)
k+1

αk
)

. If |α| < 1, then limk→∞ T (α)
k

= T (0). Matrix T (1)

is an involution (T (1)
2

= In+1). If T (1) is multiplied by a permutation matrix P ,
this property may change. For n = 2, T (1)P2 (reflection) is a 6-involutory matrix (for

k-involutory matrices, see Trench [17]). T (α)
k

is unbounded if |α| > 1 and uniformly
bounded if |α| ≤ 1.

5. The concept of convergence and consequences

Simplex S(k) is given by

S(k) = S(0)Bk, (5.1)

where

Bk =

k∏
i=1

TiP
(i) (5.2)

and

TiP
(i) ∈

{
T (α)Pk : α ∈

{
−1

2
,

1

2
, 1, 2

}
, k = 1, . . . , n+ 1

}
(5.3)

or
TiP

(i) ∈ {TshrP : P ∈ Pn+1} . (5.4)

Note that each TiP
(i) is nonsingular and eTTiP

(i) = eT .

A simplex S is nondegenerate if the matrix

M = [x1 − xn+1, x2 − xn+1, . . . , xn − xn+1]

is nonsingular. Then S must be affinely independent, which is equivalent to (see, e.g.,
[18], [19]) that vectors [

1
x1

]
, . . . ,

[
1

xn+1

]
are linearly independent. Hence rank

([
eT

S

])
= n + 1.1 Assume that the initial

simplex S(0) is nondegenerate. Since eTBk = eT and[
eT

S(k)

]
=

[
eT

S(0)

]
Bk

is nonsingular, S(k) is also nondegenerate.

For the convergence of the Nelder-Mead algorithm, it is natural to require that the

simplex vertices x
(k)
j (j = 1, 2, . . . , n + 1) should converge to the same vector x̂ as

k →∞. In such a case
lim
k→∞

S(k) = [x̂, . . . , x̂] = x̂eT . (5.5)

Claim 2. If {Bk} is bounded, then
{
S(k)

}
converge to some S∞ if and only if {Bk}

converge to some B.

1It is assumed through the whole paper that the sizes of e and the unit vectors ei are compatible

with the operation and/or partition.
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Proof. If S(k) → S∞ (whatever S∞ is) and Bk → B, then S(0)Bk → S(0)B = S∞.
Assume that S(k) → S∞ and {Bk} has no limit point. Since {Bk} is bounded
it must have at least one accumulation point, say B∗ and there is a subsequence{
Bij
}
⊂ {Bk} such that Bij → B∗ and S(ij) → S(0)B∗ = S∞. Assume that there

exists a second accumulation point B∗∗ 6= B∗ and a subsequence
{
Bkj

}
⊂ {Bk} such

that Bkj → B∗∗. It follows that[
eT

S(ij)

]
→
[

eT

S(0)

]
B∗ =

[
eT

S(0)

]
B∗∗ ←

[
eT

S(kj)

]
.

Since

[
eT

S(0)

]
is nonsingular, we obtain that B∗ = B∗∗, which is a contradiction. It

follows that {Bk} converges. �

Hence it is enough to study the convergence of {Bk}, or more precisely the conver-
gence of the right infinite matrix product

B =

∞∏
i=1

TiP
(i). (5.6)

Let A be an n× n matrix. The 1-eigenspace of the matrix A is

E (A) = {x : xA = x} .

Lemma 3. Assume that Bk → B and TsP
(s) occurs infinitely often in the product∏∞

j=1 TjP
(j), then every row of B is in E

(
TsP

(s)
)
.

Proof. Since TsP
(s) occurs infinitely often in the product

∏∞
i=1 TiP

(i), there is a

subsequence of
{
Bij
}

with rightmost factor TP , say

Bi1TsP
(s), Bi2TsP

(s), . . . ,

where the Bij ’s are products of TiP
(i)’s. Since Bij → B, so does BijTsP

(s). Thus

BijTsP
(s) → BTsP

(s) = B. �

In fact the rows ofB, if not zero vectors, are the left eigenvectors of TsP
(s) belonging

to λ = 1. If several TsP
(s) occur infinitely often in the product

∏∞
i=1 TiP

(i), then the

rows of B belong to ∩E
(
TsP

(s)
)
, where the intersection is over all matrices TsP

(s)

that occur infinitely often in
∏∞
k=1 TiP

(i).

Each of the matrices TiP
(i) has at least one left eigenvector (eT ) belonging to

λ = 1. Hence eT ∈ ∩E
(
TsP

(s)
)
. If ∩E

(
TsP

(s)
)

=
{
λeT : λ ∈ R

}
, then B has the

form weT for some w ∈ Rn+1. However it is not always the case.

Example 4. Let n = 2, {dk}∞k=0 be a strictly monotone decreasing sequence, dk >

δ1 > δ2 for all k, and define f
(k)
1 = δ2, f

(k)
2 = δ1, f

(k)
3 = dk+1, f

(k)
r = dk+1 and

f
(k)
ic = dk+2. Then x

(k+1)
1 = x

(k)
1 , x

(k+1)
2 = x

(k)
2 , x

(k+1)
3 = x

(k)
ic , f

(
x
(k+1)
1

)
= δ2,
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f
(
x
(k+1)
2

)
= δ1 and f

(
x
(k+1)
3

)
= dk+2. Hence a repeated inside contraction occurs,

Bk =

[
T

(
−1

2

)]k
→ B =

 1 0 1
2

0 1 1
2

0 0 0

 6= weT .

Here x
(k)
1 → x

(0)
1 , x

(k)
2 → x

(0)
2 , x

(k)
3 → 1

2

(
x
(0)
1 + x

(0)
2

)
, and the simplex diameters do

not converge to 0. Note that B is not a rank one matrix.

Assume now that Bk → B = weT . Then S(k) = S(0)Bk → S(0)weT = ŵeT ,
diam

(
S(k)

)
= maxi,j

∥∥S(k) (ei − ej)
∥∥ and

diam
(
S(k)

)
≤ max

i,j

∥∥∥S(0)
∥∥∥ ‖Bk (ei − ej)‖ → 0. (5.7)

Since B (ei − ej) = 0, Bk (ei − ej) = (Bk −B) (ei − ej), we have the speed estimate

diam
(
S(k)

)
≤
√

2
∥∥∥S(0)

∥∥∥ ‖Bk −B‖ . (5.8)

Note again that in Example 4, where B is of rank 2, the simplex diameters do not
converge to 0.

If Bk converges to a rank one matrix weT , then all simplex vertices x
(k)
i (i =

1, . . . , n + 1) converge to the same limit x̂ = S(0)w implying that f
(k)
i → f

(
S(0)w

)
(i = 1, . . . , n + 1) and diam

(
S(k)

)
→ 0. In such a case the results of Lagarias et al.

[8] mentioned as 2. and 3. in Section 3, are direct consequences.

The next example indicates that the boundedness assumption on {Bk} is also
needed.

Example 5. Let n = 2, {dk}∞k=1 be a strictly monotone decreasing sequence, and
define

f
(k)
1 = d3+k, f

(k)
2 = d2+k, f

(k)
3 = d1+k

and

f
(k)
1 = d3+k > f (k)r =

1

2
(d3+k + d4+k) > d4+k = f (k)e .

This guarantees the selection of x
(k)
e as the incoming vertex for each iteration. The

sequences
{
f
(
x
(k)
1

)}
,
{
f
(
x
(k)
2

)}
and

{
f
(
x
(k)
3

)}
are strictly monotone decreasing,

while Bk = [T (2)P1]
k

is unbounded. For dk → d, the function values are converging
to d, while there is no convergence for the simplex vertices. A similar example can be

given for x
(k)
r if it is selected as an expansion point.

For a given S(0) and f , the sequence S(k) (Bk) is uniquely defined. In fact, S(k+1)

is determined by S(k) and the relative value distribution of f at the vertices of S(k)

and trial points x
(k)
r , x

(k)
e , x

(k)
oc and x

(k)
ic . Hence we study the convergence of the

matrix product Bk and the convergence of the simplex vertices as a consequence.
The selection of the initial simplex S(0) may also influence the convergence of the
Nelder-Mead algorithm but it is difficult to consider it within this approach (for
experimental observations on the initial simplex S(0), see [20], [21]).
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6. Eigenvalues of the transformation matrices

The eigenvalues of the matrices TiP
(i) play a key role in the convergence of the

infinite matrix product
∏∞
i=1 TiP

(i). For P (i) = In+1, we have the following simple
result.

Lemma 6. (i) Matrix T (α) has the eigenvalues λi = 1 (i = 1, . . . , n) and λn+1 = −α
and the diagonal Jordan form

T (α) =

[
In − 1

ne
0 1

] [
In 0
0 −α

] [
In

1
ne

0 1

]
.

(ii) The eigenvalues of Tshr are λ1 = 1 and λi = 1
2 for i = 2, . . . , n + 1. The

corresponding eigenvectors are x1 = e1, xi = −e1 + ei. Furthermore Tshr has a
diagonal Jordan normal form

Tshr = XΛX−1, (6.1)

where Λ =diag(λi) = 1
2

(
In+1 + e1e

T
1

)
and X = In+1 + e1

(
eT1 − eT

)
.

Lemma 7. The matrix T (α)Pk (1 ≤ k ≤ n) has k − 1 eigenvalues λ = 1. The
remaining n− k + 2 eigenvalues are the zeros of the polynomial

pn+2−k (λ) = λn+2−k − c
n+1−k∑
i=1

λi + α, (6.2)

where c = 1+α
n . If k = 1, then pn+1 (λ) has at least one eigenvalue λ = 1. If α = 1,

pn+1 (λ) has at least two eigenvalues λ = 1. If α = 2, pn+1 (λ) has an eigenvalue in
the interval (1, 2). For k ≥ 2, there are exactly k− 1 eigenvalues λ = 1. If 2 ≤ k ≤ n
and α < 0, pn−k+2 (λ) has all roots in the open unit disk.

Proof. For 1 ≤ k ≤ n,

T (α)Pk =

[
Ik−1 ceeT1

0 An+2−k

]
,

where

An+2−k =



c 1 0 · · · 0

c 0
. . .

. . .
...

...
...

. . .
. . . 0

c 0 · · · 0 1
−α 0 · · · 0 0

 .
Since An+2−k is a companion matrix (for this form, see, e.g. [22]), its characteristic
polynomial is

pn+2−k (λ) = λn+2−k − c
n+1−k∑
i=1

λi + α (1 ≤ k ≤ n)

and the characteristic polynomial of T (α)Pk is

det (T (α)Pk − λIn+1) = (1− λ)
k−1

pn+2−k (λ) .
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Note that pn+2−k (1) = k−1
n (α+ 1). If k = 1, pn+1 (1) = 0, that is λ1 = 1 (the

column sums of T (α)P1 are 1!). Since p′n+1 (λ) = 1−α
2 (n+ 1), there is a second

zero λ2 = 1 if α = 1 (expansion by reflection). For α = 2, p′n+1 (1) < 0 and

pn+1 (2) = 2n+1
(
1− 3

n

)
+ 2 + 6

n > 0 (n ≥ 2). Hence pn+1 (λ) has a zero in the
interval (1, 2) for α = 2 and n ≥ 2. If k ≥ 2, pn+2−k (1) 6= 0. If α < 0 and 2 ≤ k ≤ n,
the roots of pn+2−k (λ) are inside the unit disk since for |λ| ≥ 1,

|pn+2−k (λ)| = |λ|n+2−k

∣∣∣∣∣1− c
n+1−k∑
i=1

1

λi
+ α

1

λn+2−k

∣∣∣∣∣
≥ |λ|n+2−k

(
1− c

n+1−k∑
i=1

1

|λ|i
− |α| 1

|λ|n+2−k

)
≥ |λ|n+2−k

(1− (n+ 1− k) c− |nc− 1|)

≥ |λ|n+2−k
(k − 1) c > 0.

�

For α > 0, there is no estimate on the location of the roots of pn+2−k relative to
the open unit disk. However the Schur-Cohn test may help to decide if the roots of
pn+2−k (λ) are in the open unit disk.

For the eigenvalues of TshrP (P ∈ Pn+1), we cite the following result

Theorem 8. (Langville and Meyer [23, 24]). If the spectrum of the stochastic matrix
P is {1, λ2, . . . , λ3}, then the spectrum of

W = αP + (1− α) evT

is {1, αλ2, αλ3, . . . , αλn}, where vT is a probability vector2.

Corollary 9. Since the eigenvalues of W and WT coincide, we have the same result
for the transposed matrix

WT = αPT + (1− α) veT

as well.

Corollary 10. The spectrum of TshrP = 1
2P + 1

2e1e
T is

{
1, 12λ2,

1
2λ3, . . . ,

1
2λn+1

}
.

Since the eigenvalues of a permutation matrix are on the unit circle |λ| = 1, we have∣∣ 1
2λi
∣∣ = 1

2 for i = 2, . . . , n+ 1.

7. General convergence results for the Nelder-Mead method

For every T (α)Pk, the spectral radius is bigger than or equal to 1. Since eT ∈
E
(
TiP

(i)
)

for all TiP
(i) occurring here, we first block triangularize them by a com-

mon similarity transformation (for left infinite matrix products, see Theorem 6.10 of
Hartfiel [25]). We show that for

F =

[
1 −eT
0 In

]
, F−1 =

[
1 eT

0 In

]
(7.1)

2Vector v is such that vi ≥ 1 and eT v = 1.
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and for all possible TiP
(i),

F−1TiP
(i)F =

[
1 0T

bi Ci

]
, (7.2)

where bi ∈ Rn and Ci ∈ Rn×n depends on TiP
(i).

Lemma 11. For every T (α)Pk (α ∈
{
− 1

2 ,
1
2 , 1, 2

}
, Pk ∈ {P1, . . . , Pn+1}), the matrix

F−1T (α)PkF has the form (7.2).

Proof. For k > 1 we can write

T (α)Pk =

[
1 ceTk−1
0 W

] (
W ∈ Rn×n

)
,

and so

F−1T (α)PkF =

[
1 −eT + ceTk−1 + eTW
0 W

]
.

Since eTWek−1 = (n− 1) c− α = 1− c, eTW = [1, . . . , 1− c, 1, . . . , 1], we obtain the
form

F−1T (α)PkF =

[
1 0
0 W

]
.

For k = 1, we can write

T (α)P1 =

[
c eT1
z W

] (
W ∈ Rn×n

)
with z = [c, . . . , c,−α]

T
. Hence

F−1T (α)P1F =

[
c+ eT z −ceT + eT1 − eT zeT + eTW

z −zeT +W

]
.

Since eTW = [0, 1, . . . , 1], eT z = 1− c, c+ eT z = 1,

−ceT + eT1 − eT zeT + eTW = −ceT + eT1 − (1− c) eT + eTW = 0.

The final result is

F−1T (α)P1F =

[
1 0
z −zeT +W

]
.

�

Remark 12. For k > 1, b = 0, and for k = 1, ‖b‖2 =
(

(1+α)2

n + α2
) 1

2

.

Lemma 13. For every TshrP (P ∈ Pn+1), the matrix F−1TshrPF has the form
(7.2).

Proof. Note that TshrP = 1
2P + 1

2e1e
T and P =

[
ei1 , . . . , ein+1

]
. If i1 = 1, then

TshrP =

[
1 1

2e
T

0 W1

]
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where W1 is an n× n permutation matrix multiplied by 1
2 . Hence eTW1 = 1

2e
T and

F−1TshrPF =

[
1 − 1

2e
T + eTW1

0 W1

]
=

[
1 0
0 W1

]
.

If i1 > 1 and TshrPej = e1, then

TshrP =

[
1
2

1
2e
T + 1

2e
T
j−1

1
2ei1−1 W2

]
,

where W2ej−1 = 0, eTW2ei = 1
2 (i 6= j − 1) and eTW2 = 1

2

(
eT − eTj−1

)
. Since

eT ei1−1 = 1,

F−1TshrPF =

[
1
2 + 1

2e
T ei1−1

1
2e
T
j−1 − 1

2e
T ei1−1e

T + eTW2
1
2ei1−1 − 1

2ei1−1e
T +W2

]
=

[
1 0

1
2ei1−1 − 1

2ei1−1e
T +W2

]
�

Remark 14. If i1 = 1, then the first column entries are 0 except for entry (1, 1). If
i1 ≥ 2, then entry (i1, 1) is 1

2 , while the remaining entries are 0 (` 6= 1, i1). Hence

‖b‖2 ≤
1
2 . The entries of submatrix C are only 0, 1

2 and − 1
2 . In column j, there can

be at most two nonzero elements. Theorem 8 and Corollaries 9 and 10 imply that
ρ (C) = 1

2 . Note that ‖C‖1 ≤ 1.

We also need the following simple results.

Assume that for i ≥ 1,

Ai =

[
1 0
bi Ci

]
∈ R(n+1)×(n+1)

(
Ci ∈ Rn×n

)
. (7.3)

It is easy to see that

Lk =

k∏
j=1

Aj =

[
1 0∑k

i=1

(∏i−1
j=1 Cj

)
bi

∏k
j=1 Cj

]
=

[
1 0

xk
∏k
j=1 Cj

]
. (7.4)

Lemma 15. Assume that
∥∥∥∏k

j=1 Cj

∥∥∥ ≤ ck,
∑∞
k=1 ck is convergent (<∞) and ‖bk‖ ≤

γ for all k. Then Lk converges and

lim
k→∞

Lk =

[
1 0
x̃ 0

]
(7.5)

for some x̃.

Proof. If
∑∞
k=1 ck is convergent, then ck → 0. Hence

∏k
j=1 Cj → 0 as k →∞. Since

sk =
∑k
j=1 cj is convergent, for any ε > 0 there is a number k0 = k0 (ε) such that for
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m > k ≥ k0, |sm − sk| < ε. Thus for m > k ≥ k0, we obtain

‖xm − xk‖ ≤
m∑

i=k+1

∥∥∥∥∥∥
i−1∏
j=1

Cj

∥∥∥∥∥∥ ‖bi‖ ≤ γ
m∑

i=k+1

ci−1 ≤ γε.

Hence xk → x̃ for some x̃. �

Remark 16. If ‖Cj‖ ≤ q < 1 for j ≥ 1, then
∥∥∥∏k

j=1 Cj

∥∥∥ ≤ qk and the series
∑∞
i=1 q

i

is convergent.

Remark 17. For the matrices Ci of (7.2), either ρ (Ci) < 1 or ρ (Ci) ≥ 1. Since in
any induced matrix norm ‖Ci‖ ≥ ρ (Ci), we cannot expect convergence improvement
from the latter matrices, unless their effect is compensated.

Assume now that for some indices j, 1 ≤ ‖Cj‖ ≤ Q, while for other indices i,
‖Ci‖ ≤ q < 1. Denote by t1 (k) the number of those Ci’s that satisfies ‖Ci‖ ≤ q < 1
(1 ≤ i ≤ k), and denote by t2 (k) those Ci’s that satisfiy 1 ≤ ‖Ci‖ ≤ Q (1 ≤ i ≤ k).
Clearly, 0 ≤ ti (k) ≤ k and t1 (k) + t2 (k) = k. Then∥∥∥∥∥∥

k∏
j=1

Cj

∥∥∥∥∥∥ ≤ qt1(k)Qt2(k).
Assume that κ ∈ N is such that 1

qκ−1 ≤ Q ≤ 1
qκ . Then

∥∥∥∏k
j=1 Cj

∥∥∥ ≤ qt1(k)−κt2(k).

