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Csaba HŐS, Department of Hydraulic Machines, Bu-
dapest University of Technology and Economics,
Hungary, hoscsaba@vizgep.bme.hu
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Srboljub SIMIĆ, Department of Mathematics and In-
formatics, University of Novi Sad, Serbia,
ssimic@uns.ac.rs

Jan SLADEK, Institute of Construction and Archi-
tecture, Slovak Academy of Sciences, Slovakia,
usarslad@savba.sk
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Krzysztof WIŚNIEWSKI, Polish Academy of Sci-
ences, Institute of Fundamental Technological
Research, Poland, kwisn@ippt.pan.pl

COPY EDITOR
Robin Lee NAGANO, Institute of Modern Philology, University of Miskolc, Hungary,

HONORARY EDITORIAL ADVISORY BOARD MEMBERS
Tibor CZIBERE, Institute of Energy Engineering and Chemical Machinery, University of Miskolc, Hungary
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Abstract. Due to technological advancement, as materials with complex structures (e.g.,
metamaterials and foams) appear in practice there is a need to develop advanced thermal
models. These are called non-Fourier equations, and all have particular mathematical prop-
erties differing from the conventional attributes of Fourier’s law. The present paper discusses
the thermodynamic origin of non-Fourier equations and their consequences. The second law
of thermodynamics influences the relations among the material parameters, and therefore, it
restricts how the temperature-dependent properties can be included in the model. Further-
more, we present the properties of initial and boundary conditions, since these are crucial in
solving any practical problems and are different from the usual interpretation used for the
Fourier equation.

Mathematical Subject Classification: 35B30, 35B09, 35E20
Keywords: generalised heat conduction, nonequilibrium thermodynamics, nonlinearities

1. Introduction

In engineering practice, continuum models are used to describe the behaviour of fluids
and solids in space and time, usually utilising a finite element method. These software
consist of knowledge about all the classical equations for fluid flow, solid mechanics
and heat transfer. While this is suitable in numerous situations, there are cases in
which these conventional methods are not applicable, such as the thermal modelling
of thin layers [1, 2] and heterogeneous materials [3, 4, 5]. These, in general, can be
described with advanced models in which the classical Fourier equation is extended
with new space and time derivatives, forming the so-called non-Fourier models [6, 7].

Fourier’s law prescribes a proportionality between the heat flux and the tempera-
ture gradient. That relation eases the initial and boundary conditions definitions as
showing a straightforward connection between the field variables. However, this is not
the case for non-Fourier equations. The Fourier constitutive equation is exchanged
with a (partial) differential equation, thus modelling a significantly more complex
relationship between the heat flux and temperature gradient. This generalisation has
far-reaching consequences in the mathematical treatment of heat equations.

c©2022 Miskolc University Press
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Therefore, this paper aims to present the aforementioned essential consequences
related to initial and boundary conditions. Furthermore, we also present a less-
known attribute that becomes crucial for nonlinearities: the functional dependence
of the coefficients. These together are the most common aspects needed for engineers
in the problem-solving procedure. It is challenging to obtain physically sound and
reliable solutions without clarifying these properties.

In what follows, we begin with the thermodynamic background, from which it
becomes visible how the coefficients in the equations (interpreted as material param-
eters) are connected. After that, we place our focus on the initial and boundary
conditions by presenting the critical steps in the solution method.

2. Thermodynamics of heat equations

While the approach of Classical Irreversible Thermodynamics (CIT) [8] was suc-
cessful, it turned out that its basic hypothesis about local equilibrium is a substan-
tial restriction, and therefore other ways must be discovered for the description of
non-equilibrium phenomena. Thus numerous thermodynamic approaches have been
developed in recent decades, such as Extended Irreversible Thermodynamics (EIT)
[9, 10], Rational Extended Thermodynamics (RET) [11], GENERIC [12, 13] and the
framework of internal variables [14, 15, 16, 17, 18]. Each approach has its specific
advantages and disadvantages, depending on the particular problem. For instance,
RET is better for rarefied gaseous materials but cannot be used for macroscale solids
at room temperature. GENERIC is helpful in constructing numerical methods, and
EIT fits best for low-temperature (< 20 K) problems.

For our purpose, the approach of internal variables is the best option as this theory
does not restrict the model either to rarefied or low-temperature states. In that sense,
it is more general than the other thermodynamic theories, since this approach does
not necessarily introduce variables with strict physical interpretation. It restricts
the tensorial order of the variable and fixes how that variable contributes to the
potential functions entropy and internal energy, but leaves open its exact physical
meaning, being understood as an ‘internal degree of freedom’. For our purpose,
that freedom is not necessary, and to obtain compatibility with EIT, that internal
variable can be identified as the heat flux, thus it is a non-equilibrium contribution
to the heat conduction process. We focus on two non-Fourier heat equations in the
following. These are the Maxwell-Cattaneo-Vernotte (MCV) [19, 20] and Guyer-
Krumhansl (GK) [21] equations. These are the most common models in the non-
Fourier literature. The GK equation seems to be the next reasonable and practically
important extension of Fourier’s law due to its advantageous properties [22]. For the
detailed derivation, we refer to the work of Fülöp and Ván [23, 24]; here we show only
the essential steps and outcomes.

2.1. Fourier equation. The derivation of constitutive equations - such as Fourier’s
law - is based on the balance of entropy density s. In CIT, s depends only on the
specific internal energy e. Together with the entropy density current Js = q/T (with
T is the temperature and q is the heat flux), it is possible to determine the entropy
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production (σs) using the balance equation,

ρṡ+∇ · Js = σs ≥ 0, (2.1)

where the upper dot represents the time derivative and ∇· stands for the divergence.
Eq. (2.1) mathematically forms the second law of thermodynamics for continuum
systems [25]. It is a balance equation for entropy density, which is a concave potential
function of e, thus having a maxima at the equilibrium. The entropy production
σs appears as a source term, and that must be positive semi-definite, σs = 0 only
in equilibrium for dissipative phenomena. Mathematically, the solution of σs ≥ 0
results in the constitutive relations. Interestingly, while infinitely many solutions are
possible [28], mostly the linear solutions are investigated as they are simple enough
to understand, interpret and implement in practice. To obtain Fourier’s law, after
substitution, (2.1) leads to the Onsagerian equation [26, 27],

σs = q · ∇ 1

T
≥ 0, (2.2)

for which we choose a linear solution,

q =
l

T 2
∇T = −λ∇T = −λ gradT. (2.3)

This is called Fourier’s law, and the thermal conductivity λ is naturally formed by
a positive coefficient l > 0 to satisfy the inequality’s positive semi-definiteness. The
calculation of entropy production requires the balance of internal energy e,

ρė+∇ · q = 0, (2.4)

in which we neglected the volumetric heat sources, and e = cT is considered with
c being the isochoric specific heat. Here, we restrict ourselves to rigid materials in
order to clearly reveal the difficulties and the limits of the theory. The derivation of
non-Fourier equations with internal variables repeats this procedure.

2.2. Models beyond Fourier. In any of the generalised thermodynamic theories,
the variable space is extended with a new type of non-equilibrium variable. In the
internal variable approach, that non-equilibrium variable is not necessarily interpreted
or connected to a known physical quantity, merely its existence and its tensorial order
are restricted. In other words, one can suppose that s = s(e, ξ), where ξ is a vectorial
quantity. This is a general approach indeed. However, we do not need to keep this
level of generality to derive the MCV and GK equations. Instead, it is possible to
identify ξ with the heat flux q at that step, achieving compatibility with EIT and
RET [29], i.e., having s = s(e,q), which must be a concave function. The concavity
is ensured by using

s(e,q) = seq(e)− m

2
q2, (2.5)

where the first term seq(e) expresses the classical local equilibrium assumption and
m
2 q

2 represents a deviation from this local equilibrium with m ≥ 0. The derivation
also requires Js. According to the paper [24], Js can be formulated using a so-called
Nýıri multiplier (B), as Js = Bq [30]. In EIT, Js = q

T + µ∇q · q is used. These
approaches are equivalent, as the inequality (2.1) automatically restricts B so that
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B = 1
T I+ µ∇q holds. Recently, Szücs et al. showed [31] that Js = q

T +Bq is a more
natural introduction of a current multiplier B as it is B = ∇q, thus having a more
direct and clear physical interpretation. The entropy production becomes

σs = ∇q :

(
B− 1

T
I

)
+ q · (∇ ·B− ρmq̇) ≥ 0, (2.6)

and its solution, the Onsagerian relations are

B− 1

T
I = l1∇q,

∇ ·B− ρmq̇ = l2q, (2.7)

with l1, l2,m ≥ 0, furthermore

τ =
ρm

l2
, λ =

1

l2T 2
, κ2 =

l1
l2
, (2.8)

forming the coefficients of the GK equation, which reads

τ∂tq + q = −λ∂xT + κ2∂xxq (2.9)

in one spatial dimension for simplicity. If l1 = 0, the model reduces to the MCV
equation, i.e., κ2 = 0 and

τ∂tq + q = −λ∂xT. (2.10)

The MCV and GK constitutive equations (2.9)-(2.10) are coupled to the internal
energy balance (2.4), and thus form a mathematically and physically complete system
of equations, describing the time evolution of temperature and heat flux in space and
time.

Initially, the GK equation is derived on the basis of kinetic theory and therefore
the coefficients (2.8) are strictly restricted to a particular heat transfer mechanism.
That original approach would not be applicable for engineering problems in general.
However, the present continuum model does not require assumptions about the heat
conduction mechanism prior to the derivation. Therefore the coefficients (2.8) can be
freely adjusted and fitted to experiments, as is usual with the thermal conductivity
λ in the Fourier equation. Consequently, while the form of the GK equation remains
the same, the coefficients differ from the original case. Therefore, in this sense, the
internal variable approach extends the range of validity.

3. Nonlinear models

It is well-known that the behaviour of materials depends on numerous factors. Here,
for demonstration, we consider only the temperature dependence of the coefficients
defined by (2.8) and appearing in the GK equation (2.9). We want to emphasise that
the new thermal parameters (τ and κ2) are not independent of the thermal conduc-
tivity λ and are connected through the Onsagerian relations. This is demonstrated
in the following.
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Let us suppose that λ(T ) = λ0 exp
(
a(T − T0)

)
, with λ0 being thermal conductivity

at a reference temperature T0. Consequently,

1

l2T 2
= λ0e

a(T−T0) ⇒ 1

l2
= λ0T

2ea(T−T0) ⇒ l2 =
1

λ0T 2
e−a(T−T0) (3.1)

restricts one Onsagerian coefficient l2. Moreover, as l2 is also present in both coeffi-
cients τ and κ2, it influences their treatment. This follows from The second law of
thermodynamics directly, and has an impact on the entire model, that is,

τ =
ρm

l2
= ρmλ0T

2ea(T−T0), κ2 =
l1
l2

= l1λ0T
2ea(T−T0). (3.2)

Interestingly, κ2 alone can depend on the temperature through l1.

Now let us assume a more complex situation, i.e., both τ and λ possess a linear
temperature dependence

λ(T ) = λ0 + a(T − T0), and τ(T ) = τ0 + b(T − T0), (3.3)

from which

l2 =
1(

λ0 + a(T − T0)
)
T 2
, and ρm =

τ0 + b(T − T0)(
λ0 + a(T − T0)

)
T 2

(3.4)

follows [32]. This is a real, experimentally measured set of parameters. Interestingly,
we have a choice about which coefficient is assigned to satisfy (3.4), either ρ, m or both
can be temperature dependent. If m alone becomes a function of the temperature,
then it introduces further terms into the constitutive equation being proportional
with dm/dT . If ρ is considered to be a function of T , then the introduction of the
mechanical field is essential in order to take account of thermal expansion with the
corresponding balance equations and its contribution to the internal energy [33]. The
temperature dependence of κ2, however, is still an open question, as experimental
data are lacking. Although that parameter is experimentally determined for various
heterogeneous materials at room temperature [34], the reference temperature is not
yet varied. Either way, the derivation must be restarted in order to preserve the
physical and mathematical consistency [32]. This is a notable difference compared to
the Fourier equation.

Overall, even the simplest nonlinearity originating in the state dependence of the
material coefficients can make the situation significantly more difficult. While this
is common for Fourier’s law, it is not straightforward for a non-Fourier equation.
Without a proper thermodynamic background, one cannot discover the relationship
of the coefficients. This is one reason, among many others, why the so-called dual
phase lag (DPL) model is not recommended. This is an ad hoc model, based on
the assumption that there is a time lag for both the heat flux and the temperature
gradient [35],

q(x, t+ τq) = −λ∂xT (x, t+ τT ). (3.5)

Usually, Taylor series expansion is utilised on (3.5) up to an arbitrarily decided order.
This manifests in ill-posed problems and instability [36, 37, 38, 39, 40, 41]. However, in
a particular case, that model might be reduced to the MCV equation (2.10) and could
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be viable for strictly restricted situations. However, as a thermodynamic background
is missing, it is impossible to recover the connection between the two relaxation times
τq and τT . Together with the mathematical issues, this is a severe limitation on the
model, and thus it is not possible to reliably implement the DPL model for practical
engineering tasks.

4. Initial and boundary conditions

To be clear with the analogies among Fourier and non-Fourier models, we first
briefly discuss the classical approach for one spatial dimension. For the Fourier
equation, the usual initial condition is straightforward: the temperature distribution
(T (x, t = 0) = T0(x)) must be given at the initial time instant. For instance, T0(x) is
also enough to calculate the initial heat flux q0(x). However, this is valid only for the
T-representation of the Fourier heat equation (4.1). In case of q-representation (4.2),
only q can be defined at the initial time instant since the temperature as a variable is
completely missing in that situation. In other words, we have a choice of which field
variable we eliminate using Eqs. (2.3) and (2.4):

T-representation: ∂tT = α∂xxT, (4.1)

q-representation: ∂tq = α∂xxq, (4.2)

where α = λ/(ρc) is the thermal diffusivity with constant coefficients. While Eq. (4.1)
is well-known in the literature, Eq. (4.2) is usually omitted. The q-representation
could be useful for analytical solutions as here the heat flux q is treated as a first-type
boundary condition. For certain situations, it could be more suitable, such as for
time-dependent heat flux boundaries. After obtaining the time and space evolution
of q, the temperature field can be recovered using the balance of internal energy (2.4).
Furthermore, that form also reveals an interesting aspect. Eq. (4.2) also allows us to
define the gradient of the heat flux as a second-type boundary condition: here it is
∂xq. The unit of ∂xq is W/m3, although it is not a volumetric heat source. The unit
can be rewritten as W/m3 = J/(s m3) = Pa/s. This is, interestingly, a pressure rate
whose quantity appears in models for low-temperature phenomena, and therefore this
type of boundary condition could be viable in such cases.

