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Abstract. The main aim of this paper is to construct the fundamental solutions of a sys-
tem of equations for isotropic thermoelastic diffusive materials with microtemperatures and
microconcentrations in the case of steady oscillations in terms of elementary functions. In
addition to this, the fundamental solutions of the system of equations of equilibrium theory
of isotropic thermoelastic diffusivity materials with microtemperatures and microconcentra-
tions are also established.
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1. Introduction

Eringen and his co-workers [1–7] formulated the theories of micromorphic continua.
In these theories, the particles of a continuous body are assumed to be composed of
microelements which undergo homogeneous deformations called microdeformations.
The system of differential equations and boundary conditions governing a continuum
with microstructure are deduced from the principles of conservation of mass, conser-
vation of microinertia, balance of linear momentum, balance of first moment of mo-
mentum, and the balance of energy. The theory of thermodynamics of elastic bodies
with microstructure was extended by [8] with the assumption that the microelements
have different temperatures. He modified the Clausius–Duhem inequality to include
microtemperatures and added first-order moment of energy equations to the basic
balance laws for determining the microtemperatures of a continuum. Iesan and Quin-
tanilla [9] constructed a linear theory for elastic materials with an inner structure
whose particles, in addition to the classical displacement and temperature fields, pos-
sess microtemperatures. They established the continuous dependence of initial data
and body loads and proved an existence theorem for initial boundary value problems
using semigroup theory. The field equations of a theory of microstretch thermoelastic
bodies with microtemperatures were established in [10], where Iesan proved a unique-
ness theorem in the dynamic theory of anisotropic materials and then derived a linear
theory of microstretch elastic solids with microtemperatures in which a microelement
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of a continuum is equipped with the mechanical degrees of freedom for rigid rotations
and microdilatation in addition to the classical translation degrees of freedom [11].
He also established a uniqueness result in the dynamic theory of anisotropic bodies.

The mass transfer of a substance from a high concentration region to low-
concentration regions is called diffusivity. Nowacki [12–15], Sherief and his co-workers
[16], Aouadi [17] and Kansal [18] developed various thermoelastic diffusivity theo-
ries to describe coupled mechanical behavior among temperature, concentration, and
strain fields in elastic solids. Aouadi et al. [19] developed the nonlinear theory of
thermoelastic diffusivity materials with microtemperatures and microconcentrations.
They also obtained the linear theory of thermoelastic diffusivity materials with mi-
crotemperatures and microconcentrations. They proved the well-posedness of a linear
anisotropic problem with the help of the semigroup theory of linear operators and
studied the asymptotic behaviour of the solutions. Bazarra et al. [20] introduced
a numerical scheme in the linear theory of thermoelastic diffusivity materials with
microtemperatures and microconcentrations based on the finite element method to
approximate the spatial domain and the forwarded Euler scheme to discretize the time
derivatives. They also deduced a priori error estimates for the approximative solu-
tions, and obtained the linear convergence of the algorithm under suitable regularity
assumptions. Chiril [21] derived the field equations and the consecutive equations of
the linear theory of microstretch thermoelasticity for materials whose particles have
microelements that are equipped with microtemperatures and microconcentrations.

There is a necessity to construct fundamental solutions for solving boundary value
problems of elasticity and thermoelasticity by potential method [22]. The reason for
constructing fundamental solutions is that an integral representation of the solution
of a boundary value problem by fundamental solution is easily solved by numerical
methods rather than a differential equation with specified boundary and initial condi-
tions. Various authors [23, 24] and [25] constructed fundamental solutions in different
theories of elasticity and thermoelasticity with microtemperatures.

In Section 2, the constitutive relations and field equations for isotropic thermoelas-
tic diffusivity materials with microtemperatures and microconcentrations are written.
The system of linearized equations for steady oscillations in the theory of thermoelas-
tic diffusivity solids with microtemperatures and microconcentrations is obtained in
Section 3. In Section 4, in terms of elementary functions, the fundamental solution of
basic governing equations in the case of steady oscillations is constructed. Some basic
properties of the fundamental matrix in the case of steady oscillations are discussed
in Section 5. In Section 6, the fundamental solutions of basic governing equations in
case of equilibrium are established.

2. Basic Equations

Let x = (x1, x2, x3) be the point of the Euclidean three-dimensional space E3,

|x| = (x2
1 + x2

2 + x2
3)

1
2 , Dx = ( ∂

∂x1
, ∂
∂x2

, ∂
∂x3

) and t denotes the time variable. Follow-

ing [8, 10] and [19], the basic equations for an isotropic homogeneous thermoelastic
diffusivity solid with microtemperatures and microconcentrations in the absence of
body forces, heat sources, and mass diffusive sources are as follows:
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Constitutive relations

tij = λ ellδij + 2µeij − β1θδij − β2Cδij , (2.1)

ρS = β1ell +
ρCE

T0
θ +ϖC, (2.2)

P = −β2ell −ϖθ + χC, (2.3)

ρεi = −c1Ti − κ1Ci, (2.4)

ρΩi = −m1Ci − κ1Ti, (2.5)

qij = −k4Tl,lδij − k5Ti,j − k6Tj,i, (2.6)

qi = kθ,i + k1Ti, (2.7)