If ϕ (k) := t1 (k) − κt2 (k) is a monotone increasing sequence converging to infinity,

then
∏k
j=1 Cj → 0 as k → ∞. Note that ϕ (k) ≤ k. The root test of infinite series

guarantees that if for some k0 > 0,

q
ϕ(k)
k ≤ r < 1 (k ≥ k0) ,

then
∑∞
i=1 q

ϕ(i) is convergent. This condition is certainly satisfied if ϕ(k)
k ≥ µ, where

0 < µ < 1 is a fixed number. Observe that in such a case k ≥ t1 (k) ≥ µk + κt2 (k)
and t2 (k) ≤ 1−µ

κ k. If Q = 1, then κ = 1.

We can also give an estimate for the speed of convergence. For
∏k
i=1 Cj → 0,

we have the estimate
∥∥∥∏k

j=1 Cj

∥∥∥ ≤ qϕ(k) ≤ qµk. For the speed of the convergence∑k
i=1

(∏i−1
j=1 Cj

)
bi → x̃, we have the estimate

‖x̃− xk‖ =

∥∥∥∥∥∥
∞∑

i=k+1

i−1∏
j=1

Cj

 bi

∥∥∥∥∥∥ ≤ γ
∞∑
i=k

qϕ(i) ≤ γ
∞∑
i=k

qµi ≤ γqµk

1− qµ
.

We have just proved the following

Corollary 18. Assume that ‖Ck‖ ≤ Q and ‖bk‖ ≤ γ for all k. Denote by t1 (k) the
number of those Ci’s that satisfies ‖Ci‖ ≤ q < 1 (1 ≤ i ≤ k), and denote by t2 (k)
those Ci’s that satisfies 1 ≤ ‖Ci‖ ≤ Q (1 ≤ i ≤ k). Define κ ∈ N by the inequality
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1
qκ−1 ≤ Q ≤ 1

qκ . If for some k0 ∈ N and µ ∈ (0, 1), t1 (k) ≥ µk + κt2 (k) holds

(k ≥ k0), then Lk converges and

lim
k→∞

Lk =

[
1 0
x̃ 0

]
= L̃ (7.6)

for some X̃. For the speed of the convergence we have the estimate∥∥∥Lk − L̃∥∥∥ ≤ Γqµk, (7.7)

where Γ > 0 is a suitable constant depending on µ and γ.

Remark 19. If t2 (k) = 0 for k ≥ 1, then t1 (k) = k and µ = 1. If there are only
a finite number of cases, when 1 ≤ ‖Ci‖ ≤ Q holds, we can omit it in the sense that
if after iteration, say k0, only ‖Ci‖ ≤ q < 1 occurs, then t2 (k) ≤ k0, t1 (k) ≥ k − k0
and we can set µ = 1 in the above Corollary 18.

Given n, we have a finite set of matrices TiP
(i), say, T that may occur in the

infinite product (5.6) if the Nelder-Mead method is applied to some function f . For
each TiP

(i), we have the representation

TiP
(i) = F

[
1 0T

bi Ci

]
F−1. (7.8)

Hence Bk =
∏k
i=1 TiP

(i) = FLkF
−1 and Bk is convergent if and only if

Lk =

k∏
i=1

[
1 0T

bi Ci

]
is convergent. For some of the Ci’s, ρ (Ci) ≤ q ≤ 1, while for the others ρ (Ci) ≥ 1.
Define the sets

W1 =

{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 1, 2

}
∪ {TshrP : P ∈ Pn+1}

and

W2 = {T (2)P1, T (1)Pj : j = 1, . . . , n}

∪
{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 3, . . . , n+ 1

}
.

If TiP
(i) ∈ W2, the matrix has a second eigenvalue |λ2| ≥ 1, and for the corresponding

Ci, ρ (Ci) ≥ 1 holds. Although Lemma 7 does not guarantee that for matrices TiP
(i) ∈{

T
(
1
2

)
Pj , T

(
− 1

2

)
Pj : j = 1, 2

}
, the second largest eigenvalue |λ2| < 1 or ρ (Ci) < 1,

a thorough computer check shows that it is the case, at least up to n = 20. However
|λ2|’s are approaching 1 as n increases. Hence we assume the following:

(A) If TiP
(i) ∈ W1, then ρ (Ci) < 1, and if TiP

(i) ∈ W2, then ρ (Ci) ≥ 1.
(B) There is a matrix norm ‖A‖w (induced by a vector norm ‖x‖w) such that if

TiP
(i) ∈ W1, then ‖Ci‖w < 1.
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Since the sets W1 and W2 are finite, there are numbers 0 < q < 1 ≤ Q such that for
TiP

(i) ∈ W1, ‖Ci‖w ≤ q < 1, and for TiP
(i) ∈ W2, 1 ≤ ‖Ci‖w ≤ Q. Also we can

assume that for every TiP
(i) ∈ W1 ∪W2, ‖bi‖w ≤ γ.

Theorem 20. Assume (A) and (B) are satisfied and the initial simplex S(0) is non-
degenerate. Let t1 (k) be the number of Nelder-Mead steps (operations TiP

(i)) that
belong to W1, and t2 (k) be the number of those steps (operations TiP

(i)) that belong
toW2 during the first k iterations of the Nelder-Mead method. Also assume that κ ∈ N
is such that 1

qκ−1 ≤ Q ≤ 1
qκ If for some k0 ∈ N and µ ∈ (0, 1), t1 (k) ≥ µk + κt2 (k)

holds (k ≥ k0), then the Nelder-Mead algorithm converges in the sense that for all

simplex vertices x
(k)
j → x̂ (j = 1, . . . , n+ 1) holds as k →∞ with a convergence speed

proportional to qµk. If f is continuous at x̂, then f
(
x
(k)
j

)
→ f (x̂) (j = 1, . . . , n+ 1)

holds as well.

Proof. Under the assumptions

Lk =

k∏
i=1

[
1 0T

bi Ci

]
→
[

1 0
x̃ 0

]
= L̃

with the speed ∥∥∥Lk − L̃∥∥∥
w
≤ Γqµk.

Hence

Bk → F

[
1 0
x̃ 0

]
F−1 =

[
1− eT x̃

x̃

]
eT = x̂eT = B (7.9)

with the speed
‖Bk −B‖w ≤ Γcond (F ) qµk. (7.10)

�

Corollary 21. diam
(
S(k)

)
→ 0 (k →∞) with a speed of O

(
qµk
)
.

For higher dimension, we can expect slower convergence, since q approaches 1.

8. The convergence of the Nelder-Mead method in low dimensions

Here we demonstrate the use of Theorem 20 for n = 1, 2, 3. The cases show an
increasing technical complexity and also the growth of max

{
ρ (Ci) : TiP

(i) ∈ W1

}
.

8.1. The Nelder-Mead method in one dimension. For n = 1,

W1 =

{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 1, 2

}
and

W2 = {T (1)P2, T (2)P2, T (1)P1} .
Lemma 11 implies

F−1BkF =

k∏
i=1

[
1 0
bi ci

]
.
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Note that for TiP
(i) ∈ W1, |ci| = 1

2 = q, and for TiP
(i) ∈ W2, |ci| ≥ 1 and 1 ≤ |ci| ≤

2 = Q. Here the norm ‖·‖w = |·|. Hence Theorem 20 implies the convergence with
κ = 1.

8.2. The Nelder-Mead method in two dimensions. For n = 2, the six permu-
tation matrices of set P3 are

P1 = [e3, e1, e2] , P2 = [e1, e3, e2] , P3 = [e1, e2, e3] ,

P4 = [e2, e1, e3] , P5 = [e2, e3, e1] , P6 = [e3, e2, e1] .

Define

W1 =

{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 1, 2

}
∪ {TshrPj : j = 1, . . . , 6}

and

W2 = {T (1)P2, T (2)P1, T (1)P1} ∪
{
T

(
1

2

)
P3, T

(
−1

2

)
P3

}
.

The similarity transformation

F−1TPF =

[
1 0T

b C

]
(8.1)

on the elements of W1 ∪W2 yields matrices Ci for which ρ (Ci) < 1, while ‖Ci‖2 > 1.

Since all such Ci’s have diagonal Jordan forms, it would be an ideal situation if
for some norm ‖·‖w, every ‖Ci‖w would be close to ρ (Ci). Such thing is possible, if
the matrices Ci are simultaneously similar to diagonal matrices (see, e.g. [26–28]).
However, this requires that all matrices Ci must be pairwise commuting, which is
not the case here. Instead of this we look for a 2 × 2 matrix S such that ‖Ci‖w =∥∥S−1CiS∥∥2 (induced by the vector norm ‖x‖w =

∥∥S−1x∥∥
2
) is as close to ρ (Si) as

possible. So we try to solve the optimization problem

min
S

max

{∥∥S−1CiS∥∥2 : TiP
(i) ∈

{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 1, 2

}}
. (8.2)

For the matrix

S =

[
2 − 4

5
0 8

5

]
(cond (S) ≈ 1.640 4) ,

we have the following numerical results.
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Case Operation Ci ρ (Ci) ‖Ci‖2
∥∥S−1CiS∥∥2

1 F−1T (1)P2F C1 1 1.6180 1.3765
2a F−1T (2)P1F C2 1.6861 3.1787 2.7043
2b F−1T (1)P1F C3 1 1.6180 1.3765

3a F−1T
(
1
2

)
P1F C4 0.8431 0.9056 0.8438

3b F−1T
(
1
2

)
P2F C5 0.7071 1.2892 0.8438

3c F−1T
(
1
2

)
P3F C6 1 1.2892 1.0

4a F−1T
(
− 1

2

)
P1F C7 0.7071 0.9056 0.8438

4b F−1T
(
− 1

2

)
P2F C8 0.8431 1.0399 0.8438

4c F−1T
(
− 1

2

)
P3F C9 1 1.0399 1.0

5a F−1TshrP1F C10
1
2 0.8090 0.6882

5b F−1TshrP2F C11
1
2 0.5 0.6882

5c F−1TshrP3F C12
1
2 0.5 0.5

5d F−1TshrP4F C13
1
2 0.8090 0.5

5e F−1TshrP5F C14
1
2 0.8090 0.6882

5f F−1TshrP6F C15
1
2 0.8090 0.6882

Here we can select the values q = 0.85 (q ≈ ρ (C4) , ρ (C8)), Q = 2.71 and κ = 7. Note
that for TiP

(i) ∈ W1, ‖Ci‖w ≤ q < 1, and for TiP
(i) ∈ W2, 1 ≤ ‖Ci‖w ≤ Q.

Hence Theorem 20 implies convergence with κ = 7.

The applied optimization technique (8.2) is somewhat similar to the joint approx-
imate diagonalization method (see, e.g., [29]).

8.3. The Nelder-Mead method in three dimensions. For n = 3, W1 has 28
elements, while W2 has 8. It can be checked that for TiP

(i) ∈ W1, ρ (Ci) ≤ 0.9275
and ‖Ci‖2 ≤ 1.2622. A numerical solution of the optimization problem (8.2) gives
the following matrix

S =

 −0.6012 1.5707 0.3968
1.4938 −0.0616 0.4419
−0.6500 −0.7949 0.7620

 ,
for which ‖Ci‖w =

∥∥S−1CiS∥∥2 ≤ 0.9293 (TiP
(i) ∈ W1) and ‖Ci‖w ≤ 2.7729 (TiP

(i) ∈
W2). Selecting q = 0.93 and Q = 2.78, we have κ = 15, and Theorem 20 holds for
n = 3, as well.

If we exclude the expansion steps, then we can set Q = 1.3725, resulting in κ = 5
and a faster convergence.
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Abstract. This work deals with normal contact problems. After a wide literature re-
view, we look for the possibility of achieving a high-precision solution using the principle of
minimum potential energy and the Hellinger-Reissner variational principle with penalty and
augmented Lagrangian techniques. By positioning of the border of the contact elements,
the whole surfaces of the eligible elements fall in contact or in gap regions. This reduces
the error of the singularity in the border of the contact domain. Computations with h-, p-
and rp-versions are performed. For the rp-version, the pre-fixed number of finite elements
are moved so that small elements are placed in one or two element layers at the ends of the
contact zone. A number of diagrams and tables showing the convergence of the solution
(by increasing the number of polynomial degrees p) demonstrate the high efficiency of the
proposed solution procedure.

Mathematical Subject Classification: 74S05, 74M15
Keywords: contact problems, p-version of finite elements

1. Introduction

The rapid progress in the computer sciences and information technology, the in-
crease of computational speed, and improvements in graphic user-interface software
provide new opportunities for modeling physical phenomena with a high degree of
reliability and usefulness. It is now possible to perform very large number of arith-
metic operations in a short time, making it possible for designers and analysts to
employ advanced modeling concepts within the context of an everyday engineering
decision-making process.

The solution of contact problems is difficult because the actual contact zone is
unknown a priori and must be determined by an iterative procedure which seeks to
satisfy not only equilibrium equations and boundary conditions but also one or more
inequality contact conditions. Another source of difficulty is that the stress changes
very substantially over short distances at the boundaries of the contact zone. An
important design objective is to determine the shape of the contacting parts in such
a way that the stress singularity will not occur, or the strain energy associated with
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the singularity is within acceptable limits. Therefore the development of efficient
and reliable procedures for the numerical treatment of contact is an important and
challenging problem.

A number of methods have been published in the field of the mechanical contacts
since the appearance of the Hertzian contact theory. Applying the electronic com-
puters, better and better numerical processes were worked out from the late sixties.
The paper [1] (Fridman and Chernina, 1967) was an important contribution to the
numerical treatment of contact. Their iteration method was based on the search for
the minimum of the complementary energy by ensuring positive contact pressure.
Its further development could take into regard the relative rigid body displacements
of the contacting bodies [2] (Páczelt, 1974). Mathematical programming methods
were used to solve the minimum problem in [3](Conry and Seireg, 1971), [4] (Kalker
and von Randen, 1972), [5](Fremond, 1973), [6](Frankavilla and Zienkiewicz, 1975),
[7](Haug et al., 1977), [8](Páczelt and Herpai, 1977), [9](Páczelt, 1979), [10] (Hung
and De Saxce, 1980). These methods were applied later as well, see [11](Klarbring,
1985) and [12](Björkman,1991) for instance.

The generality of the finite element method (FEM) has been utilized efficiently in
the solution of contact problems [13](Chan and Tuba, 1971), [14] (Fredrikson, 1976),
[15] (Páczelt, 1976), [16] (Huges et al., 1976), [17] (Bathe and Chaudhary, 1985), [18]

(Nour-Omid and Wriggers, 1986), [19] (Chaudhary and Bathe, 1986), [20] (Égert and
Altenbach, 1989), [21] (Mottershead et al., 1992), [22] (Papadopoulos and Taylor,
1992).

A Lagrangian multiplier technique was proposed in [15] (Páczelt, 1976) and [16]
(Huges et al., 1976), and a penalty method was used first in [23] (Kikuchi et al.,
1984). Contact conditions, such as contact and separation, are satisfied accurately
for the contacting nodal point pairs in the Lagrangian multiplier method by implying
the unknown contact pressure field as a multiplier. The fulfillment of the contact
conditions in the solution of the penalty method strongly depends on the value of the
penalty parameter. The combination of the two methods was applied in [24](Simo
et al., 1985) for small displacement problems, and in [25] (Ju and Taylor, 1988), [26]
(Simo and Laursen, 1992), [27] (Laursen and Simo, 1993) for large displacement cases.
The mathematical backgrounds of these methods can be found in [28] (Berteskas,
1989), [29] (Fletcher, 1989).

A good review of static mechanical contact problems is given in [30] (Zhong and
Mackerle, 1992).

The error of a finite element solution depends on the element size (h), and on
polynomial degree (p) of the approximation.

The majority of the finite element applications use the h-version of the FEM. The
solution accuracy is improved adaptively in [31] (Nackenhorst, 1995) by the help of
the ZZ error estimator, its further development is given by [32] (Wriggers, 1997).
Relatively few papers have dealt with the application of the p-version method [33]
(Szabó and Babuska, 1991) for mechanical contact problems [34] (Lee and Oden,
1993), [35] (Gabbert and Graeff-Winberg, 1994), [36] (Buczkowski et al., 1994), [37]
(Páczelt and Szabó, 1995), [38] (Páczelt and Baksa, 2009), [39] (Franke et al., 2010),
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[40] (Konyukhov and Schweizerhof, 2009), [41] (Franke et al., 2011). A quasi-static
problem was solved by finite elements with p = 2 applying mesh refinement in the
contact region [34] (Lee and Oden, 1993).

A special pNh type element was used in [35] (Gabbert and Graeff-Winberg, 1994),
[36] (Buczkowski et.al., 1994). There is piece-wise linear approximation on the con-
tacting face of the element, and p-approximation is applied on the other sides. This
sort of approximation provides non smooth stresses inside the element, which is a
drawback concerning the efficiency of this element.

The shape optimization of the contacting surfaces was used in [37] (Páczelt and
Szabó, 1995) by controlling the contact pressure. The high-quality approximation
properties of the p-version make it possible to detect the presence of singularity, even
weak singularity, by numerical means. This is possible theoretically but not feasible in
practice with the h-version. The application of the augmented Lagrangian technique
was investigated in [42] (Páczelt et al., 1999) concerning the solution accuracy. The
contact conditions of the p-version elements are checked in the Gauss or Lobatto
integration points. As a result of adaptive remeshing the whole sides of the elements
are either in the contacting region or in the gap region. This preferable mesh performs
no oscillation in the normal stresses along the possible contact region

There are a number of papers dealing with contact problems by the use of vari-
ational principles, e.g. [43] (Duvat and Lions, 1972), [44] (Hlavacek et.al., 1980),
[45] (Panagiotopoulos, 1985), [46] (Oden and Kikuchi, 1988), [47] (Telega, 1987), [48]
(Haslinger and Neittaanmaki, 1988).

Efficient algorithms have been proposed (Nour-Omid and Wriggers, 1986), [49]
(Kalker, 1990), and [50] (Raos et al., 1988) in order to solve the system of inequal-
ities established at frictional and frictionless contact problems. A broad range of
application possibility of the mathematical programming techniques was analyzed by
Klarbring [51]. A review for those papers devoted to the optimization of structures
in unilateral mechanical contact is presented in [52] (Hilding et al., 1999).

The p-version was employed for locating the boundaries of the contact domain and
the boundaries of the sliding-adhesive domain through the detection of the associated
singularity. Two different procedures were used. In one case the standard polynomial
basis functions were augmented by special basis functions which can approximate
singularity [53] (Volpert, 1995), [54] (Volpert et.al., 1997). In the other case the
boundaries of the elements were moved, using a special algorithm and a number of
error indicators, in such a way that each element in the contact domain would either
be in contact, separate, stick or slip along its full length [42] (Páczelt et.al., 1999),
[55] (Páczelt and Szabó, 2002). The positioning technique was extended in Baksa et
al. [56] for 3D contact problems including friction, where slip, stick zones have been
separated. The borders of adhesion and slip zones and also of the outer border of the
whole contact domain were approximated by NURBS. In this way the oscillation of the
contact pressure and the oscillation of the shear stresses were practically eliminated,
resulting in a very accurate solution of the problem.
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In the past decades there have been some valuable books by Laursen 2002 [57],
Wriggers 2006 [58], Konyukhov and Schweizerhof 2013 [59], Yastrebov 2013 [60], which
describe the numerical treatment of contact problems. In these works not only small
displacements and deformations but also large displacements and large deformations
are taken into consideration for numerical analysis, both in normal and frictional
contact examples.

High order finite elements are used for many different types of problems [61], [62].
The research in tribology, analytical solution of contact problems are examined by
the book of Goryacheva [63], and we found a technique to analyze the wear process
by p-extension finite elements [64].

In the book [65] many aspects of optimization of contact interaction of rigid, elastic,
elastic-plastic bodies are investigated.

There have been some conferences e.g. CMM, Eccomas, HOFEIM, IUTAM, where
not only the theoretical questions but also practical problems were analyzed [66–69].
Among the p-extension finite element computer systems, there is a simulation program
called StressCheck developped by ESRD group leaded by Professor B. Szabó [70].