The T-representation of the Fourier heat equation (4.1) is commonly used due to
practical reasons, such as that T is a measurable quantity. Moreover, as Fourier’s
law (2.3) is an equality, it becomes straightforward how to use the temperature in
the definition of a boundary condition. Hence, it does not matter which variable we
choose to use as a boundary condition, either T or q is adequate, even for temperature-
dependent thermal conductivity. Unfortunately, following that thread is misleading
for non-Fourier equations.

4.1. Linear case. For constant coefficients, it is straightforward to eliminate one of
the field variables and obtain the representations, e.g., for the GK equation using
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(2.4) and (2.9):

T-representation: τ∂ttT + ∂tT = α∂xxT + κ2∂txxT, (4.3)

q-representation: τ∂ttq + ∂tq = α∂xxq + κ2∂txxq. (4.4)

Let us recall that the definition of the second-type boundary condition depends on
the field variable. Therefore, having the form of (4.3), it is not possible to explicitly
prescribe the heat flux q on the boundary, only ∂xT . However, these quantities are
not proportional with each other; the partial differential equation (2.9) restricts their
relationship. Consequently, one cannot solve the GK equation in the form of (4.3) for
situations with prescribed q on the boundaries [28, 43]. This is the point where the
q-representation becomes advantageous and can be used to determine the time (and
space) evolution of q. The temperature can be recovered at the end by exploiting the
energy balance (2.4). We also emphasise that both of these representations are the
consequence of the system (2.4) and (2.9), which is more useful for analytical and
numerical solutions [45, 43]. In the following, in Sec. 4.3, the discrete treatment of
heat flux boundary conditions is presented. Overall, Eq. (4.3) is suggested only for T-
type initial and boundary conditions. For any other situation, the most advantageous
form is the system of equations (2.4) and (2.9), without eliminating any variables.
For analytical solutions, however, Eq. (4.4) could be more suitable. Keeping in mind
these properties, the usual boundary conditions remain valid, and the most suitable
form can be chosen for the particular problem.

The treatment of initial conditions is also not evident. In many situations, the
steady initial state is disturbed through the boundary (e.g., by a heat pulse), but
non-equilibrium initial conditions are rarely investigated in regard to non-Fourier
equations. As we mentioned, such a problem is straightforward in the Fourier model
as it requires only the initial temperature distribution. However, for a non-Fourier
equation, the initial time derivative is also necessary.

As the energy balance (2.4) suggests, the initial time derivative of temperature is
determined by the initial heat flux field. It turned out recently [42] that the heat flux
for the initial state can be determined using Fourier’s law if the initial non-equilibrium
state is close to equilibrium for both the MCV and GK equations. Moreover, as the
energy balance is exploited in that step, a heat source could also contribute to the
initial state. However, whether the initial state is close or far from equilibrium is still
an open question. For such a non-equilibrium initial state, the initial time derivative
can be found by exploiting the energy balance (2.4). The difficulty originates in the
mathematical treatment of the initial conditions, where the differentiability stands as
a crucial question. For further details, see [42].

4.2. Nonlinear case. With temperature-dependent parameters, such as (3.3) for the
MCV equation, it is no longer possible to eliminate any of the variables, therefore pure
T and q representations no longer exist. That difficulty does not affect the required
number of boundary conditions, and the numerical treatment of the system of partial
differential equations is still feasible with a staggered grid for the spatial domain [22].
The role of non-equilibrium initial conditions is still unclear as it has not yet been
investigated with nonlinear non-Fourier models.
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q1

�

T1✉ q2 T2✉ · · ·
· · ·

qj Tj✉ · · ·
· · ·

qJ−1 TJ−1✉ qJ

�

Figure 1. The staggered grid for the numerical solutions [43].

4.3. Time-delayed boundary. Fourier’s law can be seen as the differential analogy
of the Newton law for cooling, i.e., q = h(T − T∞), where h stands for the heat
transfer coefficient. In the following, let us suppose that this relationship changes
together with the constitutive equation, i.e., for the MCV equation (2.10), it has a
form of τdtq + q = h(T − T∞). It describes a time delay on the boundary as it
is also a part of the same material for which the MCV equation is used. Here, for
demonstration, we provide a particular example of a heat pulse experiment. In order
to keep the temperature history and the parameters realistic for the MCV model, we
chose a low-temperature experiment performed by McNelly et al. [46]. Therefore, let
the parameters be λ = 3000 W/(m K), ρ = 2800 kg/m3, c = 3.5 J/(kg K), τ = 6 µs,
with a heat pulse duration tp = 10 µs, on a 10 mm long NaF sample.

Initially, the sample is in a steady state. A short heat pulse is applied on the front
side, and the temperature is recorded in time on the rear end. The heat pulse is mod-
elled using q(x = 0, t ≤ tp) = q0(1 − cos

(
2πt/tp

)
), then q(x, t > tp) = 0 W/m2. We

assume a cooling boundary on the rear side. The heat transfer coefficient is the same
for both cases, h = 104 W/(m2 K). We solve this model utilising a finite difference
method [43] on a staggered grid, illustrated in Figure 1. That staggering helps us to
avoid problems on the boundary by allowing us to explicitly prescribe the heat flux on
the boundary points. That structure can be realised for any other system with ther-
modynamic compatibility, even in a three-dimensional case [44]. Figure 2 presents the
rear side temperature history, comparing the two cooling boundary conditions. Visi-
bly, the vicinity of the wave shows significant differences; the temperature rises higher,
which could be an essential part in the reproduction of such low-temperature heat
pulse experiments [46, 47]. When the strong wave signal disappears, the temperature
histories run together for both boundary conditions.

5. Discussion

In the present paper, we discussed the thermodynamic origin of two non-Fourier
equations, called Maxwell-Cattaneo-Vernotte and Guyer-Krumhansl equations. We
took a closer look at the new material coefficients (τ and κ2). Furthermore, it turned
out that the thermal conductivity connects these parameters. That is, in the case
of temperature-dependent thermal conductivity, the other coefficients inherit that
dependence. Moreover, the mechanical field must be included as well through thermal
expansion effects.

We investigated the analogies between the Fourier and non-Fourier equations re-
lated to the boundary conditions, showing that the usual approach does not work
for advanced heat equations. This also holds for the initial conditions. Moreover,
we performed a numerical analysis of how a possible time delay would modify the
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Figure 2. Rear side temperature history for both types of boundary
conditions according to the MCV equation

temperature history. The time delay of the heat transfer causes significant differences
in the vicinity of the wavefront. However, that difference disappears soon, and after
a certain time instant, both boundaries predict the exact temperature history.
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and Kovács, R.: Size effects and beyond-fourier heat conduction in room-temperature
experiments. Journal of Non-Equilibrium Thermodynamics, 46, (2021), 403–411. DOI:
10.1515/jnet-2021-0033

35. Tzou, D. Y.: Macro- to Micro-scale Heat Transfer: The Lagging Behavior. CRC Press,
1996. ISBN: 978-1-118-81822-0

36. Fabrizio, M. and Franchi, F.: Delayed thermal models: stability and
thermodynamics. Journal of Thermal Stresses, 37(2), (2014), 160–173. DOI:
10.1080/01495739.2013.839619

37. Fabrizio, M. and Lazzari, B.: Stability and second law of thermodynamics in dual-
phase-lag heat conduction. International Journal of Heat and Mass Transfer, 74, (2014),
484–489. DOI: 10.1016/j.ijheatmasstransfer.2014.02.027
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Abstract. This article presents unsteady simulations of laser welding based on a rapid
solidification/melting model using the ANSYS-FLUENT software package with the imple-
mentation of a UDF (User Defined Function) C code. It assumes a flat interface of liquid and
gas without plasma plume, evaporation and reflection and absorption effect. In the simula-
tions, a variety of parameters are considered with different welding speeds and laser powers.
The results show that with the increase of laser power, liquid fraction and velocity, pene-
tration depth and bead width all increase. In contrary, with the increase of welding speed,
the temperature, liquid fraction, penetration depth, and bead width all decrease, while the
velocity magnitude is an exception. It has also been found that the increase of welding speed
distorts the pool shape and forms a long tail in temperature, liquid fraction and velocity
contour. The buoyancy force did not have a significant impact on the results, while the con-
vective term makes the velocity, temperature and liquid fraction smaller. Furthermore, the
negative Marangoni shear stress makes the velocity along the height and the width direction
smaller in the middle of the workpiece and larger on the edges. The simulation results show
a similar tendency to that obtained by other authors. The reason for the possible differences
is due to the unsteadiness of the fluid flow field and the slightly different boundary conditions
imposed in the model presented here. The novelties of this work are unsteady simulations,
new boundary conditions and parametric studies relevant to industrial applications.

Mathematical Subject Classification: 76G25, 76M12, 76F60, 76F55
Keywords: Rapid Solidification/Melting, Laser Welding, Laser Power, Welding Speed, Com-
putational Fluid Dynamics (CFD), Engineering

1. Introduction

Laser welding has many advantageous features over traditional welding techniques
such as spot resistance welding. Due to the fact that the laser power and speed can be
controlled precisely, laser welding can be accurate and flexible. According to Steen [1],
laser welding can be utilized in many regimes such as electronics, medical devices,
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automobiles, dies, and tools. It overcomes certain problems that traditional welding
has with its high energy intensity. The process of laser welding can be described as
follows: a) a high intensity laser beam is irradiated on the workpiece, and once the
laser beam reaches the workpiece and its temperature exceeds the melting point, it
begins to melt; b) after melting, a molten pool is formed with the further irradiation
of the laser beam, and the liquid in the molten pool starts to evaporate, which will
further form the keyhole; c) during the evaporation process, recoil pressure is created,
which further drives the liquid flow outward from the molten pool; d) once the keyhole
is formed, it will generate a plasma plume, which will scatter and absorb part of the
laser energy, thus reducing the absorption of the objective surface.

To accurately examine the dynamics of the keyhole and the molten pool, different
experimental methods have been devised such as cameras, photo diodes, spectrome-
ter, acoustic sensor, pyrometer, and plasma charge sensor according to Shin et al. [2].
Eriksson et al. [3] utilized high speed photography to successfully visualize the dy-
namics of the molten pool and the keyhole. Normann et al. [4] successfully combined
theoretical analysis and photo diodes to monitor the defects of laser welding. Zhang
et al. [5] also examined the defect of workpieces using a spectrometer. Although dif-
ferent experiment measurement methods exist to investigate the dynamics of keyholes
and molten pooleach has several drawbacks. Another option is Computational Fluid
Dynamics (CFD), an advanced computational approach that is widely used in both
academic research and industrial areas.

In the case of this specific problem, researchers conducted CFD simulations. First
of all, researchers developed simplified theoretical models. For example, Swift-Hook
and Gick [6] developed a theoretical analysis based on the solution of the heat dif-
fusion equation. Lankalapalli et al. [7] developed a two-dimensional model with the
assumption of a conical keyhole. Dowden et al. [8] analyzed the effect of plasma, com-
bining the plasma model with a simple line heat source model. Secondly, researchers
studied this problem using the Finite Element Method (FEM) without consideration
of the fluid flow field. For example, Carmignani et al. [9] predicted residual stress
and strains using FEM. In the work of Mares et al. [9], an elasto-viscoplastic con-
stitutive equation was added to model the plastic material. Another model is the
enthalpy-porosity model to consider the phase change of the workpiece between the
solid and the liquid phases. Ye and Chen [10] investigated the three-dimensional effect
of the surface tension and the density together assumed to be linear functions of the
temperature.

Other models based on free surface tracking algorithms are the level-set method
and the VOF (Volume-of-Fluid) method. The level-set method is a self-consistent free
surface tracking approach, according to Mohanty and Mazumder [11]. It introduces
an equation of motion of interface as a scalar conservation law with viscosity and
boundary conditions for the laser welding model [11]. Geiger et al. [12] modeled
the joining of zinc coated sheets. They used an open-source software package called
OpenFOAM with the VOF model. They also implemented the Gaussian distribution
as a surface heat source. They considered the Fresnel absorption, evaporation pressure
and surface tension in their computational model. Because of the evaporation effect,
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it was found that there are low frequency oscillations in the melt pool and high
frequency oscillations on the keyhole.

In this paper, a novel unsteady CFD simulation approach for the laser welding
model is developed and presented. The effects of surface tension, unsteady fluid flow
field, non-isothermal effect, natural convection, heat conduction and melting effects
have been considered to provide numerical results that are compared with the work
of Abderrazak et al. [13]. The implementation of the additional source terms of
the rapid solidification and melting model is carried out in the ANSYS-FLUENT
software package within the framework of the solidification and melting model using
User-Defined Functions (UDFs), which are computer codes written in C programming
language. The structure of the present work can be described as follows: Section 2
describes the governing equations; Section 3 focuses on the mesh and the geometrical
model, including mesh sensitivity and time-step studies; Section 4 is the discussion
of the computational resultsm which includes the parametric studies; and Section 5
addresses conclusions and recommendations for future work.