ς̃i = (k − k3)θ,i + (k1 − k2)Ti, (2.8)

ηij = −h4Cl,lδij − h5Ci,j − h6Cj,i, (2.9)

σi = (h− h3)P,i + (h1 − h2)Ci, (2.10)

ηi = hP,i + h1Ci, (2.11)

ρT0Ṡ = qi,i, (2.12)

ηj,j = Ċ, (2.13)

Equations of motion
tij,j = ρüi, (2.14)

Balance of first moment of energy

ρε̇i = qji,i + qi − ς̃i, (2.15)

Balance of first moment of mass diffusivity

ρΩ̇i = ηji,j + ηi − σi, (2.16)

where tij are the stress tensor components, ell = ul,l are the strain tensor compo-
nents, and ui are the displacement vector components. Lame’s constants are λ and µ,
β1 = (3λ+ 2µ)αt, β2 = (3λ+ 2µ)αc, αt is the coefficient of linear thermal expansion
and αc is the coefficient of linear diffusivity expansion, δij is Kronecker’s delta. The
temperature is represented by θ = T −T0. The absolute temperature is T. In the ref-
erence configuration, the absolute temperature is T0. C represents the concentration
of diffusive material, ρ represents density, S represents entropy, CE represents specific
heat at constant strain, and P represents chemical potential. The first moments of
energy vector and mass diffusivity vector are εi and Ωi, respectively. Ti and Ci are
microtemperature and microconcentration components, respectively. The microheat
flux average is ς̃i. qij , ηij are the first moment of heat flux and mass diffusivity flux
tensors, respectively; σi is the micromass diffusivity flux average; qi are the heat flux
vector components; and ηi are the mass diffusivity flux vector components. The ma-
terial constants are ϖ,χ, c1,m1, κ1, k, k1, ..., k6 and h, h1, ..., h6.
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The governing equations for homogeneous isotropic thermoelastic diffusivity solid
with microtemperatures and microconcentrations are obtained using equation (2.1)
in (2.14), equations (2.4), (2.6)-(2.8) in (2.15), equations (2.5), (2.9)-(2.11) in (2.16),
equations (2.2) and (2.7) in (2.12) and equations (2.3) and (2.11) in (2.13), as follows

µ∆u+ (λ+ µ) grad divu− β1 grad θ − β2 gradC = ρü,

k6∆v + (k4 + k5) grad divv − k2v − k3 grad θ = c1v̇ + κ1ẇ,

h6∆w + (h4 + h5) grad divw − h2w − h3 gradP = κ1v̇ +m1ẇ,

β1T0 div u̇+ ρCE θ̇ +ϖT0Ċ = k∆ θ + k1 divv,

h∆[−β2 divu−ϖ θ + χC] + h1 divw = Ċ, (2.17)

where ∆ is the Laplacian operator, v = (T1, T2, T3) and w = (C1, C2, C3).

In the upcoming sections, the chemical potential has been used as a state variable
rather than concentration. Therefore, the system of equations (2.17) with the help of
equation (2.3) becomes

[µ∆+ (λ0 + µ) grad div]u− ρ ü− γ1 grad θ − γ2 gradP = 0,

[k6∆+ (k4 + k5) grad div − k2]v − c1 v̇ − κ1ẇ − k3 grad θ = 0,

−κ1v̇ + [h6∆+ (h4 + h5) grad div − h2]w −m1 ẇ − h3 gradP = 0,

−γ1T0 div u̇+ k1 divv + k∆ θ − cT0 θ̇ − κT0Ṗ = 0,

−γ2 div u̇+ h1 divw − κ θ̇ + h∆P −mṖ = 0. (2.18)

The coefficients m,κ, γ1, γ2, λ0, and c are given in Appendix A.

3. Steady Oscillations

The displacement vector, microtemperature, microconcentration, temperature change,
and chemical potential functions are assumed as:[

u(x, t),v(x, t),w(x, t), θ(x, t), P (x, t)

]
= Re

[
(u∗,v∗,w∗, θ∗, P ∗)e−ιωt

]
, (3.1)

where ω is the frequency of oscillation.

Using equation (3.1) in the system of equations (2.18) and omitting the asterisk (*)
for simplicity, the system of equations of steady oscillations is obtained as:

[µ∆+ (λ0 + µ) grad div + ρω2]u− γ1 grad θ − γ2 gradP = 0,

[k6∆+ (k4 + k5) grad div − k2 + ιωc1]v + ιωκ1w − k3 grad θ = 0,

ιωκ1v + [h6∆+ (h4 + h5) grad div − h2 + ιωm1]w − h3 gradP = 0,

ιωγ1T0 divu+ k1 divv + [k∆+ ιωcT0]θ + ιωκT0P = 0,

ιωγ2 divu+ h1 divw + ιωκ θ + [h∆+ ιωm]P = 0. (3.2)

We introduce the second-order matrix differential operators with constant coefficients

F(Dx) =

(
Fgl(Dx)