The aim of this investigation is to compare the results of non-frictional contact
problems treated by traditional h-, p- and with adaptive hp(rp)-extension finite ele-
ments, and to show the computational algorithm for highly accurate hp(rp)-extension.

Using the notations introduced by papers [39], [41], we made some rp-extension
computations as well. Here we use the principle of minimum of total potential energy
and the mixed Hellinger-Reissner theory, which is based on approximating both the
displacements and the stress fields [38]. In this paper a comparison is made to show the
advantages of using the Hellinger-Reissner functional. The main question is whether
we can get better results with the same number of unknowns of the displacement
fields. However, the execution time is much longer because of the eliminating the
stress field variables from the evolving stiffness matrix.

In case of the p- and hp- (rp)-versions, we use the augmented Lagrangian method for
the solution of contact problems. It is assumed that displacements and deformations
are small, and can be neglected as regard the adhesion, friction and dynamic effects
between the contacting bodies.

This paper is organized as follows. In Section 2 the formulation of the contact
problem is presented. In Section 3 two variational methods, minimum of potential
energy and Hellinger-Reissner variational principle, are discussed with penalty and
augmented Lagrangian form. In Section 4 finite element approximation and the sys-
tem of algebraic inequalities are given, solving by Kalker-type iteration. Section 5 is
dealing with the positioning technique of nodal contact points. Using this technique
each eligible contact element along its whole side is either in contact or in the gap
regions. Section 6 solves the same boundary value problem of contacting cylindrical
bodies with different methods and techniques. These contact problems are solved
by h-version, p-version and rp-version techniques. Stress states, distribution of the
contact stresses, convergence of the contact radius, resultant of contact force, relative
error in energy norm [33] and in contact force are demonstrated in figures. Results of
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the principle of minimum potential energy and the Helliger-Reissner variational prin-
ciple can be compared in order to choose the better one. In Section 7 Hertz probem
with friction will be solved. Finally concluding remarks are provided in Section 8.

2. Formulation of the contact problem

Let us consider the contact problem of two elastic bodies (e = 1, 2). The surfaces

of the bodies will be separated into three regions: S
(e)
u denotes that part of the

body where displacements uo are given, in S
(e)
t the traction to is applied, while S

(e)
c

represents that part of the bodies where contact is expected. The S
(e)
c part of the

body is called the proposed zone of the contact. The bodies are loaded with the body

force b(e), and initial stress T (e)
o and initial strain A(e)

o too. We are interested in
finding the displacement vector field u, strain A and stress T tensor fields. In the
domain V (e) we have the equilibrium equation

T (e) · ∇+ b(e) =0 r ∈ V (e), (2.1)

the strain displacement relationship

A(e) =
1

2

(
u(e) ◦ ∇+∇ ◦ u(e)

)
r ∈ V (e), (2.2)

and the Hooke’s constitutive law

T (e) = T (e)
o +D(e) · ·

(
A(e)−A(e)

o

)
r ∈ V (e), (2.3)

where D(e) is a fourth order tensor of the material parameters, “·“ , “ ·· “, “◦“, are
the symbols of a scalar, double scalar and tensor product, respectively, and ∇ is the
Hamiltonian differential operator.

The boundary conditions are

u(e) = uo r ∈ S(e)
u , (2.4)

and

T (e) · n(e) = to r ∈ S(e)
t . (2.5)

For the examination of the contact/separation conditions in the proposed zone of
contact we shall consider the projection of the displacement in a prescribed direction
only (e.g., normal to the surface nc). The contact normal vector nc determines the

points Q1, Q2 on the corresponding surfaces S
(1)
c and S

(2)
c , where the two surfaces

may contact with each other (see Fig. 1). Therefore the contact surface will be denoted
by Sc.

We denote the displacement projected in the direction nc by u
(e)
n = u(e) ·nc, the

normal stress by σ
(e)
n = n(e) · T (e) ·n(e) and the initial gap between bodies by h. We

define the distance (gap) after deformation

d = d (u) = u(2)
n − u(1)

n + h ≥ 0, (2.6)

and the contact pressure

pn = −n(1)·T (1)·nc = n(2)·T (2)·nc ∼= −n(1)·T (1)·n(1) = −n(2)·T (2)·n(2) ≥ 0. (2.7)
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Figure 1. Normal displacements u
(e)
n , e = 1, 2

Denoting the contact zone by C and the separation (gap) zone by G (Sc = C ∪G),
we have

d = 0, pn ≥ 0 r ∈ C, (2.8)

d > 0, pn = 0 r ∈ G, (2.9)

pnd = 0 r ∈ Sc. (2.10)

From the condition of frictionless contact we have zero tangential stress

τ (e) = e(e)
τ · T

(e) · n(e) = 0 r ∈ S(e)
c , (2.11)

where e
(e)
τ is a tangential unit vector.

3. Variational formulations of the contact problem

In this section two variation principles will be discussed in parallel.

3.1. Principles based on the total potential energy and Hellinger-Reissner
functional. For investigation of normal contact problem we can use the principle
of minimum potential energy Π (u) subjected to two types of kinematic conditions:
u = uo on r ∈ Su and d ≥ 0 on r ∈ Sc.

If we use the Hellinger-Reissner functional we have only kinematical constraints for
contact conditions: d ≥ 0 on r ∈ Sc

Thus

min {Π (u) | u = uo, r ∈ Su, d ≥ 0, r ∈ Sc} (3.1)

and

min {ΠR (u,T ) | d ≥ 0, r ∈ Sc} , (3.2)

which must be solved satisfying the variational inequality δΠ ≥ 0 or δuΠR ≥ 0 and
δTΠR = 0. The detailed mathematical discussion of this variational inequality and
other variational principles can be found in Haslinger and Neittaanmaki [48], Oden
and Kikuchi [46] and in Telega [47].
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Here the total potential energy

Π (u) =
2∑
e=1

 1
2

∫
V (e)

(A (u)−Ao) · ·D · · (A (u)−Ao) dV +
∫
V (e)

A (u) · ·T o dV −

−
∫
V (e)

u · b dV −
∫
S

(e)
t

u · to dS.


(3.3)

and the Hellinger-Reissner functional

ΠR (u, T ) =
2∑
e=1

 ∫
V (e)

[
T · ·(A (u)−Ao)− 1

2T · ·C · ·T
]

dV +

+
∫
V (e)

T · · C · ·T o dV −
∫
V (e)

u · b dV −
∫
S

(e)
t

u · to dS.−
∫
S

(e)
u

n · T · (u− uo)dS

 .

(3.4)

Here C = D−1, and ()
−1

denote the inverse of a tensor. In practice, instead of
problem (3.1)and (3.2), functionals (3.3) and (3.4) are extended with penalty functions
of the non-penetration contact constraint as

LPE = LPE (u) = Π (u) +
1

2

∫
Sc

cn
(
d− (u)

)2
dS (3.5)

and

LPER = LPER (u,T ) = ΠR (u,T ) +
1

2

∫
Sc

cn
(
d− (u)

)2
dS, (3.6)

where cn is the penalty parameter, and d− denotes the negative part of d. From the
variational equation δuLPE = 0 and δuLPER = 0 we obtain a formula for the contact
pressure pn.

pn = −cnd− (u) . (3.7)

The higher the penalty parameter cn, the smaller the violation of the non-penetration

condition lim
cn→∞

d−(u) = 0, i.e., the non-penetration condition d ≥ 0 is not strictly

satisfied.

The correct choice of the penalty parameter is essential, because the condition
number of the coefficient matrix increases as the penalty parameter increases. Using
p-version finite elements [33], [42], cn ∼ 100E − 1000E is recommended, where E is
the Young’s modulus.

Combining the Lagrangian and the penalty methods as it was proposed by Simo
and Laursen in [26] (Simo and Laursen, 1992), the following augmented Lagrangian
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functionals are obtained

LAU = LAU (u) = Π (u)−
∫
C

pnd (u) dS +
1

2

∫
C

cn (d (u))
2

dS, (3.8)

and

LAUR = LAUR (u,T ) = ΠR (u,T )−
∫
C

pnd (u) dS +
1

2

∫
C

cn (d (u))
2

dS, (3.9)

where pn is the Lagrangian multiplier, which is kept constant during an iteration loop.
From the following two variational equations

δuLAU = 0 or δuLAUR = 0 (3.10)

the same formula is obtained for the normal contact stresses

σ(1)
n

(
u1
)

= σ(2)
n

(
u2
)

= − (pn − cnd (u)) , (3.11)

and

σ(1)
n

(
T (1)

)
= σ(2)

n

(
T (2)

)
= − (pn − cnd (u)) . (3.12)

During the iteration process, the contact pressure is updated using the formula

p(k)
n =

〈
p(k−1)
n − cnd

(
u(k)

)〉
, (3.13)

where the operation < · > is defined by

〈pn〉 =
1

2
(pn + |pn|) . (3.14)

In the (k + 1)th iteration loop the contact surface is subjected by p
(k)
n as an external

load in the variational formula:

δuLAU
(
u(k+1)

)
= δΠ

(
u(k+1)

)
−
∫
C(k)

δd (u)
(
p(k)
n − cnd

(
u(k+1)

))
dS = 0 (3.15)

and

δuLAUR
(
u(k+1),T (k+1)

(
u(k+1)

))
=

δuΠR

(
u(k+1),T (k+1)

(
u(k+1)

))
−
∫
C(k)

δd (u)
(
p(k)
n − cnd

(
u(k+1)

))
dS = 0

because of the next variational equation δTLAUR = 0 we are able to to gain the relation
for T (k+1) = T (k+1)

(
u(k+1)

)
, i.e.

T
(e)
(k+1)

(
u

(e)
(k+1)

)
= T (e)

o + D(e) · ·
(
A(e)

(
u

(e)
(k+1)

)
−A(e)

o

)
(3.16)

in the approximation process.

REMARK 1: If the second terms of the functionals (3.8 and 3.9) are vanished,
we obtain two previous functionals of the penalty methods with d(u) = d−(u) ≤ 0
substitutions.
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• REMARK 2: If the last terms of the functionals (3.8, 3.9) are omitted the
funtionals of the Lagrangian multiplier techniques are received back. In these
cases LLA = LLA (u, pn ≥ 0) , LLAR = LLAR (u,T , pn ≥ 0) for each functional
variational equation or two equations and only one variational inequality are
written:

δuL
LA = 0, δpnL

LA ≤ 0 or δuLLAR = 0, δTLLAR = 0, −δpnLLAR ≥ 0.
(3.17)

In order to satisfy the contact conditions, positivity of the contact pressure
must be ensured.

4. Finite element formulation

4.1. Approximated fields. The displacements of the contacting bodies are approx-
imated in the usual form

u(e) = u(e) (x) = N(e) (x) q(e), (4.1)

where the shape functions N(e) (x) consist of nodal point modes, side modes and inter-
nal modes, and qe is the vector of displacement parameters, x is the space coordinates
[33]. The strain vector is given by the next formula:

A(e) (u)→ ε(e) = ε(e) (x) = ∂u(e) = B(e) (x) q(e), (4.2)

where Be (x) is the strain-displacement matrix. The stress vector can be expressed
as

T (e) → σ(e) = σ(e) (x) = σ(e)
o (x) + D(e) (x)

(
B(e) (x) q(e) − ε(e)

o (x)
)
, (4.3)

for the minimum principle of total potential energy, where D(e) (x) is the constitutive

matrix, ε
(e)
o (x),σ

(e)
o (x) are the initial strain and stress vectors, respectively. Using

(4.1)-(4.3) the total potential energy (3.3) can be written in discretized form:

Π(e) (u)→ Π(e)
(
q(e)

)
=

1

2
q(e),T

(
K(e)q(e) − 2f (e)

)
, (4.4)

where

K(e) =

∫
V (e)

B(e),TD(e)B(e)dV (4.5)

is the element stiffness matrix, and

f (e) =

∫
V e

N(e),Tb(e)dV +

∫
S

(e)
t

N(e),T to dS +

∫
V (e)

B(e),T
(
D(e)ε(e)

o − σ(e)
o

)
dV (4.6)

is the element load vector, T denotes the transpose of a matrix.

In the case of Hellinger-Reissner variational principle the stress is approximated by
the next formula

T (e) → σ(e) = F(e) (x) β(e), (4.7)
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where F(e) (x) is an approximation matrix which consists of the same functions
that are used for N(e) (x) .

The vector n(e) · T (e) is approximated in the next form

n(e) · T (e)→ R(e) (x) β(e) . (4.8)

The discretized form of Hellinger-Reissner functional (3.4) has the next form:

Π
(e)
R (u, T )→ Π

(e)
R

(
q(e),β(e)

)
=

= β(e),T S(e) q(e) -
1

2
β(e),T H̃(e) β(e) − t(e),Tq(e) + β(e),T g(e), (4.9)

where

H̃(e) =

∫
V (e)

FT C F dV, S(e) =

∫
V (e)

FT B dV −
∫
S

(e)
u

RT N dS, (4.10a)

t(e) =

∫
V (e)

NT b dV +

∫
S

(e)
t

NT to dS, (4.10b)

g(e) =

∫
S

(e)
u

RT uo dS -

∫
V (e)

FT (εo - Cσo) dV . (4.10c)

From variational equation δTΠ
(e)
R = 0 → δβΠ

(e)
R = 0 = δβ(e),T ∂Π

(e)
R

∂β(e) →
∂Π

(e)
R

∂β(e) = 0

the stress parameter’s vector is

β(e) =
(
H̃(e)

)−1

S(e)q(e) +
(
H̃(e)

)−1

g(e) (4.11)

and the reduced discretized form of Π
(e)
R can be written as follows

Π
(e)
R (u)→ Π

(e)
R

(
q(e)

)
=

1

2
q(e),T

(
K(e)q(e) − 2f (e)

)
, (4.12)

where the element stiffness matrix

K(e)= S(e),T
(
H̃(e)

)−1

S(e), (4.13)

and the load vector

f (e),T = t(e),T−g(e),T
(
H̃(e)

)−1

S(e). (4.14)

The gap after deformation is computed by the following projection

d = u(2)
n − u(1)

n + h = −L(1)(x)q(1) + L(2)(x)q(2) + h = L(x)q + h, (4.15)

where the matrix of shape functions L(e)(x) is constructed by the use of N(e) (x) with

x ∈ Sc and the definition of the normal displacement u
(e)
n . The vector of displacement

parameters for the whole system is given as qT =
[
q(1),T q(2),T

]
.
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The same penalty terms in (3.8, 3.9) can be written in discretized form

1
2

∫
C

cn (d (u))
2

dS = 1
2qT

{∫
C

[
−L(1),T

L(2),T

]
cn
[
−L(1) L(2)

]
dS q+

+2
∫
cn
C

[
−L(1),T

L(2),T

]
h dS

}
+ const = 1

2qT

[
C̃11 −C̃12

−C̃21 C̃22

]
q+

+qT

[
−f

(1)
h

f
(2)
h

]
+ const = 1

2qT C̃q + qT fh+const,

(4.16)

where C̃ is the contact stiffness matrix.

From the same Lagrangian terms in (3.8, 3.9) the load vector fep associated to the
contact pressure is∫

C

d (u) pn dS → qT
∫
C

[
−L(1),T

L(2),T

]
pn dS = qT

[
−f

(1)
p

f
(2)
p

]
= qT fp . (4.17)

4.2. Discretized functionals. Finally, the discretized funtionals of LAU and LAUR
expressed with nodal displacements are written in the same form as

LAU = LAU (q) =
∑
e

{
1

2
q(e),TK(e)q(e) − q(e),T f (e)

}
+

1

2
qT C̃q + qT (fh − fp) .

(4.18)

The algebraic system of equation associated with (4.18) has the following form[
K1 + C̃11 −C̃12

−C̃21 K2 + C̃22

](k) [
q(1)

q(2)

]
(k+1)

=

[
f (1)+f

(1),(k)
h − f

(1),(k)
p

f (2)−f
(2),(k)
h + f

(2),(k)
p

]
, (4.19)

in which the matrix C̃ij is modified to fulfill the contact/separation conditions.

The iterational KALKER procedure [49], [37] with the control of the sign of pn
can be applied for solving (4.19). The contact conditions are checked in the Gauss or
Lobatto integration points of the contact elements during the solution of (4.19). With

the updated contact pressure p
(k+1)
n the integrals (4.16) and (4.17) can be computed

repeatedly, that is we have a new penalty (contact) matrix C̃ and new vectors fh
and fp. The (k + 1)th displacements are obtained from the solution of (4.19). The
procedure is terminated when the following condition is fulfilled:∫

Sc

∣∣∣p(k+1)
n − p(k)

n

∣∣∣dS∫
Sc

p
(k+1)
n dS

≤ 10−4. (4.20)

Remarks:

1. Since d(u) is computed in the local coordinate system, the elements which have
boundaries on the contact surface, must be transformed from global coordinate
system to the local one. The transformation is performed by least squares



146 I. Páczelt, A. Baksa and T. Szabó

fitting. A detailed explanation of this problem and the numerical reasoning of
the transformation can be found in [42].

2. When the p-version is used then accuracy is typically high enough for singu-
larities to induce oscillations in the numerical solutions. The oscillations are
minimized when nodes are located at the boundary of the contact zone. The
idea of the nodal positioning technique was first published in [42].

3. The system of inequalities according to Lagrangian technique is a Linear Com-
plementary Problem, which can be solved by different algorithms as given in
e.g. [11], [21] and [49].

4. In the work [18] a two-level algorithm is employed for solution of the contact
problem using Lagrangian multipliers.

5. Positioning the nodal points

One of the advantages of the p-version is that for smooth problems only coarse
meshes are needed, since the error in energy norm decreases exponentially when the
polynomial degree of elements is increased [33] (Szabó and Babuska, 1991). At the
border of the contact zone we have a singularity in the stress state. When the ends of
contact zone C are not situated in nodal points (in 2D case) then the derivatives of
the shape functions cannot have the appropriate jumps there, that is, the singularities
induce oscillations in the pressure distribution. By positioning (moving) the nodal
points to the ends of contact zone C, the jump in the derivatives can be represented
in the discretized problem.

The positioning algorithm had been developed for contact problems of a two-
dimensional problem [42] (Páczelt et.al., 1999). The positioning of the nodal points
is performed in one or two phases, depending on the predefined tolerance. The first
phase is a rough positioning of contact point to ensure that contact exists in each
integration point of the contacting elements. In the second phase the border points
are moved based on error indicators in order to increase the accuracy.

5.1. The rough positioning technique. We supposed that the contact zone of
two axsymmetric bodies is situated on the left side of the possible contact region. Let
ri, rj and rk denote the radial coordinates of the nodal points of the contact element
in the original mesh (see Figure 3). We search for the contact (that is pn > 0) from
the right-hand direction. The contact elements are integrated in N Gauss or Lobatto
points. The star and triangular markers denote, respectively, the N th integration
point and the first contacting integration point from the right side, which is denoted
by IC. The gap zone is denoted by a single line, the parallel double lines denote
the compressed Winkler spring contact zone. The (r̃) denotes the modified radial
coordinate. The natural coordinate of the contact element is denoted by ξ.

Checking the contact conditions in integration points is started from the right-hand
side. The first contact point rIC is detected in the positive range of the standard
coordinate. The location of the new nodal point is found by linear mapping (Step 3).

The algorithm has the following steps:

Step 1. The contact problem is solved with the given mesh.
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a)

b) c)

Figure 2. a) nodal points 4 and 19 are moved to 4′ and 19′, elements
1− 3 and 9− 11 are in contact, and between elements 4 and 12 there
is no contact; b) modified (3× 3) mesh c) modified (4× 4) mesh.