2. Governing Equations and Methodology

The governing equation of the rapid solidification model presented here is based on
the enthalpy-porosity model. This model combines the solid and liquid equations as a
single equation, which was also considered by Abderrazak et al. [13]. The continuity
equation of three-dimensional fluid flows can be expressed by

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0, (2.1)

where ρ is the density of the material, t is the time for unsteady simulations, x, y, z
are the Cartesian coordinates, u, v, w are the velocity components of the fluid flow
in x, y and z directions, respectively. The scalar momentum equations are

∂ρu

∂t
+∇ · (ρu~u) = −∂p

∂x
+∇ · (µ∇u)− µ

K
(u− ux), (2.2)

∂ρv

∂t
+∇ · (ρv~u) = −∂p

∂y
+∇ · (µ∇v)− µ

K
v, (2.3)

∂ρw

∂t
+∇ · (ρw~u) = −∂p

∂z
+∇ · (µ∇w)− µ

K
w + ρgβ(T − Tref ), (2.4)

where p is the pressure, ~u is the velocity vector, K is the permeability coefficient,
µ is the dynamic viscosity, ux is the welding speed in x direction, β is the thermal
expansion coefficient, g is the magnitude of the gravitational acceleration, T is the
temperature, and Tref is the reference temperature. The energy equation is modeled
as

ρCp

(
∂T

∂t
+∇ · (T~u1)

)
= ∇ · (k∇T ) + S(x, y, z)−∇ · ((ρ~u)∆H), (2.5)

where ~u1 is the fluid velocity, which are u − vw, v, w in x, y, z directions, vw is the
welding speed, ~u is the velocity, which are u, v, w in x, y, z directions, Cp is the
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specific heat, k is the heat conduction coefficient, S is the additional heat source, ∆H
is the latent heat. A Gaussian volume heat source was implemented in this model as

Q(x, y, z) =
3P

πabd
exp

(
−3x2

a2

)
exp

(
−3y2

b2

)
exp

(
−3z2

d2

)
, (2.6)

where Q(x, y, z) is the heat source, P is the power of laser beam, a, b, d are the
length, width and depth of the laser beam, respectively. The boundary condition of
the bottom surface is a convective boundary condition

qc = hext (Text − Tw) , (2.7)

where qc is the convective heat energy, hext is the convective heat transfer coefficient,
Text is the exterior temperature, and Tw is the temperature of the bottom wall where
the convective effect was set to be considered. The surface convection is only allowed
between the bottom wall and the environment. The boundary condition of top surface
is a constant shear stress as described below:

µ
∂u

∂z
= C, (2.8)

where C is a constant and the left term represents shear stress. This is different
from the work of Abderrazak et al. [13], because in their work [13], the shear stress
is used to model the negative Marangoni effect, which is related to the temperature
gradient. However, the temperature gradient in this model is very small. Thus, the
influence of the temperature gradient can be ignored, and thus constant shear stress
is assumed here to simplify the model. The other boundary condition is set to a
constant temperature of 300 K, except for the bottom wall.

In this model, thermal expansion is allowed in the normal direction, which can
be seen from the z-momentum equation with the expansion term. The top wall is
modeled as a flat surface model in this work. For the sake of simplicity, the solid top
wall has been considered to be a rigid wall.

The material properties of the model are considered to be constant, except for
the density, which is predicted based on the Boussinesq assumption. The thermal
conductivity k has been considered as constant within the same phase as a modeling
simplification. This simplification follows the model description of Abderrazak et al.
[13], where the thermal conductivity was considered to be constant for each phase.
Large temperature differences can be observed in the middle of the domain. The
dynamic viscosity µ is constant for the liquid phase. Furthermore, the permeability
parameter K is used to model the phase change, which is derived from the Kozeny–
Carman equation [13] to make a smooth transition between two phases. Therefore, a
unified equation is solved for both phases. When a solid phase is considered during
the process, K is a very small value and the fluid flow velocity is approximately zero
in the y and z directions, while K is equal to the welding speed in direction x. When
melting occurs during the welding process, the permeability parameter K becomes a
very large value.
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3. Computational Domain, Mesh Sensitivity and Time-Step Study

As can be seen from Figure 1, the workpiece moved with the welding speed and a laser
beam is introduced from above. The physical domain of this engineering problem is
considered to be rectangular. The computational mesh is a structured mesh due to
the simplicity of the rectangular geometry. Three mesh densities were generated to
study the mesh sensitivity for the numerical solution (Table 1).

Figure 1. Geometry of the computational domain [13]

Table 1. Three mesh densities

x y z Total cells Total faces

Coarse 100 50 20 92,169 284,170
Medium 200 100 40 768,339 2,336,340
Fine 400 200 80 6,272,679 18,944,680

The number of nodal points in x, y and z directions can be found in Table 1. To
select the most appropriate time step size, three different levels of the CFL number
were studied. It turns out that CFL=5 is too large and CFL=0.1 is not necessary to
obtain a reasonable computational cost. These results are summarized in Table 2.

Table 2. Different time steps with different CFL numbers at different
mesh densities

CFL Number Time step (coarse) Time step (medium) Time step (fine)
0.1 1e-5 5e-6 2.5e-6

1 1e-4 5e-5 2.5e-5
5 5e-4 2.5e-4 1.25e-4
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Three different physical times were investigated, 40 ms, 80 ms, and 120 ms, to
select the best physical time scales of the welding process which were simulated. It is
important to note that the physical time here means the time scales of the simulated
welding process; therefore, these values are not related to the computational time. The
effect of mesh sensitivity on the numerical results has been investigated in conjunction
with the temperature field, and one can see in Figure 2 that the temperature contours
using different mesh densities are almost identical. Figure 3 shows the temperature
profiles along the center x line using three different mesh densities, which shows again
that the predicted temperature profiles are very similar to each other.

Figure 2. Temperature contour on x-y plane using three different meshes

Figure 3. Temperature along the line x using three different meshes
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Figure 4. Residuals with CFL = 1 at 40 ms on the coarse mesh

Figure 5. Residuals with CFL = 1 at 80 ms on the coarse mesh

Figure 6. Residuals with CFL = 1 at 120 ms on the coarse mesh
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Figure 7. Residuals with CFL = 0.1 at 80 ms on the coarse mesh

Figure 8. Residuals with CFL = 1.0 at 80 ms on the coarse mesh

Figure 9. Residuals with CFL = 5.0 at 80 ms on the coarse mesh
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To reduce computational time, based on the mesh sensitivity study on the numerical
results (see Table 1 and Figures 2 and 3), the coarse mesh has been selected for the
final simulations. Figures 4, 5, 6 show the residuals at three physical times. As
can be seen in Figure 4, the residuals decline within 40 ms physical time, although
they increase at the beginning of the simulations. Similarly to Figure 4, the residuals
within 80 ms decline to 10 order of magnitude, which is much bigger than the residual
obtained within 40 ms. However, after 80 ms, the residuals reach a statistical steady-
state solution. Therefore, this simulation runs 80 ms physical time.

Figures 7, 8, 9 show the residuals with three different CFL numbers. One can see
that the residual with CFL=1 is steady state, which is equal to 10−3 while it is 10−1

with CFL=5. Therefore, for the final simulations, CFL=1 has been selected. Thus,
the time step of this model is 10−4 (see Table 2). To investigate different parameters,
various benchmark test cases have been simulated, which are summarized in Table 3
and discussed in the next section.

Table 3. Different validation test cases

Welding speed
(m/min)

Laser power
(W)

Shear stress
(Pa)

case 1 1 700 6.40E-04
case 2 5 700 6.40E-04
case 3 10 700 6.40E-04
case 4 1 1000 6.40E-04
case 5 5 1000 6.40E-04
case 6 10 1000 6.40E-04
case 7 1 2000 6.40E-04
case 8 5 2000 6.40E-04
case 9 10 2000 6.40E-04
case 10 5 2000 6.40E-03
case 11 5 2000 6.40E-02
case 12 5 2000 6.40E-01
case 13
(no convective term) 5 2000 6.40E-04
case 14
(no buoyancy force) 5 2000 6.40E-04

4. Results and Discussion

In this section, simulation results for 12 cases are analyzed at different welding speeds
and laser powers to investigate the impact of the welding speed and the laser power
effects. In the first part, the temperature is analyzed at different laser powers and
welding speeds. Figure 10 shows temperature contours on the top wall on x-y plane.
From left to right, they are at welding speeds from 1 m/min to 10 m/min and from top
to bottom, they are at different laser powers from 700 W to 2000 W. As can be seen
from the figure, with the increase of the welding speed, the maximum temperature
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decreases. This is due to the fact that with the increase of the welding speed, the
interaction time between the laser beam and workpiece decreases so that the workpiece
absorbs less energy. In addition, with the increase of the welding speed, the band of
the temperature contour becomes longer and with an obvious ”tail”. This was more
obvious at higher laser power.

Regarding the impact of different laser powers, it can be seen from figures that
with the increase of the laser power, the maximum temperature on the center of
top wall increases. This is reasonable because large laser power means more energy
absorption. Moreover, Figure 11 shows the temperature contour on the x-z plane with
different laser powers and welding speeds. The layout of this figure is identical with
Figure 10 with different laser powers and welding speeds. However, the direction
of this figure is in the width direction. As can be seen from the figure that with
the increase of the laser power, the maximum temperature in the width direction
increases, especially at the lowest welding speed. In term of the impact of the welding
speed, the larger welding speed makes the temperature on the center much lower.
The band of temperature contour with 5 m/min welding speed was longest among
three contours. This is also because of the longer time of interaction between the
laser beam and the workpiece.

Figure 10. Temperature distribution with different parameters on x-y plane
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Figure 11. Temperature distribution with different parameters on x-z plane

Figure 12. Temperature distribution with different parameters on y-z plane

Figure 12 demonstrates the temperature contour with different laser powers and
welding speeds with the same layout as the previous figures in the y-z plane. It
can also be seen from figures that with the increase of the laser power, the range of
the maximum temperature increases. Another shared feature is that as the welding
speed increases, the range of the maximum temperature decreases can also be seen.
However, the long ”tail” in figures with the increase in welding speed cannot be seen
this time, which means the increase of the welding speed does not affect the symmetric
feature in the depth direction. The symmetric temperature contour is because of the
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Gaussian distribution heat source implemented in the energy equation. If a very low
welding speed was implemented, the symmetrical feature was kept. More detailed
effects of different welding speeds and laser powers can be seen in Figure 13.

In addition, Figures 10, 11, 12 show the Gaussian thermal distribution, which was
implemented as a source term, with high temperature in the center, decreasing to the
outside.

Figure 13(a) displays the temperature along the center x line with different welding
speeds and laser powers. The same features were also seen in this figure. With respect
to the welding speed, in Cases 1, 2 and 3, the maximum temperature decreases with
the increase of the welding speed. In addition, there are always two parts of the
curves: the first part is from bottom to the maximum temperature, and the second
part is from the maximal part to the top. The same features can be seen with Cases
4, 5 and 6, although a certain amount of distortion can be observed in the first part
of the curves. Similar features can be seen in Cases 7, 8 and 9. Larger distortion
can be seen from the first part of the curve in Cases 8 and 9, which means that with
higher laser power, the increase of the welding speed leads to larger distortion of the
temperatures near the rear part of the workpiece.

(a)
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(b)

(c)

Figure 13. Temperature distribution with different laser power and
welding speeds in comparison with the results of Abderrazak et
al. [13] along x, y and z lines

With respect to the laser power, the maximum and overall temperature increases
with the increase of the laser power in Cases 1, 4 and 7. This can also be seen from
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Cases 2, 5 and 8 as well as 3, 6 and 9. In comparison with the results of Abderrazak
et al. [13], it is also like a ring-bell shape curve. In addition, certain distortions are
present at the beginning part of the curve, as can be seen in a few cases. Moreover,
the results of the peak temperature of 2000 W of Abderrazak et al. [13] is larger than
for the implemented model. The results of the shape of Abderrazak et al. [13] are a
bit narrower than those of the implemented model. The combination of case settings
pertaining to welding speed and laser power in the work of Abderrazak et al. [13]
are not shown; therefore, the discrepancy between the reference paper and results of
the implemented model is in an acceptable range. In other words, the overall shape
generated by the implemented model and that of Abderrazak et al. [13] is similar.

Figure 13(b) presents the center y line with different welding speeds and laser pow-
ers. The same features with previous contours were also seen in this figure. However,
distortions cannot be seen in this figure, unlike in Figure 13(a). With respect to the
welding speed, Cases 1, 2 and 3 also show the trend that is similar to Figure 13(a).
The same feature can be seen in Cases 4, 5 and 6 as well as 7, 8 and 9. There are also
two parts of the curves, one of which is from negative y value part to the zero value
and the other of which is from zero to positive y value part. In terms of the laser
power, the same feature that the increase of the laser power increases the temperature
can be seen in Cases 1, 4 and 7 as well as 2, 5 and 8 also 3, 6 and 9.

However, one thing worth noting is that the temperature along the center y line is
almost identical with that of Cases 2 and 5. In comparison with the results obtained
by Abderrazak et al. [13], it is also symmetrical. However, there are distortions in two
sides of the results of Abderrazak et al. [13] with 1 m/min welding speed. Moreover,
the results of the shape of Abderrazak et al. [13] are narrower than the implemented
model as well. In addition, the temperature on the edge of the curve in the work of
Abderrazak et al. [13] is a bit bigger than in the implemented model. However, as
the combination of case settings pertaining to the welding speed and the laser power
in the work of Abderrazak et al. [13] is not shown, some discrepancy between the
reference paper and results with the implemented model is expected.

Figure 13(c) demonstrates the temperature along the center z line with different
welding speeds and laser powers. In contrast to Figure 13(b), there is only one part
of the curve, the temperature increases along the center z line, whose slope slowly
increases and finally decreases to a plateau. However, with respect to the welding
speed, Cases 1, 2 and 3 as well as 4, 5 and 6 also 7, 8 and 9 show the similar trend
with previous contours and previous curves along x and y line. This is also true with
respect to laser power. It is also interesting to note that Cases 2 and 5 have almost
identical temperature, which is the same with Figure 13(b) for temperature along the
center y line. In comparison with the results of Abderrazak et al. [13], the overall
shape is an upward trend. However, the part behind -0.001 of the results of the slope
in Abderrazak et al. [13] is higher than that of the implemented model, especially the
one with 2000 W. Nevertheless, as the combination of case settings pertaining to the
welding speed and the laser power in the work of Abderrazak et al. [13] is not given,
a discrepancy between the reference paper and results with the implemented model
is reasonable.
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Figure 14 demonstrates the velocity contour on the top x-y plane with different
laser powers from top to bottom and welding speeds from left to right. It can be
seen from the figure that with the increase of the laser power, the range of maximum
velocity becomes larger. However, it does not always decrease with the increase of
the welding speed; the velocity contour with 5 m/min welding speed has the largest
range of maximum velocity. Moreover, with 1000 W and 2000 W laser power, the
velocity contour with 5 m/min and 10 m/min welding speed is almost identical. It
is also interesting to note that with the laser power of 2000 W, the gradient of the
velocity contour is much smaller. In addition, with the increase of the welding speed,
the range of maximum velocity shrinks.