)
11×11

,
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where

Fpq(Dx) = [µ∆+ ρω2]δpq + (λ0 + µ)
∂2

∂xp∂xq
, Fp;q+3(Dx) = Fp+3;q(Dx) = 0,

Fp;q+6(Dx) = Fp+6;q(Dx) = 0, Fp;10(Dx) = −γ1
∂

∂xp
, Fp;11(Dx) = −γ2

∂

∂xp
,

Fp+3;q+3(Dx) = [k6∆− k2 + ιωc1]δpq + (k4 + k5)
∂2

∂xp∂xq
,

Fp+3;q+6(Dx) = Fp+6;q+3(Dx) = ιωκ1δpq, Fp+3;10(Dx) = −k3
∂

∂xp
,

Fp+3;11(Dx) = F11;p+3(Dx) = 0, Fp+6;q+6(Dx) =

= [h6∆− h2 + ιωm1]δpq + (h4 + h5)
∂2

∂xp∂xq
,

Fp+6;10(Dx) = F10;p+6(Dx) = 0, Fp+6;11(Dx) = −h3
∂

∂xp
, F10;q(Dx) = ιωγ1T0

∂

∂xq
,

F10;q+3(Dx) = k1
∂

∂xq
, F10;10(Dx) = k∆+ ιωcT0, F10;11(Dx) = ιωκT0,

F11;q = ιωγ2
∂

∂xq
, F11;q+6(Dx) = h1

∂

∂xq
, F11;10(Dx) = ιωκ,

F11;11(Dx) = h∆+ ιωm , p, q = 1, 2, 3.

and

F̃(Dx) =

(
F̃gl(Dx)

)
11×11

,

where

F̃pq(Dx) = µ∆δpq + (λ0 + µ)
∂2

∂xp∂xq
, F̃p+3;q+3(Dx) = k6∆δpq + (k4 + k5)

∂2

∂xp∂xq
,

F̃p+6;q+6(Dx) = h6∆δpq + (h4 + h5)
∂2

∂xp∂xq
, F̃10;10(Dx) = k∆, F̃11;11(Dx) = h∆,

F̃p;q+3(Dx) = F̃p;q+6(Dx) = F̃p+3;q(Dx) = F̃p+6;q(Dx) = 0,

F̃p+3;q+6(Dx) = F̃p+6;q+3(Dx) = F̃ie(Dx) = F̃ei(Dx) = 0,

F̃10;11(Dx) = F̃11;10(Dx) = 0 , p, q = 1, 2, 3; e = 10, 11; i = 1, .., 9.

The system of equations (3.2) can be represented as

F(Dx)U(x) = 0,

where U = (u,v,w, θ, P ) is a vector function with eleven components on E3. The

matrix F̃(Dx) is called the principal part of operator F(Dx).

Definition 1: The operator F(Dx) is said to be elliptic if |F̃(k)| ≠ 0, k = (µ1, µ2, µ3).

Since |F̃(k)| = µ2λ̃kk6k7hh6h7|k|22, λ̃ = λ0+2µ, k7 = k4+k5+k6, h7 = h4+h5+h6.
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Therefore, operator F(Dx) is an elliptic differential operator iff

µλ̃kk6k7hh6h7 ̸= 0. (3.3)

Definition 2: The fundamental solution of the system of equations (3.2) (the funda-

mental operator matrix F) is the matrix G(x) =

(
Ggl(x)

)
11×11

satisfying condition

F(Dx)G(x) = δ(x) I(x), (3.4)

where δ(x) represents the Dirac delta, I = (δgl)11×11 is the unit matrix, and x ∈ E3.

4. Construction of G(x) in Terms of Elementary Functions

Let us consider the system of non-homogeneous equations

[µ∆+ (λ0 + µ) grad div + ρω2]u+ ιωγ1T0 grad θ + ιωγ2 gradP = H, (4.1)

[k6∆+ (k4 + k5) grad div + k8]v + ιωκ1w + k1 grad θ = V, (4.2)

ιωκ1v + [h6∆+ (h4 + h5) grad div + h8]w + h1 gradP = W, (4.3)

−γ1 divu− k3 divv + [k∆+ ιωcT0]θ + ιωκP = Z, (4.4)

−γ2 divu− h3 divw + ιωκT0 θ + [h∆+ ιωm]P = X, (4.5)

where k8 = −k2 + ιωc1,h8 = −h2 + ιωm1; H,V,W are vector functions with three
components on E3; Z and X are scalar functions on E3.

Equations (4.1)-(4.5) can also be written as

Ftr(Dx)U(x) = Q(x), (4.6)

where Ftr is the transpose of matrix F , Q = (H,V,W, Z,X) and x ∈ E3.

Using the divergence (div) operator on the equations (4.1) -(4.3), we get

[λ̃∆+ ρω2] divu+ ιωγ1T0∆ θ + ιωγ2∆P = divH, (4.7)

(k7∆+ k8) divv + ιωκ1 divw + k1∆θ = divV, (4.8)

ιωκ1 divv + (h7∆+ h8) divw + h1∆P = divW. (4.9)

The equations (4.4), (4.5) and (4.7)-(4.9) can be expressed as

N(∆)S = Q̃ , (4.10)

where S, Q̃ , and N(∆) are given in Appendix A.

The equation (4.10) can be written in determinant form as

Γ1(∆)S = Ψ, (4.11)
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where Γ1(∆), and Ψ are given in Appendix A.