Step 2. Search to find the end points of contact region. We seek the first contacting
integration point located in rIC , where the contact pressure pn is positive.

Step 3 The position of the new end point is calculated by linear mapping based on
the position rN of the new N th integration point:

r̃j =
[2r̃N − rj (1− ξN )]

(1 + ξN )
, (5.1)

where r̃N is computed by the use of the bisection method:

r̃N =

{
1
2 (rIC + rN ) if ξIC ≥ 0
1
2 (rIC + r◦) if ξIC < 0

(5.2)

The iteration Steps 1-3 are repeated unless each integration point of the contacting
elements is in contact. As a result of this iteration process we have a new mesh, which
will be called “the first correct mesh”.
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Figure 3. Schematic representation of the right hand side of the con-
tact zone C. Calculation of the new position of the point j.

5.2. The fine positioning technique. After finding the first “correct mesh” we
can further adjust the border of the contact zone C. The following indicators are
introduced to monitor the fine adjustment of the nodal points:

• contact pressure at the contact border point (zero value is sought)

I1 = min |cn · d(rj)| (5.3)

where rj is the coordinate of the computed contact border point,
• minimum of the potential energy

I2 = min ΠP (5.4)

• minimum of the differences between contact pressure and normal stresses

I3 = min

[∫ {(
σ(1)
n + pn

)2

+
(
σ(2)
n + pn

)2
}

dS

]0.5

(5.5)

• minimum of shear stress on Sc

I4 = min

[∫ {(
τ (1)
rz

)2

+
(
τ (2)
rz

)2
}

dS

]0.5

, (5.6)

where the upper and lower bodies are denoted by superscripts 1 and 2, respec-
tively.

In order to minimize the indicators the nodal point is positioned at the vicinity of
the border of contact zone determined by the rough positioning technique. That is,
the nodal point is moved either to the direction of the N th integration point of the
contacting element, or to the direction of the 1st integration point of the gap element.
The minimum of the indicator is searched within the interval determined by these
two integration points.

5.3. Position technique assuming friction. The solution of the frictional contact
problem is demonstrated in the middle of Figure 4. The end of the contact region
is situated between elements 4e and 8e. The border of the stick-slip zones is between
elements 2e and 6e. In the point Pp the normal stress σz is continuous but the

derivatives on the right and left sides are not equal
(
dσz

dr

)− 6= (
dσz

dr

)+
.
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Figure 4. Modification of the mesh at friction contact problem

Since the approximated function is continuous along element edge and the deriva-
tives are also continuous up to order p − 1 the discrepancy between the derivatives
is not represented, which induces oscillations in the results. Therefore new posi-
tions for the nodal points 4 and 9 shoul be found. A similar situation takes place
for shear stresses in the point Pst−sl, which also requires mesh modifications. That
is, nodal points 3 and 8 must be moved to left direction. After these positioning
steps the elements 2e, 3e, 4e and 6e, 7e, 8e have new shapes 2e,new, 3e,new, 4e,new and
6e,new, 7e,new, 8e,new, as shown in Figure 4.

Steps of the algorithm developed for friction contact problems are published in [56].
The shear stresses in the contact zone must satisfy the condition given for the slip
surface Φ = |τrz| − µpn ≤ 0, which is performed with a predictor-corrector iterative
algorithm. In the course of the time integration process the predicted value of the
shear stress which is proportional to cτ∆uτ must be calculated, where displacement in
tangential direction is given as: ∆uτ = ut+∆t

τ −utτ , at time t, with time step ∆t. The
number of integration points along an element side is denoted by Nlobatto. For the
example let us suppose that on the left side of the element there is a stick zone, i.e.,
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for integration Lobatto points (ilobatto=1,. . . , istick) the condition of slip surface
is satisfied: Φpred(ilobatto) ≤ 0. However, for the rest of the integration points
the condition of the slip surface is not satisfied: Φpred(ilobatto) > 0, (ilobatto =
istick+1,. . . , Nlobatto). A return mapping algorithm is applied to satisfy the slip
surface condition. This means that the right node point of the element must be moved
to the left direction. At the end of iteration in each integration point of element 2e,new
there is stick: (ilobatto= 1,. . . , Nlobatto), i.e., the whole element side is in stick state.

6. Examples

Let us consider two contacting cylindrical bodies with equal dimensions (inner
diameter Di = 2ri = 40 mm and outer diameter Du = 2ru = 240 mm and height
hcyl = 100 mm, see Fig. 5. The meridian curve of the contacting surface of the upper
body is given by the following function

h = 0.0004(r − 20)2 (6.1)

which is practically the function of the initial gap between the contacting bodies.
There is no friction between the contacting bodies. The displacement is prescribed

Figure 5. Two cylinders in contact. Initial gap h = 0.0004(r − 20)2

on the top of the upper body in vertical direction w0 = 0.15 mm. Elastic material
properties are given by Young’s modulus E = 200 000 MPa and Poisson’s ratio ν =
0.3. The boundary of the contact zone for body B1 is defined by the blending function
method [33].

The contact problem was solved by h-version, p-version and hp (rp)-version tech-
niques using the error indicator I1 for finding the radial coordinate of the contact
border rp.
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The contact problems are solved as detailed below. The positioning technique
introduced the previous section is used in all of the examples. The contact conditions
are checked in the Gauss integration points. The penalty parameter is chosen as
cn = 1 000E. The analyzed tasks are identified by the type of the applied mesh
(number of elements in columns× rows).

Firstly, the problem is discretized with classical quadratic (low polynomial order)
elements, i.e. h-version finite element method is used.

6.1. Task 1. For solving the contact problem the Hellinger-Reissner variational prin-
ciple is applied using penalty technique. For the sake of convenience, instead of using
the name Hellinger-Reissner variational hereafter. The polynomial order p = 2 is
fixed, and the problem is solved by different meshes 4× 4, 8× 8, 16× 16 and 32× 32.

Figure 6a shows the final status of the mesh 8×8, the mesh also contains parametric
lines crossing on the Gauss integration points. The distribution of the normal stress
σz for body B1 is given in Figure 3b. Figure 6c shows the results obtained for meshes
8× 8, 16× 16 and 32× 32. Due to mesh refinement, the contact pressure pn becomes
smooth together with normal stress σz, but in the separation domain r ≥ rp defined
by the pn, significant normal stresses are present, though in principle it should be
zero. For mesh 8 × 8, the absolute value of the σz is higher than 10 MPa, while for
the mesh 32× 32 it does not fall below 7 MPa. These stress peaks occur at the end of
the contact domain in oscillating form. Such oscillations can be experienced for each
subsequent solution, only its extent will vary significantly. The smallest oscillation
amplitude is obtained by the rp-version technique. It can also be observed that the
differences in the contact stresses between the upper and lower bodies are very small.

Convergence diagrams of strain energy and contact border radius rp calculated for
polynomial degree p = 2 and p = 3 are shown in Figure 7. The change in strain
energy is well converged (see Figure 7a) but the convergence of contact border radius
is a bit slower. In these figures, we refer to converged results with Mesh 7× 5 Type:
Imesh = 3, which have been achieved with far fewer unknowns. The number of
unknowns is 12 674 for mesh 32 × 32 with p = 2, and it is 4 474 for mesh 7 × 5
(Type: Imesh = 3 with p = 8). It is well known [33] that the speed of convergence
for h-version is twice as slow as for p-version, however, the rate of convergence is
exponential for hp(rp)-version computations.

6.2. Task 2. Here, we investigate the contact solution as a function of polynomial
degree p. Our aim is to determine the position of the contact border as accurate as
possible, i.e. the convergence of the solutions is examined.

The border points of the contact zone are determined by the nodal positioning
technique detailed in Section 5 using error indicator I1.

Augmented Lagrangian method is applied for solving these contact problems.

In this case computations are performed by p-extension finite elements. Here, the
meshes of the contacting bodies are fixed, but the polynomial order p is increased
from 2 to 8. The solution can be obtained with the positioning technique introduced
in the previous section. We use rectangular elements with truncated space [33].
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Figure 6. Task 1: solution with h-version, polynomial order for the
displacements and stresses is p = 2; a) mesh 8× 8; b) normal stress
σz in the punch (upper body); c) distributions of normal stress σz,
contact pressure pn and differences between the normal stresses of
the upper (σuz ) and lower (σlz) bodies for different meshes

The Reissner functional is applied and the same degree of polynomials are used for
the approxination of the displacements and stresses: i.e. npu = nps = p. The fixed
mesh contains 7 columns and 5 rows (mesh 7 ×5). Figure 8a–g illustrate the results
with polynomial order p = 8 for the different stress components.

Figure 9 shows different components of the results: the normal stress σz, the contact
pressures pn, the difference between the normal stresses σuz and σlz (computed on the
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Figure 8. Solution of contact problem (Task 2 for body B1) with
uniform mesh 7 × 5, Imesh= 0: a) Final mesh after positioning,
rp = 66.6168 mm; b) vertical normal stresses

upper and the lower bodies) with polynomial order p = 8, and the distribution of σuz
as a function of r ≥ rp with different polynomial orders (p = 2, p = 6 and p = 8).

Oscillations can also be observed here, but it much smoother than in Task 1, where
only h-extension elements were used (compare to Figure. 6a). In the zone of gap (a
certain distance from the border of the contact zone) the boundary condition σuz = 0
is satisfied better with p-extension elements than with h-extension ones (compare
Figure 6 to Figure 9).
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Figure 9. Solution of the contact problem with mesh type Imesh= 0,
computed by using different polynomial orders: p = 2(u2s2), 6(u6s6)
and 8(u8s8)

6.3. Task 3. Choosing the appropriate finite element mesh is an essential step to
achieve high accuracy. In the mesh type Imesh= 0 there are equivalent elements. In
the case of Imesh= 1 the initial Imesh= 0 is modified, i.e. near the border of the
contact zone smaller elements are generated because the border point is a singular
stress point.

The mesh (7× 5) is applied with narrow elements on the right and left sides of the
contact border point, i.e. single element layers are used on both sides of the border
point in horizontal direction. The radial coordinate of the border point is rp. The
outer radius of the cylinder ru and the length of the separation zone is lpu = ru − rp.
The sizes of the elements around of border point are ∆rl = lpuf

2, ∆r2 = lpuf where
f = 0.125.
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In vertical direction the size of the elements is increased gradually starting from
the contacting elements and given by the following values for body B1. In vertical
direction there is a distance lz and the sizes of the elements are ∆z1 = lzf

2, ∆z2 = lzf
and in this z direction the border of the next element is at lz. The mesh for body B2

is symmetrical to the x-axis.

Because the position rp is determined with iteration, the length lpu = ru − rp
can change. The iteration is finished when the contact pressure at the border point
reaches its minimun value I1 = min |cnd(u)| ≤ 0.0001. In the computations we have
three different values for lz = 7.5, 15 and 20 mm.

Imesh= 1: Mesh (7 × 5) is used with single element layer in horizontal direction on the
left and the right hand side of the border point (∆rl = lpuf

2).
Imesh= 2: Mesh (7 × 5) is applied with single element layer in horizontal direction on

the left hand side of the border point (∆rl = lpuf
2), but on the right hand

side of the border point the mesh is finer because of the double element layer
(∆r1 = lpuf

2, ∆r2 = lpuf).
Imesh= 3: Mesh (7× 5) is used with double element layer on both the left and right hand

side of the contact border point (∆r1 = lpuf
2, ∆r2 = lpuf).

Firstly, let us compare the simulations of Imesh= 1 and Imesh= 2. The results are
practically the same, see Figure 10. In Figure 10c the change of mesh 7× 5 is shown,
according to the rp-version of the finite element method. The initially uniform mesh
7 × 5 is modified to (Figure 10c) and then the final mesh (Figure 10c) was obtained
after 10 iteration steps.

Secondly, the solution of the contact problem with Imesh= 3 is visualized by
Figure 11. In Figure 12 one can see the results with original mesh (i.e. without
positioning), and Figure 13 demonstrates the results using the node positioning (i.e.
using the rp-extension method). It can also be realized that the oscillation of normal
stress σz at the border point of contact zone is very small compared to simulation
results received by p-extension finite elements (Imesh= 0), see Figure 14.

It is interesting that the distribution of the normal stress σz in the contact zone is
smooth enough even in the case of using the original mesh. The discrepancy between
the contact pressure and normal stress theoretically should be equal to zero, in this
aspect the positioning technique gives better results, as is shown in Figure 12 and
Figure 13.

Figure 15 shows different convergence diagrams: Figure 15a and 15b demonstrate
the convergence of the position of contact border (rp). It is clear that the rp-version
of the computations is better than the p-version one.

We define the following error indicators using equations (5.5) and (5.6)

I3u = I3(u), I3s = I3(T ) , (6.2)

I4u = I4(u), I4s = I4(T ) , (6.3)

(ErrorF )u =
100I3u
Fz

, (ErrorF )s =
100I3s
Fz

, (6.4)
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where the resultant contact force is

Fz = −
∫
Sc

σ(1)
n dS, σ(i)

n = n(i) · T (i) · n(i) . (6.5)
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Figure 10. Solution with modified Imesh= 1, a) lz = 7.5 mm, rp =
66.8220 mm; b, c) Imesh= 2, lz = 20.0 mm, rp = 66.8197 mm
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Figure 11. Solution of contact problem (Task 3 for body B1) with
small elements around contact border mesh (7× 5) (Imesh= 3, lz =
20 mm, rp = 66.8262 mm): a) Final mesh after positioning; b)–d)
radial, circumferential and vertical normal stresses; e) shear stress;
f) Mieses equivalent stress; g) normal stress σz near the border of the
contact zone. The polynomial order for displacements and stresses is
p = 8
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Figure 12. Contact stress distribution using initial mesh (contact
pressure has large oscillation around the border of contact zone).

Figure 15c and 15d provide a good comparison of the results obtained for the re-
sultant force Fz. The rp-version has very good convergence. In these diagrams the
results obtained by the use of the total potential energy functional are also displayed.
It is surprising that the Reissner variational principle was not proved to be superior
to the principle of minimum total potential energy, though displacements and stresses
as two independent unknown fields have been approximated. Due to higher computa-
tional effort of the Reissner variational principle one can conclude that it is not worth
applying it to similar contact problems.

It is also investigated what the connection is between the polynomial order of the
stress and the polynomial order of the displacement fields. Three variants: Variant 1
(V1), Variant 2 (V2) and Variant 3 (V3) are analyzed:

V1: nps = npu− 1;
V2: nps = npu;
V3: nps = npu + 1,

where nps means the polynomial order of stress approximation function, and the poly-
nomial order of displacement approximation function is denoted by npu. Figure 16a
makes the comparison easier.



The p-extension finite elements for the solution of normal contact problems 159

20 40 60 80 100 120

0

50

100

150

200

250

r [mm]

−
σ zu

 [
M

P
a

]

Final corrected mesh

20 40 60 80 100 120

0

50

100

150

200

250

r [mm]

p
n
 [

M
P

a
]

Contact pressure

20 40 60 80 100 120
−0.01

−0.005

0

0.005

0.01

r [mm]

σ zu
−

 σ
zl
 [

M
P

a
]

Different of σ
z

20 40 60 80 100 120
−1

−0.5

0

0.5

1

r [mm]

−
σ zu

 [
M

P
a

]

−σ
z

u

Figure 13. Contact stress distribution using the final mesh, Imesh=
3, lz = 20 mm
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Using the principle of minimum total potential energy with Imesh= 3, lz = 7.5 mm
(see Table 1).
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Figure 15. Convergence diagram for radius rp a) uniform mesh
(Imesh= 0); b) meshed with small elements around border point
of contact zone (Imesh= 3). Resultant force Fz c) Imesh= 0; d)
Imesh= 2, lz = 7.5 mm

The Reissner principle is applied to solve the same contact problem and using the
same rp-version finite element mesh with increasing polynomial order (npu = nps = p)
and the results are summarized in Table 2.

We can compare the results obtained by the total potential energy functional and
Reissner principle. Practically the radius of the contact border is the same, the error
indicators I3 and I4 are mainly smaller with the Reissner principle. The difference in
resultant force Fz is very small. The strain energy of Reissner principle is computed
from the approximated stress field. The convergence rate of the strain energy is a bit
larger for the Reissner principle.

It is evident that using the (7 × 5) mesh the solution gives a small discrepancy
when the polynomial order changinges from p = 2 to p = 8. However, the relative
error for rp is smaller than 0.2 % and for Fz this error shows 2 % ([Fz(p = 2)−Fz(p =
8)]/Fz(p = 8)).

Three mesh types (Imesh= 1, Imesh= 2 and Imesh= 3) are used in order to
compare the results for these two minimization principles (lz = 7.5 mm). Results are
collected in Table 3 for nps = npu = p = 8 and NDOF= 4 474.
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Table 1. Results are summarized as a function of polynomial order
p, based on total potential energy.

p NDOF rp [mm] Pot.e [Nmm] Fz [N] I3 [N/mm] I4 [N/mm]

2 490 66.6759 128 390.922 2 168 530.63 543.85 280.02
3 804 66.6806 127 940.062 2 136 748.84 119.48 110.73
4 1 258 66.7532 127 865.300 2 133 480.24 57.14 59.29
5 1 852 66.7987 127 840.504 2 132 085.58 35.23 43.61
6 2 586 66.8130 127 831.901 2 131 137.97 22.11 36.77
7 3 460 66.8228 127 830.607 2 130 957.02 21.53 34.86
8 4 474 66.8225 127 830.353 2 130 835.13 16.81 32.46

Table 2. Results are summarized as a function of polynomial order
p, based on Reissner principle.

p NDOF rp [mm] Strain.e [Nmm] Fz [N] I3 [N/mm] I4 [N/mm]

2 490 66.6632 128 443.511 2 170 611.24 614.04 274.43
3 804 66.6659 127 951.403 2 137 806.80 132.08 89.02
4 1 258 66.7649 127 871.373 2 133 994.69 70.21 53.16
5 1 852 66.8107 127 843.167 2 132 259.59 37.73 42.50
6 2 586 66.8194 127 832.525 2 131 129.16 18.51 34.05
7 3 460 66.8216 127 830.756 2 130 920.19 14.92 32.07
8 4 474 66.8222 127 830.400 2 130 804.34 11.77 30.88

Figure 18 shows the results for 7 × 5 mesh, at lz = 7.5, 15 and 20 mm, and at
Imesh = 1, 2, 3, by p = 8, when using the Reissner principle. It can be observed that
the results are very similar. The smallest strain energy is supplied by Imesh = 3 and
lz = 15 mm. The minimum value for the contact border radius rp is with Imesh = 1
and lz = 15 mm. Indicator I3 is the smallest with Imesh = 2 and lz = 7.5 mm, and
I4 is the smallest with Imesh = 3 and lz = 7.5 mm.
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Figure 17. Comparing the convergence of the energy for finite ele-
ment codes using minimum of the total potential energy and Reissner
principle: a) relative error in the energy norm; b) logarithm of the
relative error; c) Imesh= 0, (ErrorF )u : − ◦ −, (ErrorF )s : − + −;
d) Imesh= 3, (ErrorF )u : − ◦ −, (ErrorF )s : −+−

The relative difference between the maximum force and the minimum force in Fz
is less than 0.13 %.

Solving the above contact problem with the Reissner principle by mesh 8×5 (NDOF=
5 090), the following results are obtained:

Imesh= 2 lz = 7.5 mm rp = 66.8221 mm lz = 15 mm rp = 66.8207 mm

Imesh= 3 lz = 7.5 mm rp = 66.8223 mm lz = 15 mm rp = 66.8208 mm

This indicates that the finer mesh 8 × 5 does not give a better or different solu-
tion, therefore applying mesh 7× 5 gives sufficently accurate results using Imesh= 2
according to Table 3.

