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Péter VÁN, Department of Theoretical Physics,
Wigner Research Centre for Physics, Institute for
Particle and Nuclear Physics, Hungary
van.peter@wigner.mta.hu
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PREFACE

This issue of the Journal of Computational and Applied Mechan-
ics includes several articles dedicated to Prof. Tibor Czibere on
the occasion of his 90th birthday. Among contributions from his
former colleagues and students are papers that carry on the work
of Prof. Czibere.

Tibor Czibere was born in 1930 in Tapolca, a town near Lake
Balaton. After graduating from secondary school in Keszthely he
was admitted in 1949 to the newly established Faculty of Mechan-
ical Engineering of the Technical University for Heavy Industry in Miskolc (now the
University of Miskolc), earning his MSc in 1953 with the first class of graduates.
Naturally, he passed with flying colors and was encouraged to follow an academic
career. His first position was assistant lecturer at the Department of Mathematics
at the Technical University for Heavy Industry, under the guidance of the Hungarian
mathematician Prof. Samu Borbély. In 1956 he became a research engineer at the
Ganz-MÁVAG Locomotive and Railway Carriage Manufacturers. His first task was
the investigation of flow in the bladed space of torque converters, and he developed
a method based on the method of hydrodynamic singularities for the analysis and
design of flow in turbomachines. Even after returning to the university in 1963, Prof.
Czibere continued to do research there on a part-time basis until 1988.

An early area of his research was nonlinear heat conduction problems, the field in
which he wrote and defended his university doctor’s thesis (1961). In 1960 he delivered
a well-received lecture at the Tenth International Conference in Applied Mechanics in
Stresa, Italy, on his method for the design of straight and radial cascades of airfoils,
attracting the attention of the world-famous scientist of Hungarian origin, Theodore
von Kármán. In 1962, he was awarded the Kossuth Prize in acknowledgment of his
scientific contributions. In 1963 he defended his thesis entitled “A design method
for straight cascade of highly cambered airfoils” for the PhD degree conferred by the
Hungarian Academy of Sciences and four years later he defended his thesis for DSc
(the highest academic degree, conferred also by the Hungarian Academy of Sciences)
entitled “Solution of the two main problems of the hydrodynamic cascade theory by
theory of potentials”. He was appointed full professor in 1968, at the early age of 38.
In 1976 Prof. Czibere became a corresponding member of the Hungarian Academy
of Sciences, and in 1985 an ordinary member.

Apart from three months as a guest lecturer at the Technical University of Berlin-
Charlottenburg (1963), Prof. Czibere gave several lecture series about his research
at different institutions, including Turboinstitut in Ljubljana (1978, 1984); Technical
University of Brno (1990); Technical University of Braunschweig (1994); and several
times at the Otto von Guericke Technical University in Magdeburg. The Technical
University of Brno awarded him its gold medal for the fruitful scientific cooperation
between the two universities.

©2021 Miskolc University Press
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Prof. Czibere also held leadership roles in the faculty and the university. As Head
of Department from 1963 to 1988 (Department of Machine Operation, later Depart-
ment of Fluid and Heat Engineering) he modified the research and educational profiles
of the department and encouraged research topics directly connected with industrial
problems. He served as Dean of the Faculty of Mechanical Engineering from 1968 to
1974, a period when the structure of education underwent substantial changes, and
Prof. Czibere contributed significantly to the introduction of the modular educational
system. In recognition of his scientific contributions and his leadership qualities he
was elected Rector of the University in 1978. As Rector he spearheaded the shift
from a purely technical university to a multi-disciplinary institution, introducing the
training of lawyers and economists. He supported the establishment of the Faculty
of Law in 1981 and laid the groundwork for the later establishment of faculties of
economics and humanities. During his eight years in this post, he worked closely with
the leaders of the city of Miskolc, and this contribution was recognized by the prize
’Pro Urbe’ (For the City).

In 1988, Prof. Czibere was asked to contribute his expertise in educational ad-
ministration as the Minister of Culture and Education of Hungary, in the difficult
period of transition from the socialist system. Ultimately, his concepts and those of
the national leadership differed, and the following year he returned to teaching and
research.

Prof. Czibere has always put a great deal of effort into educational endeavors. He
developed the curriculum of courses such as Fluid Mechanics, Turbomachines, Con-
tinuum Mechanics of Fluids, and Heat Transfer. He wrote textbooks for most of the
subjects he taught. An excellent lecturer, he prepared carefully and structured his
lectures in a very logical way. Using mathematical means, he derives equations or
formulae describing flow phenomena in a concise manner.

Prof. Czibere played an active role in establishing the PhD training at the uni-
versity and supervised a total of twenty PhD dissertations; in addition, he was the
supervisor of four scholars who have defended their DSc dissertations. Of course,
the number of engineers and researchers directly and indirectly influenced by Prof.
Czibere is much larger.

Upon reaching the age of 70, although Prof. Czibere retired, he continued his
contributions as an Emeritus Professor. He taught subjects in the doctoral school;
he examined students up until 2018 (aged 88!). He remains active also in research,
working on developing a three-dimensional stochastic model of turbulence. Prof.
Czibere has always been supported in his activities by his wife Gabriella. They have
two children, both of whom went into technical fields. He is a proud grandfather and
great-grandfather.

Awards recognizing Prof. Czibere’s many and varied contributions are the Albert
Szentgyörgyi Prize, 1996, for his influential scientific contributions; honorary citizen-
ship of Miskolc, 2000; ‘Doctor Honoris causa’ of the University of Miskolc in 2000;
and the national Széchenyi Award in 2006.

On behalf of his friends, colleagues and his former students, the editors are pleased
to dedicate this issue to Prof. Czibere in honor of his 90th birthday.

Miskolc, November 23, 2021 László Baranyi and Balázs Tóth
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Washington University

One Brookings Drive, St. Louis, Missouri, 63130 USA

szabo@email.wustl.edu

Ivo Babuška
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Abstract. The formulation and validation of mathematical models in the applied sciences
are largely consistent with the methodology of scientific research programmes (MSRP), how-
ever an essential modification is necessary: The domain of calibration has to be defined. The
ranking and systematic improvement of mathematical models based on objective criteria are
described and illustrated by an example. The methodology outlined in this paper provides
a framework for the evolutionary development of a large class of mathematical models.

Mathematical Subject Classification: 03C30, 62M86, 65N75, 65Z05
Keywords: Formulation, validation, calibration, uncertainty quantification, simulation.

1. Introduction

The formulation and validation of mathematical models is fundamental to predictive
computational science [1]. These activities fit into the framework of the Methodology
of Scientific Research Programmes (MSRP) as outlined by Imre Lakatos [2], subject
to an essential modification; the definition of the domain of calibration, which is
addressed in this paper.

We view a mathematical model as a transformation of one set of data (the input
D) into another set (the quantities of interest F). The transformation is based on
some idea of physical reality I cast in mathematical form. This is indicated in short
hand by the expression

(D, I) −→p F, (D,p) ∈ C (1.1)

where the right arrow represents all operations needed to transform D into F. These
operations involve a set of parameters p that represent physical properties and their
statistical distributions. These parameters are determined by calibration which is dis-
cussed in Section 2.2. The restrictions imposed on D by the assumptions incorporated
into the model, and the intervals on which the parameters were calibrated, define the
domain of calibration C. We shall assume that F is a smooth function of D and p,
that is, a small change in (D,p) will result in a small change in F. Consequently a
calibrated model is a validated within the domain of calibration.

c©2021 Miskolc University Press
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The domain of calibration is a fundamentally important attribute of a mathematical
model: As long as F is a smooth function of (D,p), a condition usually satisfied in
practice, just about any model, even pseudoscientific models, can be validated on a
sufficiently small domain of calibration [3]. In chaotic systems, such as turbulent flow,
depending on its definition, F may not be a smooth function of (D,p).

To highlight the importance of the concept of domain of calibration, consider New-
tonian mechanics, arguably the greatest scientific achievement in history. For about
200 years, it was generally believed that Newton’s three laws of motion and the law
of universal gravitation were laws of nature. This was supported by the evidence
that predictions based on Newton’s laws were consistently confirmed by observations
with almost perfect accuracy. However those observations involved only bodies that
move at velocities much smaller than the speed of light. Therefore the domain of
calibration of Newtonian mechanics was limited to velocities much smaller than the
speed of light. The theory of relativity did not refute Newtonian mechanics but it did
define its domain of calibration and downgraded its status from “law of nature” to
that of a phenomenological model. Mathematical models that incorporate Newton’s
laws continue to be useful, as any civil engineer will testify. Newtonian mechanics has
an amazingly large domain of calibration.

Arguably, all physical theories are phenomenological models. This was articulated
by Hawking in [4]: “I take the positivist viewpoint that a physical theory is just a
mathematical model and that it is meaningless to ask whether it corresponds to reality.
All that one can ask is that its predictions should be in agreement with observations.”

To this statement we append the explanatory note that we can reasonably ask the
predictions to be in agreement with observation within the domain of calibration of
the model only.

Popper expressed the same view in these words [5]: “The empirical basis of objective
science has nothing absolute about it. Science does not rest on solid bedrock. The
whole towering structure, the often fantastic and audacious construction of scientific
theories, is built over a swamp. Its foundations are pillars driven from above into
the swamp - not down to any natural ‘given’, ground, but driven just as deeply as is
necessary to support the structure. The reason why we stop driving the pillars deeper
into the ground is not that we have reached solid rock. No, our decision is based on
the hope that the pillars will support the structure.”

These observations are in line with the philosophical notion of model-dependent
realism [6]: Mathematical models represent precisely formulated ideas of certain as-
pects of reality. They must not be confused with reality. Also, since more than one
model can be formulated to simulate any aspect of reality, it is necessary to have
metrics by which the relative merit of competing models is measured.

In this paper we illustrate the fundamentals of model development in the applied
sciences through an example, the details of which have been documented in the tech-
nical literature in recent years.
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2. The methodology of model development

We illustrate the methodology of model development with reference to a specific
project, the details of which have been documented in the technical literature in
references [7], [8], [9], [10] and [11]. The goal of that project was to develop and
validate a mathematical model for estimating the probability of failure in critical
mechanical and structural components subjected to cyclic loading in the high cycle
regime. This problem arises in the management of the maintenance of high-value
assets, such as helicopters: There is a strong incentive to minimize the number of
unscheduled maintenance operations because it is much more economical to perform
maintenance at regularly scheduled times than at the times when the presence of a
flaw is detected.

In a scientific research programme, as the term was defined by Lakatos [2], there
are generally accepted “hard core” theorems and assumptions that are not open to
investigation. In addition, there are auxiliary hypotheses that may be altered or
abandoned to conform with the available empirical evidence.

In the example discussed in this paper, our hard core assumptions will be the
set of assumptions on which the linear theory of elasticity is based, augmented by
the assumption that localized nonlinear effects can be correlated with the elastic
stress field. The limitations imposed by the hard core assumptions are taken into
consideration in the definition of the domain of calibration.

Test conditions

Predictor
Statistical

Model

Calibration

Calibration Notched data

S-N data

Prediction

Validation

Mathematical model

Pass?
Yes Update notched data

and calibration

Validation data

Formulation

Calibration

Prediction

Validation

Disposition

No Update the domain 
 of calibration

Elasticity
Linear

Figure 1. Schematic view of the model development process.
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The auxiliary hypotheses are concerned with the prediction of failure events in
metallic objects subjected to cyclic loading and the statistical dispersion associated
with mechanical fatigue. The auxiliary hypotheses have their own domains of cali-
bration which are generally much smaller than the domain of calibration of the hard
core hypotheses.

Lakatos called the replacement or modification of auxiliary hypotheses “problem
shifts”. A research programme is said to be progressive if each problem shift improves
the predictive performance of the model. In our case, which is typical of research
programmes in the applied sciences, the research programme can only be progressive,
that is, the predictive performance of a model is guaranteed to increase monotonically.
This is because ideas that do not improve predictive performance are filtered out in
the course of model development. This establishes the conditions for an evolutionary
process in model development.

A schematic view of the model development process is shown in Figure 1. On the
left side of the figure the steps taken in the particular model development project
referenced in this paper are shown. The universal categories, common to all model
development projects, are indicated on the right hand side.

2.1. The mathematical model. The mathematical model has three parts: The
first part, in the terminology of MSRP, incorporates the hard core assumptions: The
second and third parts incorporate the auxiliary hypotheses.

2.1.1. The hard core assumptions. It is assumed that damage initiation, a highly non-
linear and irreversible process, is confined to small subdomains that are surrounded
by an elastic stress field. The nonlinear process is controlled by the stress field that
satisfies the assumptions of the theory of linear elasticity.

The hard core assumptions are not subject to investigation. Rather, the domain of
calibration is defined so as to ensure that the model is operated within the limitations
imposed by these assumptions. In the present instance the domain of calibration is
defined so that the size of the inelastic zone is limited.

2.1.2. Auxiliary hypothesis 1: The predictor. The predictor is a functional defined on
the elastic stress field. Its role is to generalize the S-N data1 to triaxial stress fields.
It characterizes the conditions that drive the formation of cracks in the neighborhood
of stress raisers. The definition of a predictor is subject to the restriction that it has
to be a finite number which is independent of the choice of the coordinate system.
This suggests that the predictor should be defined in terms of the stress invariants.
Any number of predictors can be defined. We will consider the predictor defined in
reference [7]. This predictor, denoted by Gα, depends on three parameters that have
to be determined by calibration. Its definition is given in Appendix A.

1The name refers to the relationship between the stress S and the number of load cycles N at

which failure occurred under constant-cycle loading at various mean stress levels.
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2.1.3. Auxiliary hypothesis 2: The statistical model. The statistical model character-
izes the random nature of failure caused my mechanical fatigue. Statistical models are
calibrated on the basis of the available S-N data. Many plausible statistical models
can be defined [12]. The statistical model used in the investigation discussed here has
five parameters and belongs in the class of random fatigue limit models proposed by
Pascual and Meeker [13]. Its definition is given in Appendix B.

2.2. Calibration. It is assumed that the material is elastic and isotropic, therefore its
stress-strain relationship is characterized by two experimentally determined constants.
These constants, the modulus of elasticity and Poisson’s ratio, are random variables,
however their dispersion is small in comparison with the dispersion of crack formation
events therefore their statistical variation is neglected.

The predictor generalizes the S-N data, collected for notch-free specimens tested ei-
ther under constant or mildly varying uniaxial stress conditions, to notched specimens
where the stress gradient can be very large and the stress conditions are triaxial at
the notch roots. A key assumption is that crack formation is completely determined
by the surrounding elastic stress field, notwithstanding the fact it is a highly nonlin-
ear process. It is reasonable to expect that this assumption will hold when the size
of the plastic zone is sufficiently small in comparison with some measure of volume
associated with the predictor. Therefore it is necessary to give a precise definition
for the meaning of “sufficiently small” which then limits the domain of calibration of
the predictor. This is one of the tasks of model development. Further discussion and
details are available in [10].

The statistical model employed in the model development project represented by
the flowchart in Figure 1 is a random fatigue limit model that has five parameters de-
fined in Appendix B. Those parameters are determined by maximizing the likelihood
function on the S-N data [12], [7].

As indicated in Figure 1, the statistical model is calibrated first and then the
predictor is calibrated on the basis of fatigue data obtained for notched specimens.
Once the calibration of the predictor is complete, it is possible to compare alternative
predictors and evaluate their relative performance with reference to the calibration
data. This was documented in [9]. The conclusion was that the predictor Gα performs
substantially better than previously proposed predictors. This is evidenced by the
facts that its domain of calibration is larger and the value of the likelihood function
is greater.

2.2.1. The domain of calibration. The domain of calibration establishes limits on the
admissible data D and defines intervals for the parameters p. In the example discussed
discussed here, D must be consistent with the assumptions of linear elasticity, that is,
the strains are infinitesimal, the relationship between the stress and strain is linear,
with the exception of small subdomains in the vicinity of stress raisers, the size of
which is clearly defined. Examples are available in references [10], [11]. If the model
was calibrated under special conditions (for example, under uniaxial loading only)
then the domain of calibration imposes commensurate limitations on D.
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Restrictions on the parameters p are imposed by the availability of data used for
calibration. For example, the five-parameter statistical model defined in reference [7],
was calibrated on the basis of S-N data in the range of 104 to 107 cycles. This defines
the domain of calibration for the statistical model. Similarly, the calibration of the
predictor is limited by the interval of highly stressed volume for which calibration
records for notched specimens are available [9].

An often overlooked limit on the statistical model is that calibration is based on
events that have high probabilities of occurrence. Therefore prediction of events that
have low probabilities of occurrence involves extrapolation beyond the domain of
calibration. An important corollary is that the most important quantity of interest
in engineering design, the factor of safety, cannot be validated. Therefore subjective
decisions cannot be avoided in establishing factors of safety [8].

2.3. Prediction. Having formulated and calibrated a mathematical model, its pre-
dictive performance is tested against new data which are not in the domain of cal-
ibration. Predictions are made on the basis of information on the conditions under
which new data will be observed. Ideally, the predictions should be made before the
new data became available.

The value of new data outside of the domain of calibration is that the predictive
performance of the model can be tested and the domain of the calibration set can be
enlarged. The value of new data within the domain of calibration is that the dataset
on which calibration was based is enriched and therefore confidence in the calibrated
parameters is increased.

A typical validation statement is formulated as follows: The probability is (say,
90%) that the observation x will be in the interval (xL < x < xU ). In the case
of the mechanical fatigue experiments considered here, the prediction is that, given
a notched test article and the mean and amplitude of the applied cyclic load, the
probability is 90% that the number of cycles Nf at which failure will occur will fall
between the limits NL and NU . Another way of saying this is that in 9 out of 10
experiments Nf will lie in the interval (NL, NU ) where NL (resp. NU ) correspond to
the 5% (resp. 95%) survival probability, given the loading conditions.

The probability of n successes in m trials is given by the binomial distribution:

Pr(m,n | θ) =
m!

n!(m− n)!
θn(1− θ)m−n (2.1)

where θ is the ratio n/m as m→∞. In our example θ = 0.90.

Remark 1. The selection of the 90% probability threshold was based on the following
consideration: Validation is typically based on events that have high probability of
occurrence. Calibration data are generally scarce for survival probabilities of less than
5% and greater than 95% and hence those probabilities fall outside of the domain of
calibration of the statistical model.

2.4. Validation. The primary purpose of validation is to seek evidence that would
justify rejecting a model. The secondary purpose is to develop information on the
basis of which he domain of calibration is defined. The prediction considered here is
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that out of 10 experiments there will be 9 failures in the predicted intervals, more
precisely it was predicted that θ = 0.90 in equation (2.1).

Suppose that 12 experiments were performed and 9 outcomes fell in the predicted
interval. Would that justify rejecting the model? - Assuming that the model is correct
(θ = 0.90), according to equation (2.1) the probability of observing 9 successes in 12
trials would be 8.5%. In testing statistical hypotheses a null hypothesis is usually
not rejected unless the probability observing an outcome, given that the hypothesis is
true, is less than 5%. For example, if only 7 outcomes fell in the predicted interval out
of 12 experiments then the probability of outcome, assuming that θ = 0.90, would be
less than 0.4% and we would not have confidence in the model. However it is difficult
to justify any fixed value of probability below which a model would be rejected.

Models are typically rejected not because their validity was refuted by observation,
but because a better model was found. By objectively ranking competing models, pre-
dictive performance is progressively improved over time. Model development projects
are open-ended: No one can claim to have the final word. New ideas and new ob-
servations present opportunities for continued improvement. The management of the
process of model development in industrial and research organizations is guided by
the principles of simulation governance [14].

2.5. Disposition. If no reasons were found to reject a model then the validation data
are merged with the calibration data and the calibrated parameters, as well as the
domain of calibration, are updated.

Using the updated calibration records, the likelihood function is evaluated for the
entire set of data. The value of the log likelihood function (LL) is a metric suitable for
measuring the relative merit of alternative models. For a given set of data, the highest
ranking model has the highest LL value and/or the largest domain of calibration.

New data within the domain of calibration presents an opportunity to update the
calibrations. Predictions outside of the domain of calibration are either validated or
fail to be validated. If validated then the calibration records are updated and the
domain of calibration is suitably modified. If fail to be validated then a point outside
of the domain of calibration is obtained which provides information about the size
of the domain. A mathematical model is a validated model within its domain of
calibration.

Remark 2. Model development projects are open-ended. The selection of a model
from among a set of candidate models depends on the available data. Both the set of
candidate models and the available data change over time, therefore any conclusion
as to which model to use is likely to change over time. The exercise of command
and control over numerical simulation, which include the formulation, ranking and
updating of mathematical models and management of the relevant data is called
simulation governance [14].

3. Ranking

Assume that two models M1 and M2 have the same number of statistical parame-
ters and both passed validation tests with the same number of successes. We have to
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decide which model is better and why. The answer is provided by the posterior ratio
defined by

%
def
=

Pr(M1 |D)

Pr(M2 |D)
=
Pr(D |M1)Pr(M1)

Pr(D |M2)Pr(M2)
(3.1)

where D represents the entire set of available data, that is, the data available for
calibration and validation. The probabilities are obtained from the statistical model.

Usually it is assumed that Pr(M1) ≈ Pr(M2) in which case % is approximately
equal to the ratio of likelihoods, called the Bayes factor, which can be easily computed.
If % is much greater than one then we prefer model M1, if it is much smaller than one
then we prefer model M2. If this ratio is between 3 and 1/3 then the two models are
in a virtual tie. For additional discussion and examples we refer to [3].

In addition to considering the posterior ratio, we have to consider the size of the
domain of calibration. How much weight should be assigned to the size of the domain
of calibration depends on the scope of the intended application of the model. In other
words, we choose the model that fits the available data best. In the philosophical
literature the term “abduction” (inference to the best explanation) is used to refer to
this approach.

Remark 3. If models M1 and M2 do not have the same number of statistical parame-
ters then equation (3.1) has to be modified by a factor, called the Occam factor, which
penalizes the model that has the larger number of parameters. See (for example) [15].