Figure 14. Velocity distribution with different parameters on x-y plane
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Figure 15. Velocity distribution with different parameters on x-z plane

Figure 15 shows the velocity contour on width direction on the x-z plane. It can
also be seen from the figure that with the increase of the laser power from top to
bottom, the range of velocity value greater than zero becomes larger. In terms of
the welding speed, the velocity increase with the increase of the welding speed until
5 m/min. However, the velocity with 5 m/min and 10 m/min is almost the same.
In addition, the increase of the welding speed also makes the tail of velocity contour
much longer. This is similar to the temperature contour in the previous figures.

Figure 16 displays the velocity contour in the depth direction with different welding
speeds and laser powers. The increase in the velocity contour with the increase of
the laser power from bottom to top can also be seen from these figures. However,
a special case is found with the welding speed of 1 m/min, where the velocity of
maximum range decrease from with 1000 W to 2000 W. In addition, the increase of
the welding speed does not make the long tail in the depth direction. In contrast to
the temperature contour, there is no increasing trend with the increase of the welding
speed. Moreover, the contours for 1 m/min and 5 m/min welding speed are almost
identical, especially at 1000 W and 2000 W laser power.

In addition, the velocity contour also shows the Gaussian distribution feature,
althoughthe Gaussian feature of velocity contour is not as strongly developed as with
the temperature contour. The most symmetrical velocity contour is on the y-z plane in
Figure 16. Thus, the velocity develops more strongly than the temperature contour.
In comparison with the velocity results of Abederrazak et al. [13], the maximum
velocity region of the center is bigger due to different boundary condition settings.
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Figure 16. Velocity distribution with different parameters on y-z plane

Figure 17. Liquid fraction with different parameters on x-y plane
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Figure 18. Liquid fraction with different parameters on x-z plane

Figure 19. Liquid fraction with different parameters on y-z plane

Figure 17 demonstrates the liquid fraction on the top wall on the x-y plane with
different laser powers and welding speeds. The same feature of temperature contours
can be seen in this figure. In term of the laser power, the melting fraction becomes
larger as the laser power increases. Regarding the welding speed, it also be seen that
a longer tail is formed with the increase of the welding speed. However, with the
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increase of the welding speed with the laser power of 700 W, the tail did not form,
and only a small liquid fraction is present.

Figures 18 and 19 show the liquid fraction on the width and depth direction re-
spectively. As can be seen from the figures, with the laser power increase, the liquid
fraction increases both in width and depth. However, in the width direction, the
long tail forms with the increase of the welding speed. In contrary, the tail does not
form in the depth direction. It is also worth noting that with 700 W laser power and
10 m/min welding speed, the liquid fraction is very small both in width and depth
direction.

Figure 20 shows a different pool shape with different velocity from left to right
with different laser powers : 700 W, 1000 W, and 2000 W. From this figure, the
long tail shape of the pool produced by the welding speed can be seen; with higher
laser power, the length of tail is longer than with lower laser power. In addition,
with the laser power increase, the pool shape becomes narrower at the same welding
speed. It is also worth noticing that with 2000 W laser power and 1 m/min welding
speed, the depth of penetration is the largest, penetrating almost the entire depth
of the workpiece. Moreover, with the increase of the laser power, the center region
of largest liquid increase. In terms of depth of the pool, the increase in the welding
speed makes the pool shape shallower, while the laser power with small welding speed
makes the pool shape deeper. Finally, the welding speed distortion impact with lower
laser power is much less obvious, while the pool shape with 1000 W and 2000 W laser
power becomes upward, with a longer tail, and more distorted with higher welding
speed.

Figure 20. Pool shape with different parameters
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Figure 21(a) shows the penetration depth with respect to the laser power at three
different welding speeds. It can be seen from the figure that as the laser power
increases, the penetration depth also increases. However, with 1 m/min welding speed,
the penetration depth increases more than with 5 m/min and 10 m/min welding
speeds from 1000 W to 2000 W laser power. From the range of 700 W to 1000
W, the penetration depth with three different welding speeds does not differ much.
In addition, the penetration depth with 5m/min is quite similar to the results of
Abderrazak et al. [13], especially with 1000 W laser power. There is little difference
at 700 W and 2000 W between the two models.

Figure 21(b) demonstrates the penetration depth with respect to the welding speed
at three different laser powers. As can be seen from the figure, as the welding speed
increases, the penetration depth decreases, which was seen as well in the previous
analysis. In addition, it is worth noting that at 2000 W laser power with the increase
of the welding speed from 1 m/min to 5 m/min, the penetration depth decreases more
than with lower laser power. With the increase of welding speed from 5 m/min to 10
m/min, the three penetration depths decrease to a similar degree with respect to the
welding speed. This is very similar to the results of Abderrazak et al. [13] at 1000 W,
especially at 1 m/min welding speed.

Figures 21(c) and 21(d) show the bead width respect to three different laser powers
and three different welding speeds, respectively. It can be seen from these two figures
that with the increase of the laser power the bead width of the pool increases, while it
decreases with increased welding speed. Moreover, at 2000 W laser power, the bead
width decreases more from the welding speed 1 m/min to 5 m/min than with lower
laser power. Finally, with 1 m/min welding speed, the bead width increases more
from laser power 700 W to 1000 W than with higher welding speed. This feature was
also seen in the previous analysis. The reason for this may be that with lower welding
speed, the interaction time between the laser beam and the workpiece is longer, so the
increase in the laser powermore strongly affects the bead width. In terms of the high
laser power, the increase of the welding speed leads to more energy loss with higher
laser power. Regarding the comparison with the results of Abderrazak et al. [13], the
bead width at 700 W is similar to the numerical values obtained by Abderrazak et
al. [13]. Moreover, the bead width for 10 m/min welding speed is also similar to their
results, except at 1000 W laser power.

Figures 22, 23, 24 are contours of temperature, velocity and liquid fraction at
different planes with and without buoyancy force. As can be seen from the figures,
the results with and without buoyancy force are almost identical. Thus at least in
the implemented model settings, the buoyancy force does not have much impact on
the results.
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(a) (b)

(c) (d)

Figure 21. Penetration depth and bead width with different param-
eters compared to the results of Abderrazak et al. [13]

Figure 22. Temperature with and without taking the buoyancy force
into account



36 X. Xiong and L. Könözsy

Figure 23. Velocity with and without taking the buoyancy force into
account

Figure 24. Liquid fraction distributions with and without taking the
buoyancy force into account

In this work, we analyze the influence of buoyancy force on temperature, velocity
and liquid fraction in comparison with the work of Abederrazak et al. [13] which can
be considered as a novelty of this paper.

Figures 25, 26, and 27 display the temperature, velocity and liquid fraction contour
with and without the convective term in the energy equation in different planes, re-
spectively. As can be seen from Figure 25, the maximum temperature range increases
without the convective term in the energy equation in the entire three planes. This
is true because the convective term enhances the convection so that the pool shape
becomes smaller and the maximum temperature range is much lower.
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Figure 26 presents the velocity contour with and without the convective term in
energy equation. As can be seen from the figure, without the convective term, the
maximum velocity range becomes larger, especially in the depth and length directions.
In the length direction, without the convective term, the maximum velocity range
becomes wider. In the depth direction, the maximum velocity range becomes wider,
while a lower number of velocity bands was seen without the convective term.

Figure 27 shows the liquid fraction with and without the convective term in the
energy equation. It can be seen that without the convective term, the liquid fraction
in all three planes is slightly larger than that with the convective term. This might be
because without the convective term, there is no heat exchange between the hot liquid
and cold solid so that the pool gets more heat, which makes a bigger pool shape.

As stated before, the analysis of convective term is also one of the novelty of this
paper compared with Abederrazak et al. [13] Moreover, the influence of the convective
term has an impact on the velocity due to the fact that convection produces changes
in velocity while it has almost no impact on temperature and liquid fraction with the
current boundary settings.

Figure 25. Temperature with and without taking the convective term
into account

Figure 26. Velocity with and without taking the convective term into
account
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Figure 27. Liquid fraction distributions with and without taking the
convective term into account

The effect of negative Marangoni force with three different shear stresses (6.4e-3
Pa, 6.4e-2 Pa and 6.4e-1 Pa) was investigated for Cases 10, 11 and 12. Figure 28
shows the velocity magnitude along the center x line with different shear stresses. As
can be seen from the figure, the velocity magnitude is almost identical for the three
different shear stresses. Figure 29 displays the velocity magnitude along the center
y line. As can be seen from the figure, the results of Cases 10 and 11 are almost
identical. While for Case 12 with the largest shear stress, the velocity magnitude in
the center is lower than in the other two cases, while the velocity is larger at the edge
of the workpiece. Figure 30 gives the velocity magnitude along the center z line. The
figure shows that with smaller shear stress for Cases 10 and 11, the results are almost
identical. For Case 12, with the largest shear stress, the velocity is a bit smaller than
the other two cases near the top wall of the workpiece, while the velocity magnitude
in the center is lower and the velocity is higher at the edge of the workpiece. Figure 30
is the velocity magnitude along the center z line. The figure shows that with smaller
shear stress for Case 10 and 11, the results are almost identical, while near the top
wall of the workpiece, Case 12 has lower velocity than the other two cases.

In addition, the Marangoni effect is also an important effect in laser welding appli-
cation. Abederrazak et al. [13] did not analyze the specific influence of the Marangoni
effect. Thus the analysis of the Marangoni effect is also one of the novelties of this
paper. Through Figures 29 and 30, it can be seen that the Marangoni effect mainly
affects flow in the y and z directions, which is in accordance with the definition of the
Marangoni effect, because the Marangoni effect is due to the fact that surface tension
gradient is different in y and z, while in the x direction, the surface tension gradient
is almost identical.
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Figure 28. Velocity distribution with different shear stresses along x line

Figure 29. Velocity distribution with different shear stresses along y line
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Figure 30. Velocity distribution with different shear stresses along z line

Figures 31, 32, and 33 show the velocity vector with Cases 10, 11 and 12 with
different shear stresses. As can be seen in the figures, there are two vertices in Case
10, which is also mentioned in Abderrazak et al. [13]. However, with the increase of
the shear stress, the two main vertices are not that obvious, as can be seen in Figure
32 and Figure 33.

Figure 31. Velocity vector for Case 10
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Figure 32. Velocity vector for Case 11

Figure 33. Velocity vector for Case 12

5. Conclusions and Recommendations

According to previous results and discussion, the following conclusions can be drawn:

• With the increase of the welding speed, the temperature and liquid fraction
decreases and the contour forms a longer ”tail” in width and length directions.
However, velocity does not always decrease;
• Increasing the laser power leads to an increase in temperature, liquid fraction

and velocity in all planes, which can also be seen from the temperature curves;
• The pool shape becomes more distorted and moves upward with larger welding

speed and laser power;
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• With the increase of the laser power, the penetration depth and bead width
increase. With the increase of the welding speed, the penetration depth and
welding speed decrease;
• Different shear stresses do not have much impact on the results of velocity

magnitude along the center x line. However, along the center y line, the largest
shear stress has the lowest velocity magnitude in the middle and the largest
value on the edge of the workpiece. Moreover, along the center z line, the
largest shear stress leads to the lowest velocity magnitude on the top of the
wall. In addition, two vertices can be seen in Case 10 of this model, while with
the increase of shear stress, the vertices become less obvious;
• Buoyancy force in this model does not make much difference to the results for

velocity, temperature and liquid fraction;
• Without the presence of the convective term in the energy equation, the liquid

fraction, temperature and velocity are higher than with the convective term in
the energy equation.

Although several results were achieved based on this numerical model, there are still
many extensions that can be done in the future. They are summarized as follows:

• The pool shape on the top wall was assumed to be flat; future work can remove
this assumption and add a free surface tracking algorithm such as VOF or the
level-set method;
• The laser beam in this model is a simple model that did not consider absorption

or reflection. Future work can add a more realistic model of laser beam;
• The recoil pressure was not considered in this model; future work can add this

feature;
• Other phenomena such as evaporation or plasma plume can also be added to

this model in future work.
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Abstract. In this paper two inequalities are presented for the torsional rigidity of homoge-
neous monoclinic piezoelectric beams. All results of the paper are based on the Saint-Venant
theory of uniform torsion. The cross section of the considered elastic and piezoelectric beams
may be simply connected or multiply connected two-dimensional bounded plane domain.
Examples illustrate the proven inequality relations.
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1. Introduction

Piezoelectric materials have several applications because of their unique behaviour.
Piezoelectricity law is a constitute model that describes how the mechanical and
electric fields are coupled within a material. Sensors and actuators are examples of
active components made of linear piezoelectric materials which are widely used in
smart structures. These structural components are often subjected to mechanical
loading. The torsional deformation of these structural members is an important task.
The present paper mainly deals with the torsional rigidity of monoclinic piezoelectric
beams subjected to uniform torsion. Two theorems will be proven for the torsional
rigidities of elastic beam and piezoelectric beam with the same cross sections, elas-
tic stiffnesses and elastic flexibility (compliance) matrices. The proven inequality
relations are illustrated in two examples.