7. Example for Hertz problem with friction

The contact problem for a truncated sphere with radius R = 800 mm and a cylinder
with outer radius ru = 10 mm is investigated. The truncated sphere is the upper
body denoted by B1, the cylinder is the lower one denoted by B2. The height of
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Figure 18. Results with mesh 7 × 5, Imesh = 1, 2, 3 and lz =
7.5, 15, 20 mm by using the Reissner principle

the truncated sphere is 5 mm and its outer surface is a cylinder mantle with radius
10 mm. Height of the lower cylinder is equal to 5 mm.

Material parameters for the lower body are Young’s modules E2 = 200 GPa and
Poisson ratio ν = 0.3. Sphere is regarded to be rigid and its Young’s modules is given
as E1 = 1000E2. Vertical displacement uz = −w0 = 0.005 mm is prescribed on the
top surface of the body B1. The coefficient of friction is µ = 0.2.

The initial mesh is shown in Figure 19a. The modified mesh after solution of the
frictional contact problem is given in Figure 19b. The 3rd element has new nodal
point positions, one of them is moved left to border of stick-slip region, and the other
one is moved to right to the effective contact border.

The obtained distributions of the shear stresses along the contact domain are shown
in Figure 20 for different load levels. In those points, where τn = τrz ≤ µpn stick takes
place, while in the rest of points, where τn = τrz = µpn here are slips. Distribution of
the normal stress along the boundary z = 5 and z = 10 mm of the sphere is displayed
in Figure 21. The resultant vertical forces of both surfaces theoretically should be
equal to each other. This requirement is fulfilled with an acceptably small error, they
are equal up to the first three digits.

Penalty parameter in the tangential direction is cτ = 100E2, and in the vertical
(normal) direction it is cn = 1000E2.
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Table 3. Comparing results for different meshes (lz = 7.5 mm).

Imesh rp [mm] using Pot.e. min. princ. using Reissner var. princ.

1 66.8228 66.8220
2 66.8174 66.8219
3 66.8225 66.8222

Imesh Strain e. [Nmm] using Pot.e. min. princ. using Reissner var. princ.
1 127 830.352 127 830.38
2 127 830.353 127 830.40
3 127 830.353 127 830.40

Imesh Fz [N] using Pot.e. min. princ. using Reissner var. princ.
1 2 130 904.48 2 130 948.39
2 2 130 860.09 2 130 802.48
3 2 130 835.13 2 130 804.34

Imesh I3 [N/mm] using Pot.e. min. princ. using Reissner var. princ.
1 17.49 13.04
2 12.26 11.75
3 16.81 11.77

Imesh I4 [N/mm] using Pot.e. min. princ. using Reissner var. princ.
1 33.09 31.67
2 31.92 30.89
3 32.46 30.88
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Figure 19. Meshes of body B1: a) original b) at the end of solution
of contact problem using position technique. The stick-slip border is
at rst−sl = 0.947 mm, the effective contact border is at rp = 2.203 mm

The value of the friction coefficient µ essentially influences the length of stick zone.
The results of the tangential stresses obtained for three different frictional coefficient
are shown in Figure 22. However µ has only a little influence on contact border radius
rp as given here: rp(µ = 0.1) = 2.213, rp(µ = 0.2) = 2.203, rp(µ = 0.3) = 2.193 mm.
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The contact pressure maximums are 423.83, 427.49, 429.13 MPa at different friction
coefficients, µ = 0.1, 0.2, 0.3, respectively.

Finally problems are analyzed when only the rigidity of the sphere is changed.

The results are collected in Table 4. In order to compare the results of task 4 in
Table 4 with Hertz theory, the maximum of contact pressure p0 and resultant load
Fz are calculated with rp(µ = 0.2) = a = 2.232 mm.

Using the Hertz formula the force Fz,Hertz = 4E∗a
3/(3R) = 2.037 kN and pressure

p0,Hertz =
3Fz,Hertz

2πa2 = 195.19 MPa are calculated with 1
E∗

= 1−(υ1)2

E1
+ 1−(υ2)2

E2
.

The relative errors are very small:

error Fz = 100
Fz,Hertz − Fz
Fz,Hertz

= −0.736%, error p0 = 100
p0,Hertz − p0

p0,Hertz
= −2.05%.



166 I. Páczelt, A. Baksa and T. Szabó
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Table 4. Results of the Hertz problem for different friction coefficient
µ (ν = ν1 = ν2 = 0.3)

µ = 0.2 E1 E2 rst−sl rp p0 Fz
Number of task [GPa] [GPa] [mm] [mm] [MPa] [kN]

1 ∞ 200 0.947 2.203 427.49 4.143
2 2000 200 1.179 2.211 380.18 3.761
3 1000 200 1.181 2.222 372.37 3.720

4 µ = 0 200 200 - 2.232 199.19 2.052
5 50 200 1.558 2.222 83.779 0.825

In tasks 1-3 the tangential displacements of the sphere are smaller than of the
cylinder, but the opposite was calculated for task 5. This is due to the fact that the
tangential stress τn = τrz of the sphere is positive for tasks 1-3, and shear stress is
negative for task 5 (see Figure 23).

8. Conclusions

Axially symmetric normal contact problems have been investigated by the h-
version, p-version and hp(rp)-version finite element methods. The computations have
been performed by a special purpose finite element package. The code can be applied
for contact problems which leads to only a single connected contact zone.

In this paper the contact conditions are checked at the Gauss integration points.
In order to obtain highly accurate results we use a special nodal positioning technique
which ensures the contact along the whole edge of the contacting finite elements and
very small oscillation in the gap zone.

Comparing the numerical results we concluded the following.

• When using equal number of degrees of freedom for h- and p-versions the
contact pressure distributions are similar. The maximum value of the contact
pressure is bigger for h-version than for p-version. The boundary condition
for the normal stress in the gap zone is satisfied better by p-version than by
h-version.

• Accurate position of the contact border point can be determined by the use
of the hp(rp)-extension finite elements with nodal positioning technique. The
results are practically free of oscillations, and the dynamic boundary conditions
are satisfied with high accuracy in the gap region as well.

• The convergence of the hp(rp)-version has been proved by numerical compu-
tations. Using finite element mesh with one or two layers of narrow elements
at the contact border point and performing computations with a sequence of
high values of p (p = 5, 6, 7, 8) give a convergent series for the position of the
contact border point.

• The accuracy of the solution with the Reissner principle is not better (at the
same NDOF for displacement field) than the using minimum principle of poten-
tial energy. For engineering contact problems it is recommended to use the
principle of minimum potential energy because of faster computation.

• Application of the special positioning technique for the frictional contact prob-
lem gives good accuracy in solutions.
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64. I. Páczelt and Z. Mróz. “Solution of wear problems for monoton and periodic
sliding with p-version of finite element method.” Computer Methods in Applied
Mechanics and Engineering, 1, (2012), pp. 249–252. doi: 10.1016/j.cma.2012.
02.012.

65. N. V. Banichuk and S. Yu. Ivanova. Optimal structural design. Walter de Gruyter
GmbH, Berlin, 2017.

66. M. Raous, M. Jean, and J. J. Moreau, eds. Contact Mechanics. Springer US,
NewYork, 1995. doi: 10.1007/978-1-4615-1983-6.

67. J. A. C. Martins and M. O. P. Monteiro Marques, eds. Contact Mechanics, Pro-
ceedings of the 3rd Contact Mechanics International Symposium. Kluwer Aca-
demic Publishers, Dordrecht, 2002.

68. A. Popp and P. Wriggers. Contact Modeling for Solids and Particals. CISM Inter-
national Centre for Mechanical Sciences 585. Springer International Publishing,
2018. doi: 10.1007/978-3-319-90155-8.

69. P. Wriggers and U. Nackenhorst, eds. IUTAM Symposium on Computational
Methods in Contact Mechanics, Hannover, Germany. Springer Netherlands, 2006.
doi: 10.1007/978-1-4020-6405-0.

70. ESRD Group. StressCheck finite element simulation program. 1989. url: https:
//esrd.com.

https://doi.org/10.1007/978-3-662-04864-1
https://doi.org/10.1007/978-94-015-9048-8
https://doi.org/10.1016/j.cma.2012.02.012
https://doi.org/10.1016/j.cma.2012.02.012
https://doi.org/10.1007/978-1-4615-1983-6
https://doi.org/10.1007/978-3-319-90155-8
https://doi.org/10.1007/978-1-4020-6405-0
https://esrd.com
https://esrd.com


Journal of Computational and Applied Mechanics, Vol. 15, No. 2, (2020), pp. 173–184

DOI: 10.32973/jcam.2020.010

GENERALIZED DISPLACEMENTS AND MOMENTA
FORMULATIONS OF AN ELECTROMECHANICAL PLUNGER
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Abstract. This paper deals with four different derivations of the governing equations of a
solenoid plunger with lumped-parameter. Energy-based modeling is employed with extended
Hamilton’s principle with independent generalized coordinates and generalized momenta in
order to be applicable to composite Lagrange’s equations. In the electromechanical models,
displacements and charges are regarded to be generalized coordinates, mechanical momenta
and flux linkages are the generalized momenta. The derived systems of differential equations
are solved numerically with the Runge-Kutta method.
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1. Introduction

A mechatronic problem can include mechanical, electrical, hydraulic, and thermal
phenomena. The application of an energy-based approach is suitable for the uniform
management of all of them [1]. The following domain-independent generalized vari-
ables are advisable to use in complex problems: generalized coordinates, generalized
momenta, generalized potentials and generalized velocities. The time derivative of
the generalized potentials are often called efforts, and the generalized velocities are
named flows. In this context generalized power, generalized energy, generalized poten-
tial energy, generalized potential co-energy, generalized kinetic energy, and generalized
kinetic co-energy can be defined [1]–[2].

A plunger [3] is regarded as an electromechanical problem. A number of papers deal
with modeling and simulation of hydraulic valves, which are also plungers [4]–[5]. In
these papers, models of lumped-parameter are investigated using displacement, elec-
trical current or flux linkage variables. Following that, in addition to the previously
mentioned variables, mechanical momenta will also be used to derive the governing
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equations. To the best knowledge of the authors of this article such equations for
plungers written by momenta have not been presented yet.

Next an electromechanical plunger is modeled, in which variables displacement of
the spool, electrical charge are generalized coordinates, the mechanical momentum of
the spool and the flux linkage are generalized momenta. The model of the plunger
to be investigated can be composed via purely generalized coordinates, or purely
generalized momenta, and also their mixed combinations.

This paper is organized as follows: Section 2 defines the structure of the plunger.
Section 3 details four different formulations of the governing equations of the model.
Section 4 represents results of the numerical computations. Concluding remarks are
given in Section 5.

2. A lumped-parameter electromechanical plunger

The structure of the plunger is shown in Figure 1, where m is the mass of the spool,
k is the stiffness of the suspending spring, r is the damping coefficient of the dashpot,
L(y) is the inductance of the coil of the electromagnet, R is the resistor of the inductor,
U0(t) is the voltage source of the circuit and kc and rc represent the resultant stiffness
and the damping coefficients of the collision layer, respectively. The nominal gap of
the plunger is denoted by y0 in unexcited situation. When the switch is closed the coil
produces a magnetic force, which attracts the spool downwards to the electromagnet.
Collision takes place at y = −y0.

At this point the viscoelastic layer is under compression, it means that two springs
k + kc and two dashpots r + rc are connected parallel to the spool. The spring
characteristic of the problem is shown in Figure 2, where tanα = k and tanαc = k+kc.
Due to this fact the investigated problem is nonlinear, also in its mechanical aspect.
The penalty treatment of the mechanical contact problem is based on a similar elastic
layer sometimes with nonlinear spring, as was recommended by Prof. B. Szabó [6].

It is assumed that the inductance depends on the displacement y of the spool [2]:

L(y) =
L0

1 + (y0 + y)/h
, (2.1)

where L0 is the inductance at zero gap, h is a geometric size, which is shown in Figure
1. The Coulomb charge and the flux linkage are denoted by q, and λ, respectively. It
is self evident that the potential is zero at the vicinity of the ground.

In the sequel, the mathematical models of the plunger will be formulated on an
energy basis using the extended Hamilton’s principle with independent generalized
coordinates, generalized momenta and their combinations.

3. Mathematical formulation of the problem

A mechatronic system usually contains energy conservative and non-conservative ele-
ments. To treat such system the extended Hamilton’s principle is a suitable variational
principle:
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Figure 1. Schematic of the plunger
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Figure 2. Spring characteristic of the electromechanical plunger

∫ t2

t1

(δL+ δWnc)dt = 0, δqk = 0 or δpk = 0, k = 1, 2, ..., n; t = t1, t2 ,

(3.1)
where δL is the variation of the Lagrangian function containing energies and co-
energies of the conservative elements, δWnc is the virtual work associated to the
non-conservative elements, δqk and δpk are the variation of the general coordinates
and momenta of a system, respectively.

An electromechanical problem can be treated by four combinations of displacement
y and charge q as generalized coordinates, and also mechanical momentum p and flux
linkage λ as generalized momenta:
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L(y, q) = T ∗(ẏ) +W ∗m(q̇)− Vp(y)−We(q), δWnc(y, q), (3.2)

L(y, λ) = T ∗(ẏ) +W ∗e (λ̇)− Vp(y)−Wm(λ), δWnc(y, λ), (3.3)

L(p, q) = V ∗p (ṗ) +W ∗m(q̇)− T (p)−We(q), δWnc(p, q), (3.4)

L(p, λ) = V ∗p (ṗ) +W ∗e (λ̇)− T (p)−Wm(λ), δWnc(p, λ), (3.5)

where T ∗(ẏ) is the kinetic co-energy, W ∗m(q̇) is the magnetic co-energy, Vp(y) is the
potential energy, Wm(λ) is the magnetic energy, V ∗p (p) is the potential co-energy, and
T (p) is the kinetic energy. Since the investigated system has no capacitor the electric

energy We(q) and co-energy W ∗e (λ̇) are zero.

Virtual works in equations (3.2)–(3.5) of the non-conservative elements are calcu-
lated by multiplication of the virtual change in generalized coordinates or generalized
potentials and their energetically conjugated generalized forces or generalized veloci-
ties, respectively.

In order to apply the energy-based approach, it is noted that generally the admis-
sibility requirements include kinematical constraints on the virtual displacements and
the velocities, and Kirchhoff’s current rule on the virtual charges and the currents.
The admissibility requirements include the equation of Newton’s second law on the
virtual mechanical momenta and forces, and Kirchhoff’s voltage rule on the virtual
flux linkages and the voltages. Usually it is convenient to satisfy admissibility condi-
tions on the virtual variations, i.e., to select a complete set of independent generalized
coordinates [2].

Performing the variation of the Lagrangian function in equation (3.1), the Lagrange
equation of the second kind can be obtained for independent generalized coordinates
and momenta.

3.1. Displacement and charge formulation (y, q). The most natural formulation
of the plunger is using displacement and charge variables [3]–[7], since it is easy to
satisfy the kinematical constraints and the Kirchhoff’s current rule.

If the spool is not in contact with the collision layer, i.e., (y + y0) > 0:

L(y, ẏ, q̇) =
1

2
mẏ2 +

1

2
L(y)q̇2 − 1

2
ky2, (3.6)

δWnc = −rẏδy + U0(t)δq −Rq̇δq, (3.7)

while in contact, i.e., (y + y0) ≤ 0:

L(y, ẏ, q̇) =
1

2
mẏ2 +

1

2
L(y)q̇2 − 1

2
ky2 − 1

2
kc(y + y0)2, (3.8)

δWnc = −(r + rc)ẏδy + U0(t)δq −Rq̇δq, (3.9)

where δy, δq are the variation of the displacement and the charge, respectively.

The governing equations are derived with the Lagrange equations:
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d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= U0(t)−Rq̇, (3.10)

L(y)q̈ +Rq̇ + L′(y)ẏq̇ = U0(t), (3.11)

where L′(y) = dL(y)
dy .

If the spool is not in contact with the collision layer, i.e., (y + y0) > 0:

d

dt

(
∂L
∂ẏ

)
− ∂L
∂y

= −rẏ, (3.12)

mÿ + rẏ + ky = L′(y)
q̇2

2
, (3.13)

while in contact (y + y0) ≤ 0:

d

dt

(
∂L
∂ẏ

)
− ∂L
∂y

= −(r + rc)ẏ, (3.14)

mÿ + (r + rc)ẏ + ky + kc(y + y0) = L′(y)
q̇2

2
. (3.15)

The resulted ordinary differential equation equation (3.11) is the Kirchhoff’s voltage
rule, equations (3.13) and (3.15) are Newton’s second law.

3.2. Displacement and flux linkage formulation (y, λ). The flux linkage is
often used with the displacement to derive the equations [1, 2]. Instead of Kirchhoff’s
current rule, Kirchhoff’s voltage rule should be satisfied for the flux linkages. The
voltage source U0(t) can be expressed as the time derivative of a given function of the

flux linkage λ̇0(t). The selection of the flux linkage variable is based on Kirchhoff’s

voltage rule U0(t) = UR + UL = (λ̇0 − λ̇)R + (λ̇− 0)L.

If the spool is not in contact, i.e., (y + y0) > 0:

L(y, ẏ, λ) =
1

2
mẏ2 − 1

2
ky2 − λ2

2L(y)
, (3.16)

δWnc = −rẏδy − λ̇− U0(t)

R
δλ, (3.17)

while in contact, i.e., (y + y0) ≤ 0:

L(y, ẏ, λ) =
1

2
mẏ2 − 1

2
ky2 − 1

2
kc(y + y0)2 − λ2

2L(y)
, (3.18)

δWnc = −(r + rc)ẏδy −
λ̇− U0(t)

R
δλ, (3.19)

where δλ is the variation of the flux linkage.

The governing equations are also derived with the Lagrange equations:
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d

dt

(
∂L
∂λ̇

)
− ∂L
∂λ

= − λ̇− U0(t)

R
δλ, (3.20)

λ̇

R
+

λ

L(y)
=
U0(t)

R
. (3.21)

If the spool is not in contact (y + y0) > 0:

d

dt

(
∂L
∂ẏ

)
− ∂L
∂y

= −rẏ, (3.22)

mÿ + rẏ + ky =
1

2
λ2L(y)

−2
L′(y), (3.23)

while in contact (y + y0) ≤ 0:

d

dt

(
∂L
∂ẏ

)
− ∂L
∂y

= −(r + rc)ẏ, (3.24)

mÿ + (r + rc)ẏ + ky + kc(y + y0) =
1

2
λ2L(y)

−2
L′(y). (3.25)

The resulting differential equation (3.21) is the Kirchhoff’s current rule, equations
(3.23) and (3.25) are Newton’s second law.

3.3. Mechanical momentum and charge formulation (p, q). Mechanical mo-
menta are applied less frequently compared to displacements in dynamical problems
[1]. In order to satisfy the admissibility constraint on the mechanical momenta, New-
ton’s second law should be considered:

ṗm = ṗk + ṗr − ṗM , (3.26)

where ṗm is the time derivative of the linear momentum of the mass m, ṗk is the
spring force, ṗr is the damping force, and ṗM is the electromagnetic force.