On expanding Γ1(∆), we see that

Γ1(∆) =

5∏
i=1

(∆ + λ2
i ),

where λ2
i , i = 1, ...., 5 are the roots of the equation Γ1(−ξ) = 0(with respect to ξ).

Applying operator Γ1(∆) to the equation (4.1), we get

Γ1(∆)(∆ + λ2
6)u = Ψ′, (4.12)

where λ2
6, and Ψ′ are given in Appendix A.

Multiplying equations (4.2) and (4.3) by h6∆+ h8 and ιωκ1 respectively, we obtain

(h6∆+ h8)[k6∆+ (k4 + k5) grad div + k8]v + (h6∆+ h8)ιωκ1w

= (h6∆+ h8)[V − k1 grad θ], (4.13)

and

(ιωκ1)
2v + ιωκ1[h6∆+ (h4 + h5 )grad div + h8]w = ιωκ1[W − h1 gradP ]. (4.14)

Using equation (4.14) in equation (4.13), we obtain

[(h6∆+ h8)(k6∆+ k8)− (ιωκ1)
2]v = ιωκ1(h4 + h5) grad divw

+(h6∆+ h8)[V − k1 grad θ − (k4 + k5) grad divv]− ιωκ1[W − h1 gradP ]. (4.15)

Applying operator Γ1(∆) to the equation (4.15) and using equation (4.11), we get

Γ1(∆)Γ2(∆)v = Ψ′′, (4.16)

where Γ2(∆), and Ψ′′ are given in Appendix A.

It can be seen that

Γ2(∆) = (∆ + λ2
7)(∆ + λ2

8),

where λ2
7, λ

2
8 are the roots of the equation Γ2(−ξ) = 0(with respect to ξ).

Multiplying equations (4.2) and (4.3) by ιωκ1 and k6∆+ k8 respectively, we obtain

(ιωκ1)[k6∆+ (k4 + k5) grad div + k8]v + (ιωκ1)
2w = (ιωκ1)[V − k1 grad θ], (4.17)

and

(ιωκ1)(k6∆+ k8)v + (k6∆+ k8)[h6∆+ (h4 + h5 )grad div + h8]w =

= (k6∆+ k8)[W − h1 gradP ]. (4.18)

Utilizing equation (4.17) in equation (4.18), we obtain

[(h6∆+ h8)(k6∆+ k8)− (ιωκ1)
2]w = ιωκ1(k4 + k5) grad divv

+(k6∆+ k8)[W − h1 gradP − (h4 + h5) grad divw]− ιωκ1[V − k1 grad θ]. (4.19)
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Applying operator Γ1(∆) to the equation (4.19) and using equation (4.11), we get

Γ1(∆)Γ2(∆)w = Ψ′′′, (4.20)

where Ψ′′′ is given in Appendix A.

From equations (4.11), (4.12), (4.16) and (4.20), we obtain

Θ(∆)U(x) = Ψ̂(x), (4.21)

where Ψ̂, and Θ(∆) are given in Appendix B.

The expressions for Ψ′,Ψ′′,Ψ′′′ and Ψp, (p = 4, 5) can be rewritten in the form

Ψ′ =
1

µ

[
Γ1(∆)J+ w11(∆) grad div

]
H+

5∑
i=2

wi1(∆) gradwi, (4.22a)

Ψ′′ =

[
1

N∗ (h6∆+ h8)Γ1(∆)J+ w22(∆) grad div

]
V + w12(∆) grad divH

+ w42(∆) gradZ + w52(∆) gradX +

[
− 1

N∗ ιωκ1Γ1(∆)J+ w32(∆) grad div

]
W,

(4.22b)

Ψ′′′ =

[
1

N∗ (k6∆+ k8)Γ1(∆)J+ w33(∆) grad div

]
W + w13(∆) grad divH

+ w43(∆) gradZ + w53(∆) gradX +

[
− 1

N∗ ιωκ1Γ1(∆)J+ w23(∆) grad div

]
V,

(4.22c)

Ψp = w1p(∆) divH+w2p(∆) divV+w3p(∆) divW+w4p(∆)Z+w5p(∆)X, (4.22d)

where J = (δgh)3×3 is the unit matrix and the coefficients wpi, p, i = 1, ...., 5 are given
in Appendix B.

From equations (4.22), we have

Ψ̂(x) = Rtr(Dx)Q(x), (4.23)

where the matrix R(Dx) is given in Appendix B.

From equations (4.6), (4.21) and (4.23), we obtain

ΘU = RtrFtrU.

The above relation implies

RtrFtr = Θ.

Therefore, we obtain

F(Dx)R(Dx) = Θ(∆). (4.24)
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We assume that

λ2
p ̸= λ2

q ̸= 0 p, q = 1, ....., 8 p ̸= q.

Let

Y(x) =

(
Yij(x)

)
11×11

, Ypp(x) =

6∑
g=1

r1gςg(x),

Yp+3;p+3(x) = Yp+6;p+6(x) =

8∑
g=1,g ̸=6

r2gςg(x),

Yll(x) =

5∑
g=1

r3gςg(x), Yqz(x) = 0 p = 1, 2, 3 l = 10, 11 q, z = 1, ....., 11 q ̸= z

where ςg(x), g = 1, ....., 8, r1p, p = 1, ....., 6, r2l, l = 1, ....7, 8, and r3q, q = 1, ..., 5 are
given in Appendix C.