4. Philosophical positions

The question of how progress occurs in science is one of the central themes in the
philosophy of science. The approach presented here is consistent with the philosoph-
ical idea called model-dependent realism [6]. In this view, aspects of reality are seen
through mathematical models. Therefore progress in science means progress in for-
mulating, calibrating, validating and updating mathematical models. It is essential
therefore to have objective measures for ranking mathematical models according to
their predictive performance, taking into account their domains of calibration.

Particularly relevant to our discussion was Lakatos’ methodology of scientific re-
search programmes. An opposing point of view, first articulated by Paul Feyerabend,
is that it is not possible to establish meaningful methodological rules that govern sci-
entific progress. In Feyerabend’s view, “epistemological anarchy” exists. In his words;
“anything goes” [16]. These are colourful ways of saying that complete creative free-
dom exists.

The conflict between these points of view is resolved if we distinguish between the
methodologies in the applied and foundational sciences. Model development in the
applied sciences fits into the framework of MSRP well because the focus is on the
auxiliary hypotheses. The hard core assumptions are based on ideas, theorems and
methods previously established in the foundational sciences. It is doubtful that a set
of rules can be devised that will encompass the diverse lines of investigation at the
forefront of research in physics where the focus is on the hard core itself.
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Reference [17] provides a comprehensive overview of the state of model development
in physics. In the applied sciences Lakatos’ views, whereas at the forefront of physics
Feyerabend’s epistemological anarchy seem to provide the best description of how
scientific models evolve.

5. Summary and conclusions

Mathematical models are transformations of one set of data into another, as indi-
cated by equation (1.1). The transformation operators are based on clearly defined
assumptions and depend on physical properties that have to be determined by calibra-
tion. The domain of calibration is defined by the intervals for which measurements of
the physical properties are available, and the limitations imposed by the assumptions
incorporated in the operators.

Consideration of the size of the domain of calibration is essential. Without such
consideration no model could be rejected because just about any model can be cali-
brated on a sufficiently small domain.

Model development is always open-ended. This is because new data may become
available and new models may be proposed at any time that will justify replacing or
updating the currently adopted model.

The methodology outlined in this paper establishes a framework for the evolution-
ary development of mathematical models.
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3. B. Szabó and Babuška I. Finite Element Analysis: Method, Verification and
Validation. John Wiley & Sons Ltd., 2021.

4. S. Hawking and R. Penrose. The Nature of Space and Time. Princeton University
Press, Princeton, New Jersey, 1998.

5. K. R. Popper. The Two Fundamental Problems of the Theory of Knowledge.
Routledge, 2014.

6. S. Hawking and L. Mlodinow. The Grand Design. Bantam Books, New York,
2010.
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Appendix A. The predictor

The predictor defined in reference [7] was used in the present investigation. This
predictor, denoted by Gα, is based on the assumption that the onset of fatigue failure
can be correlated with the averaged volume integral of a linear combination of two
stress invariants. It is defined as follows:

Gα(σij , R) =
1

Vc
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Ωc

(αI1 + (1− α)σ̄) dV

(
1−R

2

)1/2

, 0 ≤ α ≤ 1 (A.1)

where σij is the stress tensor field, I1 = σkk is the first stress invariant, σ̄ is the von
Mises stress, R is the cycle ratio, defined as the minimum normal stress divided by
the maximum normal stress, and Vc is the volume of the domain of integration defined
by

Ωc = {x |σ1 > βσmax > 0} (A.2)
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where σ1 is the first principal stress and σmax > 0 is the maximum macroscopic stress.
This is a generalization of the uniaxial stress to triaxial stress in the sense that Gα is
defined for triaxial stress and, in the special case when constant uniaxial stress σ1 is
applied then it has the value of the equivalent stress σeq:

Gα(σij , R) = σeq
def
= σ1

(
1−R

2

)1/2

. (A.3)

The parameter β depends on the material and a parameter that characterizes the
stress gradient in the vicinity of stress raisers. In machine design this parameter is
the notch radius. Since surface defects generally cannot be characterized by a single
geometric parameter, we use the highly stressed volume V for that purpose. By
definition,

V
def
=

∫
Ω%

y(x) dV where y =

{
1 when σ1(x) > γσmax

0 otherwise.
(A.4)

The domain of integration Ω% is the neighborhood of a stress raiser. Denoting the
location where σ1 is maximum at a stress raiser by x0 we have Ω% = {x | |x−x0| < %}
where % is chosen large enough to include all points where σ1(x) > γσmax and small
enough to include only one stress raiser or one group of closely located stress raisers.

The three parameters of Gα are determined by calibration. Parameter α establishes
a convex combination of the first stress invariant I1 and the von Mises stress σ̄, see
equation(A.1). Parameter β defines the domain of integration which depends on the
material properties and the stress field in the vicinity of stress raisers. The parameter
γ is independent of the material properties. It defines the highly stressed volume
V which depends on the stress distribution, and hence the type of loading, but is
independent of the magnitude of the load. The predicted number of fatigue cycles is
not sensitive to the choice of γ. In reference [7] γ = 0.85 was used.

Appendix B. The statistical model

The selection of a statistical models from among candidate models is discussed in
[12]. Based on those results, we selected the random fatigue limit model proposed by
Pascual and Meeker [13]. This model is based on the assumption that the random
variable defined by W = log10N , where N is the number of cycles to failure, is
normally distributed with mean µ(Gα) and standard deviation s.

µ(Gα) = A1 −A2 log10(Gα −A3), Gα −A3 > 0. (B.1)

The parameter A3, called the fatigue limit, is assumed to be a random variable.

Specifically, V
def
= log10A3 is assumed to be normally distributed with mean µf and

standard deviation sf . Therefore the statistical model considered here has five pa-
rameters. The set of five parameters that maximize the likelihood function is denoted
by θ.

We will assume that V = log10A3 has normal distribution with mean µf and
standard deviation sf and write A3 = 10v. Therefore the random fatigue limit model
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has five parameters: θ
def
= {A1A2 s µf sf} and the probability density function of w,

given Gα, v and θ is

φ(w |Gα, v,θ) =
exp(−(w − µ(Gα, 10v))2/(2s2))

s
√

2π
· (B.2)

The probability density of v, given Gα and θ, is:

f(v |Gα,θ) =
exp(−(v − µf )2/(2s2

f ))

sf
√

2π
· (B.3)

The marginal probability density of w is

φM (w |Gα,θ) =

∫ log10Gα

−∞
φ(w |Gα, v,θ)f(v |Gα,θ) dv (B.4)

and the marginal cumulative distribution function is:

ΦM (w |Gα,θ) =

∫ w

−∞
φM (t |Gα,θ) dt

=
1

2

∫ log10Gα

−∞

(
1 + erf

(
w − µ(Gα, 10v)

s
√

2

))
f(v) dv. (B.5)

The functions φM and ΦM have to be evaluated numerically.

Given a set of independent and identically distributed observations (wi, G
(i)
α ), (i =

1, 2, . . . , n) the likelihood function is

L(θ) =

n∏
i=1

[
φM (wi |G(i)

α ,θ
]1−δi [

1− ΦM (wi |G(i)
α ,θ)

]δi
(B.6)

where δi = 0 (resp. δi = 1) if the specimen failed (resp. did not fail) at ni = 10wi

cycles.

The set of parameters θ maximize L(θ), equivalently the log likelihood function
LL(θ) = lnL(θ), with respect to the S-N data.
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Abstract. Numerous studies and textbooks deal with the steady-state thermal conduction
of radially nonhomogeneous circular cylinder. In contrast, there are relatively few studies
on the thermal conduction problems of conical solid bodies. This study is intended as a
modest contribution to the solution of thermal conductance problems of nonhomogeneous
conical bodies. A one-dimensional steady-state heat conduction in nonhomogeneous conical
body is considered. The thermal conductivity of the hollow conical body in a suitable
chosen spherical coordinate system depends on the polar angle but is independent of the
radial coordinate and azimuthal angle coordinate. A functionally graded type of material
inhomogeneity is considered. All results of the paper are based on Fourier’s theory of heat
conduction in solid bodies.
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1. Introduction

Numerous studies and textbooks of heat transfer deal with the steady-state thermal
conduction in radially nonhomogeneous circular cylinder [1–3]. A lot of papers con-
sider the functionally graded material inhomogeneity of solid bodies. Functionally
graded materials (FGMs) are new advanced heat resisting materials used in modern
technologies [4, 5]. The basic concept is to mix the ceramic and metal such that
the material properties continuously vary from one constituent material to other.
The coefficients of governing equations for temperature distribution are coordinate
dependent, as the thermal properties are function of position.

In an important paper by Porchaloempong et al. [6] a two-dimensional energy bal-
ance approach was used to model the temperature distribution in conduction heated
conically shaped bodies. The numerical solution was based on finite differences. The
cone was divided into small volume elements. The inner elements were concentric
rings of rectangular cross sections while those at the side surfaces had trianglular
cross sections. Energy balance equations for volume elements were solved explicitly.
The conduction heat transfer model developed in this study can accurately predict the
temperature distribution in a conically shaped container [6]. The paper [7] presents an

©2021 Miskolc University Press
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analytical solution for heat transfer in heterogeneous conical shells with temperature
dependent conduction coefficients. The geometry of the shell is completely conically
shaped. The heat transfer equation should be first transformed using the Kirch-
hoff transformation [7]. The obtained differential equation is solved by the Green
function[7]. An exact analytical solution for anisotropic conductive heat transfer in
composite conical shells is presented by Norouzi and Rahmani [8]. The shell has a
full conical shape and the fibers are winded around the conical body. The exact solu-
tion of the temperature field is obtained via the separation of variables method. The
developed analytical solution is validated by a numerical solution [8].

This study is intended as a modest contribution to the solution of the thermal
conductance problem of a hollow conical body made of functionally graded material.
The thermal conductivity in a suitable chosen spherical coordinate system depends
on the polar angle but it is independent of the radial coordinate and azimuthal angle
coordinate. Two types of the polar-nonhomogeneity are considered which are the
power nonhomogeneity and the exponential nonhomogeneity [4, 5].

O

R1
R2

ρ ~eρ

~ez

z

ϑ2

ϑ1

Figure 1. Meridian section of the conical body

Figure 1 shows the meridian section of the hollow conical body which is bordered
by two conical and two spherical surfaces. The definition of the spherical coordinates
r, ϕ, ϑ are given in Figure 2.
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Figure 2. Spherical coordinate system
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The space domain occupied by the conical body is denoted by B

B =
{

(r, ϕ, ϑ)
∣∣∣R1 ≤ r ≤ R2, 0 ≤ ϕ ≤ 2π, 0 ≤ ϑ1 ≤ ϑ2 ≤ π

}
. (1.1)

The boundary conditions for the considered steady-state heat conduction are

∂T

∂r
= 0 r = R1 0 ≤ ϕ ≤ 2π ϑ1 ≤ ϑ ≤ ϑ2, (1.2)

∂T

∂r
= 0 r = R2 0 ≤ ϕ ≤ 2π ϑ1 ≤ ϑ ≤ ϑ2, (1.3)

− k(ϑ)

h1

∂T

∂ϑ
+ T = t1 ϑ = ϑ1 0 ≤ ϕ ≤ 2π R1 ≤ r ≤ R2, (1.4)

k(ϑ)

h2

∂T

∂ϑ
+ T = t2 ϑ = ϑ2 0 ≤ ϕ ≤ 2π R1 ≤ r ≤ R2. (1.5)

In equations (1.2)-(1.5) T = T (r, ϕ, ϑ) is the temperature field of the nonhomo-
geneous conical body, k = k(ϑ) is the thermal conductance, h1 and h2 are the
heat transfer coefficients and hi = constants (i = 1, 2). The temperatures of sur-
rounding medium at the inner and outer conical boundary surfaces are denoted by
t1 = constant, t2 = constant, they are given. The boundary conditions (1.2) and
(1.3) express that, the spherical surfaces at r = R1 and r = R2 are thermal insulated
surfaces [1–3, 9].

In the present problem according to the Fourier’s theory of heat conduction in a
solid nonhomogeneous body we have

q = −k(ϑ)∇T ∇ =
∂

∂r
er +

1

r sinϑ

∂

∂ϕ
eϕ +

1

r

∂

∂ϑ
eϑ, (1.6)

∇ · q = 0 (r, ϕ, ϑ) ∈ B. (1.7)

The unit vectors of spherical coordinate system Orϕϑ are er, eϕ and eϑ (Fig. 2), and
in equations (1.7) and (1.8) the dot denotes the scalar product of two vectors. The
heat flux vector is denoted by q. The substitution of equation (1.61) into equation
(1.8) gives [10]

∇ · (k(ϑ)∇T ) = k(ϑ)4 T +∇k · ∇T = k(ϑ)

[
1

r2
∂

∂r

(
r2
∂T

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂T

∂ϑ

)
+

1

r2 sin2 ϑ

∂2T

∂ϕ2

]
+

1

r2
∂k

∂ϑ

∂T

∂ϑ
= 0 (r, ϕ, ϑ) ∈ B. (1.8)

We assume that T = T (ϑ), that is the temperature field depends on only the polar
angle ϑ. This assumption leads to an ordinary differential equation for T = T (ϑ)

k(ϑ)

sinϑ

d

dϑ

(
sinϑ

dT

dϑ

)
+

dk

dϑ

dT

dϑ
= 0, ϑ1 < ϑ < ϑ2, (1.9)

It is obvious that T = T (ϑ) satisfies the two-point boundary conditions

− k(ϑ1)

h1

(
dT

dϑ

)
ϑ=ϑ1

+ T1 = t1, T1 = T (ϑ1), (1.10)
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k(ϑ2)

h2

(
dT

dϑ

)
ϑ=ϑ2

+ T2 = t2, T2 = T (ϑ2). (1.11)

2. Solution of the heat conduction boundary-value problem

The general solution of a second order ordinary differential equation (1.9) can be
represented as [10]

T (ϑ) = C1

ϑ∫
ϑ1

dω

k(ω) sinω
+ C2, ϑ1 ≤ ϑ ≤ ϑ2, (2.1)

where C1 and C2 are arbitrary constants whose values can be determined by the use
of boundary conditions (1.10) and (1.11). We give the expressions of the constants of
integration in terms of T1 = T (ϑ1) and T2 = T (ϑ2)

C1 =
T2 − T1

ϑ2∫
ϑ1

dϑ

k(ϑ) sinϑ

, C2 = T1. (2.2)

The temperature field in the polar-nonhomogeneous conical body in terms of T1 and
T2 is as follows

T (ϑ) = T1 + (T2 − T1)

ϑ∫
ϑ1

dω

k(ω) sinω

ϑ2∫
ϑ1

dϑ

k(ϑ) sinϑ

, ϑ1 ≤ ϑ ≤ ϑ2, (2.3)

and we have

k(ϑ)
dT

dϑ
=

T2 − T1
ϑ2∫
ϑ1

dϑ

k(ϑ) sinϑ

. (2.4)

Formula (2.4) shows that T = T (ϑ) increases monotonically in ϑ1 ≤ ϑ ≤ ϑ2, if
T2 > T1 and T = T (ϑ) is monotonic decrease in ϑ1 < ϑ < ϑ2 if T1 > T2.

Substitution of equations (2.3) and (2.4) into equation (1.10), (1.11) yields a system
of linear equations for the unknown boundary temperature T1 and T2. The solution
of this system of linear equations can be represented as

T1 = t1
1 + a2

1 + a1 + a2
+ t2

a1
1 + a1 + a2

, (2.5)

T2 = t1
a2

1 + a1 + a2
+ t2

1 + a1
1 + a1 + a2

. (2.6)

In equations (2.5) and (2.6)

a1 =
1

h1 sinϑ1
ϑ2∫
ϑ1

dϑ

k(ϑ) sinϑ

, a2 =
1

h2 sinϑ2
ϑ2∫
ϑ1

dϑ

k(ϑ) sinϑ

. (2.7)
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It is evident, that

lim ai
hi→∞

= 0 (i = 1, 2), (2.8)

then the Robin’s type boundary conditions (1.10) and (1.11) are replaced by Dirichlet
type boundary conditions that is

for hi =∞ T (ϑi) = ti (i = 1, 2). (2.9)

3. Examples

3.1. Homogeneous conical body. For a homogeneous conical body k = k0 =
constant. In this case

T (ϑ) = T1 + (T2 − T1)

ln

∣∣∣∣∣∣∣
tan

ϑ

2

tan
ϑ1
2

∣∣∣∣∣∣∣
ln

∣∣∣∣∣∣∣
tan

ϑ2
2

tan
ϑ1
2

∣∣∣∣∣∣∣
. (3.1)

and

ai =
k0

hi sinϑi ln

∣∣∣∣∣∣∣
tan

ϑ2
2

tan
ϑ1
2

∣∣∣∣∣∣∣
(i = 1, 2). (3.2)

It is worth noticing that if δ = ϑ2 − ϑ1 << ϑ1 and ε = ϑ− ϑ1 then

sinϑ = sin(ϑ1 + ε) = sinϑ1 cos ε+ cosϑ1 sin ε ≈ sinϑ1 + ε cosϑ1, (3.3)

1

sinϑ
≈ 1

sinϑ1(1 + ε
cosϑ1
sinϑ1

)

≈ 1

sinϑ1

[
1 + (ϑ− ϑ1)

cosϑ1
sinϑ1

] ≈
1

sinϑ

[
1− (ϑ− ϑ1)

cosϑ1
sinϑ1

]
, (3.4)

ϑ∫
ϑ1

dϑ

sinϑ
≈ 1

sinϑ1
(ϑ− ϑ1). (3.5)

Substitution of equation (3.5) into equation (2.3) gives an approximation formula for
the temperature distribution across the thickness of thin-walled conical tube

T (ϑ) = T1 + (T2 − T1)
ϑ− ϑ1
ϑ2 − ϑ1

. (3.6)
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Figure 3. Illustration of temperature in a conical body as a function
of ϑ

Figure 3 shows the temperature as a function of polar angle ϑ for the homogeneous
conical body, if

t1 = 298 K = 25 ◦C, t2 = 393 K = 120 ◦C, ϑ1 =
π
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Figure 4. Temperature distribution in conical body for seven differ-
ent values of power index n
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3.2. Power law nonhomogeneity. In this case the thermal nonhomogeneity has
the form

k(ϑ) = k0

(
ϑ

ϑ1

)n

k0 = constants, ϑ1 ≤ ϑ ≤ ϑ2, (3.7)

where n is the power index. The applied thermal boundary conditions at ϑ = ϑ1 and
at ϑ = ϑ2 are Dirichlet’s type, the inner and outer boundary conical surfaces have
prescribed temperatures. The plots of T = T (ϑ, n) for seven different values of power
index n (n = −3, −2, −1, 0, 1, 2, 3) are shown in Figure 4, if

ϑ1 =
π

8
, ϑ2 =

π

3
, R1 = 0.4 m, R2 = 0.8 m, k0 = 81.1

W

Km
, .

3.3. Exponential nonhomogeneity. In this example the same data are used as
in Examples 3.2 except k = k(ϑ). The polar-nonhomogeneity of the exponentially
graded hollow conical body is

k(ϑ) = k0 exp(βϑ) ϑ1 ≤ ϑ ≤ ϑ2. (3.8)

In equation (3.8) β is a material property [4, 5]. The plots of the function T = T (ϑ, β)
against ϑ for seven different values of graded parameter β are shown in Figure 5
(β = −4.0, −2.5, −1.0, 0.0, 1.0, 2.5, 4.0) .
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Figure 5. Temperature distribution in conical hollow body for seven
different values of power index β

4. Overall heat transfer coefficient.

The overall heat transfer coefficient in steady state heat conduction problem is an
important structural property of a solid body in which the heat is flowing between the
two separated parts of its boundary surfaces. From the higher temperature boundary
part of the body to the lower temperature boundary part of the body the process of
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heat flow is characterized by the overall heat transfer coefficient according to equation
(4.1)

Q = Λ(T2 − T1), T2 > T1, (4.1)

where Q is the heat flow in unit time, T1 and T2 are given temperatures and Λ is the
overall heat transfer coefficient.