The constraint equation for adequate mechanical momenta is obtained by taking
the time integration of (3.26):

pm = pk + pr − pM . (3.27)

The Lagrangian function and the virtual work of the non-conservative elements are
given as:

if the spool is not in contact, i.e., (y + y0) > 0:

L(p, ṗ, q̇) =
ṗ2k
2k

+
1

2
L(y)q̇2 − (pk + pr − pM )

2

2m
, (3.28)

δWnc = U0(t)δq −Rq̇δq − ṗr
r
δpr, (3.29)

while in contact, i.e., (y + y0) ≤ 0:
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L(p, ṗ, q̇) =
(ky0)2

2k
+y0(ṗk−ky0)+

(ṗk − ky0)2

2(k + kc)
+

1

2
L(y)q̇2− (pk + pr − pM )

2

2m
, (3.30)

δWnc = U0(t)δq −Rq̇δq − ṗr
r + rc

δpr. (3.31)

In equations (3.28)–(3.31) the displacement y and the momenta pm, pM are not
independent variables; they can be given by two constitutive equations in which q̇, pk
and pr are the independent variables:

ẏ =
(pk + pr − pM )

m
, (3.32)

ṗM = −∂W
∗
m

∂y
= −1

2
L′(y)q̇2. (3.33)

The Lagrange equations are of the form

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= U0(t)−Rq̇, (3.34)

L(y)q̈ +Rq̇ + L′(y)ẏq̇ = U0(t. (3.35)

Substituting equation (3.32) into equation (3.35) yields:

L(y)q̈ +Rq̇ + L′(y)
(pk + pr − pM )

m
q̇ = U0(t). (3.36)

If the spool is not in contact (y + y0) > 0:

d

dt

(
∂L
∂ṗk

)
− ∂L
∂pk

= 0, (3.37)

p̈k
k

+
pk + pr − pM

m
= 0, (3.38)

d

dt

(
∂L
∂ṗr

)
− ∂L
∂pr

= − ṗr
r
, (3.39)

ṗr
r

+
pk + pr − pM

m
= 0, (3.40)

while in contact (y + y0) ≤ 0:

d

dt

(
∂L
∂ṗk

)
− ∂L
∂pk

= 0, (3.41)

p̈k
k + kc

+
pk + pr − pM

m
= 0, (3.42)
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d

dt

(
∂L
∂ṗr

)
− ∂L
∂pr

= − ṗr
r + rc

, (3.43)

ṗr
r + rc

+
pk + pr − pM

m
= 0. (3.44)

The resulted ordinary differential equation (3.36) is Kirchhoff’s voltage rule, equa-
tions (3.38), (3.40), (3.42), and (3.44) are the kinematical connection equations.

3.4. Mechanical momentum and flux linkage formulation (p, λ). This formu-
lation is based on purely the generalized momenta, i.e., on the mechanical momenta
and flux linkage. Here in addition to the admissibility constraints equations (3.26)
and (3.27) valid for the mechanical momenta, Kirchhoff’s voltage rule should also be
satisfied for the flux linkage as in Subsection 3.2.

The Lagrangian function and the virtual work of the non-conservative elements are
given as:

if the spool is not in contact, i.e., (y + y0) > 0:

L(p, ṗ, λ) =
ṗ2k
2k
− (pk + pr − pM )

2

2m
− λ2

2L(y)
, (3.45)

δWnc = − λ̇− U0

R
δλ− ṗr

r
δpr, (3.46)

while in contact, i.e., (y + y0) ≤ 0:

L(p, ṗ, λ) =
(ky0)2

2k
+ y0(ṗk − ky0) +

(ṗk − ky0)2

2(k + kc)
− (pk + pr − pM )

2

2m
− λ2

2L(y)
, (3.47)

δWnc = − λ̇− U0

R
δλ− ṗr

r + rc
δpr. (3.48)

In equations (3.45)–(3.48) y and pM are also not independent; they should satisfy
the following constitutive equations:

ẏ =
(pk + pr − pM )

m
, (3.49)

ṗM =
∂Wm

∂y
= −1

2
L′(y)λ2L(y)−2. (3.50)

The Lagrange equations can be written as:

d

dt

(
∂L
∂λ̇

)
− ∂L
∂λ

= − λ̇− U0

R
, (3.51)

λ̇− U0

R
+

λ

L(y)
= 0. (3.52)
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If the spool is not in contact (y + y0) > 0:

d

dt

(
∂L
∂ṗk

)
− ∂L
∂pk

= 0, (3.53)

p̈k
k

+
pk + pr − pM

m
= 0, (3.54)

d

dt

(
∂L
∂ṗr

)
− ∂L
∂pr

= − ṗr
r
, (3.55)

ṗr
r

+
pk + pr − pM

m
= 0, (3.56)

while in contact (y + y0) ≤ 0:

d

dt

(
∂L
∂ṗk

)
− ∂L
∂pk

= 0, (3.57)

p̈k
k + kc

+
pk + pr − pM

m
= 0, (3.58)

d

dt

(
∂L
∂ṗr

)
− ∂L
∂pr

= − ṗr
r + rc

, (3.59)

ṗr
r + rc

+
pk + pr − pM

m
= 0. (3.60)

The resulting differential equation (3.52) is Kirchhoff’s current rule, Equations
(3.54), (3.56) (3.58), (3.60) are the kinematical connection equations.

4. Numerical analysis

A special purpose program has been developed using Scilab software for numerical
solutions of the four set of systems of differential equations. The Runge-Kutta numer-
ical method has been used in order to get the results. The problem shown in Figure
1 has been analyzed with the following parameters: L0 = 1.5 mH, y0 = 2.5 mm,
h = 10 mm, R = 2.4 Ω, U0 = 12 V , m = 10 g, k = 500 N/m, r = 1.5 Ns/m,
kc = 5 · 106 N/m, and rc = 1500 Ns/m.

The displacement coordinate y versus time t has been computed with four different
formulations and equal results have been obtained, which are shown in Figure 3. Equal
diagrams of current q̇ versus time t have been computed with (displacement – charge),
and (momentum – charge) formulations (see Figure 4). Equal curves of flux linkage λ
versus time t have been obtained by (displacement – flux linkage), and (momentum –
flux linkage) formulations (see Figure 5). Equal curves have been determined for the
momentum pm of the spool versus time t by (momentum – charge) and (momentum
– flux linkage) formulations (see Figure 6).

Multiple collisions of the spool with decreasing amplitude of rebounds can be rec-
ognized in Figure 3 and Figure 6, then the spool comes to a standstill. There are also
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correlations between the curves of the current, the flux linkage and the motion of the
spool (see Figure 5 and Figure 6).
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Figure 3. Displacement of the spool
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Figure 4. Current of the coil
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Figure 5. Flux linkage of the electromagnet
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Figure 6. Momentum of the spool
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5. Conclusions

Four equivalent formulations have been presented to model an electromechanical
plunger using generalized coordinates and generalized momenta. The system of equa-
tions obtained by two formulations containing mechanical momenta can be regarded
as novel results.

Numerical computations confirmed the equivalence of the four formulations. When
a displacement coordinate is used in the formulations together with charge or flux
linkage, three differential equations are obtained in both cases. However, seven dif-
ferential equations are derived by mechanical momentum with charge or flux linkage
formulation. Usually it is more convenient to satisfy the constraints for the gener-
alized coordinates than their counterparts of momenta. Thus a formulation based
on generalized coordinates is more popular compared to the generalized momenta
formulations.
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Abstract. This paper is intended to present an implementation of the hypersingular bound-
ary integral equations in terms of first-order stress functions for stress computations in plane
orthotropic elasticity. In general, the traditional computational technique of the boundary
element method used for computing the stress distribution on the boundary and close to it
is not as accurate as it should be. In contrast, the accuracy of stress computations on the
boundary is greatly increased by applying the hypersingular integral equations. Contrary to
the method in which the solution is based on an approximation of displacement field, here
the first-order stress functions and the rigid body rotation are the fundamental variables. An
advantage of this approach is that the stress components can be obtained directly from the
stress functions, there is, therefore, no need for Hooke’s law, which should be used when they
are computed from displacements. In addition, the computational work can be reduced when
the stress distribution is computed at an arbitrary point on the boundary. The numerical
examples presented prove the efficiency of this technique.
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tion

1. Introduction

The theory of elasticity for orthotropic bodies is well established in the boundary
element method. Paper [1] studies orthotropic plane problems and presents the most
important relations for inner regions by the boundary element method, in which the
displacements and the stresses are the unknowns on the boundary and the numerical
solution is based on a constant approximation of the displacements and the stresses
over the boundary elements. One of the most important advantages of using first-
order stress functions is the fact that calculating stresses requires determining first
derivatives only, whereas with stress functions of order two, the stresses are obtained
in terms of the second derivatives. First derivatives are generally more convenient in
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boundary element applications, although an additional equation is needed for sym-
metrizing the stress tensor. If the body considered is isotropic the boundary integral
equations of the direct method for plane problems in terms of first-order stress func-
tions are established in paper [2]. For orthotropic bodies [3] presents the two fun-
damental solutions of the basic equation and the Somigliana relations for inner and
exterior regions, provided that the first-order stress functions are the basic variables
and constant strains and stresses are assumed at infinity. The authors of paper [4]
modified the Somigliana formulas for plane orthotropic bodies and exterior regions by
assuming that the strains are constant and accordingly the displacements are linear
at infinity.

When using the direct boundary element method, weakly and strongly singular in-
tegrals have to be computed. This is the main reason for obtaining partly inaccurate
results for the stresses at those points located to the region’s boundary. However, the
accuracy of the numerical solutions could be increased by using an appropriately cho-
sen hypersingular formulation, because in this way the terms containing singularities
can be computed in semi-analytical forms. [5] came to the conclusion that a deep
analysis of the hypersingular formulation provides an opportunity to increase the ac-
curacy of the stress components computed at interior points close to the contour and
on the contour itself. The theory of the hypersingular boundary integral equations,
in which the displacements are the fundamental variables, is developed further for 2D
and 3D problems [6–14] and there are a number of issues (see for instance [15–18]) or
[19] for plane orthotropic elasticity) to which they can be applied successfully.

The goal of this paper is to utilize the integral equations in terms of first-order
stress functions with hypersingular kernels [20] for the problems of plane orthotropic
elasticity in order to make the stress computations more accurate on the boundary.
Section 2 outlines the most important preliminaries, i.e., it presents the governing
equations of the plane strain problem in terms of first-order stress functions for the
orthotropic case, details the corresponding fundamental solutions, and clarifies what
the boundary conditions are for the first-order stress functions. The concept of the
strain boundary conditions is also introduced. Section 3 is devoted to the problem of
how to improve the hypersingular integral formulation for boundary value problems
under plane strain conditions. The necessary equations are set up in a suitable form
in Section 4, which is devoted to some further important computational issues so that
an appropriate algorithm can be developed for the stress computations. The formulas
for calculating the stresses are derived in semi-analytical forms. Section 5 presents the
applicability of the algorithm for two simple problems and a more difficult one. The
last section is the conclusions. Some longer formulas are presented in the Appendix.

2. Preliminaries

Throughout this paper a two-dimensional rectangular Cartesian coordinate system is
used in which x(x1, x2) and y(y1, y2) are the source and field points. Greek subscripts
are assumed to have the range (1, 2). The summation convention is applied to dummy
indices. In accordance with the notations introduced: δρλ is the Kronecker symbol,
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ερπ3 is the permutation symbol and derivatives with respect to yρ are denoted by a
Greek subscript preceded by a comma.

Consider a simply connected inner region AI and its supplementary exterior region
AE . We stipulate that the contour Lo, which is divided into two parts denoted by
Lt and Lu, admits a nonsingular parametrization in terms of its arc length s. The
positive direction on Lo is the one which leaves the region on the left side. The
outward unit normal and the unit tangent on the contour are denoted by nλ and τπ.

The quantities that are prescribed on the boundary are denoted by hatted letters.
[Stress functions uλ(s) (obtainable from the prescribed tractions)] {Strain boundary
conditions, i.e., the derivatives tλ(s) = −dûλ/ds} are prescribed on [Lt] {Lu}. It is
assumed that there are no body forces. The components of the elastic compliance
tensor are denoted by s11, s12 = s21, s22 and s66.

According to the Tonti scheme [21], stress functions are the fundamental variables,
and the stresses and strains constitute the intermediate variables of the first and sec-
ond kind in the dual system of elasticity. A prescribed incompatibility, which is in
general zero, is the source variable. For the sake of a formal similarity to the bound-
ary integral equations written in the usual forms, the opposite of the displacement
derivative tλ = −dûλ/ds and the stress functions of order one uλ are further notations
applied in our boundary element formalism. However, highlighting the difference be-
tween the method based on an approximation of displacements and the presented
one, these variables and the related quantities are typeset in calligraphic fonts. In
this way, the plane strain problem in terms of the first-order stress functions for the
orthotropic case is governed by the dual kinematic equations

t11 = u1,2 , t12 = u2,2 ,

t21 = −u1,1 , t22 = −u2,1 ,
(2.1)

the inverse Hooke’s law
e11 = s11t11 + s12t22 ,

e12 = e21 =
s66
4

(t12 + t21) ,

e22 = s21t11 + s22t22 ,

(2.2)

the compatibility conditions

e11,2 − e12,1 + ϕ3,1 = 0 , e21,2 − e22,1 + ϕ3,2 = 0 , (2.3)

and the symmetry condition (equation of rotational equilibrium)

t12 = t21 . (2.4)

With the prescribed traction t̂λ(s), (s ∈ Lt) the first-order stress functions on the
boundary are given by

uλ(s)− uλ(P )︸ ︷︷ ︸
Cλ

=

∫ s

P

t̂λ(σ)dσ s ∈ Lt , (2.5)

where P is the starting point of the arc Lt and Cλ is an undetermined integration
constant. Consequently, equation

uλ(s) = ûλ(s) + Cλ s ∈ Lt (2.6)
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is the boundary condition imposed on the stress functions. Since no stresses belong
to constant stress functions, Cλ can be set to zero.

The strain boundary conditions on Lu have the following form:

tλ(s) = −dûλ(s)

ds
= −nρ[ερπ3eπλ − δρλϕ3] s ∈ Lu , (2.7)

where ûλ (s) is the vector of the prescribed displacements on Lu.

The outer region AE is understood as the part of the coordinate plane outside the
closed curve Lo. The stresses at infinity denoted by t11(∞), t12(∞) = t21(∞), t22(∞)
are all constants. It is assumed that the rigid body rotation vanishes at infinity:

ϕ3(∞) = 0 . (2.8)

Let cκ(∞) be a constant. The stress functions

ũκ(yα) = εα3ρyαtκρ(∞) + cκ(∞) (2.9)

result in a constant stress state t11(∞), t12(∞) = t21(∞), t22(∞) at the point y. It
is obvious that no stresses belong to the stress function cκ(∞).

After eliminating the intermediate variables, equation system (2.1)-(2.4) yields the
fundamental equations for the unknowns uλ and ϕ3. The fundamental solutions of
the dual system can be given in a relatively simple form if on the basis of [3] we
introduce the following notations:

D1 =
2s21 + s66

2s11
, D =

[
2s21 + s66

2s11

]2
− s22
s11

, (2.10a)

b1 =
√
D1 −

√
D , b2 =

√
D1 +

√
D , (2.10b)

β2
1 = −2s21 + s66

2s11
+

√(
2s21 + s66

2s11

)2

− s22
s11

, (2.10c)

β2
2 = −2s21 + s66

2s11
−

√(
2s21 + s66

2s11

)2

− s22
s11

, (2.10d)

d1 = −

∣∣∣∣∣∣
1 β̃1 β̃2

1

1 β2 β2
2

1 β̃2 β̃2
2

∣∣∣∣∣∣ , d2 = −

∣∣∣∣∣∣
1 β1 β2

1

1 β̃1 β̃2
1

1 β̃2 β̃2
2

∣∣∣∣∣∣ , (2.10e)

Iα = 4π
dα

bα + 1

[
b3αs11 + b2α (s21 + s66)− bαs12 − s22

]
, K = − 1

I1 + I2
, (2.10f)

where β̃α is the complex conjugate of βα, and

ρα = r1 + βαr2 , (2.10g)

in which rρ = xρ − yρ.
The fundamental solution of order one Uκλ(x, y) in component form is given by the

following equations:

U11(x, y) = −K Im

2∑
α=1

dα (2 ln ρα + 3)β2
α , (2.11a)
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U12(x, y) = K Im

2∑
α=1

dα (2 ln ρα + 3)βα = U21(x, y) , (2.11b)

U22(x, y) = −K Im

2∑
α=1

dα (2 ln ρα + 3) . (2.11c)

As regards the physical meaning of the fundamental solutions of order one the product
eκ(x)Uκλ(x, y) is the dual displacement uλ(y) due to a unit incompatibility eκ(x).

Let now y be a point on the contour. The fundamental solution of order two
Tκλ(x, y) has the following components:

T11(x, y) = K Im

2∑
α=1

2dα
ρα

[
n2
(
−β3

αs11 − s12βα
)
− n1

s66
2
β2
α−

−n1(s22 + (s21 +
s66
2

)β2
α)
]
, (2.12a)

T12(x, y) = K Im

2∑
α=1

2dα
ρα

[n2
2
s66β

2
α + n1

(
s21β

3
α + s22βα

)
−

−n2(s22 + (s21 +
s66
2

)β2
α)
]
, (2.12b)

T21(x, y) = KIm

2∑
α=1

2dα
ρα

[
n2
(
β2
αs11 + s12

)
+ n1

s66
2
βα−

−n1βα((s12 +
s66
2

) + s11β
2
α)
]
, (2.12c)

T22(x, y) = KIm

2∑
α=1

2dα
ρα

[
−n2

2
s66βα − n1

(
s21β

2
α + s22

)
−

−n2βα((s21 +
s66
2

) + s11β
2
α)
]
, (2.12d)

where the outward unit normal nρ is taken at y. The product eκ(x)Tκλ(x, y) is the
dual stress tλ(y) due to a unit incompatibility eκ(x).

It is important to note here that Uκλ(x, y) is weakly singular and Tκλ(x, y) is
strongly singular. The elements of the elastic compliance tensor can be expressed
with Young’s moduli E1, E2, shear modulus µ12 and Poisson’s ratios ν12, ν21

s11 =
1

E1
, s12 = −ν21

E2
, s21 = −ν12

E1
, s22 =

1

E2
, s66 =

1

µ12
. (2.13)

For the inner region AI the Somigliana formulas in the dual system of orthotropic
plane elasticity are of the form

uκ(y) =

∮
Lo

Uκλ(x, y)tλ(x) dsx −
∮
Lo

Tκλ(x, y)uλ(x) dsx y ∈ AI , (2.14a)
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cκλ(y)uλ(y) =

∮
Lo

Uκλ(x, y)tλ(x) dsx −
∮
Lo

Tκλ(x, y)uλ(x) dsx y ∈ Lo, (2.14b)

0 =

∮
Lo

Uκλ(x, y)tλ(x) dsx −
∮
Lo

Tκλ(x, y)uλ(x) dsx y 6∈ AI ∪ Lo,

(2.14c)

in which the matrix cκλ(y) depends on the angle formed by the tangents to the contour
at y (cκλ(y) = δκλ/2 if the contour is smooth at y).

For the outer region AE equations (2.14) are slightly modified by taking the stress
state at infinity into account:

uκ(y)= ũκ(y)+

∮
Lo

Uκλ(x, y)tλ(x) dsx−
∮
Lo

Tκλ(x, y)uλ(x) dsx y ∈ AE ,

(2.15a)

cκλ(y)uλ(y)= ũκ(y)+

∮
Lo

Uκλ(x, y)tλ(x) dsx−
∮
Lo

Tκλ(x, y)uλ(x) dsx y ∈ Lo ,

(2.15b)

0= ũκ(y)+

∮
Lo

Uκλ(x, y)tλ(x) dsx−
∮
Lo

Tκλ(x, y)uλ(x) dsx y 6∈ AE ∪ Lo .

(2.15c)

The dual Somigliana formulas (2.14), (2.15) assume the same form as those established
for the isotropic case [2] with the difference being in the fundamental solutions.