Lemma 1: The matrix Y defined above is the fundamental matrix of operator
Θ(∆), i.e.

Θ(∆)Y(x) = δ(x) I(x). (4.25)

Proof: To prove the lemma, it is sufficient to prove that

Γ1(∆)(∆ + λ2
6)Y11(x) = δ(x), (4.26)

Γ1(∆)Γ2(∆)Y44(x) = δ(x), (4.27)

Γ1(∆)Y10;10(x) = δ(x). (4.28)

Let us consider a sum
6∑

i=1

r1i =

∑6
j=1(−1)jzj

z7
,

where zj , j = 1, ...., 7 are given in Appendix C.

On simplifying the right hand side of above relation, we obtain

6∑
i=1

r1i = 0. (4.29)

Similarly, we find that

6∑
i=2

r1i(λ
2
1 − λ2

i ) = 0,

6∑
i=3

r1i

[ 2∏
j=1

(λ2
j − λ2

i )

]
= 0,

6∑
i=4

r1i

[ 3∏
j=1

(λ2
j − λ2

i )

]
= 0,

6∑
i=5

r1i

[ 4∏
j=1

(λ2
j − λ2

i )

]
= 0,

5∏
j=1

r16(λ
2
j − λ2

6) = 1. (4.30)
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Also,

(∆ + λ2
p)ςg(x) = δ(x) + (λ2

p − λ2
g)ςg(x), p, g = 1, ..., 8. (4.31)

Now, consider

Γ1(∆)(∆ + λ2
6)Y11(x) =

6∏
i=1

(∆ + λ2
i )

6∑
g=1

r1gςg(x).

Using equations (4.29)-(4.31) in the above relation, we obtain

Γ1(∆)(∆ + λ2
6)Y11(x) =

6∏
i=2

(∆ + λ2
i )

6∑
g=1

r1g

[
δ(x) + (λ2

1 − λ2
g)ςg(x)

]

=

6∏
i=2

(∆ + λ2
i )

[
δ(x)

6∑
g=1

r1g +

6∑
g=2

r1g(λ
2
1 − λ2

g)ςg(x)

]

=

6∏
i=2

(∆ + λ2
i )

[ 6∑
g=2

r1g(λ
2
1 − λ2

g)ςg(x)

]

=

6∏
i=3

(∆ + λ2
i )

[ 6∑
g=2

r1g(λ
2
1 − λ2

g)

[
δ(x) + (λ2

2 − λ2
g)ςg(x)

]]

=

6∏
i=3

(∆ + λ2
i )

[ 6∑
g=3

r1g

[ 2∏
j=1

(λ2
j − λ2

g)

]
ςg(x)

]

=

6∏
i=4

(∆ + λ2
i )

[ 6∑
g=3

r1g

[ 2∏
j=1

(λ2
j − λ2

g)

][
δ(x) + (λ2

3 − λ2
g)ςg(x)

]]

=

6∏
i=4

(∆ + λ2
i )

[ 6∑
g=4

r1g

[ 3∏
j=1

(λ2
j − λ2

g)

]
ςg(x)

]

=

6∏
i=5

(∆ + λ2
i )

[ 6∑
g=4

r1g

[ 3∏
j=1

(λ2
j − λ2

g)

][
δ(x) + (λ2

4 − λ2
g)ςg(x)

]]

=

6∏
i=5

(∆ + λ2
i )

[ 6∑
g=5

r1g

[ 4∏
j=1

(λ2
j − λ2

g)

]
ςg(x)

]

= (∆+ λ2
6)

[ 6∑
g=5

r1g

[ 4∏
j=1

(λ2
j − λ2

g)

][
δ(x) + (λ2

5 − λ2
g)ςg(x)

]]
= (∆+ λ2

6)ς6(x) = δ(x).

Equations (4.27) and (4.28) can be proved in a similar way.

We introduce the matrix

G(x) = R(Dx)Y(x). (4.32)
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From equations (4.24), (4.25) and (4.32), we obtain

F(Dx)G(x) = F(Dx)R(Dx)Y(x) = Θ(∆)Y(x) = δ(x) I(x).

Hence, G(x) is a solution to the equation (3.4).

Theorem 1: If condition (3.3) is satisfied, then the fundamental solution of the
system of equations (3.2) is the matrix G(x) given by equation (4.32) and it is rep-
resented as follows:

Ggl(x) = Rgl(Dx)Y11(x), Ggq(x) = Rgq(Dx)Y44(x), Ggj(x) = Rgj(Dx)Y10;10(x),

g = 1, ....., 11; l = 1, 2, 3; q = 4, ....., 9; j = 10, 11.

5. Basic Properties of Matrix G(x)

Theorem 2: Each column of the matrix G(x) is a solution of system of equations
(3.2) at every point x ∈ E3 except at the origin.