In the present problem, the heat flow between the conical surfaces ∂B1 and ∂B2

∂B1 = {(r, ϕ, ϑ) |R1 ≤ r ≤ R2, 0 ≤ ϕ ≤ 2π, ϑ = ϑ1}, (4.2)

∂B2 = {(r, ϕ, ϑ) |R1 ≤ r ≤ R2, 0 ≤ ϕ ≤ 2π, ϑ = ϑ2}, (4.3)

can be obtained from the equation (4.4)

Q = −
∫

∂B1

k(ϑ)

r

dT

dϑ
dA. (4.4)

The area element of the boundary surface segment ∂B1 is

dA = 2πr sinϑ1 dr. (4.5)

Substitution of equation (2.3) and equation (4.5) into the formula of heat flow Q
(4.4) gives

Q = (T2 − T1)
2π(R2 −R1)
ϑ1∫
ϑ2

dϑ

k(ϑ) sinϑ

. (4.6)

From equations (4.1) and (4.6) it follows that

Λ =

ϑ2∫
ϑ1

dϑ

k(ϑ) sinϑ

2π(R2 −R1)
. (4.7)

The effect of nonhomogeneity on the overall heat transfer coefficient will be analysed
for two types of polar nonhomogeneity. In both cases, the following data are used:

ϑ1 =
π

8
, ϑ2 =

π

3
, R1 = 0.4 m, R2 = 2 m, k0 = 81.1

W

Km
. (4.8)

4.1. Power nonhomogeneity. In this case

k(ϑ) = k0

(
ϑ

ϑ1

)n

− 4 ≤ n ≤ 4. (4.9)

The plot of the function Λ = Λ(n) against n is presented in Figure 6. The relation
between Λ(−4) and Λ(4) can be considered a kind of degree of the power nonhomo-
geneity

Λ(−4)

Λ(4)
= 54.9186. (4.10)
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Figure 6. The overall heat transfer coefficient as a function of power
index n of inhomogeneity
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Figure 7. The overall heat transfer coefficient as a function of inho-
mogeneity parameter β

4.2. Exponentially nonhomogeneity. The exponentially nonhomogeneity of the
polar-nonhomogeneous hollow conical body is described by equation (4.11)

k(ϑ) = k0 exp(βϑ) − 4 ≤ β ≤ 4. (4.11)

The plot of the function Λ = Λ(β) is shown in Figure 7 for −4 ≤ β ≤ 4. The kind of
degree of exponentially nonhomogeneity can be characterized by the ratio of Λ(−4)
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to Λ(4). In the present problem

Λ(−4)

Λ(4)
= 230.97. (4.12)

5. Conclusions

A one-dimensional steady-state heat conduction problem of a nonhomogenous hollow
conical body is solved. The considered conical body is bordered by two conical surfaces
and two spherical surfaces. The thermal conductance depends on the polar angle in a
suitably chosen spherical coordinate system. Two-types of the polar-nonhomogeneity
are considered. Firstly, the power nonhomogeneity is analyzed and secondly the
exponentially nonhomogeneity is considered. For both cases the overall heat transfer
coefficient is computed. The presented analytical solution of the temperature field can
be used in the solution of stationary thermoelastic problems, when the temperature
field separates from the elastic field. In this case the elastic and the temperature fields
are uncoupled. Another possible application of the numerical results of this paper is
to verify the accuracy of the usual numerical methods such as FEM, finite-difference
method, boundary element method, etc.
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Abstract. The present paper is devoted to the issue of what effect the axial load (compres-
sive or tensile) has on the eigenfrequencies of a heterogeneous pinned-pinned beam with an
intermediate roller support (called a PrsP beam). This problem is a three point boundary
value problem (eigenvalue problem) associated with homogeneous boundary conditions. If
the Green functions of the three point boundary value problem (BVP) are known the eigen-
value problem that provide the eigenfrequencies for the beam loaded axially can be trans-
formed into an eigenvalue problem governed by a homogeneous Fredholm integral equation.
The later eigenvalue problems can be reduced to an algebraic eigenvalue problem which then
can be solved numerically by using an effective solution algorithm which is based on the
boundary element method.
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1. Introduction

Beams are quite often used as various structural elements because of their favorable
load-bearing capabilities. Various such problems have been solved [1–3]. Nowadays,
nonhomogeneous (heterogeneous or inhomogeneous) curved beams are also becoming
more and more common. The benefits of such structural members can be the reduced
weight and the higher strength. A class of inhomogeneity, namely, cross-sectional
inhomogeneity means that the material parameters, like the Young modulus, are
functions of the cross-sectional coordinates.

As for vibrations of beams, there are some recent results that must be mentioned.
Bizzi et al. give an analytical solution to the mode-shape equation of Timoshenko
beams vibrating under gravity loading in [4]. Ondra and Titurus [5] study systems of
beams with tendon loading. The effect of the number and location of the attachment
points is investigated on the vibrations of these systems is investigated. Bozyigit et
al. [6] aim to find the effectiveness of the Adomian decomposition method and the
differential transformation method on the vibrations of axially loaded Timoshenko
beams. Mirzabeigy and Madoliat [7] focus on the vibrations of axially loaded beams
resting on variable elastic foundation while Wu and Chang [8] tackle the vibrations of
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axially loaded multi-step Timoshenko beams carrying multiple concentrated elements.
The continuous mass transfer matrix is used in the later article to find solutions.

At the same time, it seems that, meanwhile the Green function is commonly used
for various straight beam problems. Lueschen et al [9] consider Timoshenko and Euler-
Bernoulli beams - the Green function is given in closed-form for vibration problems.
Foda and Abduljabbar [10] deal with the dynamic response of an Euler-Bernoulli
beam finding the response of the beam to a moving mass. Kukla and Zamojska
make some efforts in [11] to tackle the vibrations of an axially loaded tapered beam.
The beam can consist of an arbitrary number of segments so the model can serve as
approximation for continuously varying cross-sections. Failla and Santini [12] solve
the bending problem of discontinuous beams - there are constraints along the beam
axis and flexural stiffness jumps. An efficient algorithm is developed based on the
Green function.

Based on the above literature research, in this article, it is our main objective to
clarify what effect the axial force has on the eigenfrequencies of a pinned-pined beam
with an intermediate roller support. The material is linearly elastic, isotropic. How-
ever, the elastic coefficients can change over the cross-section – this material behavior
is called cross-sectional inhomogeneity. The governing equations of the corresponding
equilibrium problem constitute a three-point boundary value problem. Its solution
can be given in a closed form provided that the Green function is known. By utilizing
the definition of the Green function we calculate the elements which make possible to
calculate it. With the Green function the three-point eigenvalue problem that pro-
vides eigenfrequencies as a function of the axial force is replaced by a homogeneous
Fredholm integral equation in which the Green function is the kernel. Then the eigen-
value problem governed by the homogeneous Fredholm integral equation is reduced
to an algebraic eigenvalue problem by using the boundary element technique.

The paper is organized in five sections. Section 2 presents the differential equa-
tion of the problem and the corresponding boundary and continuity conditions in a
dimensionless formulation. Section 3 provides the definition of the Green function for
three-point boundary value problems. It is worth mentioning that the definition is
a constructive one since it makes the calculation of the Green functions possible for
the cases of compressive and tensile forces possible. The calculations are detailed in
Section 4. The numerical results are presented in Section 5. The last section contains
the conclusions.

2. Differential equations

2.1. Governing equations. The pinned-pinned beam with an intermediate roller
support (PrsP beam) is shown in Figure 1. The axial force N (N > 0) is compressive
in this Figure. The beam has a uniform cross section throughout its length. The
E-weighted centerline [13] (called centerline for short) of the beam coincides with the
axis x̂ of the coordinate system x̂, ŷ, ẑ. Its origin is at the left end of the centerline. It
is assumed that the coordinate plane x̂ẑ is a symmetry plane of the beam. It is also
assumed that the modulus of elasticity E satisfies the relation E(ŷ, ẑ) = E(−ŷ, ẑ) over
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N

L

b

ŵ

x

z

Figure 1.

the cross section A, which means that (a) it is an even function of ŷ and (b) it is
independent of the coordinate x̂. In this case we speak about cross sectional hetero-
geneity.

We remark that the E-weighted first moment Qŷ of the cross section is zero in this
coordinate system [13]:

Qŷ =

∫
A

ŷE(ŷ, ẑ) dA = 0

The length of the beam is L, the position of the middle support is given by b̂.

Equilibrium problems of Euler-Bernoulli beams with cross sectional heterogeneity
are governed by the ordinary differential equation:

d4ŵ

dx̂4
± N̂ d2ŵ

dx̂2
=

f̂z
Iey

, N̂ =
N

Iey
(2.1)

where the sign of N̂ is (positive)[negative] if the axial force is (comressive)[tensile],

ŵ(x) is the vertical displacement of the material points on the centerline, f̂z(x̂) is the
intensity of the distributed load acting on the centerline and Iey is defined by the
equation

Iey =

∫
A

E(ŷ, ẑ)z2 dA , (2.2)

where A is the area of the cross section. If E is constant the beam is homogeneous
and

Iey = IE, I =

∫
A

z2 dA (2.3)

in which I is the moment of inertia. It is noted that the effect of the material
composition on Iey is demonstrated through examples in [14].

In what follows we shall use dimensionless variables defined by the following rela-
tions

x = x̂/L, ξ = ξ̂/L, w = ŵ/L,

y =
dŵ

dx̂
=

dw

dx
, b = b̂/` , ` =

x̂

L

∣∣∣∣
x̂=L

= 1 ,
(2.4)
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where ξ̂ is also a coordinate on the axis x introduced here for our later considerations.
Applying dimensionless quantities to equation (2.1) we have

d4w

dx4
±N d2w

dx2
= fz , N =L2N̂ =

L2N

Iey
fz =

L3f̂z
Iey

(2.5)

Table 1.

Boundary conditions

w(0) = 0 , w(2)(0) = 0 w(`) = 0 , w(2)(`) = 0

Continuity conditions

w(b− 0) = 0 , w(b+ 0) = 0

w(1)(b− 0) = w(1)(b+ 0)

w(2)(b− 0) = w(2)(b+ 0)

Equation (2.5) is associated with the boundary and continuity conditions presented
in Table 1.

We remark that the general solution of the homogeneous differential equation

w(4) ±Nw(2) = 0 , w(n) =

w if n = 0
dnw

dxn
if n = 1, 2, . . .

(2.6a)

is very simple, i.e.,

w =

4∑
`=1

a`w`(x) = a1 + a2x+ a3 cos px+ a4 sin px, p =
√
N (2.6b)

if the sign of N is positive – a1, . . . , a4 are undetermined integration constants – and

w =
4∑
`=1

a`w`(x) = a1 + a2x+ a3 cosh px+ a4 sinh px, p =
√
N . (2.6c)

if the sign of N is negative. Note that a1, . . . , a4 are different integration constants
in equations (2.6b) and (2.6c).

If we know the Green function G(x, ξ) for the boundary value problem determined
by ODE (2.5) and the boundary and continuity conditions presented in Table 1 the
solution for the dimensionless deflection w(x) due to the dimensionless load fz(ξ) is
given by the following integral:

w(x) =

∫ `

0

G(x, ξ)fz(ξ) dξ (2.7)

The definition of the Green function we need is presented in Section 3.
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3. Green function for three-point boundary value problems

3.1. Definition. We shall consider the in-homogeneous ordinary differential equation

L[y(x)] = r(x) , (3.1)

where the differential operator of order 2k is defined by the following equation

L[y(x)] =

2k∑
n=0

pn(x)y(n)(x) (3.2)

in which k is a natural number, the functions pn(x) and r(x) are continuous and
p2k(x) 6= 0 if x ∈ [0, `] (` > 0). Moreover let b be an inner point in the interval [0, `]:
b = `1, `− b = `2 and `1 + `2 = `.

We assume that the inhomogeneous differential equation (3.1) is associated with
homogeneous boundary and continuity conditions given by the following equations:

U0r[y] =

2k∑
n=0

αnrIy
(n−1)
I (0) = 0, r = 1, 2, . . . , k

Ubr[y] =

2k∑
n=0

βnrIy
(n−1)
I (b)−

2k∑
n=0

βnrIIy
(n−1)
II (b) = 0, r = 1, 2, ...., 2k

U`r[y] =

2k∑
n=0

γnrIIy
(n−1)
II (`) = 0, r = 1, 2, . . . , k

(3.3)

The Latin subscripts I and II refer successively to the intervals [0, b] and [b, `]: yI
and yII are the solutions to the differential equation in the interval I and II while
αnrI , βnrI , βnrII and γnrII are arbitrary constants.

In accordance with equation (2.7) solution of the three-point boundary value prob-
lem (3.1), (3.2) and (3.3) is sought in the following form:

y(x) =

∫ `

0

G(x, ξ)r(ξ)dξ, (3.4)

where the function G(x, ξ) is the Green function defined by the following formulas
and properties [15]:
Formulas:

G(x, ξ) =


G1I(x, ξ) if x, ξ ∈ [0, b],
G2I(x, ξ) if x ∈ [b, `] and ξ ∈ [0, b],
G1II(x, ξ) if x ∈ [0, b] and ξ ∈ [b, `],
G2II(x, ξ) if x, ξ ∈ [b, `].

(3.5)

Properties:
1. The function G1I(x, ξ) is a continuous function of x and ξ if 0 ≤ x ≤ ξ ≤ b and
0 ≤ ξ ≤ x ≤ b. In addition it is 2k times differentiable with respect to x and the
derivatives

∂nG1I(x, ξ)

∂xn
= G1I(x, ξ)

(n)(x, ξ) , n = 1, 2, . . . , 2k (3.6)



104 L. Kiss, G. Szeidl and M. Abderrazek

are also continuous functions of x and ξ in the triangles 0 ≤ x ≤ ξ ≤ b and 0 ≤ ξ ≤
x ≤ b.
2. Let ξ be fixed in [0, b]. The function G1I(x, ξ) and its derivatives

G
(n)
1I (x, ξ) =

∂nG1I(x, ξ)

∂xn
, n = 1, 2, . . . , 2k − 2 (3.7)

should be continuous for x = ξ:

lim
ε→0

[
G

(n)
1I (ξ + ε, ξ)−G(n)

1I (ξ − ε, ξ)
]

=

=
[
G

(n)
1I (ξ + 0, ξ)−G(n)

1I (ξ − 0, ξ)
]

= 0 n = 0, 1, 2, . . . 2k − 2 (3.8a)

The derivative G
(2k−1)
1I (x, ξ) should, however, have a jump if x = ξ:

lim
ε→0

[
G

(2k−1)
1I (ξ + ε, ξ)−G(2k−1)

1I (ξ − ε, ξ)
]

=

=
[
G

(2k−1)
1I (ξ + 0, ξ)−G(2k−1)

1I (ξ − 0, ξ)
]

=
1

p2k(ξ)
. (3.8b)

In contrast to this, G2I(x, ξ) and its derivatives

G
(n)
2I (x, ξ) =

∂nG2I(x, ξ)

∂xn
, n = 1, 2, . . . , 2k (3.9)

are all continuous functions for any x in [b, `].
3. Let ξ be fixed in [b, `]. The function G1II(x, ξ) and its derivatives

G
(n)
1II(x, ξ) =

∂nG1II(x, ξ)

∂xn
, n = 1, 2, . . . , 2k (3.10)

are all continuous functions for any x in [0, b].

4. Though the function G2II(x, ξ) and its derivatives

G
(n)
2II(x, ξ) =

∂nG2II(x, ξ)

∂xn
, n = 1, 2, . . . , 2k − 2 (3.11)

are also continuous for x = ξ:

lim
ε→0

[
G

(n)
2II(ξ + ε, ξ)−G(n)

2II(ξ − ε, ξ)
]

=

=
[
G

(n)
2II(ξ + 0, ξ)−G(n)

2II(ξ − 0, ξ)
]

= 0 n = 0, 1, 2, . . . 2k − 2 (3.12a)

the derivative G
(2k−1)
2II (x, ξ) should, however, have a jump if x = ξ:

lim
ε→0

[
G

(2k−1)
2II (ξ + ε, ξ)−G(2k−1)

21I (ξ − ε, ξ)
]

=

=
[
G

(2k−1)
2II (ξ + 0, ξ)−G(2k−1)

2II (ξ − 0, ξ)
]

=
1

p2k(ξ)
. (3.12b)
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5. Let α be an arbitrary but finite non-zero constant. For a fixed ξ ∈ [0, `] the
product G(x, ξ)α as a function of x (x 6= ξ) should satisfy the homogeneous differential
equation

M [G(x, ξ)α] = 0 .

6. The productG(x, ξ)α as a function of x should satisfy both the boundary conditions
and the continuity conditions

U0r[G]=

2k∑
n=1

αnrI G
(n−1)(0) = 0 , r = 1, . . . , k

Ubr[G]=

2k∑
n=1

(
βnrI G

(n−1)(b−0)−βnrII G(n−1)(b+0)
)

= 0 , r = 1, . . . , 2k

U`r[G]=

2k∑
n=1

γnrII G
(n−1)(`) = 0 , r = 1, . . . , k

(3.13)

The above continuity conditions should be satisfied by the function pairs G1I(x, ξ),
G2I(x, ξ) and G1II(x, ξ), G2II(x, ξ) as well.

Remark 1. It can be proved by utilizing the previous definition that integral (3.4)
satisfies differential equation and boundary conditions (3.3) [15].

Remark 2. If the boundary value problem defined by (3.1) and (3.3) is self adjoint
then the Green function is symmetric [15]:

G(x, ξ) = G(ξ, x) (3.14)

It can be checked with ease utilizing the corresponding definition presented in [15]
that the three-point boundary value problem defined by differential equation (2.6a)
and the boundary and continuity condition given in Table 1 is self-adjoint.

3.2. Calculation of the Green functions.

3.2.1. Introductory remarks. Let us denote the linearly independent particular solu-
tions of the homogeneous ordinary differential equation

L[y(x)] = 0 (3.15)

by
y1(x) , y2(x) , y3(x) , . . . , y2k(x) . (3.16)

Since the general solution is a linear combination of the particular solutions it can be
given in the following form:

y(x) =

2k∑
n=1

An yn(x) (3.17)

where the coefficients An are arbitrary integration constants. The Green function
should satisfy the homogeneous differential equation (3.15). Therefore it follows that
it can be given as a linear combination of the particular solutions yn(x), i.e., by
equation (3.17). It is a further problem how to find the coefficients An. Subsections
3.3 and 3.4 deal with this issue.
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3.3. Calculation of the Green function if ξ ∈ [0, b]. It is obvious that the inte-
gration constants An should be different in the two triangular domains 0 ≤ x ≤ ξ ≤ b

y

b

b



x

x  

x  

x  

x  

0

0

  1

  1

Figure 2.

and 0 ≤ ξ ≤ x ≤ b . For this reason we shall apply the following assumptions:

(a)

G1I(x, ξ) =

2k∑
`=1

(a`I(ξ) + b`I(ξ)) y`(x) , x ≤ ξ ;

G1I(x, ξ) =

2k∑
`=1

(a`I(ξ)− b`I(ξ)) y`(x) , x ≥ ξ

x ∈ [0, b] (3.18)

and
(b)

G2I(x, ξ) =

2k∑
`=1

c`I(ξ)y`(x) , x ∈ [b, `] (3.19)

where the coefficients a`I(ξ), b`I(ξ) and c`I(ξ) are, in fact, unknown functions.

Note that the above representation for G1I(x, ξ) and G2I(x, ξ) ensures the fulfill-
ment of Property 5 of the definition.

Continuity conditions (3.8a) yield the following equations

2k∑
`=1

b`I(ξ) y
(n)
` (ξ) = 0 , n = 0, 1, 2, . . . 2k − 2 (3.20a)

As regards the discontinuity condition (3.8b) we get

1

p2k(ξ)
=
[
G(2k−1)(ξ + 0, ξ)−G(2k−1)(ξ − 0, ξ)

]
= −2

k∑
`=1

b`I(ξ) y
(2k−1)
` (ξ) .
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Hence
2k∑
`=1

b`I(ξ) y
(2k−1)
` (ξ) = − 1

2p2k(ξ)
. (3.20b)

Fulfillment of equations (3.20a) and (3.20b) ensures the fulfillment of Properties 1, 2
and 4 of the definition.

Continuity and discontinuity conditions (3.8) result in the inhomogeneous linear
system of equations (3.20) for the unknowns b`(ξ) (` = 1, 2, . . . , 2k). Its determinant
assumes the following form:

y1(ξ) y2(ξ) . . . yk(ξ)

y
(1)
1 (ξ) y

(1)
2 (ξ) . . . y

(1)
k (ξ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y
(2k−1)
1 (ξ) y

(2k−1)
2 (ξ) . . . y

(2k−1)
2k (ξ)

. (3.21)

This determinant is the Wronskian1 [16] of differential equation (3.15) which is not
zero since the particular solutions y`(x) are linearly independent. This means that we
can always find a unique solution for the coefficients b`I(ξ) in representation (3.18) of
the Green function.

Utilizing the boundary and continuity conditions (3.13) the following equations can
be obtained for the unknown coefficients a`I(ξ) and c`I(ξ):

U0r[G] =

2k∑
n=1

αnrI

2k∑
`=1

(a`I(ξ) + b`I(ξ)) z`(0)(n−1) = 0 r = 1, 2, . . . , k (3.22a)

Ubr[G] =

2k∑
n=1

(
βnrI

2k∑
`=1

(a`I(ξ)− b`I(ξ)) z`(b)(n−1)−

−βnrII
2k∑
`=1

c`I(ξ)z`(b)
(n−1)

)
= 0 , r = 1, 2, . . . , 2k (3.22b)

Ucr[G] =

2k∑
n=1

γnrII

2k∑
`=1

c`I(ξ)z`(c)
(n−1) = 0 , r = 1, 2, . . . , k (3.22c)

or
2k∑
`=1

a`IUar[z`] = −
2k∑
`=1

b`IUar[z`] r = 1, 2, . . . , k

2k∑
`=1

a`IUbrI [z`]−
2k∑
`=1

c`IUbrII [z`] =

2k∑
`=1

b`IUbrI [z`] r = 1, 2, . . . , 2k (3.23)

2k∑
`=1

c`IUcr[z`] = 0 r = 1, 2, . . . , k

1Józef Hoene-Wroński (1776-1853)
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Solutions for a`I(ξ) and c`I(ξ) exist if and only if the determinant of the linear equation
system (3.23) is different from zero. The linear independence of the boundary and
continuity conditions assures in general that the equation system (3.23) is solvable.

Fulfillment of equations (3.23) ensures the fulfillment of Property 6 of the definition.

3.4. Calculation of the Green function if ξ ∈ [b, ` = 1]. Now we shall assume
that:

(a)

G1I(x, ξ) =
2k∑
`=1

(a`II(ξ) + b`II(ξ)) y`(x) , x ≤ ξ ;

G1I(x, ξ) =

2k∑
`=1

(a`II(ξ)− b`II(ξ)) y`(x) , x ≥ ξ

x ∈ [b, ` = 1] (3.24)

and
(b)

G2I(x, ξ) =

2k∑
`=1

c`I(ξ)y`(x) , x ∈ [0, b] (3.25)

where the coefficients a`II(ξ), b`II(ξ) and c`II(ξ) are again unknown functions.

Note that the above representation for G1II(x, ξ) and G2II(x, ξ) ensures the fulfill-
ment of Property 5 of the definition.

Continuity conditions (3.12a) lead to the following equations:

2k∑
`=1

b`II(ξ) y
(n)
` (ξ) = 0 , n = 0, 1, 2, . . . 2k − 2 (3.26a)

As regards discontinuity condition (3.12b) we obtain

1

p2k(ξ)
=
[
G(2k−1)(ξ + 0, ξ)−G(2k−1)(ξ − 0, ξ)

]
= −2

k∑
`=1

b`II(ξ) y
(2k−1)
` (ξ) .