3. Hypersingular formulation for stress evaluations

In this section, the hypersingular formulation is applied to determine the stresses in
the vicinity of the boundary with high accuracy. After solving integral equations
(2.14b and (2.15b) of the direct method one obtains the values of uλ(x) and tλ(x) at
every nodal point. The traditional approach to calculating the stress components at
an arbitrary nodal point is the use of an equation system based partly on equations
(2.1), (2.2) and on the polynomial approximation of uλ and tλ on the element that
contains the nodal point selected [3]. In many cases the stresses obtained in this way
are, however, not as accurate as they should be. For this reason we shall present a
hypersingular integral equation formulation which significantly increases the accuracy
of the stresses computed.

The line of thought is based on a technique developed by [5] in the primal system
of plane elasticity. The partial derivatives of equation (2.15c) with respect to the
coordinates yρ of the source point y should be determined taking equation (2.10g)
into account, similarly to the case of isotropic materials [10], [20]. For this purpose,
a small neighborhood of the source point y should be removed from the region of
integration in order to obtain appropriate formulas. This way, singular integrals can
be avoided – the kernels are singular at the point x = y. For convenience, the small
circular domain Aε with the source point as its center is removed from the original
region AE . Consequently, the new contour consists of two arcs Lε left from Lo after
the removal of the small circle with radius ε and the circular arc sε.
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Figure 1. Outer region AE bounded by the boundary curve Lε ∪ sε.

Under this condition equation (2.15c) can be written in the form

0 = lim
ε→0

{
ũκ(y) +

∫
Lε

[Uκλ(x, y)tλ(x) − Tκλ(x, y)uλ(x)] dsx+

+

∫
sε

[Uκλ(x, y)tλ(x) − Tκλ(x, y)uλ(x)] dsx

}
. (3.1)

After deriving equation (3.1) with respect to yρ, we arrive at

lim
ε→0

{
ũκ,ρ(y) +

∫
Lε

[Uκλ,ρ(x, y)tλ(x) − Tκλ,ρ(x, y)uλ(x)] dsx+

+

∫
sε

Uκλ,ρ(x, y)tλ(x) − Tκλ,ρ(x, y)uλ(x) dsx

}
= 0 , (3.2)

where the derivatives Uκλ,ρ and Tκλ,ρ are presented in the Appendix – see equations
(A.1) and (A.2). Due to the derivation, the order of singularity is increased, i.e.,
Dκλρ = Uκλ,ρ has a strong singularity of O(ρ−1α ), whereas Sκλρ = Tκλ,ρ is hypersin-
gular of O(ρ−2α ).

Assume further that the stress functions of order one are continuous and differen-
tiable in the neighborhood of the point y. Then it holds with good accuracy that

uλ(x) = uλ(y) + uλ,δ(y)(xδ − yδ) +O(r1+α) . (3.3)

It is also not too difficult to check that the opposite of the displacement derivative tλ
in the vicinity of the source point assumes the form

tλ(x) = −∂uλ
∂s
∼= −uλ,π(y)τπ(x) = −uλ,π(y)ε3ρπnρ(x) . (3.4)

Making use of these approximations, we can rewrite equation (3.2) into the follow-
ing form:
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ũκ,ρ(y)+

lim
ε→0

{∫
Lε

[Dκλρtλ(x)− Sκλρuλ(x)] dsx+

∫
sε

Dκλρ[tλ(x) + uλ,π(y)τπ(x)] dsx−

−
∫
sε

Sκλρ[uλ(x)− uλ,δ(y)(xδ − yδ)− uλ(y)] dsx −
∫
sε

Sκλρdsxuλ(y)−

−
∫
sε

Dκλρuλ,π(y)τπ(x)dsx −
∫
sε

Sκλρuλ,δ(y)(xδ − yδ)dsx
}

= 0 . (3.5)

Observe that the second integral in the second line and the first integral in the third
line are equal to zero if their limits are taken. The value of the last integral in the
third line can be manipulated into the form

lim
ε→0

{∫
sε

Sκλρdsxuλ(y)

}
= lim
ε→0

{
bκλρ(y)

ε
uλ(y)

}
, (3.6)

in which the coefficient bκλρ(y) depends on the local geometry of Sε at the source
point y throughout the limiting process [10]. This formula clearly shows that the
limit of the above integral – due to the fact that the kernel is singular – is unbounded
and depends also on the value of bκλρ(y). However, if the source point y is an internal
point, then bκλρ(y) = 0 – the proof is omitted here but can be done in the same way
as in paper [5]. Hence taking the limit of the last two integrals in (3.5) yields

lim
ε→0

{∫
sε

Dκλρuλ,π(y)τπ(x)dsx +

∫
sε

Sκλρuλ,δ(y)(xδ − yδ)dsx
}

=

= dκαβρ(y)uα,β(y) , (3.7)

where dκαβρ(y)uα,β = 0.5uκ,ρ if the contour Lo is smooth at the source point y.
Finally we have

lim
ε→0

{∫
Lε

[Dκλρtλ(x) − Sκλρuλ(x)] dsx

}
=

= lim
ε→0

{
bκλρ
ε

uλ(y)

}
+ dκαβρ(y)uα,β(y) . (3.8)

After performing the limiting process and assuming that the boundary curve is
smooth, the Somigliana stress identity takes the following form at all boundary points
y with the exception of ‘non-smooth boundary points’:

ũκ,ρ(y)+
1

2
uκ,ρ(y)+lim

ε→0

{∫
Lo

[Sκλρuλ(x)−Dκλρtλ(x) ] dsx +
bκλρ
ε

uλ(y)

}
= 0 . (3.9)

Assume further that contour Lo is divided into nBE boundary elements Le (e =
1, ..., nBE), which have three nodes: the two end points and the middle point num-
bered locally as a = 1, ..., 3 in the direction s. Thus, the usual isoparametric approx-
imation is employed with quadratic boundary elements, which may be discontinuous
if necessary. With the previous notations and the Somigliana stress identity (3.9),
the elements of the stress tensor tψκ at the boundary point y can be obtained in the
following form:
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tψκ(y) = εψ3ρuκ,ρ(y) = 2εψ3ρ

−ũκ,ρ(y) +

+

nBE∑
e=1, e 6=m

∫
Le
Dκλρ (x, y) tλ(x)dsx +

∫
Lm
Dκλρ (x, y) tλ(x)dsx−

−

 nBE∑
e=1, e 6=m

∫
Le
Sκλρ (x, y) ueλ(x)dsx +

∫
Lm
Sκλρ (x, y) uλ(x)dsx

 . (3.10)

The superscript e identifies the e-th boundary elements, while the element containing
the source point y is denoted by the index m. Therefore, the line integrals with
singular kernels on the m-th boundary element can be separately treated in a semi-
analytical form, while the other integrals can be determined numerically by using the
standard Gauss integration technique.

4. Semi-analytical treatment of integrals containing singularities

Once the boundary fields uλ(x) and tλ(x) in terms of nodal values are known from
the solution of the direct boundary integral equation method, the nodal values uaλ and
taλ (a = 1, . . . , 3), which belong to boundary element e and local node number a, are
set up in matrix form

[uej ]
T =

[
u11 u12 u21 u22 u31 u32

]
(4.1)

and

[tej ]
T =

[
t11 t12 t21 t22 t31 t32

]
(4.2)

on the e-th element (j = 1, . . . , 6). It is obvious that the approximations of uλ and tλ
over the e-th element are of the form:

uλ = Nλj(ξ)u
e
j , tλ = Nλj(ξ)t

e
j , (4.3)

in which

[Nλj(ξ)] =

[
N1(ξ) 0 N2(ξ) 0 N3(ξ) 0

0 N1(ξ) 0 N2(ξ) 0 N3(ξ)

]
(4.4)

is the shape function matrix constituted by the quadratic Lagrange polynomials

N1(ξ) =
1

2
ξ(ξ − 1) , N2(ξ) = 1− ξ2 , N3(ξ) =

1

2
ξ(ξ + 1) , (4.5)

which map the element onto the interval ξ ∈ [−1, 1] – isoparametric approximation.
The line integral with the strong singularity O(ρ−1α ) taken over the m-th element in
(3.10) is of the form

Ĩmκjρ =

∫
Rm
Dκλρ (ξ, η)Nλj(ξ)J(ξ)dξ =

∫
Rm

Gmκjρ(ξ, η)dξ . (4.6)
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The line integral with the hypersingularity O(ρ−2α ) in (3.10) can be expressed in the
following form:

Imκjρ =

∫
Rm
Sκλρ (ξ, η)Nλj(ξ)J(ξ)dξ =

∫
Rm

Fmκjρ(ξ, η)dξ . (4.7)

Making use of the notations introduced the stress tensor tψκ at the boundary point
y is given by

tψκ(y) = 2εψ3ρ

−ũκ,ρ(y) +

nBE∑
e=1,e6=m

∫
Re
Dκλρ (ξ, η)Nλj(ξ)J(ξ)dξtej + Ĩmκjρt

m
j −

−

 nBE∑
e=1,e6=m

∫
Re
Sκλρ (ξ, η)Nλj(ξ)J(ξ)dξuej + Imκjρu

m
j

 . (4.8)

Here J(ξ) is the Jacobian, Re is the mapping of Le onto the interval [−1, 1]. The
meaning of Rmε can be read off Figure 2, which also shows the mapping of the bound-
ary element Lm onto the axis ξ. The length of Rmε is denoted by α(ε), while η is the
image of the source point y on this interval.

Figure 2. Illustration of the interval Rmε on the map of Lm on the axis ξ.

After determining the power series representation of Fmκjρ(ξ, η), the singular terms
in the integral expression (4.7) can be isolated. If we want to give the power series of
Sκλρ (ξ, η) in the vicinity of the source point η, the power series expansion

1

ρ2α
=

1

(A1 + βαA2)2δ2
− 2

B1 + βαB2

(A1 + βαA2)
3
δ

+O(1) (4.9)

is needed, in which δ = ξ − η. The constants Aλ and Bλ can be obtained from the
first two terms of the Taylor series of the position vector rλ taken in the vicinity of
the source point η:

rλ = xλ(ξ)− yλ(η) = 0 +
∂xλ
∂ξ

∣∣∣∣
ξ=η

(ξ − η) +
1

2!

∂2xλ
∂ξ2

∣∣∣∣
ξ=η

(ξ − η)2 + . . . =

= Aλδ +Bλδ
2 +O(δ3) , (4.10)

where

Aλ = (x1λ − 2x2λ + x3λ)η +
1

2
(x3λ − x1λ) , Bλ =

1

2
(x1λ − 2x2λ + x3λ) (4.11)
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are constants at η; x1λ, x2λ and x3λ are the nodal coordinates in the usual representation.

Moreover, let A = J(η) =

√
2∑

λ=1

A2
λ. Then the power series of the shape function

matrix is of the form

Nλj(ξ) = Nλj(ξ)

∣∣∣∣
ξ=η

+
d

dξ
Nλj(ξ)

∣∣∣∣
ξ=η

(ξ − η) +O(δ2) =

= 0Nλj(η) + 1Nλj(η)δ +O(δ2) , (4.12)

where

[0Nλj(η)] =

[
0N1 0 0N2 0 0N3 0

0 0N1 0 0N2 0 0N3

]
, (4.13)

in which

0N1(η) =
1

2
η(η − 1) , 0N2(η) = 1− η2 , 0N3(η) =

1

2
η(η + 1) (4.14)

and

[1Nλj(η)] =

[
1N1 0 1N2 0 1N3 0

0 1N1 0 1N2 0 1N3

]
, (4.15)

in which

1N1(η) =
1

2
(η − 1) , 1N2(η) = −2η , 1N3(η) =

1

2
(η + 1) . (4.16)

For the product of the Jacobian and the vector nρ we obtain:

J1 (ξ) = n1J (ξ) = A2 + 2B2δ +O(δ2) , (4.17)

J2 (ξ) = n2J (ξ) = −A1 − 2B1δ +O(δ2) . (4.18)

After substituting power series (4.9)-(4.18) into integral (4.7), the integrand Fmκjρ(ξ, η)
can be manipulated into the following Laurent series in the vicinity of the source point
η:

Fmκjρ(ξ, η) =
−2Fmκjρ (η)

(ξ − η)
2 +

−1Fmκjρ (η)

ξ − η
+O(1) , (4.19)

where −1Fmκjρ (η) and −2Fmκjρ (η) are constant values at a fixed η ∈ (−1, 1). The
details are presented in Appendix (A.3). Subtracting the first two terms of the power
series of the integrand Fmκjρ(ξ, η) from equation (4.7) and investigating these terms
separately, three line integrals are obtained:

Imκjρ = lim
ε→0

{∫
Rm−2Rmε

(
Fmκjρ(ξ, η)−

[
−2Fmκjρ (η)

(ξ − η)
2 +

−1Fmκjρ (η)

ξ − η

])
dξ

}
+

+ lim
ε→0

{∫
Rm−2Rmε

−2Fmκjρ (η)

(ξ − η)
2 dξ

}
+ lim
ε→0

{∫
Rm−2Rmε

−1Fmκjρ (η)

ξ − η
dξ

}
=

= 0Imκjρ + −2Imκjρ + −1Imκjρ . (4.20)
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Note that the integrand of 0Imκjρ is a polynomial, i.e., it is not singular. Hence the
limit

0Imκjρ =

∫ 1

−1

{
Fmκjρ(ξ, η)−

[
−2Fmκjρ (η)

(ξ − η)
2 +

−1Fmκjρ (η)

ξ − η

]}
dξ (4.21)

is a regular integral, which can be computed by using the standard numerical integra-
tion techniques. We have chosen a 14-node Gauss-Legendre quadrature rule for the
interval [−1, 1]. The second and third integrals can be calculated analytically. After
dividing Rm into two subintervals [−1,−α] and [α, 1] separated from each other at
the singular point η and making use of the series presented in the Appendix, the limit
of the two last integrals in equation (4.20) can be obtained. Some paper and pencil
calculations yield the following analytical result:

−1Imκjρ = lim
ε→0−


η−α∫
−1

−1Fmκjρ (η)

ξ − η
dξ

+ lim
ε→0+


1∫

η+α

−1Fmκjρ (η)

ξ − η
dξ

 =

= ln

∣∣∣∣ 1− η
−1− η

∣∣∣∣−1Fmκjρ (η) . (4.22)

A similar procedure results in the last integral in equation (4.20) in a closed form:

−2Imκjρ = lim
ε→0−


η−α∫
−1

−2Fmκjρ (η)

(ξ − η)
2 dξ

+ lim
ε→0+


1∫

η+α

−2Fmκjρ (η)

(ξ − η)
2 dξ

 =

= −
[

1

1 + η
+

1

1− η

]
−2Fmκjρ (η) . (4.23)

Consequently, formulas (4.21), (4.22) and (4.23) can be used to determine the integrals
taken over the element that contains the singularity. It is obvious that the singular
integrals can be given in closed form while the line integral without singularities is
computed numerically. After collecting the results, the final formula for the evaluation
of the hypersingular integral is presented in the following semi-analytical form:

Imκjρ =

∫ 1

−1

(
Fmκjρ(ξ, η)−

[
−2Fmκjρ (η)

(ξ − η)
2 +

−1Fmκjρ (η)

ξ − η

])
dξ+

+ ln

∣∣∣∣ 1− η
−1− η

∣∣∣∣−1Fmκjρ (η)−
[

1

1 + η
+

1

1− η

]
−2Fmκjρ (η) , (4.24)

where η ∈ (−1, 1). When the point y coincides with the endpoints (η = −1 or η = 1),
one has to apply the formula below:

Iiκjρ =

∫ 1

−1

(
F iκjρ(ξ, η)−

[
−2F iκjρ (η)

(ξ − η)
2 +

−1F iκjρ (η)

ξ − η

])
dξ+

+ ln

∣∣∣∣ 2

ϑi

∣∣∣∣ sgn(δ)−1F iκjρ (η)−
[
γi
ϑ2i
sgn(δ) +

1

2

]
−2F iκjρ (η) , (4.25)
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where i = m if η = 1, i = m + 1 if η = −1 and, in addition, ϑi(η) = A−1 and

γi(η) = − 1

A4
(

2∑
λ=1

AλBλ) as proposed by [10].

The line integral with the strong singularity O(ρ−1α ) on the m-th element can be
treated similarly to equation (4.7). The integrand Gmκjρ(ξ, η) in equation (4.6) is
manipulated into the following series in the vicinity of the source point η:

Gmκjρ(ξ, η) =
−1Gmκjρ (η)

ξ − η
+O(1) . (4.26)

The details are presented in Appendix (A.4). The corresponding line integrals can be
determined in the same manner as for equation (4.20):

Ĩmκjρ = lim
ε→0

{∫
Rm−2Rmε

(
Gmκjρ(ξ, η)−

−1Gmκjρ (η)

ξ − η

)
dξ

}
+

+ lim
ε→0

{∫
Rm−2Rmε

−1Gmκjρ (η)

ξ − η
dξ

}
= 0Ĩmκjρ + −1Ĩmκjρ . (4.27)

After finding the limit values in question, it turns out that the term 0Ĩmκjρ is not
singular. It can, therefore, be computed numerically with sufficient accuracy. As
regards the term −1Ĩmκjρ we can express it analytically:

Ĩmκjρ =

∫ 1

−1

(
Gmκjρ(ξ, η)−

−1Gmκjρ (η)

ξ − η

)
dξ + ln

∣∣∣∣−1− η
1 + η

∣∣∣∣−1Gmκjρ (η) . (4.28)

If y coincides with an endpoint of two neighboring elements (i = m for η = 1 and
i = m+ 1 for η = −1) the following formula should be applied:

Ĩiκjρ =

∫ 1

−1

(
Giκjρ(ξ, η)−

−1Giκjρ (η)

ξ − η

)
dξ + ln

∣∣∣∣ 2

ϑi

∣∣∣∣ sgn(δ)−1Giκjρ (η) . (4.29)

The above results show that the singularities can be integrated analytically over the
m-th element. A program has been developed in Fortran 90 for finding numerical
solutions.

5. Numerical examples

Problem 1. We shall consider a plane strain problem. It is assumed that there is
a rigid circular inclusion in the plane of the strain with a radius R = 10 mm and a
constant stress state is prescribed at infinity: t11 = 100 [MPa], t12(∞) = t21(∞) =
t22(∞) = 0. The stress functions that characterize a constant stress state are given
by equation (2.9). The material of the body in plane strain is birch for which s11 =
8.497 · 10−5 [mm2/N], s12 = s21 = −6.11 · 10−6 [mm2/N], s22 = 1.699 · 10−4 [mm2/N]
and s66 = 1.456 · 10−3 [mm2/N] are the elastic coefficients [3].

It is clear that the inner boundary is fixed. Then the strain boundary condition
(2.7) that can be described on the circle is of Neumann type. Determination of the
stresses on the inner boundary can serve as a benchmark for proving numerically that
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the use of equations (4.24) and (4.25) results in increasing accuracy concerning the
stress computations. The contour is divided into only 24 uniform quadratic elements.
Though there are two undetermined integration constants in equation (2.6) which
have, however, no effect on the stress computations, we must to set them to a pre-
scribed value (to zero) at such nodal points on the boundary where this can be done
with ease. For Problem 1 the stress function u1 is set to zero at point A and the stress
function u2 is set to zero at point B – see Figure 3 for details.

Figure 3. Outer region bounded by a circle for which a constant stress
state is prescribed at infinity.

Table 1 contains the quotients trr/t11(∞), trϕ/t11(∞) and tϕϕ/t11(∞) obtained
at various boundary points for the rigid circular inclusion using a polar coordinate
system. Analytical results at given ϕ are obtained from Lekhnitskii’s book [22].