Theorem 3: If the condition (3.3) is satisfied, then the fundamental solution of

the system F̃(Dx)U(x) = 0 is the matrix

B(x) =

(
Brz(x)

)
11×11

,

Bij(x) =

[
1

λ̃

∂2

∂xi∂xj
− 1

µ
R̃ij

]
ς∗2 (x),

Bi+3;j+3(x) =

[
1

k7

∂2

∂xi∂xj
− 1

k6
R̃ij

]
ς∗2 (x),

Bi+6;j+6(x) =

[
1

h7

∂2

∂xi∂xj
− 1

h6
R̃ij

]
ς∗2 (x),

B10;10 =
ς∗1 (x)

k
,B11;11 =

ς∗1 (x)

h
,Biq = Bqi = 0, Bi+3;l = Bl;i+3 = 0,

Bi+6;d = Bd;i+6 = 0, B10;11 = B11;10 = 0, ς∗1 = − 1

4π|x|
, ς∗2 = −|x|

8π
,

R̃ij =
∂2

∂xi∂xj
−∆δij , i, j = 1, 2, 3; q = 4, ...., 11; l = 7, ..., 11; d = 10, 11.

6. Fundamental Solutions of System of Equations in Equilibrium
Theory

If we put ω = 0 in the system of equations (3.2), we obtain the system of equa-
tions in equilibrium theory of thermoelastic diffusivity with microtemperatures and
microconcentrations as:

[µ∆+ (λ0 + µ) grad div]u− γ1 grad θ − γ2 gradP = 0,

[k6∆+ (k4 + k5) grad div − k2]v − k3 grad θ = 0,

[h6∆+ (h4 + h5) grad div − h2]w − h3 gradP = 0,
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k1 divv + k∆ θ = 0,

h1 divw + h∆P = 0. (6.1)

The second-order matrix differential operator with constant coefficients is introduced
as:

E(Dx) =

(
Egl(Dx)

)
11×11

,

where matrix E(Dx) can be obtained from F(Dx) by taking ω = 0.

The system of equations (6.1) can be represented as

E(Dx)U(x) = 0.

Definition 3: The operator E(Dx) is said to be elliptic differential operator iff equa-
tion (3.3) is satisfied.

Definition 4: The fundamental solution of the system of equations (6.1) (the fun-

damental matrix of operator E) is the matrix G′(x) =

(
G′

gl(x)

)
11×11

satisfying

condition

E(Dx)G
′(x) = δ(x) I(x). (6.2)

We consider the system of non-homogeneous equations

[µ∆+ (λ0 + µ) grad div]u = H′, (6.3)

[k6∆+ (k4 + k5) grad div − k2]v + k1 grad θ = V′, (6.4)

[h6∆+ (h4 + h5) grad div − h2]w + h1 gradP = W′, (6.5)

−γ1 divu− k3 divv + k∆ θ = Z ′, (6.6)

−γ2 divu− h3 divw + h∆P = X ′, (6.7)

where H′,V′,W′ are vector functions with three components on E3; Z ′ and X ′ are
scalar functions on E3.

The system of equations (6.3)-(6.7) can also be written in the form

Etr(Dx)U(x) = Q′(x), (6.8)

where Etr is the transpose of matrix E and Q′(x) = (H′,V′,W′, Z ′, X ′).

Applying operator div to the equations (6.3)-(6.5), we obtain

∆divu =
1

λ̃
divH′ = Φ1, (6.9)

(k7∆− k2) divv + k1 ∆ θ = divV′, (6.10)

(h7∆− h2) divw + h1 ∆P = divW′. (6.11)

Using equation (6.6) in the equation (6.10), we get

∆(∆−D2) divv = Φ2, (6.12)
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where D2, and Φ2 are given in Appendix D.

Using equation (6.7) in equation (6.11), we get

∆(∆− L2) divw = Φ3, (6.13)

where L2, and Φ3 are given in Appendix D.

Applying operators ∆(∆ − D2) and ∆(∆ − L2) to the equations (6.6) and (6.7),
respectively and using equations (6.12) and (6.13), we get

∆2(∆−D2) θ = Φ4, (6.14)

∆2(∆− L2)P = Φ5, (6.15)

where Φ4, and Φ5 are given in Appendix D.

Applying the operators ∆,∆2(∆ − D2),∆2(∆ − L2) to the equations (6.3), (6.4)
and (6.5) respectively and using equations (6.9) and (6.12)-(6.15), we obtain

∆2 u = Φ′,

∆2(∆−D2)

(
∆− k2

k6

)
v = Φ′′,

∆2(∆− L2)

(
∆− h2

h6

)
v = Φ′′′, (6.16)

where Φ′, Φ′′, and Φ′′′ are given in Appendix D.

From equations (6.14)-(6.16), we get

Λ(∆)U(x) = Φ̂(x), (6.17)

where Λ(∆), and Φ̂(x) are given in Appendix D.

The expressions for Φ′, Φ′′, Φ′′′, and Φp, p = 4, 5 can be rewritten as

Φ̂(x) = Ttr(Dx)Q
′(x), (6.18)

where matrix T(Dx) is given in Appendix E.