Hence

2k∑
`=1

b`II(ξ) y
(2k−1)
` (ξ) = − 1

2p2k(ξ)
. (3.26b)

Continuity and discontinuity conditions (3.12) yield the inhomogeneous linear system
of equations (3.26) for the unknowns b`II(ξ) (` = 1, 2, . . . , 2k). Since these equation
are formally the same as equations (3.20) it follows that their determinant is again
the Wronskian (3.21) and this fact guarantees their solvability. It also follows that
b`II = b`I .
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Note that fulfillment of equations (3.26a) and (3.26b) ensures the fulfillment of
Properties 1, 3 and 4 of the definition.

Utilizing now the boundary and continuity conditions (3.13) leads to the following
linear equations for the unknown coefficients a`II(ξ) and c`II(ξ):

U0r[G] =

2k∑
n=1

αnrI

2k∑
`=1

c`II(ξ)z`(a)(n−1) = 0 r = 1, 2, . . . , k (3.27a)

Ubr[G] =

2k∑
n=1

(
βnrI

2k∑
`=1

c`II(ξ)z`(b)
(n−1)−

−βnrII
2k∑
`=1

(a`II(ξ) + b`II(ξ)) z`(b)
(n−1)

)
= 0 , r = 1, 2, . . . , 2k (3.27b)

U`r[G] =

2k∑
n=1

γnrII

2k∑
`=1

(a`II(ξ)− b`II(ξ)) z`(c)(n−1) = 0 , r = 1, 2, . . . , k (3.27c)

or

2k∑
`=1

a`IIU0r[z`] = 0 r = 1, 2, . . . , k (3.28a)

2k∑
`=1

a`IIUbrI [z`]−
2k∑
`=1

b`IIUbrII [z`] =

2k∑
`=1

c`IIUbrII [z`] r = 1, 2, . . . , 2k (3.28b)

2k∑
`=1

b`IIU`r[z`] =

2k∑
`=1

c`IIU`r[z`] r = 1, 2, . . . , k (3.28c)

The linear equation system (3.27) is solvable for a`II(ξ) and b`II(ξ) if its determinant
is different from zero. Since the boundary and continuity conditions are linearly
independent equation system (3.27) is, in general, solvable.

If the determinants of the equation systems (3.23) and (3.28) are different from
zero then there Green function exits which satisfies the properties of the definition
given in Section 3.1.

Fulfillment of equations (3.28) ensures the fulfillment of Property 6 of the definition.

4. Calculation of the Green function for PrsP beams

4.1. PrsP beams subjected to a compressive force. If the axial force is com-
pression it follows from equation (2.5) (or (2.6a)) that equilibrium problems of PrsP
beams are governed by the differential equation

L[w(x)] = w(4) +Nw(2) = fz (4.1)

associated with the boundary and continuity conditions in Table 1.
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4.1.1. Green function if ξ ∈ [0, b]. In the sequel we shall follow the line of thought
presented in Subsection 3.3. Recalling that the general solution of the homogeneous
differential equation L[w(x)] = 0 is given by (2.6b) the continuity and discontinuity
conditions (3.20) result in the following equation system for b`I :

1 ξ cos pξ sin pξ
0 1 −p sin pξ p cos pξ
0 0 −p2 cos pξ −p2 sin pξ
0 0 p3 sin pξ −p3 cos pξ



b1
b2
b3
b4

 =


0
0
0
− 1

2

 , (4.2)

Remark 3. It has been taken into account here that w(x) corresponds to y(x), k = 2
and p2k = 1.

Solution of this equation system assumes the following form:
b1I
b2I
b3I
b4I

 =
1

2p3


pξ
−p

− sin pξ
cos pξ

 . (4.3)

We proceed with the boundary and continuity conditions (3.23). Recalling the bound-
ary and continuity conditions in Table 1 and Remark 3. we obtain the following
equation system:
(a) Boundary conditions at x = 0:

a1Iw1(0) + a2Iw2(0) + a3Iw3(0) + a4Iw4(0) =

= −b1Iw1(0)− b2Iw2(0)− b3Iw3(0)− b4Iw4(0) , (4.4a)

a1Iw
(2)
1 (0) + a2Iw

(2)
2I (0) + a3Iw

(2)
3 (0) + a4Iw

(2)
4 (0) =

= −b1Iw(2)
1 (0)− b2Iw(2)

2 (0)− b3Iw(2)
3 (0)− b4Iw(2)

4 (0) . (4.4b)

(b) Continuity conditions at x = b:

a1Iw1(b) + a2Iw2(b) + a3Iw3(b) + a4Iw4(b) =

= b1Iw1(b) + b2Iw2(b) + b3Iw3(b) + b4Iw4(b) , (4.5a)

c1Iw1(b) + c2Iw2(b) + c3Iw3(b) + c4Iw4(b) = 0 , (4.5b)

a1Iw
(1)
1 (b) + a2Iw

(1)
2I (b) + a3Iw

(1)
3 (b) + a4Iw

(1)
4 (b)−

− c1Iw(1)
1 (b)− c2Iw(1)

2 (b)− c3Iw(1)
3 (b)− c4Iw(1)

4 (b) =

= b1Iw
(1)
1 (b) + b2Iw

(1)
2 (b) + b3Iw

(1)
3 (b) + b4Iw

(1)
4 (b) , (4.5c)

a1Iw
(2)
1 (b) + a2Iw

(2)
2I (b) + a3Iw

(2)
3 (b) + a4Iw

(2)
4 (b)−

− c1Iw(2)
1 (b)− c2Iw(2)

2 (b)− c3Iw(2)
3 (b)− c4Iw(2)

4 (b) =

= b1Iw
(2)
1 (b) + b2Iw

(2)
2 (b) + b3Iw

(2)
3 (b) + b4Iw

(2)
4 (b) . (4.5d)
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(c) Boundary conditions at x = `:

c1Iw1(`) + c2Iw2(`) + c3Iw3(`) + c4Iw4(`) = 0 , (4.6a)

c1Iw
(2)
1 (`) + c2Iw

(2)
2 (`) + c3Iw

(2)
3 (`) + c4Iw

(2)
4 (`) = 0 . (4.6b)

Using (2.6b) boundary conditions (4.4) at x = 0 yield

a1I + a3I = −b1I − b3I , a3I = −b3I .

Hence

a1I = −b1I = − 1

2p2
ξ , (4.7a)

a3I =
sin pξ

2p3
. (4.7b)

As regards continuity conditions (4.5) at x = b and boundary conditions (4.6) at x = `
substituting (2.6b) yields

b sin pb 0 0 0 0
0 0 1 b cos pb sin pb
1 p cos pb 0 −1 p sin pb −p cos pb
0 − sin pb 0 0 cos pb sin pb
0 0 1 ` cos p` sin p`
0 0 0 0 cos p` sin p`




a2I
a4I
c1I
c2I
c3I
c4i

 =

=
1

2p3


2pξ − pb− sin pξ cos pb− sin p (ξ − b)

0
−p+ 2p sin pξ sin pb+ p cos pξ cos pb

2 sin pξ cos pb− cos pξ sin pb
0
0


from where

a2I =

=
1

2p3Dc
[(p (`−b) sin p`−sin bp sin p (`−b)) (2pξ−bp−sin p (ξ−b)−sin pξ cos bp)+

− (`− b) (sin bp sin p (`− b)) (−p+ 2p sin pξ sin bp+ p cos pξ cos bp) +

+(p (`−b) sin bp cos (p`−bp)− sin bp sin (p`−bp)) (2 sin pξ cos bp−cos pξ sin bp)] ,
(4.7c)

a4I =

=
1

2p3Dc
[− (cos pξ sin pb−2 sin pξ cos pb) (b sin p (`−b)− pb (`−b)cos p (`−b)) −

+ (`− b) (sin p (`− b)) (sin p (ξ − b)− 2pξ + pb+ sin pξ cos pb)−
−b (`− b) sin p (`− b) (p− 2p sin pξ sin pb− p cos pξ cos pb)] , (4.7d)
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c1I =
1

2p3Dc
[−` (sin p (`− b) sin pb) (sin p (ξ − b)− 2pξ + pb+ sin pξ cos pb) −

+ ` (sin p (`− b)) (pb cos pb− sin pb) (cos pξ sin pb− 2 sin pξ cos pb) +

+b` (sin p (`− b) sin pb) (p− 2p sin pξ sin pb− p cos pξ cos pb)] , (4.7e)

c2I =
1

2p3Dc
[(sin p (`− b) sin pb) (sin p (ξ − b)− 2pξ + pb+ sin pξ cos pb) +

+ (sin p (`− b)) (sin pb− pb cos pb) (cos pξ sin pb− 2 sin pξ cos pb) +

+b (sin pb sin p (`− b)) (p cos pξ cos pb− p+ 2p sin pξ sin pb)] , (4.7f)

c3I =
1

2p3Dc
[(`− b) (sin p` sin pb) (sin p (ξ − b)− 2pξ + pb+ sin pξ cos pb)−

(`− b) (sin p`) (sin pb− pb cos bp) (cos pξ sin pb− 2 sin pξ cos pb) +

+b (`− b) (sin pb sin p`) (p cos pξ cos pb− p+ 2p sin pξ sin pb)] , (4.7g)

c4I =
1

2p3Dc
[− (`− b) cos p` sin pb (sin p (ξ − b)− 2pξ + pb+ sin pξ cos bp) +

+ (`− b) cos p` (sin pb− pb cos pb) (cos pξ sin pb− 2 sin pξ cos pb)−
−b (`− b) (cos p` sin pb) (p cos pξ cos pb− p+ 2p sin pξ sin pb)] , (4.7h)

in which

Dc = pb (`− b) sin p`− ` (sin pb) sin p(`− b) . (4.8)

With a`I , b`I and c`I

G(x, ξ) =

{
G1I(x, ξ) =

∑4
`=1 (a`I(ξ)± b`I(ξ))w`(x) if x ∈ [0, `] ,

G2I(x, ξ) =
∑4
`=1 c`I(ξ)w`(x) if x ∈ [b, `] .

(4.9)

is the Green function if ξ ∈ [0, b]. The sign is positive if x < ξ and negative if x > ξ.

4.1.2. Green function if ξ ∈ [b, `]. The equation system for b`II coincides with equa-
tion system (4.2). Hence b`II = b`I and the solutions are given by equation (4.3).

The boundary conditions in Table 1 for x = 0 yield:

c1II = c3II = 0 .

The continuity conditions at x = b and the boundary conditions at x = ` lead to the
following equation system – details of the calculation are all omitted:

0 0 0 0 b sin pb
1 b cos pb sin pb 0 0
0 1 −p sin pb p cos pb −1 −p cos pb
0 0 − cos pb − sin pb 0 sin pb
1 ` cos p` sin p` 0 0
0 0 − cos p` − sin p` 0 0




a1II
a2II
a3II
a4I
c2II
c4II

 =
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=
1

2p3


0

−pξ + pb+ sin p (ξ − b)
p− p cos p (ξ − b)
− sin p (ξ − b)

pξ − p`− sin p (ξ − `)
sin p (ξ − `)

 .
The solutions needed for calculating the Green function are gathered here:

a1II =
1

2p3Dc
[(bp` sin p`− ` sin p (`− b) sin pb) (sin p (ξ − b)− pξ + pb) +

+ (sin p (`− ξ))
(
pb2 sin p`− pb` sin bp

)
− pb2 (sin p`) (sin p (`− ξ)− p`+ pξ) +

+ ` (sin p (ξ − b) sin p (`− b)) (sin pb− pb cos pb) +

+b` (sin p (`− b) sin pb) (p− p cos p (ξ − b))] , (4.10a)

a2II =
1

2p3Dc
[sin p (`− ξ) (sin p (`− b) sin pb− pb (sin p`− sin pb)) +

+ (sin p (`− b) sin pb− pb sin p`) (sin p (ξ − b)− pξ + pb) +

+ (sin p (`− b) sin pb− pb sin p`) (sin p (ξ − `)− pξ + p`)−
− (sin p (ξ − b) sin p (`− b)) (sin pb− pb cos pb)−

− b (sin p (`− b) sin pb) (p− p cos p (ξ − b))] , (4.10b)

a3II =
1

2p3Dc
[−b (sin p` sin pb) (sin p (ξ − b)− pξ + pb)−

− (sin p (`− ξ) sin pb) (b sin p`− ` sin pb) +

+ b (sin p` sin pb) (sin p (`− ξ) + pξ − p`)−
− (sin p (ξ − b) sin p`) (sin pb− pb cos pb) (`− b)−

−b (`− b) (sin p` sin pb) (p− p cos p (ξ − b))] , (4.10c)

a4II =
1

2p3Dc
[sin p (`− ξ) ((sin pb) (b cos p`− ` cos pb) + pb (`− b)) +

+ b (cos p` sin pb) (sin p (ξ − b)− pξ + pb) +

+ b (cos p` sin pb) (sin p (ξ − `)− pξ + p`) +

+ (sin p (ξ − b) cos p`) (sin pb− pb cos pb) (`− b) +

+b (`− b) (cos p` sin pb) (p− p cos p (ξ − b))] , (4.10d)

c1II = 0 , (4.10e)

c2II =
1

2p3Dc
[− (sin p (ξ − `)) (sin p (`− b) sin pb− p (`− b) sin pb) +

− sin p (ξ − b) (sin p (`− b) sin pb− p (`− b) cos p (`− b) sin bp)−
+ (sin p (`− b) sin pb) (sin p (ξ − `)− pξ + p`) +
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+ (sin p (`− b) sin pb) (sin p (ξ − b)− pξ + pb) +

+ (`− b) (sin p (`− b) sin pb) (p− p cos p (ξ − b))] , (4.10f)

c3II = 0 , (4.10g)

c4II =
1

2p3Dc
[−b (sin p (`− b)) (sin p (ξ − b)− pξ + pb) +

+ sin p (ξ − b) (b sin p (`− b)− pb (`− b) cos p (`− b)) +

+ (sin p (ξ − `)) (b sin p (`− b)− pb (`− b))−
− b (sin p (`− b)) (sin p (ξ − `)− pξ + p`)−

−b (`− b) (sin p (`− b)) (p− p cos p (ξ − b))] . (4.10h)

With a`II , b`II and c`II

G(x, ξ) =

{
G1II(x, ξ) =

∑4
`=1 c`I(ξ)w`(x) if x ∈ [0, b] ,

G2II(x, ξ) =
∑4
`=1 (a`II(ξ)± b`II(ξ))w`(x) if x ∈ [b, `] .

(4.11)

is the Green function if ξ ∈ [b, `]. The sign is positive if x < ξ and negative if x > ξ.

The Green function given by equations (4.9) and (4.11) satisfies the symmetry
condition G(x, ξ) = G(ξ, x), x, ξ ∈ [0, `]. Fulfillment of the symmetry condition was
checked numerically for a number of point pairs x, ξ.

4.2. PrsP beams subjected to a tensile force. If the axial force is tensile equa-
tion according to equation (2.5) (or (2.6a)) equilibrium problems of PrsP beams are
governed by the differential equation

L[w(x)] = w(4) −Nw(2) = fz (4.12)

for which the boundary and continuity conditions are presented in Table 1.

4.2.1. Green function if ξ ∈ [0, b]. In the present subsection we shall apply the so-
lution steps detailed in Subsection 4.1.1. Recalling that the general solution of the
homogeneous differential equation L[w(x)] = 0 is given by (2.6c) the continuity and
discontinuity conditions (3.20) lead to the following equation system for b`I :

1 ξ cosh pξ sinh pξ
0 1 p sinh pξ p cosh pξ
0 0 p2 cosh pξ p2 sinh pξ
0 0 p3 sinh pξ p3 cosh pξ



b1
b2
b3
b4

 =


0
0
0
− 1

2

 , (4.13)

from where 
b1I
b2I
b3I
b4I

 =
1

2p3


−pξ
p

sinh pξ
− cosh pξ

 . (4.14)

Remark 4. It has been taken again into account in the calculations that w(x) corre-
sponds to y(x), k = 2 and p2k = 1.
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We proceed with boundary and continuity conditions (3.23). Recalling the bound-
ary and continuity conditions in Table 1 and Remark 4. the equation system we
obtain is formally the same as the equation system given by (4.4), (4.5) and (4.6) –
the solution for w is, however, different – see (2.6c). After substituting it we have

a1I = −b1I =
1

2p3
pξ ,

a3I = −b3I = − 1

2p3
sinh pξ

and
b sinh pb 0 0 0 0
0 0 1 b cosh pb sinh pb
1 p cosh pb 0 −1 −p sinh pb −p cosh pb
0 sinh pb 0 0 − cosh pb − sinh pb
0 0 1 ` cosh p` sinh p`
0 0 0 0 cosh p` sinh p`




a2I
a4I
c1I
c2I
c3I
c4i

 =

=
1

2p3


−2pξ + pb+ sinh (pξ − bp) + sinh pξ cosh pb

0
p+ 2p sinh pξ sinh pb− p cosh pξ cosh pb

2 sinh pξ cos pb− cosh pξ sinh pb
0
0


from where

a2I =
1

2p3Dt
×

[(p (`−b) sinh p`−sinh pb sinh p (`−b)) (pb−2pξ+sinh p (ξ−b)+sinh pξ cosh pb)−
− (`− b) sinh pb sinh p (`− b) (p+ 2p sinh pξ sinh pb− p cosh pξ cosh pb)−

−(p (`−b) sinh pb cosh p (`−b)−sinh pb sinh p (`−b))×
(2 sinh pξ cos pb−cosh pξ sinh pb)] , (4.15a)

a4I =

=
1

2p3Dt
[− (cosh pξ sinh pb−2 sinh pξ cos pb) (b sinh p (`−b)+pb (`−b) cosh p (`−b))+

− (`− b) (sinh p (`− b)) (sinh p (ξ − b)− 2pξ + pb+ sinh pξ cosh pb) +

+b (`− b) (sinh p (`− b)) (p+ 2p sinh pξ sinh pb− p cosh pξ cosh pb)] , (4.15b)

c1I =
1

2p3Dt
[` (sinh p (`− b) sinh pb) (sinh p (ξ − b)− 2pξ + pb+ sinh pξ cosh pb)−

− ` (sinh p (`− b)) (pb cosh pb− sinh pb) (cosh pξ sinh pb− 2 sinh pξ cos pb) +

−b` (sinh p (`− b) sinh pb) (p+ 2p sinh pξ sinh pb− p cosh pξ cosh pb)] , (4.15c)
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c2I =
1

2p3Dt
[− (sinh p (`− b) sinh pb) (sinh p (ξ − b)− 2pξ + pb+ sinh pξ cosh pb) +

− sinh p (`− b) (sinh pb− pb cosh pb) (cosh pξ sinh pb− 2 sinh pξ cos pb)−
−b (sinh pb sinh p (`− b)) (p cosh pξ cosh pb− p− 2p sinh pξ sinh pb)] , (4.15d)

c3I =
1

2p3Dt
[− (`− b) (sinh p` sinh pb) (sinh p (ξ − b)− 2pξ + pb+ sinh pξ cosh pb) +

− (`− b) (sinh p`) (sinh pb− pb cosh pb) (cosh pξ sinh pb− 2 sinh pξ cos pb)

−b (`− b) (sinh pb sinh p`) (p cosh pξ cosh pb− p− 2p sinh pξ sinh pb)] , (4.15e)

c4I =
1

2p3D
[(`− b) (cosh p` sinh pb) (sinh p (ξ − b)− 2pξ + pb+ sinh pξ cosh pb) +

+ (`− b) cosh p` (sinh pb− pb cosh pb) (cosh pξ sinh pb− 2 sinh pξ cos pb) +

+b (`− b) (cosh p` sinh pb) (p cosh pξ cosh pb− p− 2p sinh pξ sinh pb)] (4.15f)

in which

Dt = bp (`− b) sinh p`− ` sinh bp sinh p (`− b) . (4.16)

With a`I , b`I and c`I derived above for the case of the tensile axial force equation
(4.9) can be used to find the Green function if ξ ∈ [0, b].

4.2.2. Green function if ξ ∈ [b, `]. The equation system for b`II coincides formally
with equation system (4.13). Consequently, b`II = b`I and the solutions are given by
equation (4.14).