Table 1. Results for the rigid inclusion.

trr
t11(∞)

trϕ
t11(∞)

tϕϕ
t11(∞)

ϕ HBIE DBEM anal. HBIE DBEM anal. HBIE DBEM anal.
[rad] [3] [22] [3] [22] [3] [22]

0 1.1364 1.1363 1.237 0.0000 0.0000 0.000 0.0449 0.0444 0.044
π/12 1.1562 1.1558 1.156 −2.9936 −2.9999 −0.299 0.0934 0.0936 0.093
π/6 0.9370 0.9364 0.937 −0.5185 −0.5188 −0.519 0.2696 0.2701 0.270
π/4 0.6377 0.6370 0.698 −0.5987 −0.5986 −0.599 0.5154 0.5158 0.516
π/3 0.3383 0.3377 0.338 −0.5185 −0.5181 −0.519 0.6989 0.6990 0.699

5π/12 0.1192 0.1188 0.119 −0.2994 −0.2987 −0.299 0.5637 0.5627 0.564
π/2 0.0390 0.0389 0.039 0.0000 0.0000 0.000 0.0044 0.0028 0.003

The present HBIE solutions show very good agreement with the literature data
[22] and are also more accurate than the solutions from the direct boundary element
method (DBEM) [3] with the same coarse mesh.

Figure 4 depicts the hypersingular solutions for the stresses on the quarter ϕ ∈
[0, π/2] of the circle. The numerical results (lines) show good agreement with the
analytical results (marks): trr (solid line, diamonds), tϕϕ (dot dot dashed line, boxes)
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and trϕ (dashed line, circles). The stress distributions plotted from the stress values
computed at arbitrarily selected points per boundary element match very well with
the marks. The further advantage of using HBIE, which is also demonstrated in the
following figures (Figure 4, 5, 7 and 8), is its ability to directly calculate the stress
components anywhere on the boundary, contrary to the direct method [3].

Figure 4. Exact and numerical solutions for the rigid circular inclu-
sion as a function ϕ.

Problem 2. We consider the same outer region including a circular hole with radius
R = 10 mm with the previous constant stress state prescribed at infinity. The inner
boundary is, however, free; thus, the stress functions are zero on the whole boundary
(Dirichlet boundary condition). Through this example, equations (4.28) and (4.29)
can be separately validated for computational accuracy.

Using a polar coordinate system, Table 2 represents the numerical results for
tϕϕ/t11(∞) obtained at various boundary points.

Table 2. Results for the circular hole.
tϕϕ

t11(∞)
ϕ HBIE DBEM anal.

[rad] [3] [22]
0 −0.7075 −0.7074 −0.707

π/12 −0.3399 −0.3393 −0.340
π/6 0.0691 0.0695 0.069
π/4 0.4039 0.4045 0.404
π/3 0.9664 0.9661 0.966

5π/12 2.5771 2.5774 2.577
π/2 5.4526 5.4541 5.453
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Figure 5 depicts the hypersingular solutions for the stress tϕϕ on the first quarter
ϕ ∈ [0, π/2] of the circle: trr = 0, tϕϕ (dot dot dashed line, boxes) and trϕ = 0.

Figure 5. Exact and numerical solutions for the circular hole as func-
tion ϕ.

The results of the present HBIE solutions in comparison with the existing numerical
[3] and analytical [22] solutions show a high accuracy and good fitting at various
boundary point.

Problem 3. We consider an L-shape domain (see Figure 6) in order to investigate
the effect of singularities arising at the reentrant corner, in the vicinity of point C. In
the computations the following dimensions of the L-shape are chosen: b1 = h1 = 100
mm, b2 = h2 = 50 mm, and under the given loading (p1 = 5 MPa and p2 = 10
MPa) an equilibrium state is investigated. Our results are compared with those of
the commercial software Abaqus, to assess the accuracy and efficiency of the method
presented in this paper.

According to papers [23], [24], [25] the finite element method (FEM) mesh for
Problem 3 has 5281 nodes and 16232 quadratic elements (CPE8R, 8-node biquadratic
plane strain quadrilateral, reduced integration, approximate global size = 1.5 mm),
and a bias ratio of 7 is used along the lines BC and CD to refine the mesh in the
vicinity of point C. The components of the elastic compliance tensor are the same
as in the previous examples, therefore, the elastic constants are E1 = 11768.86 MPa,
E2 = 5885.82 MPa, µ12 = 686.81 MPa and ν12 = 0.072 (see equation (2.13)).

For our BEM solution, the traction boundary conditions with the zero values for
Cλ at point O are, formally, given by equation (2.6), where ûλ(s) is either constant or
linear with gradients p1 or p2 on the boundary. The boundary of the L-shape domain
has been discretized by 160 uniform quadratic elements with a length of 2.5 mm so
that the lines BC and CD are divided into 20 elements. But even in that case, the
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Figure 6. Geometry and boundary conditions for L-shape domain in
an equilibrium state.

Figure 7. Comparison between FEM (♦) and HBIE solution (—)
along the line BC.

stress solutions using HBIE show a good agreement with the Abaqus results denoted
by diamond marks. Nevertheless, there is little difference between the FEM and BEM
results in the vicinity of the corner point where the local mesh refinement is used in
FEM analysis for stress singularity [24]. The stress t11 along line BC is plotted in
Figure 7 to further demonstrate the efficiency of the method. t12 = t22 = 0. The
stress t22 along line BC is plotted in Figure 8, while t11 = t12 = 0. Corner points B,
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Figure 8. Comparison between FEM (♦) and HBIE solution (—)
along the line CD.

C, D, E and F on the boundary of L-shaped domain do not lead to any difficulties
since discontinuous boundary elements can be used at those corner points in BEM.
This is a significant advantage over most collocation schemes.

6. Conclusions

This paper is devoted to an application of first-order stress functions in the hypersin-
gular boundary integral formulation by which the stress components on the boundary
can be computed with a high accuracy both in the plane region and on its bound-
ary for plane orthotropic elasticity. For this case the hypersingular boundary integral
equation method has been developed providing that (i) the region under consideration
is a simply-connected region with a smooth boundary, (ii) there are no body forces,
(iii) the material is orthotropic.

It has been proven that the formulas for calculating the stresses on the boundary
can be derived in semi-analytical forms. The hypersingular boundary integrals are
resolved into two parts. The first one, which is completely free from singularity,
should be computed numerically – this computation results in, however, a very small
numerical error. The second part (terms containing singularities) can be expressed
analytically in a closed form. Consequently, in contrast to the conventional stress
calculation, which uses polynomial approximations for the derivatives and thus might
even lead to significant errors both in the formalism and in the numerical results in
the vicinity of the boundary, the stress calculation method suggested in this paper is
much more reliable and accurate due to the way it handles the hypersingular integrals.
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A formulation of Somigliana stress identity for plane orthotropic elasticity has
been developed and implemented in a Fortran 90 code for the numerical computa-
tions. The computational results we have obtained illustrate that the accuracy of the
computations is increased significantly and confirm that a semi-analytical treatment
of hypersingular integrals is very effective.

References

1. F. J. Rizzo and D. J. Shippy. “A method for stress determination in plane
anisotropic elastic bodies.” Journal of Composite Materials, 4(1),1 (1970), pp. 36–
61. doi: 10.1177/002199837000400104.

2. G. Szeidl. “Boundary integral equations for plane problems in terms of stress
functions of order one.” Journal of Computational and Applied Mechanics, 2(2),
(2001), pp. 237–261.

3. G. Szeidl and J. Dudra. “On the direct BEM formulation in the dual system of
plane elasticity for orthotropic bodies.” Journal of Computational and Applied
Mechanics, 10(2),2 (2015), pp. 147–168. doi: 10.32973/jcam.2015.010.

4. G. Szeidl and J. Dudra. “Boundary integral equations for plane orthotropic bod-
ies and exterior regions.” Electronic Journal of Boundary Elements, 2, (2010),
pp. 10–23. doi: 10.14713/ejbe.v8i2.1023.

5. M. Guiggiani, G. Krishnasamy, F. J. Rizzo, and T. J. Randolphi. “Hypersingular
boundary integral equations: a new approach to their numerical treatment.”
IABEM Symposium. 1990. doi: 10.1007/978-3-642-85463-7_20.

6. G. Krishnasamy, T. J. Rudolphi, L. W. Schmerr, and F. J. Rizzo. “Hypersingu-
lar boundary integral equations: some applications in acoustic and elastic wave
scattering,” ASME Journal of Applied Mechanics 57, (1990), pp. 404–414. doi:
10.1115/1.2892004.

7. M. Guiggiani. “Direct evaluation of hypersingular integrals in 2D BEM, (7th
GAMM Seminar on Numerical techniques for Boundary Element Method, Kiel,
Germany, 1991).” Notes in Numerical Fluid Mechanics. Ed. by W. Hackbusch.
1992, pp. 23–24. doi: 10.1007/978-3-663-14005-4.

8. Y. Liu and F. J. Rizzo. “A weakly singular form of the hypersingular boundary
integral equation applied to 3-D acoustic wave problems.” Computer Methods
in Applied Mechanics and Engineering, 96, (1992), pp. 271–287. doi: 10.1016/
0045-7825(92)90136-8.

9. J. Hildenbrand and G. Kuhn. “Numerical computation of hypersingular inte-
grals and application to the boundary integral equation for the stress tensor.”
Engineering Analysis with Boundary Elements, 10(3), (1992), pp. 209–217. doi:
10.1016/0955-7997(92)90004-Q.

10. M. Guiggiani. “Hypersingular formulation for boundary stress evaluation.” En-
gineering Analysis with Boundary Elements, 13(2), (1994), pp. 169–179. doi:
10.1016/0955-7997(94)90019-1.

https://doi.org/10.1177/002199837000400104
https://doi.org/10.32973/jcam.2015.010
https://doi.org/10.14713/ejbe.v8i2.1023
https://doi.org/10.1007/978-3-642-85463-7_20
https://doi.org/10.1115/1.2892004
https://doi.org/10.1007/978-3-663-14005-4
https://doi.org/10.1016/0045-7825(92)90136-8
https://doi.org/10.1016/0045-7825(92)90136-8
https://doi.org/10.1016/0955-7997(92)90004-Q
https://doi.org/10.1016/0955-7997(94)90019-1


204 S. Szirbik

11. S. Nintcheu Fata and L. J. Gray. “Semi-analytic integration of hypersingular
Galerkin BIEs for three-dimensional potential problems.” Journal of Computa-
tional and Applied Mathematics, 231, (2009), pp. 561–576. doi: 10.1016/j.
cam.2009.04.003.

12. J. Rong, L. Wen, and J. Xiao. “Efficiency improvement of the polar coordinate
transformation for evaluating BEM singular integrals on curved elements.” En-
gineering Analysis with Boundary Elements, 38, (2014), pp. 83–93. doi: 10.

1016/j.enganabound.2013.10.014.
13. J. Feng, Z. Yao, Y. Liu, and X. Zheng. “Evaluating hypersingular integrals of

3D acoustic problems on curved surfaces.” Engineering Analysis with Boundary
Elements, 60, (2015), pp. 27–36. doi: 10.1016/j.enganabound.2015.03.018.

14. Y. Liu. “On the displacement discontinuity method and the boundary element
method for solving 3-D crack problems.” Engineering Fracture Mechanics, 164
(2016), pp. 35–45. doi: 10.1016/j.engfracmech.2016.07.009.

15. L. Huang, X. Sun, Y. Liu, and Z. Cen. “Parameter identification for two di-
mensional orthotropic material bodies by the boundary element method.” En-
gineering Analysis with Boundary Elements, 28(2), (2004), pp. 109–121. doi:
10.1016/j.enganabound.2003.07.004.

16. Y. C. Shiah and C. L. Tan. “BEM treatment of two-dimensional anisotropic
field problems by direct domain mapping.” Engineering Analysis with Boundary
Elements, 20, (1997), pp. 347–351. doi: 10.1016/S0955-7997(97)00103-3.

17. R. Avila, V. Mantic, and F. Paris. “Application of the boundary element method
to elastic orthotropic materials in 2D: numerical aspects.” Transactions on Mod-
elling and Simulation, 18, (1997), pp. 55–64. doi: 10.2495/BE970061.

18. N. Kadioglu and S. Ataoglu. “A BEM implementation for 2D problems in plane
orthotropic elasticity.” Structural Engineering & Mechanics, 26(5),5 (2007), pp. 591–
615. doi: 10.12989/sem.2007.26.5.591.

19. L. J. Gray and G. H. Paulino. “Symmetric galerkin boundary integral fracture
analysis for plane orthotropic elasticity.” Computational Mechanics, 20, (1997),
pp. 26–33. doi: 10.1007/s004660050212.

20. S. Szirbik. “Hypersingular boundary integral formulations for plane elasticity
in terms of first-order stress functions.” Journal of Computational and Applied
Mechanics, 11(1), (2016), pp. 49–66. doi: 10.32973/jcam.2016.004.

21. E. Tonti. “A mathematical model for physical theories I. II.” Rendiconti Ac-
cademia Nazionale dei Lincei, VII, (1972), pp. 175–181; 351–356.

22. S. G. Lekhnitskii. Theory of Elasticity of an Anisotropic Elastic Body. Holden-
Day, San Francisco, 1963.

23. M. L. Williams. “Stress singularities resulting from various boundary conditions
in angular corners of plates in extension.” ASME Journal of Applied Mechanics,
19, (1952), pp. 526–528.

24. U. Brink, O. Klaas, R. Niekamp, and E. Stein. “Coupling of adaptively refined
dual mixed finite elements and boundary elements in linear elasticity.” Advances
in Engineering Software, 24, (1995), pp. 13–26. doi: 10.1016/0965-9978(95)
00055-0.

https://doi.org/10.1016/j.cam.2009.04.003
https://doi.org/10.1016/j.cam.2009.04.003
https://doi.org/10.1016/j.enganabound.2013.10.014
https://doi.org/10.1016/j.enganabound.2013.10.014
https://doi.org/10.1016/j.enganabound.2015.03.018
https://doi.org/10.1016/j.engfracmech.2016.07.009
https://doi.org/10.1016/j.enganabound.2003.07.004
https://doi.org/10.1016/S0955-7997(97)00103-3
https://doi.org/10.2495/BE970061
https://doi.org/10.12989/sem.2007.26.5.591
https://doi.org/10.1007/s004660050212
https://doi.org/10.32973/jcam.2016.004
https://doi.org/10.1016/0965-9978(95)00055-0
https://doi.org/10.1016/0965-9978(95)00055-0


HBIE for plane orthotropic elasticity with first-order stress functions 205

25. H. Wang and Q.-H. Qin. “Fundamental-solution-based finite element model for
plane orthotropic elastic bodies.” European Journal of Mechanics A/Solids, 29,
(2010), pp. 801–809. doi: 10.1016/j.euromechsol.2010.05.003.

Appendix A.

A.1. Derivatives of the fundamental solutions of order one. Making use of equations
(2.11), we can determine the derivatives Dκλρ = Uκλ,ρ. The results are presented below:

D111(x, y) = 2KIm

2∑
α=1

dα
ρα
β2
α , D121(x, y) = −2KIm

2∑
α=1

dα
ρα
βα = D211(x, y) , (A.1a)

D211(x, y) = −2KIm
2∑

α=1

dα
ρα
βα , D221(x, y) = 2KIm

2∑
α=1

dα
ρα

, (A.1b)

D112(x, y) = 2KIm

2∑
α=1

dα
ρα
β3
α , D122(x, y) = −2KIm

2∑
α=1

dα
ρα
β2
α = D212(x, y) , (A.1c)

D212(x, y) = −2KIm

2∑
α=1

dα
ρα
β2
α , D222(x, y) = 2KIm

2∑
α=1

dα
ρα
βα . (A.1d)

A.2. Derivatives of the fundamental solutions of order two. Making use of equations
(2.12), we can determine the derivatives Sκλρ = Tκλ,ρ. The results are presented below:

S111(x, y) = −KIm

2∑
α=1

2dα
ρ2α

[
n2

(
s11β

3
α + s12βα

)
+ n1

s66
2
β2
α +

+ n1(s22 + (s21 +
s66
2

)β2
α)
]
, (A.2a)

S121(x, y) = KIm

2∑
α=1

2dα
ρ2α

[n2

2
s66β

2
α + n1

(
s21β

3
α + s22βα

)
−

− n2(s22 + (s21 +
s66
2

)β2
α)
]
, (A.2b)

S211(x, y) = KIm

2∑
α=1

2dα
ρ2α

[
n2

(
s11β

2
α + s12

)
+ n1

s66
2
βα −

− n1βα((s12 +
s66
2

) + s11β
2
α)
]
, (A.2c)

S221(x, y) = KIm
2∑

α=1

2dα
ρ2α

[
−n2

2
s66βα − n1

(
s21β

2
α + s22

)
−

− n2βα((s21 +
s66
2

) + s11β
2
α)
]
, (A.2d)

S112(x, y) = KIm

2∑
α=1

2dα
ρ2α

[
−n2

(
β4
αs11 + s12β

2
α

)
− n1

s66
2
β3
α −

− n1(s22βα + (s21 +
s66
2

)β3
α)
]
, (A.2e)
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S122(x, y) = KIm

2∑
α=1

2dα
ρ2α

[
n1

(
s21β

4
α + s22β

2
α

)
+
n2

2
s66β

3
α −

− n2(s22βα + (s21 +
s66
2

)β3
α)
]
, (A.2f)

S212(x, y) = KIm

2∑
α=1

2dα
ρ2α

[
n2

(
s11β

3
α + s12βα

)
+ n1

s66
2
β2
α −

− n1β
2
α((s12 +

s66
2

) + s11β
2
α)
]
, (A.2g)

S222(x, y) = KIm

2∑
α=1

2dα
ρ2α

[
−n2

2
s66β

2
α − n1

(
s21β

3
α + s22βα

)
−

− n2β
2
α((s21 +

s66
2

) + s11β
2
α)
]
, (A.2h)

where the normal nρ is taken at the point x.

A.3. Series expansion of the integrand Fmκjρ(ξ, η). The Laurent series of Fmκρj(ξ, η) in
accordance with equation (4.19) is given in the series expansion at a given η as follows:

Fmκjρ(ξ, η) = Sκλρ(ξ, η)J(ξ)Nλj(ξ) =

[
KIm

2∑
α=1

1

(A1 + βαA2)2
0aκλρ

0Nλj(η)

]
︸ ︷︷ ︸

−2Fmκjρ(η)

δ−2+

+

[(
KIm

2∑
α=1

1

(A1 + βαA2)2
1aκρλ −KIm

2∑
α=1

2
B1 + βαB2

(A1 + βαA2)3
0aκρλ

)
0Nλj(η) +

+ KIm

2∑
α=1

1

(A1 + βαA2)2
0aκλρ

1Nλj(η)

]
︸ ︷︷ ︸

−1Fmκjρ(η)

δ−1+

+O(1) (A.3a)

and without entering into details, the functions are listed below:



HBIE for plane orthotropic elasticity with first-order stress functions 207

0a111 = 2dα
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2
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3
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,
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4
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(A.3b)

A.4. Series expansion of the integrand Gmκjρ(ξ, η). The series ofGmκjρ(ξ, η) in accordance
with equation (4.26) is given in the series expansion at a given η as follows:

Gmκjρ(ξ, η) = Dκλρ(ξ, η)J(ξ)Nλj(ξ) =

= KIm

2∑
α=1

1

(A1 + βαA2)
ãκλρ

0Nλj(η)︸ ︷︷ ︸
−1Gmκjρ(η)

δ−1 +O(1) , (A.4a)

in which

ã111 = 2dαβ
2
αA , ã112 = 2dαβ

3
αA , ã211 = −2dαβαA ,

ã212 = −2dαβ
2
αA , ã121 = −2dαβαA , ã122 = −2dαβ

2
αA ,

ã221 = 2dαA , ã222 = 2dαβαA .
(A.4b)
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