From equations (6.8), (6.17) and (6.18), we get

E(Dx)T(Dx) = Λ(∆). (6.19)

Let

Y′(x) =

(
Y ′
ij(x)

)
11×11

,

Y ′
pp(x) = ς∗2 (x), Y ′

p+3;p+3(x) = r′11ς
∗
2 (x) + r′12ς

∗
1 (x) + r′13ς

∗
3 (x) + r′15ς

∗
5 (x),

Y ′
p+6;p+6(x) = r′21ς

∗
2 (x) + r′22ς

∗
1 (x) + r′24ς

∗
4 (x) + r′26ς

∗
6 (x),

Y ′
10;10(x) = r′31ς

∗
2 (x) + r′32ς

∗
1 (x) + r′33ς

∗
3 (x),

Y ′
11;11(x) = r′41ς

∗
2 (x) + r′42ς

∗
1 (x) + r′44ς

∗
4 (x),

Yqz(x) = 0 p = 1, 2, 3 q, z = 1, ....., 11 q ̸= z,
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where ς∗i (x), i = 3, ..., 6, r′1j , j = 1, 2, 3, 5, r′2q, q = 1, 2, 4, 6, r′3z, z = 1, 2, 3, and
r′1p, p = 1, 2, 4 are given in Appendix F.

Lemma 2: The matrix Y′ defined above is the fundamental matrix of operator
Λ(∆), i.e.

Λ(∆)Y′(x) = δ(x) I(x). (6.20)

Proof: To prove the lemma, it is sufficient to prove that

∆2Y ′
11(x) = δ(x),∆2(∆−D2)(∆−τ21 )Y

′
44(x) = δ(x),∆2(∆−L2)(∆−τ22 )Y

′
77(x) = δ(x),

∆2(∆−D2)Y ′
10;10(x) = δ(x),∆2(∆− L2)Y ′

11;11(x) = δ(x). (6.21)

It is very easy to prove equations (6.21). This has been left for the reader.

We introduce the matrix

G′(x) = T(Dx)Y
′(x). (6.22)

From equations (6.19), (6.20) and (6.22), we obtain

E(Dx)G
′(x) = δ(x)I(x).

Hence G′(x) is a solution to the equation (6.2).

Theorem 4: If the condition (3.3) is met, then the fundamental solution of the
system of equations (6.1) is the matrix G′(x) given by the equation (6.22) and it can
be represented in the following form:

G′
gl(x) = Tgl(Dx)Y

′
11(x), G

′
g;l+3(x) = Tg;l+3(Dx)Y

′
44(x),

G′
g;l+6(x) = Tg;l+6(Dx)Y

′
77(x), G

′
gj(x) = Tgj(Dx)Y

′
jj(x),

g = 1, ....., 11 l = 1, 2, 3 j = 10, 11.

7. Conclusions

In terms of elementary functions, the fundamental solution of system of equations
in the theory of thermoelastic diffusive materials with microtemperatures and mi-
croconcentrations in the case of steady oscillations has been constructed. By poten-
tial method, the fundamental solution to the system of equations makes it possible
to investigate three-dimensional boundary value problems of theory of thermoelas-
tic diffusive materials with microtemperatures and microconcentrations. Some basic
properties of the fundamental matrix are also discussed.

Appendix A

m =
1

χ
, κ = mϖ, γ1 = β1 + β2κ, γ2 = β2m, λ0 = λ− β2γ2, c =

ρCE

T0
+ϖκ

S = (divu,divv,divw, θ, P ), Q̃ = (w1, ......, w5) = (divH,divV,divW, Z,X),
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N(∆) =

(
Ngl(∆)

)
5×5

=

=


λ̃∆+ ρω2 0 0 ιωγ1T0∆ ιωγ2∆

0 k7∆+ k8 ιωκ1 k1∆ 0
0 ιωκ1 h7∆+ h8 0 h1∆

−γ1 −k3 0 k∆+ ιωcT0 ιωκ
−γ2 0 −h3 ιωκT0 h∆+ ιωm


5×5

Ψ = (Ψ1, .......,Ψ5),Ψp =
1

M∗

5∑
i=1

N∗
ipwi,

Γ1(∆) =
1

M∗ |N(∆)|, M∗ = λ̃kk7hh7, p = 1, ....., 5

and N∗
ip is the cofactor of the element Nip of the matrix N.

λ2
6 =

ρω2

µ
,Ψ′ =

1

µ

[
Γ1(∆)H− grad[(λ0 + µ)Ψ1 + ιωγ1T0Ψ4 + ιωγ2Ψ5]

]
,

Γ2(∆) =
1

N∗

∣∣∣∣ k6∆+ k8 ιωκ1

ιωκ1 h6∆+ h8

∣∣∣∣ ,
N∗ = k6h6,Ψ

′′ =
1

N∗

[
(h6∆+ h8)[Γ1(∆)V − k1 gradΨ4 − (k4 + k5) gradΨ2]

−ιωκ1[Γ1(∆)W − h1 gradΨ5 − (h4 + h5) gradΨ3]

]
,

Ψ′′′ =
1

N∗

[
(k6∆+ k8)[Γ1(∆)W − h1 gradΨ5 − (h4 + h5) gradΨ3]

−ιωκ1[Γ1(∆)V − k1 gradΨ4 − (k4 + k5) gradΨ2]

]
Appendix B

Ψ̂ = (Ψ′,Ψ′′,Ψ′′′,Ψ4,Ψ5),

Θ(∆) =

(
Θgq(∆)