The boundary conditions in Table 1 for x = 0 yield:

c1II = c3II = 0

The continuity conditions at x = b and the boundary conditions at x = ` lead to the
following equation system – details of the calculation are all omitted:

0 0 0 0 b sinh pb
1 b cosh pb sinh pb 0 0
0 1 p sinh pb p cosh pb −1 −p cosh pb
0 0 cosh pb sinh pb 0 − sinh pb
1 ` cosh p` sinh p` 0 0
0 0 cosh p` sinh p` 0 0




a1II
a2II
a3II
a4I
c2II
c4II

 =

=
1

2p3


0

pξ − pb− sinh p (ξ − b)
−p+ p cosh p (ξ − b)
− sinh p (ξ − b)

−pξ + p`+ sinh p (ξ − `)
sinh p (ξ − `)


The solutions obtained for a1II , . . . , a4II and c1II , . . . , c4II and needed for calculating
the Green function are presented here:
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a1II =
1

2p3Dt
[(pb` sinh p`− ` sinh pb sinh p (`− b)) (− sinh p (ξ − b) + pξ − pb) +

+ (sinh p (ξ − `))
(
pb2 sinh p`− pb` sinh pb

)
− pb2 (sinh p`) (sinh p (ξ − `) + p`− pξ)−

− ` (sinh p (ξ − b) sinh p (`− b)) (sinh pb− pb cosh pb)−
−b` (sinh p (`− b) sinh pb) (p− p cosh p (ξ − b))] , (4.17a)

a2II =
1

2p3D
[− sinh p (`− ξ) (sinh p (`− b) sinh pb+ pb (− sinh p`+ sinh pb)) +

+ (sinh p (`− b) sinh pb− pb sinh p`) (− sinh p (ξ − b) + pξ − pb)−
− (sinh p (`− b) sinh pb− pb sinh p`) (sinh p (ξ − `) + p`− pξ) +

+ (sinh p (ξ − b) sinh p (`− b)) (sinh pb− pb cosh pb) +

+b (sinh pb sinh p (`− b)) (p− p cosh p (ξ − b))] , (4.17b)

a3II =
1

2p3Dt
[b (sinh p` sinh pb) (sinh p (ξ − b)− pξ + pb)−

− (sinh p (`− ξ) sinh pb) (b sinh p`− ` sinh pb)−
− b (sinh p` sinh pb) (sinh p (`− ξ) + pξ − p`)−

− (sinh p (ξ − b) sinh p`) (sinh pb− pb cosh pb) (`− b)−
−b (`− b) (sinh p` sinh pb) (p− p cosh p (ξ − b))] , (4.17c)

a4II =
1

2p3Dt
[− sinh p (`− ξ) ((sinh pb) (b cosh p`− ` cosh pb) + pb (`− b)) −

− b (cosh p` sinh pb) (sinh p (ξ − b)− pξ + pb)−
− b (cosh p` sinh pb) (sinh p (ξ − `)− pξ + p`)−

− (sinh p (ξ − b) cosh p`) (sinh pb− pb cosh pb) (`− b)−
−b (`− b) (cosh p` sinh pb) (p− p cosh p (ξ − b))] , (4.17d)

c1II = 0 , (4.17e)

c2II =
1

2p3Dt
[(sinh p (ξ − `)) (sinh pb sinh p (`− b)− p (`− b) sinh pb) +

+ sinh p (ξ − b) (sinh p (`− b) sinh pb− p (`− b) sinh pb cosh p (`− b))−
− (sinh p (`− b) sinh pb) (sinh p (ξ − `)− pξ + p`)−
− (sinh p (`− b) sinh pb) (sinh p (ξ − b)− pξ + pb) +

− (`− b) (sinh p (`− b) sinh pb) (p− p cosh p (ξ − b))] , (4.17f)

c3II = 0 , (4.17g)

c4II =
1

2p3D
[b sinh p (`− b) (sinh p (ξ − b)− pξ + pb)−

− sinh p (ξ − b) (b sinh p (`− b)− pb (`− b) cosh p (`− b))−
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− (sinh p (ξ − `)) (b sinh p (`− b)− pb (`− b)) +

+ b (sinh p (`− b)) (sinh p (ξ − `)− pξ + p`) +

+b (`− b) (sinh p (`− b)) (p− p cosh p (ξ − b))] . (4.17h)

With a`II , b`II = b`I and c`I presented above for the tensile axial force equation
(4.11) can be used to find the Green function if ξ ∈ [0, b]. According to a numerical
check the Green function satisfies the symmetry condition G(x, ξ) = G(ξ, x).

4.2.3. Graphical representation of the Green function. The dimensionless critical force
Ncrit (p crit) as function of the location of the intermediate roller support is given by
the polynomial [17]:√
Ncrit /π = p crit/π =

= −25.651 118 291 1b5 + 18.328 978 830 0b4 − 4.701 184 038 74b3+

+ 1. 395 339 14036b2 + 0.928 843 353123b+ 1.430 503 352 36 , b ∈ [0, 0.5]. (4.18)

Note that for symmetry reasons b ∈ [0, 0.5].

Assume that b = 0.5 and ξ = 0.75. Assume further that the axial force is compres-
sive. Figure 3 shows the Green function provided that p = 0.4pcrit and p = 0.8pcrit.
Since the Green function is the dimensionless vertical displacement due to a dimen-
sionless unit force applied to the beam at ξ = 0.75 it follows that the bending moment
caused by the compressive force N has the same sign as the bending moment caused
by the dimensionless unit force. Its magnitude increases with N . The same is valid
for the magnitude of the Green function. Figure 3 clearly shows this change.
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Figure 3.
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Assume again that b = 0.5 and ξ = 0.75 but the axial force is tensile. Figure 4
shows the Green function provided that p = 0.4pcrit and p = 0.8pcrit. This time there
is a sign difference between the bending moments due to the dimensionless unit force
and the tensile force. Hence the magnitude of the Green function decreases as the
axial force N increases. Figure 4 clearly represents this phenomenon.

According to equation (3.4) the dimensionless vertical displacement w due to the
dimensionless vertical force system fz can be calculated by performing the integral in

w(x) =

∫ `=1

ξ=0

G(x, ξ)fz(ξ) dξ . (4.19)

5. Computational results

5.1. Integral equation of the problem. We shall assume that the inertia forces
resulting from the longitudinal motion in the axial direction are neglected. It is also
assumed that the moments of the inertia forces obtained from the rotation of cross
section are negligible. Under these assumptions the dimensionless amplitude of the
vibrations is denoted by w. It can be seen on the basis of Subsection 8.16 in [18],
(4.1) and (4.12) that the amplitude w should fulfill the differential equation

L[w(x)] = w(4) ±Nw(2) = λw = fz ,

p2 = N =
L2N

Iey
, λ =

ρaAω
2L4

Iey
,

(5.1)

where ρa is the average density over the cross section of the beam, ω is the natural
circular frequency while λ is the eigenvalue sought. Differential equation (5.1) is
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associated with the homogeneous boundary and continuity conditions presented in
Table 1. These constitute an eigenvalue problem with λ as the eigenvalue. If we
substitute λw(ξ) for fz(ξ) in (4.19) we obtain the homogeneous Fredholm integral
equation

w(x) = λ

∫ `=1

ξ=0

G(x, ξ)w(ξ) dξ (5.2)

for which the kernel G(x, ξ) is presented in Subsection 4.1 if the axial force is com-
pressive and in Subsection 4.2 if the axial force is tensile. The above integral equation
determines an eigenvalue problem equivalent to the eigenvalue problem determined by
differential equation (5.1) and the homogeneous boundary and continuity conditions
presented in Table 1. Making use of the boundary element algorithm presented in
[15] – see Subsection 7.2 – the eigenvalue problem determined by (5.2) can be reduced
to an algebraic eigenvalue problem which can be solved numerically. A Fortran 90
code has been developed and applied to find numerical solutions for the eigenvalue
λ. The interval [0, ` = 1] was divided into 12 elements and a quadratic isoparametric
approximation was used over the elements in the code we developed.

If the axial force is zero the lowest dimensionless eigenvalue and circular frequency
will be denoted by λ̌1 and ω̌1.

5.2. Numerical results if b tends to zero. Table 2 represents the computational
results if b −→ 0. The quotient

√
Ncrit /π is computed using equation (4.18). The

value of λ̌1 is given by equation (105) in [15]:√
λ̌1/π

2 = 402.66423× (1.0− b)5 − 1594.73367× (1.0− b)4+

+ 2494.995× (1.0− b)3 − 1918.4007× (1.0− b)2+

+ 716.4361× (1.0− b)− 99.3904, b ∈ [0, 0.5], (5.3)

or can be taken from Table 2 in [15]. This is also valid for Tables 3,...,7 which
have the same structure as Table 2. The quotient ω2

1/ω̌
2
1 = λ1/λ̌1 is computed for

N/Ncrit = 0.00, 0.10, . . . , 0.90 – see columns 2, 3 and 5 in Tables 2,...,7.

The computed values of ω2
1/ω̌

2
1 = λ1/λ̌1 are denoted by diamonds in Figures 5,...,9.

The difference between two subsequent values of ω2
1/ω̌

2
1 is also included in these tables

– see columns 4 and 6. If the function ω2
1/ω̌

2
1(N/Ncrit) is [non-linear](linear) the

difference [varies](is constant).

Quadratic polynomials are fitted onto the computational results. Their graphs are
drawn using continuous lines in the figures.

The beam behaves as if it were a fixed-pinned beam if b −→ 0. Hence the results
obtained should be the same as those valid for fixed-pinned beams. A comparison of
the present results to those published in [18] – see Section 8.17.2 – proves that there
is a very good agreement.
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Table 2.

b tends to zero√
Ncrit /π = 1.4304, λ̌1 = 1.5622

Compression Tension

Load N/Ncrit ω2
1/ω̌

2
1

Difference
ω2
1/ω̌

2
1

Difference
step

(
p2/p2crit

)
(λ1/λ̌1) (λ1/λ̌1)

1 0.00 1.000000 1.000000

2 0.10 0.902010 0.0979900 1.097670 0.097670

3 0.20 0.803642 -0.098369 1.195005 0.097335

4 0.30 0.704879 -0.098763 1.292038 0.097032

5 0.40 0.605692 -0.099186 1.388785 0.096747

6 0.50 0.506050 -0.099642 1.485264 0.096478

7 0.60 0.405916 -0.100134 1.581488 0.096224

8 0.70 0.305247 -0.100668 1.677471 0.095983

9 0.80 0.203999 -0.101248 1.773227 0.095755

10 0.90 0.102117 -0.101881 1.868766 0.095538
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Figure 5.

The quadratic polynomials fitted onto the computational results both for compres-
sion and tension are given by the following equations:

ω2
1

ω̌2
1

=
λ1

λ̌1
= 0.9999− 0.9756

N
Ncrit

− 2.4061× 10−2
(
N
Ncrit

)2

, (5.4a)

ω2
1

ω̌2
1

=
λ1

λ̌1
= 1.0000 + 0.9770

N
Ncrit

− 1.3205× 10−2
(
N
Ncrit

)2

(5.4b)
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5.3. Numerical results if b = 0.1. Table 3 and Figure 6 represent the results ob-
tained.

Table 3.

b = 0.1√
Ncrit /π = 1.5341, λ̌1 = 1.8098

Compression Tension

Load N/Ncrit ω2
1/ω̌

2
1

Difference
ω2
1/ω̌

2
1

Difference
step

(
p2/p2crit

)
(λ1/λ̌1) (λ1/λ̌1)

1 0.00 1.000000 1.000000

2 0.10 0.898254 -0.098720 1.093780 0.093780

3 0.20 0.800038 -0.098215 1.191130 0.097350

4 0.30 0.701491 -0.098547 1.288230 0.097099

5 0.40 0.602586 -0.098905 1.385094 0.096863

6 0.50 0.503293 -0.099292 1.481736 0.096642

7 0.60 0.403580 -0.099712 1.578170 0.096434

8 0.70 0.303411 -0.100169 1.674408 0.096237

9 0.80 0.202743 -0.100667 1.770460 0.096051

10 0.90 0.101529 -0.101214 1.866336 0.095876
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Figure 6.

The quadratic polynomials fitted onto the numerical results are as follows:

ω2
1

ω̌2
1

=
λ1

λ̌1
= 0.998 400− 0.985 245

N
Ncrit

− 1.174 606× 10−2
(
N
Ncrit

)2

, (5.5a)

ω2
1

ω̌2
1

=
λ1

λ̌1
= 0.998 592 + 0.966 543

N
Ncrit

− 2.109 042× 10−3
(
N
Ncrit

)2

. (5.5b)
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5.4. Numerical results if b = 0.2. Table 4 and Figure 6 represent the results ob-
tained.

Table 4.

b = 0.2√
Ncrit /π = 1.6557, λ̌1 = 2.1610

Compression Tension

Load N/Ncrit ω2
1/ω̌

2
1

Difference
ω2
1/ω̌

2
1

Difference
step

(
p2/p2crit

)
(λ1/λ̌1) (λ1/λ̌1)

1 0.00 1.000000 1.000000

2 0.10 0.904873 -0.099724 1.104529 0.099631

3 0.20 0.804869 -0.100004 1.204192 0.099662

4 0.30 0.704740 -0.100128 1.303750 0.099558

5 0.40 0.604481 -0.100259 1.403208 0.099458

6 0.50 0.504084 -0.100396 1.502570 0.099362

7 0.60 0.403543 -0.100541 1.601840 0.099269

8 0.70 0.302849 -0.100693 1.701020 0.099180

9 0.80 0.201995 -0.100854 1.800115 0.099094

10 0.90 0.100970 -0.101025 1.899127 0.099011
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Figure 7.
Equations

ω2
1

ω̌2
1

=
λ1

λ̌1
= 0.999 596− 0.987 083

N
Ncrit

− 1.214 649× 10−2
(
N
Ncrit

)2

, (5.6a)

ω2
1

ω̌2
1

=
λ1

λ̌1
= 0.999 633 + 0.987 212

N
Ncrit

− 6.295 185× 10−3
(
N
Ncrit

)2

. (5.6b)

are the quadratic polynomials fitted onto the computational results.
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5.5. Numerical results if b = 0.3. Table 5, Figure 8 and equations (5.7) represent
the results obtained.

Table 5.

b = 0.3√
Ncrit /π = 1.79382, λ̌1 = 2.6683

Compression Tension

Load N/Ncrit ω2
1/ω̌

2
1

Difference
ω2
1/ω̌

2
1

Difference
step

(
p2/p2crit

)
(λ1/λ̌1) (λ1/λ̌1)

1 0.00 1.000000 1.000000

2 0.10 0.900657 -0.099075 1.098279 0.098279

3 0.20 0.801574 -0.099083 1.196842 0.098563

4 0.30 0.702290 -0.099283 1.295255 0.098412

5 0.40 0.602790 -0.099500 1.393526 0.098271

6 0.50 0.503055 -0.099734 1.491664 0.098138

7 0.60 0.403065 -0.099990 1.589678 0.098013

8 0.70 0.302795 -0.100269 1.687574 0.097895

9 0.80 0.202221 -0.100574 1.785359 0.097784

9 0.90 0.101311 -0.100910 1.883038 0.097679
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ω2
1

ω̌2
1

=
λ1

λ̌1
= 1.004 689− 0.997 570

N
Ncrit

− 7.276 534× 10−3
(
N
Ncrit

)2

, (5.7a)

ω2
1

ω̌2
1

=
λ1

λ̌1
= 1.004 794 + 0.997 875

N
Ncrit

− 4.643 405× 10−3
(
N
Ncrit

)2

. (5.7b)
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5.6. Numerical results if b = 0.4. Table 6 and Figure 9 represent the results ob-
tained.

Table 6.

b = 0.4√
Ncrit /π = 1.93113, λ̌1 = 3.3881

Compression Tension

Load N/Ncrit ω2
1/ω̌

2
1

Difference
ω2
1/ω̌

2
1

Difference
step

(
p2/p2crit

)
(λ1/λ̌1) (λ1/λ̌1)

1 0.00 1.000000 1.000000

2 0.10 0.894987 -0.098455 1.091328 0.098059

3 0.20 0.796529 -0.098458 1.189232 0.097904

4 0.30 0.697862 -0.098666 1.286971 0.097739

5 0.40 0.598974 -0.098888 1.384555 0.097583

6 0.50 0.499848 -0.099125 1.481990 0.097435

7 0.60 0.400468 -0.099380 1.579285 0.097294

8 0.70 0.300814 -0.099653 1.676446 0.097160

9 0.80 0.200866 -0.099947 1.773479 0.097033

9 0.90 0.100599 -0.100266 1.870391 0.096911

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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1.8

2.0
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1
2/ 1

2
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N
Ncrit

N is compression

b  0.4

Figure 9.

The two quadratic polynomials fitted onto the numerical results are presented here:

ω2
1

ω̌2
1

=
λ1

λ̌1
= 0.993 088− 0.980 042

N
Ncrit

− 1.286 556× 10−2
(
N
Ncrit

)2

, (5.8a)

ω2
1

ω̌2
1

=
λ1

λ̌1
= 0.993 323 + 0.980 873

N
Ncrit

− 7.074 0713× 10−3
(
N
Ncrit

)2

. (5.8b)
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5.7. Numerical results if b = 0.5. Table 7 represents the results obtained.

Table 7.

b = 0.5√
Ncrit /π = 2.0000, λ̌1 = 4.0000

Compression Tension

Load N/Ncrit ω2
1/ω̌

2
1

Difference
ω2
1/ω̌

2
1

Difference
step

(
p2/p2crit

)
(λ1/λ̌1) (λ1/λ̌1)

1 0.00 1.000000 1.000000

2 0.10 0.893682 -0.099310 1.092295 0.099313

3 0.20 0.794376 -0.099306 1.191601 0.099306

4 0.30 0.695069 -0.099306 1.290908 0.099306

5 0.40 0.595763 -0.099306 1.390214 0.099306

6 0.50 0.496457 -0.099306 1.489521 0.099306

7 0.60 0.397150 -0.099306 1.588827 0.099306

8 0.70 0.297844 -0.099306 1.688133 0.099306

9 0.80 0.198538 -0.099306 1.787440 0.099306

9 0.90 0.099231 -0.099306 1.886746 0.099306

The polynomial approximations (the differences are constants)

ω2
1

ω̌2
1

=
λ1

λ̌1
= 0.993 064− 0.992 989

N
Ncrit

≈ 1.000− N
Ncrit

, (5.9a)

ω2
1

ω̌2
1

=
λ1

λ̌1
= 0.993 064 + 0.992 989

N
Ncrit

≈ 1.000 +
N
Ncrit

. (5.9b)

show that the functions ω2
1/ω̌

2
1(N/Ncrit) fitted onto the computational results are

linear.

5.8. What characters do the solutions have? If b 6= 0.5 the function
ω2
1/ω̌

2
1(N/Ncrit)

is non-linear, but the deviation from the linearity is not significant at all. It becomes
smaller when b −→ 0.5. If b = 0.5 the half beam behaves as if it were a simply
supported beam for which the function ω2

1/ω̌
2
1(N/Ncrit) is, in principal, a linear one.

This fact is reflected in equations (5.9).

6. Concluding remarks

The present paper clarifies what effect the axial load (compressive or tensile) has
on the eigenfrequencies of a heterogeneous pinned-pinned beam with an intermediate
roller support. This problem is, in fact, a three-point boundary value problem (eigen-
value problem) associated with homogeneous boundary conditions. After determining
the Green function of the three-point boundary value problem the eigenvalue problem
that provides the eigenfrequencies for the PrsP beam is transformed into an eigen-
value problem governed by a homogeneous Fredholm integral equation with the Green
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function as its kernel. The later eigenvalue problem is reduced to an algebraic eigen-
value problem which we solved numerically by using an effective solution algorithm
based on the boundary element method. We have derived polynomial approximations
for the sought function ω2

1/ω̌
2
1(N/Ncrit).
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Istvan.Paczelt@uni-miskolc.hu

[Received: September 29, 2021; Accepted: November 11, 2021]

Dedicated to Professor Tibor Czibere on the occasion of his 90th birthday

Abstract. The stochastic turbulence model developed by Professor Czibere provides a
means of clarifying the flow conditions in pipes and of describing the heat evolution caused
by shear stresses in the fluid. An important part of the theory is a consideration of the heat
transfer-diffusion caused by heat generation. Most of the heat is generated around the pipe
wall. One part of the heat enters its environment through the wall of the tube (heat trans-
fer), the other part spreads in the form of diffusion in the liquid, increasing its temperature.
The heat conduction differential equation related to the model contains the characteristics
describing the turbulent flow, which decisively influence the resulting temperature field, ap-
pear. A weak solution of the boundary value problem is provided by Bubnov-Galerkin’s
variational principle. The axially symmetric domain analyzed is discretized by a geomet-
rically graded mesh of a high degree of p-version finite elements, this method is capable
of describing substantial changes in the temperature gradient in the boundary layer. The
novelty of this paper is the application of the p-version finite element method to the heat
diffusion problem using Czibere’s turbulence model. Since the material properties depend
on temperature, the problem is nonlinear, therefore its solution can be obtained by iteration.
The temperature states of the pipes are analyzed for a variety of technical parameters, and
useful suggestions are proposed for engineering designs.

Mathematical Subject Classification: 76F10, 80A19, 65N30
Keywords: Stochastic turbulent flow model, heat diffusion problem, Galerkin method, p-
version finite elements

1. Introduction

In short, the calculation of turbulent flow in a long straight pipe based on the sto-
chastic turbulence model [1–3] will be summarized. In this model, the mechanical
similarity hypothesis was successfully extended to a three-dimensional turbulent flow
by confirming it with experimental results. The model is suitable for investigating
steady-state turbulent flow. An important result is the introduction of the eddy vis-
cosity tensor G instead of the Bousinesq scalar vortex viscosity factor, as well as an
extended interpretation of Prandtl’s length scale lmax. The latter could be derived
using the known dimensional analysis: (l = lmax/κ). Here l is the length scale of
turbulence, and κ is the Kármán constant.

©2021 Miskolc University Press

http://dx.doi.org/10.32973/jcam.2021.008
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This paper does not aim to critically analyze different turbulence models [4–11].
Here, we focus primarily on the approximate solution of the thermal conduction prob-
lem related to Czibere’s turbulence model.

1.1. Fundamental assumptions. For an incompressible fluid flow in the stochastic
turbulence model, the governing equations of the transport of mass, momentum, in-
ternal energy and the turbulent kinetic energy equation are written in direct notation:

∇ · v = 0 , (1)

ρ

(
∂v

∂t
+ (v · ∇) v

)
= ρg −∇p−2

3
ρ∇k + η∆v + Div (ΘG) (2)

ρcp

(
∂T

∂t
+ (v · ∇)T

)
= ∇ · [(λ+ Λ)∇T ] + ρ (ϕD + ε) (3a)

ρ

(
∂k

∂t
+ (v · ∇) k

)
= ΘG : (∇ ◦ v)− ρε−∇ ·

{
Θ3/2t

2ρ1/2κ3
− Ck
κΩ

(Θρk)
1/2

}
+

+ υ

[
5

3
ρ∆k −∇ ·Div (ΘG)

]
, (3b)

where the interpretation of the different quantities can be found in the Nomenclature.
In addition, H and H∗ are the similarity tensor and its deviator of the stochastic
turbulence model, respectively:

H =

 α 1 0
1 β 0
0 0 γ

 , H∗ =

 α∗ 1 0
1 β∗ 0
0 0 γ∗

 ;
α∗ = 1

3 (2α− β − γ)
β∗ = 1

3 (2β − α− γ)
γ∗ = 1

3 (2γ − α− β)

where a2 = − 1
2 (α+β+γ), α = −3.28, β = −1.64, γ = −2.46×v are the three entries of

these tensors, according to Prandtl parameter Ck ≤ 1. Naturally, for fully-developed
turbulent flows, the terms of the time derivatives are omitted in equations (2) and
(3). G, the eddy viscosity tensor, is also defined as G = E ·H∗ ·ET , where E = [Eij ]
is the tensor of the transformation between the natural and the reference coordinate
systems, with ET = [Eji] being its transpose. The elements of the transformation
tensor E are given as:

Ei1 =
1√

1− S2

(
vi
v
−SΩi

Ω

)
, Ei2 =

1√
1− S2

(
vi+1Ωi+2−vi+2Ωi+1

vΩ

)
, Ei3 =−Ωi

Ω

v=
√
v2

1 +v2
2 +v2

3 , Ω=
√

Ω2
1+Ω2

2+Ω2
3, S =

1√
1−S2

(
v1Ω1+v2Ω2+v3Ω3

vΩ

)
,

i = 1, 2, 3
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x1

x2

x3

x3


x2


x1


v



Figure 1. Natural x′1, x
′
2, x
′
3 and reference x1, x2, x3 coordinate sys-

tems [1]

The base vectors of the natural coordinate system are defined by the velocity v and
vortex velocity vector Ω = ∇× v:

e′2 =
v ×Ω

|v ×Ω|
, e′3 = −Ω

Ω
= − ∇× v

|∇ × v|
, e′1 = e′2 × e′3.