The Saint-Venant torsion of linear piezoelectric beams has been considered by sev-
eral researchers. Bisegna [1, 2] formulated and solved the Saint-Venant torsion prob-
lem for piezoelectric beams with a solid cross section by the use of Prandtl’s stress
function and electric displacement potential functions formulation. Yang studied the
torsion of a solid circular ceramic cylinder which is polarized in tangential direction
[3]. Rovenski et al. [4, 5] gave a torsion and electric potential functions formulation of
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the Saint-Venant torsion for monoclinic homogeneous piezoelectric beams. In the two
studies a coupled Neumann problem is derived for the torsion and electric potential
functions. Exact and numerical solutions for elliptical and rectangular cross sections
are presented in [4, 5]. Dav́ı [6] obtained a coupled boundary-value problem for the
torsion function and electric potential function from a three-dimensional linear static
problem of a piezoelectric body by the application of the usual assumptions of the
Saint-Venant’s theory. Ecsedi and Baksa [7] gave a formulation of the Saint-Venant
torsion for homogeneous monoclinic piezoelectric beams in terms of Prandtl’s stress
function and electric displacement potential function. The Prandtl stress function
and electric displacement potential function satisfy a coupled Dirichlet problem in
the multiply connected cross section of the piezoelectric beam [7]. In another paper
by Ecsedi and Baksa a variational formulation is developed to solve the torsional de-
formation of homogeneous linear piezoelectric beams [8]. The variational formulation
presented in [8] uses the torsion and electric potential functions as the independent
quantities of the considered variational formulation. Rovenski and Abramovich [9]
applied a linear analysis to non-homogeneous beams that consists of various mon-
oclinic piezoelectric and elastic materials. Hassani and Faal [10] presented a work
which deals with the torsional analysis of a cracked isotropic bar subjected to torsion.
An outer piezoelectric coating layer is under both mechanical and electrical load-
ing. The loading includes torque and electric displacement on the coating layer. The
isotropic bar contains only cracks [10]. In a paper by Talebanpour and Hematiyan
an approximate analytical method was formulated to solve the Saint-Venant torsion
of orthotropic piezoelectric hollow bars [11]. Saint-Venant’s torsion of an orthotropic
non-homogeneous piezoelectric circular cylinder was studied in a paper of Ecsedi and
Baksa [12].

The present paper deals with the Saint-Venant torsion of monoclinic homogeneous
piezoelectric beams, focusing on torsional rigidity. Two inequality relations are proven
for the torsional rigidity of the piezoelectric beams.

2. Formulation of the torsion problem in terms of torsion function
and electric potential functions

The analytical approach presented by Rovenski et al. [4, 5] to the Saint-Venant torsion
of piezoelectric beams is founded on Saint-Venant’s semi-inverse method of uniform
torsion. The analytical solution of the torsional problem for linearly electroelastic
beams is based on the next displacement field according to the Saint-Venant theory
and the assumption that the electric potential does not depend on the axial coordinate
z

u = −ϑyz, v = ϑxz, w = ϑω(x, y), (2.1)

ϕ = ϑφ(x, y). (2.2)

Here, ϑ is the rate of twist, u, v, w are the displacements in x, y and z directions,
respectively, ω = ω(x, y) is the torsion function, and ϕ = ϕ(x, y) is the electric
potential field. The origin of the coordinate system Oxyz is placed at the left end
cross section of the beam (Figure 1). It is not necessary that O coincides with the
centre of the cross section at z = 0. The cross section A and its geometry are shown
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in Figure 2. The outer unit normal vector to the boundary curve ∂A is denoted by
n = nxex+nyey, where ex, ey are the unit vectors in x and y directions, respectively.
The arc-length defined on the boundary curve ∂A of the cross section A is denoted by
s (Figure 2). The stress field, electric displacement and electric strength fields for a
monoclinic piezoelectric beam in the case of Saint-Venant’s torsion can be represented
as [4, 5]

τ z = τxzex + τyzey = ϑA · (Ω + e · ∇φ) , (2.3)

D = ϑ
(
eT ·Ω− κ · ∇φ

)
, (2.4)

E = −ϑ∇φ, ∇ =
∂

∂x
ex +

∂

∂y
ey, (2.5)

where τxz, τyz are the shearing stresses, D = Dxex+Dyey is the electric displacement
vector, E = Exex+Eyey is the electric field vector, Ω = ∇ω+ez×R, R = xex+yey,
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ez = ex × ey, cross between two vectors denotes their vector product,

A =

[
A55 A54

A45 A44

]
is the matrix of elastic stiffness tensor (A45 = A54),

e =

[
e15 e25
e14 e24

]
is the matrix of the tensor of piezoelectric constants,

κ =

[
κ11 κ12
κ21 κ22

]
is the matrix of the dielectric tensor (κ12 = κ21), and the upper T in equation (2.4)
indicates the operation of transpose and the scalar product is indicated by a dot.

From the equation of mechanical equilibrium, Gauss-Maxwell’s equation, the stress
boundary condition and electrical boundary conditions it follows that ω = ω(x, y) and
φ = φ(x, y) is a solution of the next coupled Neumann’s boundary-value problem [4,
5]

∇ · (A ·Ω + e · ∇φ) = 0 in A, (2.6)

∇ ·
(
eT ·Ω− κ · ∇φ

)
= 0 in A, (2.7)

n · (A ·Ω + e · ∇φ) = 0 on ∂A, (2.8)

n ·
(
eT ·Ω− κ · ∇φ

)
= 0 on ∂A. (2.9)

In equations (2.8) and (2.9)

∂A =

p−1∑
i=1

∂Ai (2.10)

is the whole boundary curve of the hollow cross section A which consists of p − 1
holes, inner boundary curves.

The connection between the applied mechanical torque T and the rate of twist is
[4, 5]

T = ϑS, (2.11)

where S is the torsional rigidity of the electroelastic beam. Its value is obtained as

S =

∫
A

(e×R) · [A ·Ω + e · ∇φ] dA. (2.12)

3. Formulation of the torsion problem in terms of Prandtl’s stress
function and electric displacement function

In terms of Prandtl’s stress function U = U(x, y) and the electric displacement func-
tion F = F (x, y) the following coupled Dirichlet boundary-value problem can be
derived [1, 2, 7]

∇ · (S · ∇U + G · ∇F ) = −2 in A, (3.1)

∇ ·
(
GT · ∇U −H · ∇F

)
= 0 in A, (3.2)

U = 0 and F = 0 on ∂A0, (3.3)
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U = Ui = constant on ∂Ai (i = 1, 2, . . . , p), (3.4)

F = Fi = constant on ∂Ai (i = 1, 2, . . . , p), (3.5)∮
∂Ai

n · (S · ∇U + G · ∇F ) ds = 2Ai, (i = 1, 2, . . . , p− 1), (3.6)

∮
∂Ai

n ·
(
GT · ∇U −H · ∇F

)
ds = 0, (i = 1, 2, . . . , p− 1), (3.7)

where

S =

[
s44 −s45
−s45 s55

]
is the matrix of the elastic flexibility (compliance) tensor,

G =

[
g24 −g14
−g25 g24

]
is the matrix of the piezoelectric impermeability tensor,

H =

[
η22 −η12
−η21 η22

]
is the matrix of the dielectric impermeability tensor (η12 = η21), and Ai is the area of
the plane domain closed by the boundary curve ∂Ai (i = 1, 2, . . . , p). The stress field
τ z and electric displacement vector D can be represented as

τ z = ϑ∇U × ez, D = ϑ∇F × ez. (3.8)

The torsional rigidity in terms of Prandtl’s stress function is as follows:

S = −
∫
A

R · ∇UdA = 2

∫
A

UdA+

p∑
i=1

UiAi

 . (3.9)

4. Formulae for the torsional rigidity

In paper [8] it was proven that

S =

∫
A

(Ω ·A ·Ω + 2Ω · e · ∇φ−∇φ · κ · ∇φ) dA. (4.1)

Starting from the following equation

0 =

∫
∂A

φn ·
(
eT ·Ω− κ · ∇φ

)
ds =

∫
A

(
∇φ · eT ·Ω−∇φ · κ · ∇φ

)
dA+

+

∫
A

φ∇ ·
(
eT ·Ω− κ · ∇φ

)
dA =

=

∫
A

Ω · e · ∇φdA−
∫
A

∇φ · κ · ∇φdA = 0

(4.2)
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we can derive that ∫
A

Ω · e · ∇φdA =

∫
A

∇φ · κ · ∇φdA. (4.3)

Combination of equation (4.1) with equation (4.3) gives

S =

∫
A

(Ω ·A ·Ω +∇φ · κ · ∇φ) dA, (4.4)

which shows that S > 0 since A and κ are positive definite symmetric tensors [5, 7,
9]. In paper [7] it was proven that

S =

∫
A

(∇U · S · ∇U +∇F ·H · ∇F ) dA. (4.5)

Here, we note S and H are positive definite symmetric second order tensors.

5. Saint-Venant’s torsion of elastic beam

The governing equations of Saint-Venant’s torsion of elastic beam in terms of torsion
function ω0 = ω0(x, y) is obtained from equations (2.6–2.9) by the substitution

e = 0. (5.1)

In this case we have

∇ · (A ·Ω0) = 0 in A, (5.2)

n ·A ·Ω0 = 0 on ∂A, (5.3)

∇ · (κ · ∇φ0) = 0 in A, (5.4)

n · κ · ∇φ0 = 0 on ∂A. (5.5)

From equations (5.4) and (5.5) it follows that

∇φ0 = 0, φ0 = constant. (5.6)

To prove this statement we consider the next equation∫
A

φ0∇ · (κ · ∇φ0) dA =

∫
∂A

φ0n · κ · ∇φ0ds−
∫
A

∇φ0 · κ · ∇φ0dA = 0, (5.7)

that is ∫
A

∇φ0 · κ · ∇φ0dA = 0. (5.8)

Since κ is the positive definite symmetric tensor from equation (5.8) it follows that

∇φ0 = 0, φ0 = constant in A ∪ ∂A. (5.9)

The expression of the torsional rigidity for e = 0 is as follows:

S0 =

∫
A

(e×R) ·Ω0dA =

∫
A

Ω0 ·A ·Ω0dA; (5.10)
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this expression follows from equation (4.4). The governing equations of Saint-Venant’s
torsion for elastic beams in terms of Prandtl’s stress function are obtained from equa-
tions (3.1–3.7) by the substitution

G = 0. (5.11)

This substitution leads to the result

∇ · (S · ∇U0) = −2 in A, (5.12)

∇ · (H · ∇F0) = 0 in A, (5.13)

U0 = 0 and F0 = 0 on ∂A0, (5.14)

U0 = U0i = constant on ∂Ai, (i = 1, 2, . . . , p), (5.15)

F0 = F0i = constant on ∂Ai, (i = 1, 2, . . . , p), (5.16)∮
∂Ai

n · S · ∇U0ds = 2Ai, (i = 1, 2, . . . , p), (5.17)

∫
∂Ai

n ·H · ∇F0ds = 0, (i = 1, 2, . . . , p). (5.18)

It is very easy to prove that if F0 = F0(x, y) satisfies equations (5.13), (5.14)2, (5.16)
and (5.18) then we have

F0 = F0(x, y) = 0 in A ∪ ∂A. (5.19)

The following equation is used to prove the above statement:∫
A

F0∇ · (H · ∇F0) dA =

∫
∂A

F0n ·H · ∇F0ds−
∫
A

∇F0 ·H · ∇F0dA =

=

∮
∂A0

F0n ·H · ∇F0ds+

p∑
i=1

F0i

∮
∂Ai

n ·H · ∇F0ds−
∫
A

∇F0 ·H · ∇F0dA = 0.

(5.20)
From equation (3.4) it follows that∫

A

∇F0 ·H · ∇F0dA = 0, (5.21)

and since H is a positive definite two-dimensional second order tensor, this means
that

∇F0 = constant, F0 = 0 in A ∪ ∂A (5.22)

according to the boundary condition (5.14)2. The torsional rigidity of elastic beams
in terms of U0 = U0(x, y) can be represented as

S0 = 2

∫
A

U0(x, y)dA+ U0iAi

 =

∫
A

∇U0 · S · ∇U0dA, (5.23)

which follows from equation (4.5).
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6. Inequality relations for the torsional rigidity

The proof of the inequality relations for the torsional rigidity is based on the Schwarz
inequality ∫

A

(P ·M ·P + p ·m · p) dA

∫
A

(Q ·M ·Q + q ·m · q) dA ≥

≥

∫
A

(P ·M ·Q + p ·m · q) dA

2

,

(6.1)

where P, p, Q, q are arbitrary two-dimensional vectors

P = Pxex + Pyey, p = pxex + pyey, (6.2)

Q = Qxex +Qyey, q = qxex + qyey, (6.3)

M, m are arbitrary two-dimensional positive definite symmetric second order tensors.
Let

M = A, m = κ, P = Ω, p = ∇φ, Q = Ω0, q = 0 (6.4)

in inequality (6.1). We have∫
A

(Ω ·A ·Ω +∇φ · κ · ∇φ) dA

∫
A

(Ω0 ·A ·Ω0) dA ≥

≥

∫
A

(Ω ·A ·Ω0) dA

2

,

(6.5)

A simple computation gives∫
A

(Ω ·A ·Ω0) dA =

∫
A

(∇ω + ez ×R) ·A ·Ω0dA =

=

∫
A

∇ω ·A ·Ω0dA+

∫
A

(ez ×R) ·A ·Ω0dA =

∫
∂A

ωn·A ·Ω0ds−
∫
A

ω∇ · (A ·Ω0) dA+ S0 = S0.

(6.6)

From inequality (6.5) and equation (6.6) it follows that

S (A,κ, e) ≥ S0 (A,κ) . (6.7)

This inequality relation is valid if the cross section of the piezoelastic beam and elastic
beam (e = 0) have the same cross section. By the use of Prandtl’s stress function
and elastic displacement formulation we can derive another inequality relation for the
torsional rigidity. Let

M = S, m = H, P = ∇U, p = ∇F, Q = ∇U0, q = 0 (6.8)
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in inequality (6.1). It is obvious that∫
A

(∇U · S · ∇U +∇F ·H · ∇F ) dA

∫
A

(∇U0 · S · ∇U0) dA ≥

≥

∫
A

(∇U · S · ∇U0) dA

2

,

(6.9)

and we have∫
A

∇U · S · ∇U0dA =

∫
∂A

Un · S · ∇U0ds−
∫
A

U∇ · (S · ∇U0) dA =

=

∫
∂A0

Un · S · ∇U0ds+

p∑
i=1

Ui

∮
∂Ai

n · S · ∇U0ds+ 2

∫
A

UdA =

= 2

∫
A

UdA+

p∑
i=1

UiAi

 = S.