Equations (1) to (3) consist of a total of five scalar differential equations. In this differ-
ential equation system there are six unknown functions: (v1, v2, v3, p, T,Θ), therefore
the system (1)-(3) is underdetermined, that is, it needs to be supplemented with one
equation.

The additional differential equation is created considering the following as-
sumptions. Using the definition of the specific turbulent dissipation

ε = υ(v′ ◦ ∇) : (v′ ◦ ∇+∇ ◦ v′)

in case of stochastic turbulence it is written as [1]:

ε = −υκ2
[
a11A

2
1 + a22A

2
2 + a33A

2
3 + 2 (a12A1A2 + a13A1A3 + a23A2A3)

]
,

where v′ is fluctuation of the velocity, and (̄·) is the time-average value,

a11 = 2α+ β + γ, a22 = α+ 2β + γ, a33 = α+ β + 2γ,

a12 = α+ β + γ + 1, a13 = α+ β + γ, a23 = α+ β + γ,

Ai =
1

2κ (ρΘ)
1/2

[
Ei1

∂Θ

h1∂x1
+ Ei2

∂Θ

h2∂x2
+ Ei3

∂Θ

h3∂x3

]
, i = 1, 2, 3.

The π theorem of dimensional analysis states that every physical process can be
outlined by a relationship between a certain number of dimensionless characteristics.
The process of turbulent fluctuation is fundamentally determined by the length scale
l, the absolute value of the vortex vector Ω, the specific turbulent dissipation ε, and
the kinematic viscosity υ of the medium [1]. In view of the above, with the help of
the π theory of dimension analysis, the specific turbulent dissipation ε takes the form
of

ε = CEυ
N ΩN−1

(lΩ)
2(N−1)

= CEκ
2(N−1) η

N

ρ

ΩN−1

ΘN−1
,
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where 1 < N < 3 and CE is a suitably chosen coefficient. The additional differential
equation is obtained by combining the two equations for ε:

a11A
2
1 + a22A

2
2 + a33A

2
3 + 2 (a12A1A2 + a13A1A3 + a23A2A3) =

= −CEκ2(N−2)ηN−1 ΩN−1

ΘN−1
. (4)

As there is no unknown function in this differential equation, it is a good candidate
for supplementing the underdetermined system of differential equations (1) to (3),
forming a one-equation version of the stochastic turbulence model.

The following will address axisymmetric problems for a steady-state turbulent flow,
that is the problems are time-independent.

In the case of fluid flow in a long straight pipe, in the x1, x2, x3 coordinate system,
only the velocity component v1 depends on the radial coordinate x2, and it is different
from zero. In this case, the turbulence length scale l varies only in the radial direction,
and consequently the dominant turbulent shear stress Θ and the turbulent kinetic
energy k also depend only on radial direction: i.e., Θ(x2) and k(x2). However, pressure
and temperature depend on two coordinates: i.e., p(x1, x2), T (x1, x2). After that, the
vortex components are given as follows:

Ω1 = Ω2 = 0, Ω3 = − dv1

dx2
.

Entries of tensor E transforming between the natural and reference coordinate systems
are given as:

E11 = 1, E12 = 0, E13 = 0,

E21 = 0, E22 = −1, E23 = 0,

E31 = 0, E32 = 0, E33 = −1.

The entries of the vortex viscosity tensor G are as follows:

G11 = α∗, G22 = β∗, G33 = γ∗

G12 = G21 = −1, G13 = G31 = G23 = G32 = 0.

This means that in the case of fluid flow in a long straight pipe, the continuity equation
(1) is automatically satisfied; and the equation of linear momentum (2) develops in
this way by neglecting the gravity force in axial direction:

0 = − ∂p

∂x1
+ η

(
d2v1

dx2
+

1

x2

dv1

dx2

)
− dΘ

dx2
− Θ

x2
(5a)

in radial direction:

0 = − ∂p

∂x2
+

(
β∗ −

2a2

3

)
dΘ

dx2
+

Θ

x2
(β∗ − γ∗) (5b)

Deriving (5a) with respect to x1, ∂2p
∂x2

1
= 0 is obtained for the pressure p, and its

solution is given as p(x1, x2) = A(x2) +Bx1 , where constant B can be calculated by

a pressure drop ∆p = p1 − p2, which is measured in length L of the pipe B = −∆p
L ,
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p1 = p(0, x2), p2 = p2(L, x2). Then the momentum equations (5a) and (5b) can be
written in the following form:

η

(
d2v1

dx2
+

1

x2

dv1

dx2

)
− dΘ

dx2
− Θ

x2
= −∆p

L
, (6a)(

β∗ −
2a2

3

)
dΘ

dx2
+

Θ

x2
(β∗ − γ∗) = f

′
(x2). (6b)

Equation (6a) can be reshaped as follows:

η
d

dx2

(
x2
dx1

dx2

)
− d

dx2
(x2Θ) = −∆p

L
x2.

This equation is integrated with respect to x2, and the result is divided by x2:

η
dv1

dx2
−Θ = −∆p

2L
x2 +

C

x2
.

Taking into account that in the middle of the pipe (where x2 = 0) neither dv1/dx2 nor
the dominant turbulent shear stress Θ can be infinitely high, the integration constant
C is zero. Thus the momentum equation (6a) is finally written as follows:

η
dv1

dx2
−Θ = −∆p

2L
x2 (7)

In the case of fluid flow in a long straight pipe, the parameters Ai of equation (4) are
given as follows:

A1 = 0, A2 = − 1

2κ (ρΘ)
1/2

dΘ

dx2
, A3 = 0.

Finally, equation (4) takes the form of:

a22

4κ2ρΘ

(
dΘ

dx2

)2

= −CEκ2(N−2)ηN−1 ΩN+1

ΘN−1

After some manipulations we have the following form:

Θ
N−2

2
dΘ

dx2
= 2ρ

N
2

(
− CEυ

N−1

α+ 2β + γ

)1/2

κN−1Ω
N+1

2 . (8)

It is easy to see that from the point of view of determining the unknown functions v1

and Θ, differential equations (7) and (8) form a closed system. By solving them, the
functions can be numerically determined.

1.2. Preparation for numerical computations. Numerical computations are per-
formed with dimensionless physical variables. The dimensionless counterpart of ve-
locity v1 is the wall friction velocity v∗, which is defined by the viscous shear stress
on the wall τ(R0). The wall friction velocity is obtained as:

ρv2
∗ = |τR0| = η

∣∣∣∣ dv1

dx2

∣∣∣∣
x2=R0

=
∆pR0

2L
, v∗ =

√
∆pR0

ρ2L
,

where R0 is the inner radius of the pipe. The modified Reynolds number is calculated
with the wall friction velocity v∗: Re∗ = v∗R0/υ.
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Introducing the following notations

ξ =
x2

R0
, V (ξ) =

v1

v∗
, H(ξ) =

Θ

ρv2
∗

the momentum transport equation (7) takes the form of

dV

dξ
= Re∗(H − ξ). (9a)

Using the dimensionless parameters in differential equation (7) and substituting them
into equation (9a), the following differential equation is obtained:

dH

dξ
= CH

√
|H − ξ|N+1

HN−2
,CH = 2κN−1 Re∗

√
− CE
α+ 2β + γ

(9b)

where coefficient CH from the numerical experiment is [3]:

CH = 0.157 Re1.528
∗ for Re∗ < 1134, CH = 1.125 Re1.248

∗ for 1134 < Re∗ < 21553,

CH = 446 Re0.418
∗ for 21553 < Re∗

By solving the closed system of differential equations (9a) and (9b), the functions
V (ξ) and H(ξ) can be numerically determined. The boundary conditions at ξ = 0
are defined as:

H(0) = 0, V (0) =
vm
v∗

=
1

κ
ln Re∗+6.0,

where vm is the velocity maximum [3]. Differential equations (9a) and (9b) are solved
by the Runge-Kutta method.

For fluid flows in pipes, the relationship between the Reynolds number Re and its

modified value Re∗ is written as Re∗ =
√

f
2

Re
4 , where

Re =
2vaR0

υ

1√
f

=
1

2κ
√

2
ln
(

Re
√
f
)
− 0.8. (10)

Here va is the average velocity in the pipe section, f is the friction factor in the fluid
flow.

Differential equations (9a) and (9b), like the turbulence model itself, are based
on the already fully formed turbulence condition. They lose their validity in the
viscous boundary layer along the wall because the presence of the wall attenuates the
development of turbulence. Therefore, the slowing effect of the wall on the turbulence
in the pipe flow is represented by the following damping function D̃(ξ):

D̃(ξ) = exp

(
bξ

ξ − 1

)
, b =

3

Re∗
.

Multiplying the solution of differential equation (9b) by this damping function, the
result satisfies also the boundary condition H(1) = 0. Then differential equation (9a)
is solved with the attenuated distribution H(ξ) to determine the function V (ξ). In
order to satisfy the condition V (1) = 0, differential equation (9a) is solved with the
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help of the following multiplicative cutoff function, which makes the solution smooth
in the vicinity of the wall:

Y (ξ) = (Ã1ξ + Ã0)(ξ − 1), ξδ ≤ ξ ≤ 1

where ξδ = 1− 3/Re∗ denotes the location of the fitting; and the coefficients Ã1 and

Ã0 can be calculated as follows:

Ã1 =
V
′
(ξδ)

ξδ − 1
− V (ξδ)

(ξδ − 1)
2 , A0 = V

′
(ξδ)− (2ξδ − 1)Ã1

In case of stationary flow in a long straight pipe, using the divergence of the vector
function f(r):

∇ · f =
1

h1h2h3

(
∂

∂x1
(f1h2h3) +

∂

∂x2
(f2h3h1) +

∂

∂x3
(f3h1h2)

)
and taking into account that h1 = h2 = 1 and h3 = x2 the transport equation for
internal energy (3) will have the form

ρcpv1
∂T

∂x1
=

∂

∂x1

[
(λ+ Λ)

∂T

∂x1

]
+

∂

∂x2

[
(λ+ Λ)

∂T

∂x2

]
+

+
1

x2
(λ+ Λ)

∂T

∂x2
+ ρ (ϕD + ε) , (11a)

where the viscous and turbulent dissipations ϕD and ε are given by the expressions

ϕD = υ

(
dv1

dx2

)2

, ε = −υ a22

4ρΘ

(
dΘ

dx2

)2

.

Let us introduce dimensionless location coordinates s = x1/R0, ξ = x2/R0 and
dimensionless variables

ϕ =
R0ϕD
v3
∗

=
1

Re∗

(
dV

dξ

)2

, ψ =
R0ε

v3
∗

= −α+ 2β + γ

4 Re∗H

(
dH

dξ

)2

, ϑ =
T

T0
,

where T0 is the reference temperature.

The former transport equation of internal energy (11a) with the dimensionless
coordinates and variables is formed as

Pr Re∗ V (ξ)
dϑ

ds
=

1

λ

[
∂λ

∂s
(1 +

Λ

λ
)
∂ϑ

∂s

]
+

1

λ

[
∂λ

∂ξ
(1 +

Λ

λ
)
∂ϑ

∂ξ

]
+

+
∂

∂s

[
(1 +

Λ

λ
)
∂ϑ

∂s

]
+

∂

∂ξ

[
(1 +

Λ

λ
)
∂ϑ

∂ξ

]
+

1

ξ
(1 +

Λ

λ
)
∂ϑ

∂ξ
+ Pr Re∗ Ec(ϕ+ ψ), (11b)

where Pr = ηcp/λ is the Prandtl number and Ec = v2
∗/(cpT0) is the Eckert number.

The ratio of the turbulent and molecular heat conductivity factors Λ and λ is given
as:

Λ

λ
=
cp
λ

κ∗
κ

Θ

Ω
= Pr Re∗

κ∗
κ
H

∣∣∣∣ dξdV
∣∣∣∣ = Pr

κ∗
κ

H

|H − ξ|
The partial differential equation (11b) can be solved for the given initial and boundary
conditions when V (ξ) and H(ξ) are known. The similarity numbers Pr, Re∗, Ec and
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Λ
λ depend on temperature T . An approximate solution of differential equation (11b)
will be proposed in the following.

2. Variational equation of thermal convection-diffusion problems

It should be emphasized that the variational discussion of the convection-diffusion
heat transfer problem of turbulent flow and then its p-version finite element solution
constitute a new contribution part of this work.

At the given average pipe velocity va, the value Ẽc = ν2
a/(cpT0) can be determined

by interpolating cp in Table 1 for a given temperature. According to equation (10),
Re∗ can be calculated, and using equation Re∗ = v∗R0/υ, v∗ will be known. Hence

Ec = v2
∗/(cpT0) and also Ec = Ẽc/(vav∗)

2 can be written.

Let us introduce the following value: C = 1 + Λ
λ .

Rewrite equation (11b) for coordinates x1, x2:

Pr Re∗ V (ξ)
∂T

∂x1

R0

T0
=

1

λ

[
∂λ

∂x1
C
∂T

∂x1

]
R2

0

T0
+

1

λ

[
∂λ

∂x2
C
∂T

∂x2

]
R2

0

T0
+

+
R2

0

T0

∂

∂x1

[
C
∂T

∂x1

]
+
R2

0

T0

∂

∂x2

[
C
∂T

∂x2

]
+

R2
0

T0x2
C
∂T

∂x2
+

+ Pr Re∗ Ec(ϕ+ ψ). (12)

Then performing the derivations, equation (12) takes a new form:

Pr Re∗ V (ξ)
∂T

∂x1

R0

T0
=

1

λ

[
∂λ

∂x1
C
∂T

∂x1

]
R2

0

T0
+

1

λ

[
∂λ

∂x2
C
∂T

∂x2

]
R2

0

T0
+

+
R2

0

T0

{
∂C

∂x1

∂T

∂x1
+
∂C

∂x2

∂T

∂x2
+

1

x2
C
∂T

∂x2
+ C

[
∂2T

∂x2
1

+
∂2T

∂x2
2

]}
+

+ Pr Re∗ Ec(ϕ+ ψ). (13)

Using the Laplace differential operator for the axisymmetric case, the following is
obtained:

Pr Re∗ V (ξ)
∂T

∂x1

R0

T0
=

1

λ

[
∂λ

∂x1
C
∂T

∂x1

]
R2

0

T0
+

1

λ

[
∂λ

∂x2
C
∂T

∂x2

]
R2

0

T0
+

+
R2

0

T0

{
∂C

∂x1

∂T

∂x1
+
∂C

∂x2

∂T

∂x2
+ C(∇2T )

}
+ Pr Re∗ Ec(ϕ+ ψ) (14)

Taking into account the definitions at the beginning of this chapter

Λ

λ
=
cp
λ

κ∗
κ

Θ

Ω
=

Λ

λ
(x1, x2), (15)

this ratio depends on coordinates x1, x2. Therefore the following parameter will also
depend on x1, x2:

C = 1 +
Λ

λ
= C(x1, x2) (16)
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Thus, differential equation (14) is written in a new form

= = =(T ) =

=

{
1

λ

[
∂λ

∂x1
C
∂T

∂x1

]
+

1

λ

[
∂λ

∂x2
C
∂T

∂x2

]
+
∂C

∂x1

∂T

∂x1
+
∂C

∂x2

∂T

∂x2
+ C(∇2T )

}
−

− Pr Re∗ V (ξ)
∂T

∂x1

1

R0
+ Pr Re∗ Ec(ϕ+ ψ)

T0

R2
0

(17)

or which an approximate solution is to be sought. In order to obtain a specific solution
for (17) the following boundary conditions need to be prescribed.

The temperature of the inlet water on boundary Γ1 at x1 = 0 is given as

T = T (x1 = 0, x2) = T0 (18)

The outflow of heat flux is zero

∂T

∂x1
− qFL = 0, qFL = 0 on boundary Γ3 at x1 =∞. (19a)

There is heat transfer on boundary Γ2 in the cylindrical surface x2 = R0:

P = P (T ) =
∂T

∂x2
cx

2
=R0

+
h

λ
[T (x1, R0)− TK ] = 0, (19b)

where TK is the temperature of the environment, h is the heat convection coefficient
(convective heat transfer coefficient).

According to the Galerkin variation principle [12, 13] the weak form of the boundary
value problem is∫

Ω

δT=(T )dΩ +

∫
Γ2

δTP (T )dΓ−
∫

Γ3

δTC(
∂T

∂x1
− qFL)dΓ = 0, (20)

where δT is the variation of the temperature field, which is zero on the boundary Γ1,
δT = 0.

Based on the product derivation rule

[∇δT · C(∇T )] = (∇δT ) · C(∇T ) + δT (∇C) · (∇T ) + δTC
(
∇2T

)
. (21)

Using the Gauss theorem∫
Ω

δTC(∇2T )dΩ=

∫
Γ2+Γ3

δTC(∇T ) · ndΓ−
∫

Ω

{(∇δT ) · C(∇T )+δT (∇C) · (∇T )} dΩ.

(22)

For boundary value problems (17)-(19), the Galerkin principle takes the following
form:∫

Ω

δT

{
1

λ

[
∂λ

∂x1
C
∂T

∂x1

]
+

1

λ

[
∂λ

∂x2
C
∂T

∂x2

]
+
∂C

∂x1

∂T

∂x1
+
∂C

∂x2

∂T

∂x2
+ C(∇2T )−

− Pr Re∗ V (ξ)
∂T

∂x1

1

R0
+ Pr Re∗ Ec(ϕ+ ψ)

T0

R2
0

}
dΩ+

+

∫
Γ2

δT

[
∂T

∂x2
+
h

λ
(T − TK)

]
dΓ−

∫
Γ3

δTC(
∂T

∂x1
− qFL)dΓ = 0. (23)
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Substituting (22) into (23) and using the following relation

δT (∇C) · (∇T ) = δT

[
∂C

∂x1

∂T

∂x1
+
∂C

∂x2

∂T

∂x2

]
(24)

after some manipulations the final variational equation is∫
Ω

{
−δT
λ

[
∂λ

∂x1
C
∂T

∂x1

]
− δT

λ

[
∂λ

∂x2
C
∂T

∂x2

]
+ (∇δT )C · (∇T )+

+ δT Pr Re∗ V (ξ)
∂T

∂x1

1

R0

}
dΩ−

∫
Γ2

δT (1 + C)
∂T

∂x2
dΓ−

∫
Γ2

δT
h

λ
TdΓ =

=

∫
Ω

δT Pr Re∗ Ec(ϕ+ ψ)
T0

R2
0

dΩ−
∫

Γ2

δT
h

λ
TKdΓ +

∫
Γ3

δTCqFLdΓ. (25)

3. Approximation by finite element method

According to the finite element method [14, 15], the temperature field is approximated
in the following form:

T = Nq,
∂T

∂x1
= N,x1q,

∂T

∂x2
= N,x2q. (26)

Here N is the matrix of shape functions, its derivatives are:

∂

∂x1
N = N,x1,

∂

∂x2
N = N,x2

and q is the vector of the unknown parameters. Hierarchical shape functions will be
used in p-version finite elements [14].

In order to discretize functional (25) the following formulae should be evaluated:

∇T =


∂N

∂x1

∂N

∂x2

 =

[
N,x1

N,x2

]
q, (27)

∇T · n =
∂T

∂x1
nx1 +

∂T

∂x2
nx2 =

[
∂N

∂x1
nx1 +

∂N

∂x2
nx2

]
q = Γq, (28)

δqTKq = δqT

(∫
Ω

{[
NT
,x1N

T
,x2

]
C

[
N,x1

N,x2

]
+ Pr Re∗

[
NTVN,x1

] 1

R0

}
dΩ−

−
∫

Ω

NT C

λ

[
∂λ

∂x1
N,x1 +

∂λ

∂x2
N,x2

]
dΩ−

−
∫

Γ2

NT

[
(1 + C)N,x2 +

h

λ
N

]
dΓ

)
q, (29)

δqT f =δqT
(
T0

R2
0

∫
Ω

NT Pr Re∗ Ec(ϕ+ ψ)dΩ−
∫

Γ2

NT h

λ
TKdΓ +

∫
Γ3

NTCqFLdΓ

)
.

(30)
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The stiffness matrix K and the load vector f are produced by Gauss type numerical
integration element by element. In order to evaluate the above expressions the fluid
flow problem should be solved first, and accordingly the values of V , C, ϕ and ψ at
these points are taken. The rest of the parameters are interpolated from Table 1, the
Reynolds numbers can be taken from Figures 25 and 26 as a function of the fluid rate.

Due to arbitrary variation of δq, the following algebraic equation system needs to
be solved:

Kq− f = 0. (31)

Its solution is given as

q = K−1f . (32)

The temperature field is approximated by (26), the material constants are modified
accordingly, then by the repeatedly calculated stiffness matrix K and load vector f ,
equation (26) will be solved successively until the following tolerance has been met
as far as the following inequality:

eT = 100

√∑
i(q

(s)
i )2 −

√∑
i(q

(s−1)
i )2√∑

i(q
(s−1)
i )2

≤ 0.001, (33)

where s is the number of iteration.