(6.10)

Substitution of equation (6.10) into inequality relation (6.9) gives the following in-
equality relation for the torsional rigidities S (S,G,H) and S0 (S,H)

S0 (S,H) ≥ S (S,G,H) . (6.11)

7. Illustration of inequality relations

The application of the inequalities (6.7) and (6.11) is illustrated by the example of a
twisted orthotropic piezoelectric beam with a solid elliptical cross section (figure 3).
The solution of the torsion problem of elliptical cross section shown in Figure 3 in
terms of ω = ω(x, y) and φ = φ(x, y) is as follows:

ω(x, y) = −cω
c
xy, φ(x, y) = −cϕ

c
xy, (7.1)
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where

cω =
(
a44κ22 + e224

)
a4 + (a44κ11 − a55κ22) a2b2 −

(
a55κ11 + e215

)
b4, (7.2)

cϕ = 2a2b2 (−a55e24 + a44e15) , (7.3)

c =
(
a44κ22 + e224

)
a4 + (a55κ22 + a44κ11 + 2e15e24) a2b2 +

(
a55κ11 + e215

)
b4. (7.4)

Here we note that for orthotropic piezoelectric material a45 = a54 = 0 and e25 =
e14 = 0. The expression of the torsional rigidity is

S (A, e,κ) =
a55a

2
(
a44κ22 + e224

)
+ a44b

2
(
a55κ11 + e215

)
c

a3b3π. (7.5)

From equation (7.5) we get

S0 (A,κ) =
a55a44a

3b3π

a44a2 + a55b2
. (7.6)

Combination of equation (7.5) with equation (7.6) gives

S (A, e,κ)− S0 (A,κ) =
(a44e15 − a55e24)

2

a2a44 + b2a55

a5b5π

K
≥ 0 (7.7)

according to inequality (6.7) where

K = b4a55κ11 + b2a2a55κ22 + b2a2a44κ11 + a4a44κ22 +
(
e15b

2 + e24a
2
)2

(7.8)

The Prandtl stress function and elastic displacement function formulation for the or-
thotropic piezoelectric beam when s45 = s54 = 0 and g25 = g14 = 0 can be represented
as

U(x, y) =
cu
C

(
1− x2

a2
− y2

b2

)
, (7.9)

F (x, y) =
cf
C

(
1− x2

a2
− y2

b2

)
. (7.10)

Here,

cu = a2b2
(
a2η11 + b2η22

)
, (7.11)

cf = a2b2
(
a55g15 + b2g24

)
, (7.12)

C =
(
a2s55 + b2s44

) (
a2η11 + b2η22

)
+
(
g15a

2 + g24b
2
)2
. (7.13)

The expression of torsional rigidity of the orthotropic piezoelectric solid elliptical cross
section is as follows:

S (S,G,H) = a3b3π
η11a

2 + η22b
2

(a2s55 + b2s44) (a2η11 + b2η22) + (g15a2 + g24b2)
2 . (7.14)

From the formula (7.14) we can obtain the torsional rigidity of the elastic beam with
the substitution g15 = g24 = 0

S0 (S,H) =
πa3b3

s55a2 + s44b2
. (7.15)
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From formulae (7.14) and (7.15) it follows that

S0 (S,H)− S (S,G,H) =

= a3b3π

 1

s55a2 + s44b2
− 1

(g15a2+g24b2)
2

η11a2−η22b2 + s55a2 + s44b2

 ≥ 0
(7.16)

according to the inequality relation (6.11). It must be noted that for a double con-
nected elliptical cross section whose main axes are a, λa and b, λb (0 < λ < 1)
formulae (7.5) and (7.6) can be represented as

S (A, e,κ) =
a3b3π

c

(
1− λ4

) [
a55a

2
(
a44κ22 + e224

)
+ a44b

2
(
a55κ11 + e215

)]
, (7.17)

S0 (A,κ) = a3b3π
(
1− λ4

) a55a44
a44a2 + a55b2

. (7.18)

These equations show that equation (7.7) is valid for a hollow elliptical cross as well.
A similar remark is valid for equation (7.16) since in this case

S (S,G,H) =
πa3b3

(a2g15+b2g24)
2

η11a2+η22b2
+ s55a2 + s44b2

(
1− λ4

)
, (7.19)

S0 (S,H) =
πa3b3

s55a2 + s44b2
(
1− λ4

)
. (7.20)

8. Conclusion

This paper deals with the torsional rigidity of monoclinic piezoelectric beams sub-
jected to uniform torsion. Two inequalities are presented for the torsional rigidity
which concern the connection of torsional rigidities of piezoelectric and elastic beams.
Both beams have the same cross sections and their elastic properties are also the same.
This means that the elastic stiffness and elastic flexibility (compliance) matrices for
the two beams are equal. An example illustrates the proven statements.
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Abstract. This paper presents the evaluation of the Stanford University Unstructured
(SU2) open-source computational software package for a high Mach number 5 flow. The test
case selected is an impinging shock wave turbulent boundary layer interaction (SWTBLI) on
a flat plate where the experimental data of Schülein et al. [27] is used for validation purposes.
Two turbulence models, the Spalart–Allmaras (SA) and the k-ω Shear Stress Transport
(SST) within the SU2 code are evaluated in this study. Flow parameters, such as skin friction,
wall pressure distribution and boundary layer profiles are compared with experimental values.
The results demonstrate the performance of the SU2 code at a high Mach number flow and
highlight its limitations in predicting fluid flow physics. At higher shock generator angles, the
discrepancy between experimental and CFD data is more significant. Within the interaction
and flow separation zones, a smaller separation bubble and delayed separation are predicted
by the SA model while the k-ω SST model predicts early separation. Both models are able
to predict wall pressure distribution correctly within the experimental values. However,
discrepancies were observed in the prediction of skin friction due to the inability of the
models to capture the boundary layer recovery after shock impingement.
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1. Introduction

A hypersonic air-breathing propulsion (HAP) device scoops air from the atmosphere
to generate thrust [1], in contrast to a rocket propulsion engine where on-board liquid
oxygen is utilized for combustion. The obvious advantage of a HAP device is the
reduction in payload requirement (on-board oxygen) for the aircraft; however, such
propulsion systems suffer from low performance at subsonic speeds, and thus are
dependent on other propulsion devices for the take-off procedure [2]. Ramjet and
scramjet are both HAP devices used for flights above sonic conditions; combustion in
a ramjet occurs at subsonic speeds, while for the scramjet combustion is carried out at
supersonic speeds. The concept of scramjet engines was first devised around the 1950s
[3], a period of time when the capability of Computational Fluid Dynamics (CFD)
was very limited. The first successful flight of a scramjet engine, named HyShot-II
and built at the University of Queensland, took place in July of 2002 [4]. Further
experiments were conducted [5, 6] and detailed computational investigations have also
been performed on the HyShot-II scramjet. Karl et al. [7] was perhaps the first to
present the experimental investigations on the overall flow field of the HyShot-II and
validated their findings through RANS (Reynolds-Averaged Navier–Stokes) modeling.
This was followed by several further investigations on the same geometry. Berglund et
al. [8], Fureby et al. [9] and Chapuis et al. [10] investigated the supersonic combustion
phenomenon inside the HyShot-II scramjet combustor using both the time-averaged
RANS and the time-accurate LES (Large Eddy Simulations) turbulence modeling
approaches. You et al. [11] presented a detailed investigation on the fuel injection and
mixing inside the same combustor to extend the understanding through RANS and
DES (Detached Eddy Simulation) formulations. Many further studies have since been
carried out [12, 13, 14] to further understand the flow dynamics around and inside the
HyShot-II geometry. Owing to the complexities associated with the scramjet, a more
generic model of the supersonic flow inside the combustion chamber with transverse
sonic jet injection [15, 16, 17] was used to understand the complex flow characteristics
and mixing of air with fuel where Shock Wave Turbulent Boundary Layer Interactions
(SWTBLI) also play a major role.

One complex flow phonomenon in a supersonic combustion chamber is the SWTBLI.
Typical applications of SWTBLI include supersonic/hypersonic engines, inlets of high
speed air-breathing propulsion vehicles and high Mach number flows over control
surfaces [18, 19]. Although efforts were exerted at the design stage to avoid any
shock wave entering the combustion chamber of the HyShot-II [7, 12], a shock train
was observed traveling inside the combustion chamber giving rise to the SWTBLI
phenomenon. This type of interaction causes the boundary layer to separate and
develop recirculation of flow. As the scramjet employs auto-ignition, this recirculation
can have an effect on the combustion process and even results in unsteady unstart in
HyShot-II [12, 13]. Shock wave boundary layer interaction can have ahuge influence on
the nature of high Mach number flows, compromising the safety and risk management
for a specific industrial system such as a supersonic engine inlet. The interaction
between shocks and boundary layer can cause an abrupt deceleration in fluid flow
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and thickening of the turbulent boundary layer [20]. In the separation zone, three-
dimensional effects in the form of Goertler vortices have also been reported by several
researchers [21, 22, 23, 24]. Along with the occurrence of flow separation, high pressure
fluctuations and wall heat flux could be observed in the interaction region. The
assumption of stable compressive deceleration in the freestream flow into a hypersonic
air intake as an isentropic process is invalid in true flight conditions [18].

Most research in this area is still centered around test cases with simple geometries
such as a flat plate and shock generator [21]. An impinging SWTBLI on a flat plate
is considered as a canonical test case [25], along with some other typical SWTBLI
configurations such as compression ramp and expansion-compression corner flows [26].
Schülein et al. [27] conducted detailed experiments on an impinging SWTBLI on a
flat plate and presented results for the skin friction and heat transfer measurements,
carrying out the experiment in the DLR Ludwieg-Tube (DNW-RNG) wind tunnel
facility in Göttingen. The test model consisted of a flat plate of 500 mm in length
and 400 mm in width, as well as a shock generator of 300 mm in length and 400
mm in width. In Figure 1, the shock generator is oriented at a shock generator
angle β and its leading edge and trailing edge are positioned such that the shock
impingement location is always 350 mm from the leading edge of flat plate at all
freestream Mach numbers and shock generator angles. A Further comprehensive
database of supersonic/hypersonic test cases of a Mach number of at least 3 was also
reported [28, 29], ranging from an impinging shock to three-dimensional double fin
configurations.

Figure 1. Sketch of the test model from Schülein et al. [27]

Fedorova et al. [30] conducted a CFD analysis of the experiment of Schülein et al.
[27] using unsteady Favre-Averaged Navier–Stokes (FANS) equations along with the
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k-ω turbulence model of Wilcox [40]. The results demonstrate that the disagree-
ment between numerical and experimental data is greater with increasing interaction
strength. At β of 6◦ and 10◦, good agreement is reported for the flow parameters such
as skin friction and boundary layer profiles; however, skin friction downstream of the
impingement point was underestimated at all angles investigated. Leger and Poggie
[31, 32] illustrated both, the weak and the strong interaction cases of an impinging
SWTBLI on a flat plate and discussed the nature of the shock wave boundary layer
interactions. They also observed the reduction in the wall shear stress and increase in
the wall pressure across the SWTBLI region due to a double-shock event in the case
of weak interactions. Several more experimental and numerical investigations were
carried out for this particular arrangement and its variants. However, the experiment
of Schülein et al. [27] remains the fundamental source of data for verification and
validation of computational methods and turbulence models [33].

Reynolds-averaged modeling is considered to be a low accuracy approach in predict-
ing skin friction and heat transfer distributions while it performs better in modeling
primary separation and pressure fields. In a strong interaction case, the agreement
of experimental and CFD data is reduced. This paper presents an attempt to evalu-
ate the Stanford University Unstructured (SU2) open-source CFD software package
[34, 35, 36] using compressible Reynolds-averaged turbulence modeling approaches for
an impinging SWTBLI on flat plate at Mach number of 5 in comparison with the ex-
perimental data of Schülein et al. [27]. The main objective here is the validation of the
numerical results performed with the use of the SU2 code for an impinging SWTBLI
case at Mach number 5. Furthermore, another goal is to understand the limitations of
the SU2 code for the investigations of complex flow phenomena of SWTBLI at a high
Mach number flow. In this study, due to the constraint of computational resources
for very high-speed flows, two-dimensional simulations have been performed.

2. Methodology and Computational Framework

2.1. The SU2 open-source code. The SU2 code is an open-source Computational
Fluid Dynamics (CFD) software package, first developed by Aerospace Design Lab-
oratory at Stanford University. One of the motivations behind the SU2 code is to
solve problems which involve discretization of Partial Differential Equations (PDEs)
such as Navier-Stokes and optimization of PDE-constrained problems. It is a soft-
ware collection based on programming languages such as C++, Python, OpenMPI
and Metis. Gradient-based adjoint solver capability is included in the development
of the SU2 code through mesh adaption process driven by a specific function such
as lift or drag. The SU2 code is based on Finite Volume (FV) or Finite Element
(FE) methods and complete description of the SU2 code along with its structure can
be found in [34, 35, 36]. Since the first introduction of the SU2 open-source code,
it has been validated for a number of benchmark cases such as low Mach flows over
an NACA0012 aerofoil [34, 35], supersonic or hypersonic flow regimes [34] as in a
Lockheed N+2 aircraft at Mach number of 1.7, and the RAM-C II flight test vehicle
at the Mach number of 16 with a plasma solver including additional sets of equations
and source terms to take into account non-equilibrium effects [36].
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2.2. Governing equations of high-speed compressible flows. The governing
equations of high-speed compressible, viscous, heat-conducting flows, i.e., the instan-
taneous mass, momentum and enegy conservation equations, are considered [40] as

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (2.1)

∂
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∂
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)
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where ρ is the fluid density, ui is the component of the velocity vector (i = 1,2 for
two-dimensional and i = 1,2,3 for three-dimensional problems), p is the pressure field
which is a function of the density, τij describes the components of the viscous stress
tensor, E is the total energy per unit mass, λ is the thermal conductivity, and T is
the temperature. The elements of the viscous stress tensor can be expressed by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij , (2.4)

where µ is the temperature dependent dynamic viscosity of the fluid, and δij is the
Kronecker delta (δij = 1 when i = j and δij = 0 when i 6= j). For an ideal (perfect) gas,
the relationship among pressure, density and temperature in the governing equations
(2.1)–(2.3) can be computed by the equation of state as

p = ρRT, (2.5)

where R is the perfect (ideal) gas constant. The thermal conductivity λ in the energy
equation (2.3) can be expressed by

λ =
µcp
Pr

, (2.6)

where cp is the specific heat, and Pr is the dimensionless Prandtl number. In the
thermal conductivity λ expression (2.6), the specific heat can be computed as

cp =
γR

γ − 1
, (2.7)

where γ is the specific heat ratio. In this numerical study, the SU2 code has been
used for solving the Reynolds-Averaged Navier–Stokes (RANS) equations, i.e., the
instantaneous governing Eqs. (2.1)–(2.3) after Reynolds-averaging. Therefore, the
effective viscosity µeff is introduced instead of the dynamic viscosity µ of the fluid
for turbulence modeling. In that case, the effective viscosity µeff can be decomposed
into the sum of the dynamic µ and the turbulent eddy viscosity µt as

µeff = µ+ µt. (2.8)

The effective thermal conductivity λeff can also be introduced for turbulence mod-
eling purposes and can be decomposed into two parts as follows:

λeff =
µ

Pr
+

µt

Prt
, (2.9)



62 J.-M. Yeap, Z. A. Rana, L. Könözsy and K. W. Jenkins

where Prt is the turbulent Prandtl number. Note that in a compressible fluid flow
solver, the Sutherland law has to be satisfied by dynamic viscosity µ and turbu-
lent eddy viscosity µt, which are included in the appropriately chosen turbulence
models. Based on user preferences, the SU2 solver can be configured to perform
computations in either dimensional or non-dimensional form. A wide selection of
boundary conditions is available in the SU2 compressible solver, including Euler-type
wall (inviscid), no-slip wall with isothermal and adiabatic options, symmetry wall,
far-field and periodic boundary conditions. At the inlet and outlet sections and sur-
faces, characteristic-based boundary conditions such as mass flow rate, supersonic
inlet properties, stagnation conditions, back pressure at the outlet and supersonic
outlet can be prescribed. Two engineering turbulence models are available in the SU2
code which are evaluated in the present numerical study, namely the Spalart–Allmaras
(SA) one-equation turbulence model [37] and the k-ω Shear Stress Transport (SST)
model of Menter [38], which are based on Boussinesq hypothesis and whose basic
concepts are described briefly subsequently. In the present study, for the sake of sim-
plicity and due to the constraint of computational resources for very high-speed flows,
two-dimensional simulations have been performed and their results are analyzed in
comparison with the experimental data of Schülein et al. [27]. The motivation of this
study is to analyze the behavior of the SU2 open-source CFD code for high Mach
numbers, where a knowledge gap still exists.

2.2.1. The Spalart–Allmaras (SA) turbulence model. A linear relationship between
the turbulent Reynolds shear stresses and the mean velocity gradients is assumed in
the Boussinesq eddy viscosity hypothesis, and the SA one-equation turbulence model
neglects the contribution of the turbulent kinetic energy (TKE) k in the Reynolds
stress tensor. Therefore, the turbulent Reynolds shear stress can be expressed by

u′v′ = −νt
(
∂U

∂y
+
∂V

∂x

)
, (2.10)

where U and V are averaged velocity components in y and x spatial directions for
two-dimensional flows. In the SA model, turbulent eddy viscosity is predicted through
a new variable ν̂ which is considered as a transport quantity in the model. This means
that an additional transport equation for the scalar variable ν̂ has to be solved and a
closure function fv1 has to be computed in each iteration. The dynamic eddy viscosity
coefficient µt of the SA semi-empirical turbulence model can be defined by

µt = ρν̂fv1, (2.11)

where the closure function can be expressed by

fv1 =
χ3

χ3 + c3v1

, where χ =
ν̂

ν
. (2.12)

For the additional transport equation ν̂ to be solved in the SA model, the convective
and viscous fluxes, as well as the source terms, can be expressed with vector notation
as
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where u is the velocity vector, dw is the distance to the nearest surface, and the scalar
quantity Ŝ in the production term can be formulated as

Ŝ =
∣∣Ω∣∣+

ν̂

κ2d2
w

fv2, (2.14)

where
∣∣Ω∣∣ is the magnitude of the vorticity tensor. The SA model engineering turbu-

lence model has three closure functions (fv1, fv2 and fw) and a total of eight closure
coefficients (cb1, cb2, cw1, cw2, cw3, cv1, σ and κ) recorded in the references [35, 39].
For further details on the SA model, see [37].

2.2.2. The k-ω Shear Stress Transport (SST) turbulence model. The k-ω SST turbu-
lence model of Menter [38] is a variant of two-equation k-ω models, which involves
zonal or blending approach between the conventional k-ω and the k-ε model. In the
near-wall region, the standard k-ω model is adopted while the k-ε model modified
for high Reynolds number flows which is modeling the outer region of the boundary
layer. In the k-ω SST model, the eddy viscosity µt is defined by

µt =
ρa1k

max (a1ω, S F2)
, (2.15)

where S =
√

2SijSij is the magnitude of the rate-of-strain tensor and F2 is the second
blending function. Two additional transport equations for the turbulent kinetic energy
k and the specific rate of dissipation ω can be considered as

ρ
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σω2

ω
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where Pk and Pω are the production terms of the k and ω transport equations. For
turbulence modeling, the values of the constants used in transport Eqs. (2.16) and
(2.17), and the relevant blending functions can be found in [38, 40].

2.3. Numerical solution of the governing equations. The SU2 code employs
Finite Volume (FV) or Finite Element (FE) methods where the numerical flux terms
are computed across the control volumes in a dual grid structure with a standard edge-
based algorithm and a median-dual vertex based scheme. The governing equations
can be considered in a semi-discretized form as∫

Ωi

∂Ui

∂t
dΩ +

∑
j∈N(i)

(
F̃ c

ij
+ F̃ v

ij

)
∆Aij − SU |Ωi| =
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where Ui is the components of the vector of conservative variables, the convec-
tive/advective F̃ c

ij
and the viscous/diffusion F̃ v

ij
fluxes are predicted at the midpoint

of each edge, and SU represents any additional source terms. The convective terms
can be discretized in either an upwind or central scheme while diffusion terms are
approximated from the average of flow gradients at each node computed with either
Green-Gauss or least-squares methods [34]. Source terms involved in the consideration
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of other effects are reconstructed with piecewise constant relations. In the present
numerical study, for approximating the convective flux terms, the flux-difference-
splitting method of Roe is selected in the SU2 code as

F̃ c
ij

= F̃ (Ui, Uj) =
1

2

(
F̃ c

i
+ F̃ c

j

)
· −→n ij −

1

2
K̃
∣∣∣λ̃∣∣∣ K̃−1(Ui − Uj), (2.19)

where λ̃ is the local eigenvalue of the scheme. The numerical prediction of convective
fluxes is first-order accurate in space while second-order accuracy is achieved with the
Monotone Upstream-centered Scheme for Conservation Laws (MUSCL) approxima-
tion and slope limiters such as Venkatakrishnan [41] or Barth-Jespersen slope limiter,
respectively. In terms of time integration, numerical computations can be performed
with implicit and explicit schemes. Although explicit schemes such as Runge-Kutta
are available in the SU2 code, the general setup for steady-state problems are carried
out with the Euler implicit scheme. The SU2 code employs a local time-stepping ap-
proach when each cell moves forward at a different local time step, which is adopted
in the numerical setup for faster convergence to steady-state solutions. On the other
hand, unsteady problems can be configured with a dual time-stepping approach which
can be first- or second-order accurate in time.

3. Simulation Setup

In this study, compressible Reynolds-averaged simulations have been carried out at
three shock generator angles β of 6◦, 10◦, and 14◦ as specified in the experimental
data of Schülein et al. [27]. The computational domains for each shock generator
angle are created according to the coordinates of leading and trailing edges of shock
generator as in the experiment of Schülein et al. [27], and two-dimensional (2D)
investigations are carried out in this work. For each angle, three levels of meshes are
created with the GMSH mesh generator software: coarse, medium and fine. Their
description is presented in Table 1. The hybrid meshes are generated at the coarse
grid level for each shock generator angle (see Figure 2). Structured quadrilateral
cells are created in the boundary layer or near-wall regions of shock generator and
the flat plate with y+ of approximately 1.5 at the medium grid level. The remaining
region is then populated with triangular cells, forming an unstructured hybrid meshing
strategy. Grid clustering is observed towards the walls and within the region near
the shock impingement point for achieving better accuracy in these regions, where
x ≈ 0.330 − 0.350 m. The grid points in the inflation layer on the bottom wall
are clustered towards the shock impingement location (with a growth rate of 1.1) for
obtaining better accuracy in the simulations. In the SU2 configuration file, supersonic
inlet and outlet boundary conditions are defined at the inlet and outlet sections,
respectively. Isothermal no-slip walls are defined for the shock wave generator, flat
plate and bottom surfaces while an Euler-type inviscid wall condition is prescribed
for the section in front of the leading edge of shock wave generator. The freestream
conditions used for the current study are summarized in Table 2.
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Table 1. Description of two-dimensional hybrid meshes

Mesh Number of Cells
β = 6◦ β = 10◦ β = 14◦

Coarse (y+ = 5) 105 955 106 089 104 495
Medium (y+ = 1.5) 210 954 211 297 209 581
Fine (y+ = 0.5) 405 483 407 584 406 157

(a) Mesh for β = 6◦.

(b) Mesh for β = 10◦.

(c) Mesh for β = 14◦.

Figure 2. 2D coarse meshes for various shock generator angles
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Table 2. Freestream conditions

Flow Parameters Values

Mach Number, Ma 5.0
Unit Reynolds Number, Re1,∞ 3.6736·106

Flow Velocity, U∞ 828.561 m/s
Static Pressure, P∞ 4006.88 Pa
Stagnation Pressure, P0,∞ 2.12·106Pa
Static Temperature, T∞ 68.33 K
Stagnation Temperature, T0,∞ 410 K
Density, ρ∞ 0.20428 kg/m3

Dynamic Viscosity, µ∞ 4.60741·10−6 N ·s/m2

3.1. Grid convergence/mesh sensitivity study. First of all, a grid convergence
study is carried out, using Reynolds-averaged turbulence modeling approaches, at the
shock generator angle of β=10◦ in a 2D impinging SWTBLI case for both SA and k-ω
SST turbulence models. Steady-state solutions are computed with the Euler implicit
scheme and a maximum Courant number of CFLmax = 1.0, where the skin friction
coefficients Cf are monitored as a parameter for the Grid Convergence Index (GCI)
[42, 43] calculations. At the location of x = 0.376 m, the GCI and the Richardson
extrapolation values for skin friction coefficient Cf,h=0 are computed which are pre-
sented in Table 3 and plotted in Figure 3, where h is the normalized wall distance.
The obtained computational results for the SA and the k-ω SST turbulence models
demonstrate high levels of certainty (96.3% and 105.2%).

Table 3. Grid convergence study on the β=10◦ case

Turbulence Model Richardson Extrapolation (Cf,h=0) GCI (%)

SA 5.682·10−3 0.963%
k-ω SST 4.730·10−3 1.052%

In Figure 3, it can be seen that the skin friction coefficient obtained with the SA
model is decreases with the grid refinement while the opposite is true for k-ω SST
turbulence model. The experimental data for Cf at this particular location is within
the range of 5.2–5.6 (x10−3) in different experiments. Therefore, it is appropriate
to conclude that the SA model predicts the Cf better than the k-ω SST turbulence
model. In conclusion, grid convergence is achieved within the asymptotic range of
convergence for both engineering turbulence models, thus the medium grid level is
sufficient for further simulations of the two-dimensional impinging SWTBLI problem
using a Reynolds-averaged turbulence modeling approach.
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Figure 3. The obtained numerical values of the skin friction coeffi-
cient Cf and the Richardson extrapolation (Cf,h=0) for β = 10◦

4. Results and Discussion

In this section, the compressible solver of the SU2 open-source code is utilized to
analyze a Mach number 5 flow for a 2D impinging SWTBLI where different shock
generator angles are investigated in comparison with the experimental data of Schülein
et al. [27] and computational data by Leger and Poggie [31, 32]. The medium grid
level is assumed to be appropriate for the validation of the results.

4.1. Weak interaction case (β = 6◦). At β = 6◦, a weak interaction event has
been modeled and good agreement between CFD and experimental data is achieved
for both the SA and k-ω SST turbulence models, including parameters such as skin
friction, wall pressure and boundary layer profiles. In Figure 4, the skin friction
coefficient Cf is plotted along the flat plate at β=6◦. Previous experimental data and
CFD results are also plotted as reference data for comparison. From the skin friction
plot, as expected for a weak interaction case, no flow separation is predicted by all
approaches, except for the k-ω SST model, where a very small separation region
is observed. Better agreement is observed before the shock impingement region as
compared to after it at the location x = 0.350 m. A drop in skin friction values is
observed, as expected from [29] however, the location of such drop is different for
each turbulence model. This drop in skin friction is predicted to be the earliest at
around x≈0.330 m with the k-ω SST model, followed by the SA model at x≈0.336
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m. A quantitatively smaller drop in skin friction is modeled with the SA model, as
the one-equation model is more resistant to flow separation and change in wall shear
stress.

Figure 4. Skin friction distribution for β = 6◦

Figure 5. Wall pressure distribution for β = 6◦



Evaluation of the SU2 code for a hypersonic flow at Mach number 5 69

Figure 5 presents the wall pressure pw distribution on the flat plate for β=6◦ where
both turbulence models provide good agreement. A pressure jump is predicted in
both cases; pressure change with the k-ω SST model (x ≈ 0.331 m) is very close to
that of the experimental data of Schülein et al. [27]. Pressure rise is over-predicted
by the SA model at the location of x ≈ 0.337 m whereas the Negative SA model
(SA-neg) [29] predicts it at the location of x ≈ 0.342 m. Across the pressure jump
near the interaction point, pressure ratios in all cases are estimated to be within the
range, p3/p1 ≈ 3.865-3.913. This is close to the value reported by Brown [18] which
is p3/p1 ≈ 3.762. A pressure plateau region is observed after the interaction point,
which shows close agreement with the experimental data of Schülein et al. [27].