4. Numerical results

Let us examine the flow of water in a rigid pipe. The temperature is given at the inlet
edge of the pipe. Our aim is to determine the frictional heat generation caused by
the turbulent flow, which will affect the water temperature. The following questions
can also be examined: How will the temperature change with different heat transfer
parameters, and how will the volume flow rate Q affect the resulting temperature
field? It is also a question whether the solution is sensitive to the diameter of the
pipe, i.e., whether it is significant or not.

Let the reference temperature and the environment temperature be T0 = 373 K
and TK = 293 K, respectively.

Material constants are independent of fluid velocity but depend on the temperature
in the case of water as given in Table 1.

Table 1.

T [◦C] 0 20 100

ρ [kg/m
3
] 1002.28 1000.52 960.63

cp [J/(kgK) 4118 4182 4216

υ = η/ρ [m2/s] 1.788× 10−6 1.116× 10−6 2.94× 10−7

λ [W/(mK)] 0.552 0.597 0.680

Pr 13.369 7.821 1.751
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In the solution process, first the functions V (ξ) andH(ξ) are determined by solving the
fluid flow problem. The viscous and turbulent dissipations depend on these functions:

ϕ =
R0ϕD
v3
∗

=
1

Re∗

(
dV

dξ

)2

, ψ =
R0ε

v3
∗

= −α+ 2β + γ

4 Re∗H

(
dH

dξ

)2

. (34)

Dissipation leads to an increase in the temperature of the fluid. Two cases will be
demonstrated here. Let us take two different pipe diameters (D) with the same flow
rate Q. The results are shown in Figure 2.

a b

Figure 2. Functions V˜ and H along the radius, a) D = 0.1m,
b) D = 0.2 m

It can be seen that around the pipe wall (x2 ∼ R0, ξ ∼ 1 ), both functions change
abruptly, since the heat development is significant there.

Let us consider the pressure distribution. The following equations for the pres-
sure can be obtained by integrating differential equation (5a) using transformation
H(ξ) = Θ/(ρv2

∗) in it.

p̃ (ξ)− p0̃ =
p(ξ)

ρv2
∗
− p0

ρv2
∗

=

(
β∗ −

2a2

3

)
H + (β∗ − γ∗)

∫ ξ

0

1

ξ̃
Hdξ̃ (35a)

p(x1, x2) = A(x2) +Bx1 = p̃ (
x2

R0
)− ∆p

L
x1. (35b)

From Figure 26 at Q = 0.1 m3/s, va = 3.1831 m/s, Reynolds numbers are Re =
570448, Re∗ = 12680 and taking D = 0.2 m, it follows that

v∗ =
Re∗ υ

R
=

12680× 1.116

105
= 0.1415 m/s.

Furthermore

ρv2
∗ = 1000.52× 0.14152 = 20.03

kg

ms2
= 20.03 Pa = 20.03× 10−5 bar.
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Pressure p̃ changes as shown in Figure 3a at p̃ = 1. If p0 > ρv2
∗ then the point (ξ = 0,

p̃ (0) = 1) shifts to a vertically higher position, and the function p̃ (ξ) will be parallel
to the current situation.

Computations are repeated for pipes of D = 0.1m and D = 0.3m, obtaining the
pressure distributions are shown in Figure 3b. For all the three different pipe diam-
eters, the pressures are similar and they increase slightly at the vicinity of the wall.
The larger the pipe diameter, the greater the rate of change ∆p̃ = 1− p̃ (ξ = 1). The
maximum rate of change of pressure with respect to its maximum value is ∼ 0.8(ρv2

∗).

When the friction factor f for the pipe is known, the pressure loss can be calculated
as follows [16]:

∆p = f
L

D

ρ

2
v2
a = 8f

L

D5π2
ρ Q2 [Pa]. (36)

Taking a pipe of D = 0.2m and f = 0.02, the pressure drop for one meter length is

∆p=8f
L

D5π2
ρ Q2 [Pa]=8× 0.02

1

0.25π2
1000.52× 0.12 = 506.87 Pa = 0.0050687 bar.

This means that the pressure drops are 5.068 bar for length L of 1 km, 25.34 bar
for 5 km and 50.68 bar for 10 km, resp.

The supply pressure is determined by the pressure drop along the pipe. For smaller
diameters, its value increases significantly, which will affect the performance of the
pump used.

a b

Figure 3. p̃ (ξ) pressure atp̃ (0) = 1, a) along the radius, b) in the
vicinity of the pipe wall

4.1. Examination of a five kilometer long pipe. If the diameter of the pipe is
D = 0.2m and its length is 5 km, the corresponding finite element mesh is indi-
cated in the figures for temperature. Thin lines that appear for each element corre-
spond to coordinate lines passing through Gaussian (Lobatto) numerical integration
points. The polynomial order of each element is p = 8. The elements applied are
ring elements, which are suitable for describing axially symmetrical relationships.
Small elements were taken to better approximate the flow in the boundary layer
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Figure 4. Resulting temperature distribution at R0 = 0.1 m,
Q = 0.009 m3, h = 7.71 W/(m2K)

a b

Figure 5. Resulting temperature for parameters Q = 0.03 m3/s, h =
2.22 W/(m2K), a) in case of turbulent flow (with heat generation),
b) without heat generation for diameter D = 0.1m

near the edge x2 = R0. The same dense mesh is applied in the direction of the
longitudinal axis at the entry cross-section.

Figures 25 and 26 show flows of fluids Q [m3/s], with average velocity va[m/s], and
the Reynolds number Re depending on the radius R0 of the pipe and the Re∗ number.
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Temperature changes are computed for two different convective heat transfer co-
efficients h [W/(m2K)] and for parameters R0 = 0.1 m, Q = 0.009 m3/s, h =
7.71 W/(m2K), shown in Figure 5. In Figure 6 the temperature of the fluid is shown
in turbulent flow under parameters: R0 = 0.1 m, Q = 0.04 m3/s, h = 2.22 W/(m2K)
with and without frictional heat generation. The length of the pipe is 5000 m. In all
figures temperature T is denoted by θ.

a b

Figure 6. Resulting temperature for parameters Q = 0.04 m3/s, h =
2.22 W/(m2K), a) in case of turbulent flow (with heat generation),
b) without heat generation for diameter D = 0.2m

a b

Figure 7. Temperature distributions in the case of pipe radius R0 =
0.05 m, as a function of volume current Q (-,–) with and without
heat generation (-*,–); a) h = 2.22 W/(m2K), b) h = 7.71 W/(m2K)
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It is very clear that in computations without heat generation, the temperature
changes along the radius of the pipe are significant, and the heat losses along the
length are much greater than in cases of frictional internal heat generation resulting

ba

Figure 8. Temperature distributions in the case of pipe radius R0 =
0.01 m, as a function of volume current Q (-,–) with heat generation,
and for cases without heat generation (-*,–); a) h = 2.22 W/(m2K),
b) h = 7.71 W/(m2K)

from the turbulence. Therefore, turbulence reduces the cooling of the water flowing
in the pipe; the higher the Reynolds number, the smaller the heat loss. It can also
be seen that the value of the heat transfer factor significantly affects the temperature
that develops. The high-efficiency thermal insulation of the pipe is very important
in order to provide the water temperature at the end of the transmission line that is
desired for heating.

Summarizing the computational results, in Figures 7 and 8, at the center of the
pipe x2 = 0, and at the outer radius of the pipe x2 = R0 curves are denoted with (-)
continuous, (–) dashed curves for turbulent flow, resp., while curves (-*) and (-.) are
associated with the case without heat generation. The temperatures are evaluated at
the cross-section points at the end of a pipe section x1 = 5000 m. The higher the
flow rate Q, the less water will cool along the length of the pipe.

4.2. Analyses of pipes with lengths of ten and fifteen kilometers without
heat generation.
4.2.1. Temperature in a ten kilometer long pipe:
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a b

Figure 9. Temperature that develops for a) Q = 0.01 m3, b) Q =
0.006 m3 at D = 0.2 m if h = 2.22 W/(m2K), L = 10 km

a b

Figure 10. Temperature that develops for a) Q = 0.01 m3, b) Q =
0.006 m3 at D = 0.2 m if h = 7.71 W/(m2K), L = 10 km

4.2.2. Temperature in a fifteen kilometer long pipe:

a b

Figure 11. Temperature that develop for a) Q = 0.01 m3, b) Q =
0.006 m3 at D = 0.2 m if h = 2.22 W/(m2K), L = 15 km
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a b

Figure 12. Temperature that develops for a) Q = 0.01 m3, b) Q =
0.006 m3 at D = 0.2 m if h = 7.71 W/(m2K), L = 15 km

4.2.3. Temperature in a twenty kilometer long pipe:

a b

Figure 13. Temperature that develops for a) Q = 0.01 m3, b) Q =
0.006 m3 at D = 0.2 m if h = 2.22 W/(m2K), L = 20 km

a b

Figure 14. Temperature that develops for a) Q = 0.01 m3, b) Q =
0.006 m3 at D = 0.2 m if h = 7.71 W/(m2K), L = 20 km
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Figures 9-14 show the temperature distributions obtained in some of the numerous
cases examined.

Figure 15 shows the temperature for pipe diameter D = 0.1 m for different heat
transfer factors. Figure 16 demonstrates that for a low-value of volume flow rate
Q heat loss is very significant, especially for larger h = 7.71 W/(m2K). For Q =
0.006 m3, the water has practically taken on the temperature of the environment
already at x1 = 10 km distance.

For the larger diameter D = 0.2 m the results are more favorable as regards the
cooling process (see Figure 16), but the cooling of the water will be significant for a
small value of Q. Here the case without heat generation is also indicated. The effect
of heat generation is noticeable. For example with Q = 0.035 m3/s, the temperature
is about 7 ◦C higher at the output cross-section of the pipe than for a non-heat
generation assumption (see Figure 16a, b). The same can also be seen for Q =
0.1 m3/s (see Figure 16c, d).

a

b

Figure 15. Temperature distribution at the edge of a pipe (x2 = R0)
for different Q values if diameter is D = 0.1 m and the pipe length is
L = 20 km, and there is no heat generation, a) h = 2.22 W/(m2K),
b) h = 7.71 W/(m2K)
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a

c d

b

Figure 16. Temperature distribution at the edge of a pipe (x2 = R0)
for different Q values if D = 0.2 m, L = 20 km; a) and c) without
heat generation b) and d) with heat generation

a b

Figure 17. Temperature that develops for Q = 0.1 m3 at D = 0.2 m
if h = 2.22 W/(m2K); a) without heat generation b) with heat gen-
eration
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Figure 17 shows the temperature distribution for values of Q = 0.1 m3 and h =
2.22 W/(m2K). The results obtained for higher h = 7.71 W/(m2K) are shown in
Figure 19.

a b

c d

Figure 18. Temperature distribution at the edge of a pipe (x2 = R0)
for different Q values if D = 0.2 m, L = 20 km; a)c) without heat
generation b)d) with heat generation

As noted above, the higher the velocity of the water, the less it cools down.
Figure 19 shows the temperature distribution for values of Q = 0.1 m3 and h =
7.71 W/(m2K).

We can get an illustrative picture of how the final cross-sectional pipe wall tem-
perature changes as a function of the parameters Q and va depending on the two
heat transfer factors h = 2.22 W/(m2K) and h = 7.71 W/(m2K) (see Figure 20). For
h = 7.71 W/(m2K) , the pipe wall temperature changes will be small above certain
values of Q or va.
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a b

Figure 19. The resulting temperature for parameters Q = 0.1 m3,
h = 7.71 W/(m2K); at D = 0.2 m a) without heat generation b)
with heat generation

a

b

Figure 20. The resulting temperature at the boundary (x2 = R0)
of the cross section x1 = 20 km for parameters h = 2.22 W/(m2K),
h = 7.71 W/(m2K), D = 0.2 m a) as a function of Q b) as a function
of va [m/a]
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Finally, performing the computations for a pipe with a diameter of D = 0.3 m, the
results are shown in Figures 21-24.

c

a b

Figure 21. Temperature distribution at the edge of a pipe with tur-
bulent flow for different Q values for diameter D = 0.3 m and pipe
length L = 20 km; h = 2.22 W/(m2K) with heat generation taken
into account

ba

Figure 22. Temperature distribution obtained with heat generation
for turbulent flow for parameter h = 2.22 W/(m2K), in the case of
diameter D = 0.3 m; a) Q = 0.01 m3, b) Q = 0.1 m3
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a b

c

Figure 23. Temperature distribution at the edge of a pipe with tur-
bulent flow for different Q values for diameter D = 0.3 m and pipe
length L = 20 km ; h = 7.71 W/(m2K) with heat generation taken
into account

4.3. Comparison. The computed temperature results obtained for the same flow
rate Q = 0.1 m3/s but for different pipe diameters D are given in Table 2. Comparing
the temperatures for different diameters the following can be stated: the greater the
diameter, the higher the temperature drop for different values of h.

Table 2.

D [cm] T (x1 = 10) km T (x1 = 20) km

h = 2.22 W/(m2K)
D = 20 [cm] 96.5 93
D = 30 [cm] 95 91

h = 7.71 W/(m2K)
D = 20 [cm] 89 82
D = 30 [cm] 85 74

The longer the pipe, the lower the temperature of the fluid at the end of the
tube, and the slower the flow rate (i.e., Q is small), the greater the loss due to the
heat transfer between the pipe and the environment. In this case, the fluid cools
down significantly (see Figures 18b, 21a, and 23a). As Q increases, the temperature
function T (x1, R0) decreases virtually linearly along the length of the pipe. These
results are consistent with practical, engineering experience.
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ba

Figure 24. The resulting temperature at x1 = 20 km in the boundary
x2 = 20 km for parameters h, D = 0.3 m a) depending on Q. b)
depending on the average velocity va [m/s]

a b

Figure 25. Functions a) for Reynolds number, b) for Re∗ depending
on the flow rate Q of the current for different pipe diameters

a b

Figure 26. Functions a) for Reynolds number, b) for Re∗ depending
on the average velocity va [m/s] of the current for different pipe
diameters
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4.4. Reliability of the FEM computations. It is important to be aware of the
error in the computations presented. A comprehensive analysis of the issue can be
found in [14]. A relatively simple way to do this is to check the accuracy of the
computed boundary conditions. The accuracy of the solution is expressed by the
extent to which the boundary conditions are satisfied. In this aspect, the tests will
be performed below. On the surface we will check the fulfillment of the boundary
condition.

Let us begin with the heat transfer boundary condition on (see (19b)):

− ∂T
∂x2

∣∣∣∣
x2=R0

=
h

λ
[T (x1, R0)− TK ] . (37)

Taking the derivative in the direction y = R0−x2, the following equation is obtained

∂T

∂y

∣∣∣∣
y=0

=
h

λ
[T (x1, R0)− TK ] . (38)

Let us define the following dimensionless quantities

T ∗ =
T − TK

Ty=0 − TK
, y∗ = y/(2R0). (39)

Using them, the heat transfer coefficient can be expressed as

h =
λ

Ty=0 − TK
∂T

∂y

∣∣∣∣
y=0

= λ
Ty=0 − TK
Ty=0 − TK

1

2R0

∂T ∗

∂y∗
=

λ

2R0

∂T ∗

∂y∗

∣∣∣∣
y∗=0

(40)

from which the Nusselt number can be defined [17, 18]

Nu =
h2R0

λ
=
∂T ∗

∂y∗

∣∣∣∣
y∗=0

. (41)

The derivative ∂T ∗/∂y∗|y∗=0 can be calculated from the FEM solution, and on the

other hand, its value h2R0/λ is easy to obtain. The difference between these values
provides a piece of information about the errors of the FEM computations.

A concrete example is taken for turbulent flow without heat generation (see Tem-
perature distribution in Figure 17a). The derivative is evaluated in the section x1 = 20
km.

Using the difference method, the derivative ∂T ∗/∂y∗|y∗=0 = 0.7. The formula

h2R0/λ can be calculated using the interpolation of λ in Table 1:

λ(80 ◦C) = 0.665 W/(m2K).

Then its value
h2R0

λ
=

2.22 ∗ 0.2

0.665
= 0.667.

Finally, the error is

eNu =
0.7− 0.667

0.667
100% ≈ 5%,

which confirms that the solution is fairly good. Similar errors are obtained for the
other solutions as well.
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5. Conclusions

A thermal convection-diffusion problem is investigated based on the turbulence model
developed by Professor Czibere [1–3], which is solved for pipelines by the finite element
approximation method in this paper. High-precision results can be obtained with the
chosen p-version finite elements [12]. The program developed is well suited for flow and
thermal design of pipelines. Using the computer program developed, the computations
can be performed at great speed using the actual geometrical and material data.
The results, i.e., radial and longitudinal distributions of temperature, are displayed
graphically, which helps the designer to consider the effects of the selected diameter
D of the pipe, the flow rate Q, and the heat transfer constant h in order to analyze
the implementation costs of the pipeline.
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Nomenclature

Latin notations
cP special heat at constant pressure [J/(kgK)]
D diameter of the pipe
Ec = v2

∗/(cPT0) Eckert number
f friction factor
h convective heat transfer coefficient [W/(m2K)]
H and H∗ similarity tensor and its deviator
G eddy viscosity tensor
g acceleration due to gravity [m/s2]

k = 1
2 (v′ · v′) = a2(κlΩ)2 = a2Θ/ρ turbulent kinetic energy [m2/s2]

l length scale of turbulence [m]
lΩ velocity scale of turbulence [m/s]
p pressure [Pa]
∆p pressure drop [Pa]
Pr = ηcP/λ Prandtl number
R0 inner radius
Re Reynolds number
Re∗ = v∗R0/υ factor
Q volume flow rate [m3/s]
t time [s]
T absolute temperature [K]
T0 reference temperature [K]
TK temperature of the environment [K]
v velocity vector with components v1, v2, v3 [m/s]
v′ velocity vector for turbulent fluctuations [m/s]
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v∗ wall friction velocity [m/s]
va average velocity [m/s]
x1, x2, x3 coordinates in the computation coordinate system

Greek notations
α, β, γ parameters in H similarity tensor

ε=υ (v′ ◦ ∇) : (v′ ◦ ∇+∇ ◦ v′)=−υα+2β+γ

4ρΘ

(
dΘ

dx2

)2

turbulent dissipation [m2/s2]

η dynamic viscosity [Pa]
Θ = ρ(κlΩ)2 dominant turbulent shear stress [Pa]
κ = 0.407 Kármán constant
κ∗ = 0.47
λ thermal conductivity [W/(mK)]
Λ = ρcPκκ∗l

2Ω turbulent thermal conductivity [W/(mK)]
υ = η/ρ kinematic viscosity [m2/s2]
ρ density of the fluid [kg/m3]

ϕD = υ (v ◦ ∇) : (v ◦ ∇+∇ ◦ v) = υ

(
dv1

dx2

)2

viscous dissipation [m2/s3]

φ =
RφD
v3
∗

=
1

Re∗

(
dV

dξ

)2

function for modified viscous dissipation [m2/s3]

ψ =
Rε

v3
∗

= −α+ 2β + γ

4 Re∗H

(
dH

dξ

)2

function for modified turbulent dissipation [m2/s3]

Ω = ∇× v vortex vector [1/s]
|Ω = ∇× v| absolute value of the vortex vector [1/s]

Dimensionless quantities

H(ξ) =
Θ

ρv2
∗

V (ξ) =
v1

v∗

ϑ =
T

T0

ξ =
x2

R
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Abstract. This work presents a comparative study of Unsteady Reynolds–Averaged Navier–
Stokes (URANS), Detached Eddy Simulations (DES) and Delayed Detached Eddy Simula-
tions (DDES) turbulence modeling approaches by performing numerical investigation with
the ANSYS-FLUENT software package on a full-scale model of the Jetstream 31 aircraft.
The lift and drag coefficients obtained from different models are compared with flight test
data, wind tunnel data and theoretical estimates. The different turbulence models are also
compared with each other on the basis of pressure coefficient distributions and velocity fluc-
tuations along various lines and sections of the aircraft. For the mesh and the conditions
presented in this study, the DDES Spalart–Allmaras model gives the best overall results.
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Keywords: Jetstream 31, URANS, DES, DDES, Transient Computational Fluid Dynamics

1. Introduction

For advanced unsteady turbulence modeling, computational science and high perfor-
mance computing have now become indispensable. Although Computational Fluid
Dynamics (CFD) and Finite Element Analysis (FEA) cannot fully replace the ex-
perimental testing, it can undoubtedly expedite and complement the experimental
results if done with the proper knowledge. Due to the advancements in the perfor-
mance of the Graphics Processing Unit (GPU) and Central Processing Unit (CPU)
performances, it is now possible to perform the transient simulations on a full-scale
model of an aircraft using the turbulence technique of Detached Eddy Simulation
(DES) and Delayed Detached Eddy Simulation (DDES) in a relatively short time. In
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this study, the results from Unsteady Reynolds-Averaged Navier Stokes (URANS),
DES and DDES simulations over Jetstream 31 aircraft are compared with the flight
test data and wind tunnel results.