In Figure 4, it can be observed that the Cf profile after the shock impingement is not in
very close agreement with the experimental data. This could be due to the turbulence
models being incapable of modeling the boundary layer recovery accurately despite
this, the order of magnitude is captured reasonably well. On the other hand in Figure
5, close agreement can be seen between the pressure profiles before and after the
shock impingement. This trend has been observed in all three angles of attacks and is
visible in the plots below. At all three shock generator angles, dimensionless velocity
profiles are investigated at different sections as reported by Schülein et al. [27]. All of
the sections are located downstream of the interaction point where the compression
waves are formed. For all sections, the typical trend of the viscous sublayer and
the log-layer in a turbulent boundary layer is modeled by both turbulence models.
However, within the log-layer, a close fit between experimental data and the law
of the wall curve is not observed. Besides, the transition from log-layer to defect-
layer at all sections predicted by both models with the use of the SU2 code is not
closely matched with the measurements of Schülein et al. [27]. At a location furthest
away from the interaction point, the best match between the k-ω SST dimensionless
velocity profile and experimental data is shown in Figure 6. This is possibly due to
the flow behavior at the location, which is least affected by compression waves and
the shock formation. Discrepancies between experimental and CFD results can be
due to the poor performance of the Reynolds-averaged turbulence modeling approach
in accounting for non-equilibrium viscous behaviour and complex shock system.

At a fixed streamwise range, density contours computed with the SU2 code are further
compared along with the Schlieren visualization by Schülein et al. [27] in Figure 7.
The shock impingement point is predicted slightly earlier at x ≈ 0.330 m with the k-ω
SST model while a later point is predicted at the location of x ≈ 0.336 m with the
SA model. In comparison with reference data, earlier interaction between incidence
shock and turbulent boundary layer is predicted by both turbulence models available
in the SU2 compressible fluid flow solver. The SU2 code can predict general flow
topology such as incidence and reflected shocks at β = 6◦.
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Figure 6. Dimensionless velocity profile for β = 6◦ at x = 0.460 m

Figure 7. Density contours in comparison with the Schlieren visual-
ization for β = 6◦ (from top to bottom: SU2 SA model, SU2 k-ω
SST model and the experiment of Schülein et al. [27])

4.2. Incipient interaction case (β = 10◦). Figure 8 presents the skin friction
coefficients Cf as computed at β = 10◦ in comparison with the experimental data of
Schülein et al. [27], and CFD data taken from the NASA Wind-US code and from
Leger and Poggie [31, 32]. The results are similar for different approaches, except
for the interaction region in the range of 0.321 m < x < 0.350 m. Downstream of
the location x ≈ 0.350 m, the skin friction plateau level is underpredicted by CFD
simulations of the Wind-US, US3D and SU2 codes. The SA model of the SU2 code
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shows better agreement with the experimental data within this region. However, it
is possible that the uncertainties associated with the experimental data of Schülein
et al. [27] cause such discrepancies. In terms of the slope associated with the rise in
the skin friction after the shock interaction, the trend predicted by the SU2 code is
closely fitted with that of experimental data (see Figure 8). Overall, the skin friction
distribution over the flat plate is well modeled by the SU2 compressible fluid flow
solver, except for the shock interaction and separation zones.

Figure 8. Skin friction distribution for β = 10◦

Within the shock interaction region, flow separation is predicted with the SA and the
k-ω SST turbulence models using the SU2 code. Based on the results from the Wind-
US and the SU2 codes, an earlier flow separation is observed in the case of the k-ω SST
model as compared to that of the SA model. As experimental measurements lead to a
flow separation at x ≈ 0.334 m, the Mach number 5 flow over the flat plate separates
at x ≈ 0.322 m in the case of the k-ω SST model while delayed flow separation is
predicted at x ≈ 0.340 m with the SA model. In comparison with the experimental
data of Schülein et al. [27] at x ≈ 0.345 m, reattachment points occur earlier in the
case of the k-ω SST model at x ≈ 0.339 mand at around x ≈ 0.343 m with the SA
model. Separation bubble size is predicted by the SA model to be about one-third of
the experimental value, which is significantly smaller than the value predicted with
the k-ω SST model (50% greater in size in comparison with the experimental data).
The results are consistent with those reported in the literature [27], where the flow
separation is underestimated by the SA model and overestimated with the k-ω SST
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model. The discrepancies between these results are possibly due to the limitations of
the Reynolds-averaged modeling in flows with complex shock formation and thermo-
chemical effects.

Wall pressure distribution pw at β = 10◦ is plotted in Figure 9. Close agreement
is obtained with both turbulence models investigated here for the wall pressure dis-
tribution. Pressure rise is predicted to be the earliest with the k-ω SST model at
x ≈ 0.321 m, followed by the SA model and the SA-neg model, which computes a later
pressure jump at x ≈ 0.340 m than in the experiments at x ≈ 0.332 m. The Pressure
plateau level after the interaction point is computed to be around p3/p1 ≈ 7.65-7.71,
which is similar to that reported by Brown [18], p3/p1 ≈ 7.63. The pressure distri-
butions are captured very well in comparison with experimental data, and it can be
concluded that the Reynolds-averaged modeling approach in the SU2 code is capable
of calculating accurate wall pressure distribution pw for a moderate interaction event
involving an impinging SWTBLI on a flat plate at Mach number of 5.

Figure 9. Wall pressure distribution for β = 10◦

The dimensionless velocity profile for β = 10◦ is plotted in Figure 10. Within the
viscous sublayer, the curves modeled by both turbulence models investigated here are
in agreement with the profile of U+ = y+. The CFD results as computed by the
SU2 code are also closely matched with the law of the wall at all sections. However,
experimental values are observed to be slightly deviated from the law of the wall. The
main discrepancy between experimental and the CFD dimensionless velocity profiles
is found within the defect-layer. In this region, the k-ω SST model is deduced to be
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superior to the SA model in predicting the flow behavior of SWTBLI case at Mach
number of 5. Dimensionless velocity profiles of the k-ω SST model are quite similar
to those obtained in the experiments at all sections, with only a slight difference in
the transition from the log-layer to the defect-layer.

Figure 10. Dimensionless velocity profile for β = 10◦ at x = 0.460 m

Figure 11. Density contours in comparison with the Schlieren visu-
alization for β = 10◦ (from top to bottom: SU2 SA model, SU2 k-ω
SST model and the experiment of Schülein et al. [27])
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In Figure 11, the density fields computed by the SU2 solver are generated compared to
the Schlieren images from the experiment [27]. The formation of two refracted shocks
from the incidence shock and the λ-shock upstream of the separation region can be
observed from the density contour of the k-ω SST model. Two refracted shocks are
created when expansion waves are formed as oblique shock penetrates the separation
bubble. Reflected shock is then formed from the merging of both refracted shocks and
compression waves downstream of the interaction point. The type of shocks observed
in the Schlieren images are consistent with that predicted with the k-ω SST model.
Only reflected shock is observed in the density field of the SA model due to its small
separation bubble size. In addition, the separation region is predicted to begin earlier
with the k-ω SST model, as it is known to overestimate separation size.

Figure 12. Skin friction distribution for β = 14◦

4.3. Strong interaction case (β = 14◦). A strong interaction case at β = 14◦ is
investigated in this subsection. The discrepancy between experimental and compu-
tational results is found to be the most significant at this angle. Figure 12 presents
the skin friction coefficients Cf over the flat plate, plotted with reference to experi-
mental and CFD data taken from the literature [27, 31, 32]. In this case, the extent
of the shock interaction is much greater than at β = 10◦, which spans a range of
0.300 m < x < 0.350 m. As the interaction strength is the strongest at β = 14◦, the
discrepancies between experimental and computational results are more significant.
Downstream of the interaction region, skin friction values are underestimated with
all CFD approaches employed here. The SA model of the SU2 code predicts the skin
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friction plateau level closest to the experimental data of Schülein et al. [27]. The
skin friction is observed to increase at the same rate for both experimental and CFD
curves. Separation points are estimated at x ≈ 0.336 m and x ≈ 0.301 m with the SA
and the k-ω SST models, respectively. In comparison with the experimental data of
Schülein et al. [27] at x ≈ 0.314 m, early flow separation is predicted with the k-ω SST
model, while separation predicted with the SA model is delayed. Close agreement is
obtained by both turbulence models for reattachment points at x ≈ 0.347 m. Separa-
tion and reattachment points predicted by the SA and the SA-neg model are observed
to be similar. The separation bubble observed in the SA model is one-third that of the
experiment, while separation bubble size predicted with the k-ω SST model is about
40% larger than the experimental data in [27]. This could be due to the nature of
the SA model in underestimating wall shear stress, while excessive turbulence kinetic
energy might be modeled with the k-ω SST model in this case.

Figure 13. Wall pressure distribution for β = 14◦

In Figure 13, the wall pressure distribution pw across the flat plate at β = 14◦ is
plotted along with the experimental data [27]. In this case, greater discrepancy in
data is observed downstream of the shock interaction region due to the strong inter-
action strength. Wall pressure values are slightly underestimated post-interaction by
both turbulence models. Initial pressure jumps are estimated at x ≈ 0.335 m and
x ≈ 0.300 m with the SA and the k-ω SST models, while x ≈ 0.313 m is measured
in the experiment. A second inflection point at pw/p∞ ≈ 3.71-4.02 is observed with
the k-ω SST model at x ≈ 0.335 m, which coincides with the experimental data. In
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Figure 14. Dimensionless velocity profile for β = 14◦ at x = 0.460 m

contrast, a second inflection point is predicted at a lower pressure, pw/p∞ ≈ 2.71,
x ≈ 0.343 m. Therefore, better agreement is achieved by the k-ω SST model as
compared to the SA model. The pressure plateau level downstream of interaction
region at β = 14◦ is computed about p3/p1 ≈ 13.25-13.44, while it is reported by
Brown [18] as p3/p1 ≈ 13.62. As compared to the results at β = 10◦, the difference in
pressure plateau levels is slightly greater at β = 14◦. This is due to poor performance
of the typical Reynolds-averaged modeling in simulations involving significant flow
separation and pressure change across the shock interaction zone.

In Figure 14, the velocity profile of the k-ω SST model is observed to deviate from
the law of the wall; however, the transition predicted from the log-layer to the defect-
layer is consistent with experimental measurements [27]. The velocity profile of the
SA model follows the law of the wall, although it fails to predict correctly the defect-
layer at this location. In the sections further downstream of the shock impingement
point, modeled boundary layer profiles are fairly close to the experimental data with
differences for the defect-layer. It can be concluded that the transition from the log-
layer to the defect-layer is poorly estimated by both turbulence models in a strong
interaction case. This is due to the assumptions made in the turbulence models
that simplify flow problems based on subsonic benchmark test cases which do not
include the shock interaction. In future studies, the role of coefficients and functions
in URANS modeling can also be investigated.
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Figure 15. Density contours in comparison with the Schlieren visu-
alization for β = 14◦ (from top to bottom: SU2 SA model, SU2 k-ω
SST model and the experiment of Schülein et al. [27])

The simulated density fields are plotted with the Schlieren images in Figure 15. Flow
separation is predicted to be earlier in the k-ω SST model, while it is delayed in
the SA model. Separation size in the k-ω SST is around 50% larger than in the
experiment [27], while the SA model gives a separation region which is half of that.
Two refracted shocks observed with the k-ω SST model are more distinct than with
the SA model, where weaker shocks are formed instead. In addition, expansion waves
spanning from one of the refracted shock are clearly shown in the density contour of
the k-ω SST model. The density field of the k-ω SST model closely resembles the
structure of the shock system observed in the experiment, including the angles of the
λ-shock foot and refracted shocks formed at the triple point. It can be concluded
that the SA model is unable to predict the degree of flow separation and SWTBLI
in a strong interaction case, whereas the k-ω SST model tends to overestimate the
separation size and produce stronger shocks in the flow field.

5. Conclusions and Future Work

The open source SU2 CFD code has been evaluated in this study at a Mach number
of 5 where an impinging SWTBLI on a flat plate is investigated and compared to
the experimental data of Schülein et al. [27]. The results presented demonstrate
the strengths and weakness of the SU2 code for the investigation of such a high
Mach number flow. For the 2D impinging SWTBLI case, the SA and the k-ω SST
turbulence models are used to compute the flow field. These turbulence modeling
approaches were validated against the experimental data for parameters such as skin
friction, wall pressure distribution and boundary layer profiles. The discrepancies
between computational and experimental data become more significant with higher
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shock generator angles β, which indicates increasing shock interaction strength. It
can also be observed that neither turbulence model was capable of capturing the
boundary layer recovery after the shock impingement, which resulted in discrepancy
in the results for Cf . However, pressure profiles were captured very well for all three
angles. Both turbulence models are concluded to be less reliable within the shock
interaction and separation regions. This is due to the inherent working principle of
Reynolds-averaged modeling, which does not resolve small and large scale eddies in
the flow field. At all β angles, earlier flow separation is predicted with the k-ω SST
model, while the flow field is less sensitive to separation for SU2 simulations with the
SA model. The SA model is deduced to be better in the prediction of reattachment
points, while the complex shock system at higher β angles is better computed by the
k-ω SST model. A larger separation size and stronger shock formation are predicted
with the k-ω SST model as compared to the SA model. With both turbulence models
Wall pressure distributions are captured well within the experimental values. Velocity
profile results are plotted to be less accurate in comparison with experimental data
at higher β values. Although the SA model predicts better velocity curves at some
sections, both turbulence models are unable to solve the SWTBLI case with high
reliability and accuracy for a strong interaction case. Based on the evaluation of
the SU2 open-source code for the Schülein et al. [27] case, the compressible solver
is found to be suitable for a preliminary or rough assessment of high Mach flows
with SWTBLI phenomenon in the industry. However, for research purposes, more
sophisticated three-dimensional unsteady turbulence modeling approaches such as
LES and DES should be included in the SU2 solver. Moreover, other cases with high
Mach number flows and SWTBLI such as compression ramps or double fins can be
taken as further validation steps for the current SU2 solver.
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