Parker [1] developed a Computer-Aided Design (CAD) model of the Jetstream 31
aircraft by scanning a tenth scaled 3D model, which was used to perform experimental
tests in the wind tunnel. In 2008, Leung [2] used this geometry to perform a CFD
simulation around the aircraft baggage pod to perform a structural analysis and ob-
tain aerodynamic loads. However, it was not until 2012 that the whole Jetstream 31
aircraft was simulated by Vessot [3] without taking into account the propeller effects.
The relative difference was 15-20% between simulation results and flight test data
provided by the National Flying Laboratory Centre (NFLC) at Cranfield University,
but the study could not predict the maximum lift coefficient CCLmax correctly. Si-
multaneously, Hodara [4] developed a User-Defined Function (UDF) for simulating
the propeller of a half Dornier-228-101 aircraft model using an actuator disk based on
the general momentum theory. Then, in 2013, Le Pajolec [5] took advantage of the
previous studies to introduce the propeller effects into the full Jetstream 31 aircraft
simulation. Le Pajolec [5] used the blade element momentum theory for the propellers
and obtained less accurate results than the previous studies had. The results showed
an improvement in the lift coefficient values but lower agreement in the drag coeffi-
cient. The following year, Jacques [6] and Lawson et al. [7] studied four configurations
of the aircraft: without a propeller, with two engines, and without the left and right
propeller. A hybrid mesh convergence was studied, and the lift coefficient CL and
drag coefficient CD were predicted within a 5-16% of error with respect to the flight
test data. In addition, the propeller-wing interference was analyzed by plotting span-
wise and chordwise pressure distributions. In 2016, Fayyad [8] studied seven flight
conditions including the propeller effects with the general momentum theory. The
study analyzed drag, lift, slipstream velocity, velocity jump and propeller efficiency.
Moreover, a preliminary study was carried out on Multiple Rotating Frames (MRF)
and Sliding Mesh Models (SMM) with two types of meshes. In the same year, Zhu
[9] used a feathered propeller designed in CATIA software and simulated in ANSYS-
FLUENT R19.1 to compare the results with the general momentum theory. Finally,
in 2017, Casadei et al. [10] focused on the analysis of the Jetstream 31 without
one engine. Different angles of attack and sideslip were studied using a steady-state
RANS and transient DES Realizable k − ε model with an unstructured mesh with 6
million elements. A grid convergence study was performed and the relative difference
was between 2-16%. Furthermore, lift, drag and moment coefficients with different
control surfaces were compared.

In most previous studies, the CFD of the full Jetstream 31 aircraft was based on
steady-state RANS simulations and in one study simulations were performed with
DES Realizable k − ε. This study performs transient simulations of the Jetstream
31 aircraft using URANS, DES, and DDES modeling approaches on an unstructured
grid and compares the performance of each technique with fight data, wind tunnel
tests and theoretical estimates.
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2. Methodology

2.1. Governing equations. In the present work, the numerical investigations on the
Jetstream 31 aircraft are performed using ANSYS-FLUENT R19.1. The governing
equations as used in ANSYS-FLUENT R19.1 for unsteady, viscous and compressible
flow are provided in equations (2.1 to 2.3). In URANS simulations, the standard k−ε
[11], Realizable k− ε [12], Renormalization Group (RNG) k− ε [13], and Shear Stress
Transport (SST) k − ω [14] models are used for the turbulence closure. Another tur-
bulence modeling approach used in this study is Detached Eddy Simulation (DES),
where the URANS approach is used in the boundary layer and Large-Eddy Simula-
tion (LES) is used after massive separation within a single formulation. An essential
requirement for DES is that the grid space should be of LES quality, otherwise, it
will produce results mixing URANS and LES components. A problem arises while
using DES for meshes with high aspect ratios in the boundary layer, as this generates
grid-induced separation due to an activation of the DES limiter in the URANS re-
gion. To overcome this, Delayed DES (DDES) approach is used, which preserves the
RANS model throughout the boundary layer. The main idea of DDES is to include
the molecular and turbulent viscosity information into the switching mechanism to
delay this switching in boundary layers. In the present work, the DES with Spalart–
Allmaras as proposed by Shur et al. [15] and DES with standard k − ε are also used
for the turbulence closure. The mass, momentum and energy conservation equations
can be written as follows:

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

∂(ρu)

∂t
+∇ · (ρu⊗ u) = ρg −∇p+∇ · τ , (2.2)

∂E

∂t
+∇ · [(E + p)u] = −∇ · q +∇ · (u · τ), (2.3)

where t is the time, ρ is density of the fluid, u is the velocity vector, g is the gravity
vector, p is the pressure field, τ is viscous stress tensor, E is the total energy and ~q is
the heat flux vector, respectively.

2.2. Geometry. The CAD model of the Jetstream 31 aircraft was developed by
Parker [1], using a 3D non-contact scanning process. It is generated using a scanned
version of the Cranfield Jetstream 31 tenth-scaled wind tunnel model. The geometrical
differences between the actual aircraft and the model are highlighted in Table 1.

These minor differences in geometry will contribute to the differences in actual
flight test data and the CFD results. Therefore, to have a more accurate compar-
ison, the results from the wind tunnel and theoretical prediction of Cooke [16] will
be considered. The theoretical predictions are performed using the airfoil section of
the Jetstream 31 aircraft, which is similar to NACA 63A412. The drag polar and the
lift curve slope results of flight test data, wind tunnel and theoretical predictions are
provided in Table 2, where the angle of attack is in degrees.
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Table 1. Geometrical differences between actual aircraft and CAD model

Aircraft section CAD model Aircraft
Aircraft length 14.31 m 14.36 m
Wing span 15.83 m 15.85 m
Wing tip chord 0.830 m 0.790 m
Wing surface 25.60 m2 25.08 m2

Aspect ratio 9.79 10.0
Tail span 6.61 m 6.60 m
Tail tip chord 0.653 m 0.686 m
Fin tip chord 0.844 m 0.889 m

Table 2. Lift curve slope and drag polar from various techniques

Lift Curve Slope Drag Polar
Flight test data CL = 0.1031α+ 0.3393 CD = 0.0587C2

L + 0.0374

Wind tunnel results CL = 0.0939α+ 0.1601 CD = 0.0543C2
L + 0.0287

Theoretical estimates [16] CL = 0.0980α+ 0.2622 CD = 0.0927C2
L + 0.0305

Table 3. Extracted section locations on CAD model

Section number Dimensionless Dimensional
location location

Section 1 ±0.18 ±1.695 m
Section 2 ±0.29 ±2.730 m
Section 3 ±0.38 ±3.578 m
Section 4 ±0.64 ±6.025 m
Section 5 ±0.80 ±7.532 m
Section 6 ±0.99 ±9.321 m

Furthermore, the different turbulence modeling techniques are compared on the
basis of pressure coefficient distributions at the different sections mentioned in Table
3 and represented in Figure 1. The root-mean-square (RMS) fluctuating velocity
profiles of different techniques are also compared at different lines represented in
Figure 1. Line 1 provides the velocity fluctuations in the wake of the propeller,
Line 2 gives the velocity profile over the wing surface, Line 3 provides the velocity
fluctuations in the wing-tip vortex region, and Line 4 provides the results on the
horizontal stabilizer.

2.3. Mesh. In this work, the mesh used by Lawson et al. [7] and Casadei et al.
[10] is used for the numerical investigations. The adopted mesh is an unstructured
hybrid mesh that is generated by ICEM-CFD software. The outer domain consists of
a cylinder with upstream and downstream surfaces placed at ten fuselage lengths and
a radius of 5 fuselage lengths. These dimensions ensure that the boundary conditions
so not interfere with the flow in the aircraft proximity as well as to be able to capture
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Figure 1. Location of each extracted surface on the Jetstream 31 aircraft

the wake. The front view and side view of the mesh is shown in Figures 2 and 3
respectively. The mesh has a y+ value of approximately 40 as a maximum limit and
when extruding the prism layer, the growth ratio and number of layers have been
chosen in order to have a total layer thickness equal to approximately 20% of the
boundary layer thickness [7, 10]. The grid convergence study of this mesh has already
been performed by Lawson et al. [7], and Casadei et al. [10].

Figure 2. Mesh front view

Figure 3. Mesh side view

2.4. Solver settings. The transient simulations are performed using an implicit for-
mulation of a density based solver with the Roe-Flux Difference Splitting (Roe-FDS)
Riemann solver. The spatial discretization is performed using the second-order Up-
wind scheme, and the gradients are calculated using the Green–Gauss node-based
method. The time step size of 0.01s is used, and a factor of 0.25 is used for the
higher-order term relaxation of the flow variables. The pseudo-transient and the
wrapped face gradient corrections are not used for the simulations. Note that the
discretization of the governing equations uses a first-order scheme and additional
terms to employ higher than first-order approximations in the ANSYS-FLUENT en-
vironment. Therefore, the use of higher-order term relaxation is recommended for
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transient flow simulations to accelerate convergence of the numerical solution [17].
Finally, the discretization of the turbulent kinetic energy and the specific dissipation
rate is done using the QUICK scheme (Quadratic Upstream Interpolation for Con-
vective Kinematics). The propellers are modeled through the use of User-Defined
Functions (UDFs) in C programming language using the General Momentum Theory
(GMT) [7, 10].

2.5. Boundary conditions. The boundaries of the computational domain are de-
fined with the Robin boundary conditions with pressure farfield conditions. In this
study, the air enters the inlet with the density of 0.99356 kg/m3 at a Mach num-
ber of 0.3012 at an angle of 1.9o. This Mach number is near the compressibility
limit and results in a velocity of 99.93 m/s. The angle of attack is modeled by giv-
ing the x-component of velocity as 99.87 m/s and the z-component of velocity as
3.42 m/s. The temperature at the inlet is set to be 274.15 K, and the dynamic vis-
cosity is 1.7894× 10−5 kg/(ms). These parameters result in the Reynolds number of
9.55×106. Where required, the turbulence intensity is set to be 2%, and the turbulent
length scale is estimated as about one-fifth of the characteristic length scale, which
comes out to be 0.344m. The wall is defined to be made of aluminum as a stationary
wall with a no-slip condition using a smooth wing surface in the ANSYS-FLUENT
environment [17]. Aluminum has been used, because its properties are the closest to
aircraft skin and the wind tunnel test model [7, 10].

3. Results and Discussions

The simulations are performed on Cranfield University’s high-performance computer:
CRESCENT, with ANSYS-FLUENT R19.1 using 64 CPU cores along with a GPU,
which takes advantage of CUDA-enabled GPU using AmgX as its default linear solver.
On an average it took up to 48 hours to complete one DES simulation and up to 40
hours for one URANS simulation.

3.1. Coefficients of lift and drag. Using the drag polar and lift curve slope from
Table 2, the lift coefficient for the flight test data is 0.5352, the wind tunnel is 0.3385,
and the theoretical estimate is 0.4484. Similarly, the drag coefficient for the flight
test data is 0.0542, the wind tunnel is 0.0349, and the theoretical estimate is 0.0491.
The lift coefficient obtained from various unsteady simulations is presented in Table
4 and the drag coefficient is presented in Table 5. The CFD results show significantly
large relative differences when compared with the wind tunnel data. This is due to
the fact that the model used in wind tunnel simulations did not have the propellers
and was scaled to the tenth of the original aircraft. The scaling effect is the cause
for high relative differences in CD while not having propellers is the cause for high
relative differences in CL. These measuring errors are specific to the wind tunnel used
and usually depend on its geometrical size. The differences between computational
and wind tunnel data which are related to the scaling effects are classified in three
parts: geometric model fidelity, pseudo-Reynolds effects and the fact that actual flight
Reynolds number is generally difficult to achieve accurately. A detailed discussion of
these effects are provided by Pettersson et al. [18].
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Table 4. Relative differences in lift coefficient

Model CL ∆CL w.r.t ∆CL w.r.t ∆CL w.r.t
CFD Flight test data Wind tunnel Theoretical

URANS k − ε 0.4338 -18.94% +28.15% -3.25%
URANS RNG k − ε 0.4142 -22.61% +22.36% -7.63%
URANS Realizable k − ε 0.4282 -19.98% +26.49% -4.51%
URANS SST k − ω 0.4256 -20.47% +25.73% -5.08%
DDES Spalart–Allmaras 0.4433 -17.17% +30.96% -1.14%
DDES k − ε 0.4141 -22.62% +22.33% -7.69%
DES k − ε 0.4088 -23.62% +20.76% -8.83%

Table 5. Relative differences in drag coefficient

Model CD ∆CD w.r.t ∆CD w.r.t ∆CD w.r.t
CFD Flight test data Wind tunnel Theoretical

URANS k − ε 0.0532 -1.84% +52.44% +8.35%
URANS RNG k − ε 0.0415 -23.46% +18.91% -15.47%
URANS Realizable k − ε 0.0475 -12.36% +36.11% -3.25%
URANS SST k − ω 0.0418 -22.87% +19.77% -14.86%
DDES Spalart–Allmaras 0.0445 -17.89% +27.51% -9.37%
DDES k − ε 0.0411 -24.17% +17.76% -16.29%
DES k − ε 0.0409 -24.54% +17.19% -16.70%

The CFD results still show significant differences compared to flight test data,
although now much less than the wind tunnel data. These relative differences can
be attributed to the geometrical difference between the CAD model and the original
aircraft. Moreover, in CFD analysis, the intake, cooling system and the exhaust of
the propulsion system are not modelled. In the CFD analysis, the surface is a clean
surface without any rivets or joints, which is not the case in the actual flight. Due
to these factors, there are differences in the CL and CD values of CFD and flight
test data. The relative differences in CFD results are minor when compared with the
theoretical estimates of Cooke [16], with URANS Realizable k − ε model and DDES
Spalart–Allmaras model showing the best predictions of CL and CD. The better
performance of these models was expected for these coefficients, as these models are
good in predicting flow conditions far from the boundary layer and thus had better lift
and drag predictions. The results of DDES k−ε and DES k−ε could be improved with
grid refinement in the region far from the boundary layer. In terms of mesh refinement
in the region far from the boundary layer in the DES and DDES simulations, LES
mode is activated in the region far from the boundary layer, where results can be
improved by refining the grid spacing. Note that the grid refinement can improve the
results in the RANS/LES transition region in general. In the cases of DDES k−ε and
DES k − ε modelling approaches, the grid refinement may improve the performance
of these models in the region far from the wall, because their model constants are
tuned for capturing fluid flow physics in the near wall region. On the other hand,
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the DDES Spalart–Allmaras model is an engineering turbulence model, which was
specifically developed for aerospace applications. Its model constants are calibrated
with the Spalart–Shur correction to achieve the best performance in the region far
from the boundary layer. This can be the reason why the grid refinement is not
necessary when the DDES Spalart–Allmaras turbulence modelling approach is used
in the region far from the wall.

3.2. Flow analysis. Figure 4 represents the pathlines colored with Mach number
contours for the simulation carried using the DDES Spalart–Allmaras model. Fur-
thermore, Figure 5 represents the Q-criterion of the simulation at the final time step,
which is very helpful in identifying regions of high vorticity. The numerical simulation
is able to clearly capture the wing-tip vortices and the vortices created in the wake of
the propeller. It is also evident that a nearly elliptical lift distribution exists over the
wing. Moreover, at the current angle of attack, the flow over horizontal and vertical
stabilizers is unhindered by the wake of the wing, thereby highlighting that complete
aerodynamic control can be achieved by the elevator and rudder.

Figure 4. Pathlines coloured with Mach numbers for DDES Spalart–
Allmaras model

3.3. Pressure coefficient distribution. Figures 6 to 11 represents the pressure
coefficient distributions obtained from different turbulence models for the different
sections. It is evident from the plots that the peak in −CP values decreases from
wing-root to wing-tip. The difference in pressure between the lower and upper surfaces
decreases from wing-root to wing-tip as well. These observations highlight that the
lift distribution on the wing is nearly elliptical. All the turbulence models show
similar values of the pressure coefficient with an exception near the trailing edge of
the wing in Sections 3 to 5. It is important to note that an appropriate selection
of the turbulence model and the mesh density plays a key role together, especially
for hybrid turbulence modeling, because there are no general recipes about how to
select them. A possible way is to make a reasonable assessment on both of them and
perform grid refinement and parametric studies for the investigated physical problem.
Casadei et al. [10] performed a systematic grid convergence study for the Jetstream
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Figure 5. Q-criterion results for DDES Spalart–Allmaras model

31 aircraft which is used in this work and we performed additional simulations.

Since the URANS Realizable k − ε model and DDES Spalart–Allmaras gave the
best CL and CD predictions, these will be used as a baseline for calculating the L2
norm of the difference. The L2 norm of the difference between URANS Realizable
k − ε and DDES Spalart–Allmaras at Section 1 is 3.23% and at Section 6 is 1.82%.
The L2 norm of the difference between URANS Realizable k − ε and DES k − ε at
Section 1 is 3.37% and at Section 6 is 3.52%. The L2 norm of the difference between
URANS Realizable k − ε and DDES k − ε at Section 1 is 2.75% and at Section 6
is 3.31%. Similarly, the L2 norm of the difference between DDES Spalart–Allmaras
and URANS Realizable k − ε at Section 1 is 1.91%. Evidently, there is not much
difference between the CP distributions of different turbulence models in Section 1
and Section 6. However, the differences are more apparent near the trailing edge of
the wing in Section 2 to Section 5. As Section 2 and Section 3 lie in the wake of the
propeller, some oscillations in the CP values are clearly visible.

3.4. Root-Mean-Square (RMS) velocity distribution. The method of comput-
ing the Reynolds stress tensor for calculating the turbulent (eddy) viscosity is different
for the different turbulence models, thus yielding different velocity fluctuations. Since
the time average of these fluctuations is zero, an effective way to examine these is by
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Figure 6. Comparison of
pressure coefficients for
Section 1

Figure 7. Comparison of
pressure coefficients for
Section 2

Figure 8. Comparison of
pressure coefficients for
Section 3

Figure 9. Comparison of
pressure coefficients for
Section 4

calculating the RMS of fluctuating velocities for the different turbulence models.
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Figure 10. Comparison
of pressure coefficients
for Section 5

Figure 11. Comparison
of pressure coefficients
for Section 6

Figure 12. Comparison
of RMS fluctuating
velocity profile at Line 1

Figure 13. Comparison
of RMS fluctuating
velocity profile at Line 2

Figure 12 compares the fluctuating velocity profiles in the wake of the propeller
(Line 1 ). As expected, each model captures the fluctuations differently. The URANS
RNG k−ε model has the capability to capture rapidly strained flows and outperforms
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Figure 14. Comparison
of RMS fluctuating
velocity profile at Line 3

Figure 15. Comparison
of RMS fluctuating
velocity profile at Line 4

other models in the region as this region is greatly influenced by vortex formation.
The DDES Spallart Allmaras model also captures high fluctuations, while the other
models also fairly capture fluctuations with a similar pattern. The L1 norm of the
difference of the fluctuations between DDES Spallart Allmaras model and URANS
RNG k − ε model is 14.06%. Figure 13 compares the fluctuating velocity profiles in
the centre of the wing (Line 2 ). Due to the almost uniform flow, the DDES Spallart
Allmaras model and URANS k− ε model are able to capture higher fluctuations than
other models. Figure 14 compares the fluctuating velocity profiles at wing-tips (Line
3 ). Again, the DDES Spallart Allmaras model is able to capture higher fluctuations,
while the URANS Realizable k − ε model gives the smaller value of the fluctuations.
Figure 15 compares the fluctuating velocity profiles at the horizontal stabilizer of the
Jetstream 31 aircraft (Line 4 ). The flow in this region is partially affected by the
wake of the propeller and is unaffected by the wake of the wing. As a result, all the
models capture the fluctuations in the same range.

4. Conclusions

This paper presented transient simulations of a full-scale Jetstream 31 aircraft using
URANS, DES and DDES turbulence modeling approaches. It was found that the lift
and drag coefficients obtained from CFD are much closer to the theoretical estimates
of Cooke [16] than the results of the flight test or wind tunnel data. The difference
between CFD and wind tunnel results is attributed to the scaling effects and absence of
a propeller in the wind tunnel model. On the other hand, the difference between CFD
results and flight test data are attributed to the minor geometrical difference between
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the CAD model and original aircraft, and the absence of modeling of various elements
of the propulsion system. Therefore, in order to reduce the error between CFD results
and flight test data, the simulation setup should include effects like surface roughness,
intake and exhaust of propulsion system and so on. The inclusion of these models will
increase computational time, but this will be offset by advancements in computing.
These results highlight that although there are some differences between CFD results
and flight test data, the detailed flow characteristics obtained from CFD certainly
help in optimizing the design and reducing the overall development cost of any new
design project.

For the mesh and the conditions presented in this study, the DDES Spalart–
Allmaras model gives the best overall results with the highest accuracy of lift co-
efficient, the relatively good performance in the drag coefficient, and consistently
capturing the fluctuations in the velocity. The results from the DDES k − ε model
and DES k−ε model were not that satisfactory. However, the results from these mod-
els will surely be improved by refining the mesh in the region far from the boundary
layer. Finally, all turbulence approaches used in this study provided almost the same
pressure coefficient distribution with a slight exception near the trailing edge of the
wing.

Acknowledgements. This research work was financially supported by the Centre for
Computational Engineering Sciences at Cranfield University under project code EEB6001R.
We would like to express a special thanks to Professor Nicholas Lawson, former Head of the
National Flying Laboratory Centre (NFLC) at Cranfield University, for providing the flight
test data. Furthermore, we would like to acknowledge the IT support for using the High
Performance Computing (HPC) facilities at Cranfield University, UK.

References

1. R. Parker. “Investigation and development of a 3D non-contact scanning process
for CFD model generation.” Ph. D. Dissertation. Cranfield University, 2006.

2. C.W.E. Leung. “CFD Modelling of the fluid flow around a BAE Systems Jet-
stream 31 Equipment Pod.” M. Sc. Dissertation. Cranfield University, 2008.

3. C. Vessot. “CFD Aerodynamic Model of the Jetstream 31.” M. Sc. Dissertation.
Cranfield University, 2012.

4. J. Hodara. “Computational 3D modelling of propeller effects on the boundary
layer of a Dornier Fo-228.” M. Sc. Dissertation. Cranfield University, 2012.

5. M.L. Pajolec. “Investigation of propeller theories on BAE Jetstream 31 CFD
model.” M. Sc. Dissertation. Cranfield University, 2013.

6. H. Jacques. “Simulation of propeller effects on the Jetstream 31 Aircraft.” M.
Sc. Dissertation. Cranfield University, 2014.

7. N.J. Lawson, H. Jacques, J.E. Gautrey, A.K. Cooke, J.C. Holt, and K.P. Garry.
“Jetstream 31 national flying laboratory: Lift and drag measurement and mod-
elling.” Aerospace Science and Technology, 60, (2017), pp. 84–95. doi: 10.1016/
j.ast.2016.11.001.

8. K.A.A. Fayyad. “CFD Analysis of propeller effects on Jetstream 31.” M. Sc.
Dissertation. Cranfield University, 2016.

https://doi.org/10.1016/j.ast.2016.11.001
https://doi.org/10.1016/j.ast.2016.11.001


172 H. Chaudhary, N. Ledos and L. Könözsy
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