)
11×11

Θpp(∆) = Γ1(∆)(∆ + λ2
6) =

6∏
i=1

(∆ + λ2
i ),

Θp+3;p+3(∆) = Θp+6;p+6(∆) = Γ1(∆)Γ2(∆) =

8∏
i=1,i̸=6

(∆ + λ2
i ),

Θjj(∆) = Γ1(∆) =

5∏
i=1

(∆ + λ2
i ), Θgq(∆) = 0,

p = 1, 2, 3; g, q = 1, ....., 11; j = 10, 11; g ̸= q

wp1(∆) = − 1

M∗µ

[
(λ0 + µ)N∗

p1(∆) + ιωγ1T0N
∗
p4(∆) + ιωγ2N

∗
p5(∆)

]
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wp2(∆) = − 1

M∗N∗

[
(h6∆+h8)[(k4+k5)N

∗
p2+k1N

∗
p4]−ιωκ1h1N

∗
p5−ιωκ1(h4+h5)N

∗
p3

]
wp3(∆) = − 1

M∗N∗

[
(k6∆+k8)[(h4+h5)N

∗
p3+h1N

∗
p5]−ιωκ1k1N

∗
p4−ιωκ1(k4+k5)N

∗
p2

]
wp4(∆) =

N∗
p4

M∗ , wp5(∆) =
N∗

p5

M∗ , p = 1, ....., 5

R(Dx) =

(
Rgq(Dx)

)
11×11

Rij(Dx) =
1

µ
Γ1(∆)δij + w11(∆)

∂2

∂xi∂xj
,

Ri+3;j+3(Dx) =
1

N∗ (h6∆+ h8)Γ1(∆)δij + w22(∆)
∂2

∂xi∂xj
,

Ri+6;j+6(Dx) =
1

N∗ (k6∆+ k8)Γ1(∆)δij + w33(∆)
∂2

∂xi∂xj
,

Ri;j+3(Dx) = w12(∆)
∂2

∂xi∂xj
, Ri;j+6(Dx) = w13(∆)

∂2

∂xi∂xj
,

Ri;p+6(Dx) = w1p(∆)
∂

∂xi
, Ri+3;j(Dx) = w21(∆)

∂2

∂xi∂xj
,

Ri+3;j+6(Dx) = w23(∆)
∂2

∂xi∂xj
− 1

N∗ ιωκ1Γ1(∆)δij ,

Ri+3;p+6(Dx) = w2p(∆)
∂

∂xi
, Ri+6;j = w31(∆)

∂2

∂xi∂xj
,

Ri+6;j+3(Dx) = w32(∆)
∂2

∂xi∂xj
− 1

N∗ ιωκ1Γ1(∆)δij ,

Ri+6;p+6(Dx) = w3p(∆)
∂

∂xi
, Rp+6;i(Dx) = wp1(∆)

∂

∂xi
,

Rp+6;i+3(Dx) = wp2(∆)
∂

∂xi
, Rp+6;i+6(Dx) = wp3(∆)

∂

∂xi
,

Rp+6;l+6 = wpl(∆), i, j = 1, 2, 3; p, l = 4, 5

Appendix C

ςg(x) = −eιλg|x|

4π|x|
, r1p =

6∏
i=1,i̸=p

(λ2
i − λ2

p)
−1, r2l =

8∏
i=1,i̸=6,i̸=l

(λ2
i − λ2

l )
−1,

r3q=

5∏
i=1,i̸=q

(λ2
i − λ2

q)
−1, p = 1, ....., 6; g = 1, ....., 8; l = 1, ....7, 8; q = 1, ..., 5

z1 =

6∏
i=3

(λ2
2 − λ2

i )

6∏
j=4

(λ2
3 − λ2

j )

6∏
l=5

(λ2
4 − λ2

l )(λ
2
5 − λ2

6),
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z2 =

6∏
i=3

(λ2
1 − λ2

i )

6∏
j=4

(λ2
3 − λ2

j )

6∏
l=5

(λ2
4 − λ2

l )(λ
2
5 − λ2

6),

z3 =

6∏
i=2,i̸=3

(λ2
1 − λ2

i )

6∏
j=4

(λ2
2 − λ2

j )

6∏
l=5

(λ2
4 − λ2

l )(λ
2
5 − λ2

6),

z4 =

6∏
i=2,i̸=4

(λ2
1 − λ2

i )

6∏
j=3,j ̸=4

(λ2
2 − λ2

j )

6∏
l=5

(λ2
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Appendix D

D2 =
1

k k7
(k k2 − k3k1),Φ2 =

1

k k7
[k∆divV′ − k1γ1Φ1 − k1 ∆Z ′],

L2 =
1

hh7
(hh2 − h3h1),Φ3 =

1

hh7
[h∆divW′ − h1γ2Φ1 − h1 ∆X ′],

Φ4 =
1

k
[k3 Φ2 + (∆−D2)(∆Z ′ + γ1Φ1)],Φ5 =

1

h
[h3 Φ3 + (∆− L2)(∆X ′ + γ2Φ1)],

Φ′ =
1

µ
[∆H′ − (λ0 + µ) gradΦ1]

Φ′′ = −γ1k1
k k7

(
∆− k2

k6

)
gradΦ1 −

k1
k k7

(
∆− k2

k6

)
grad∆Z ′+

1

k6

[
∆2(∆−D2)− 1

k k7

{
(k4 + k5)k∆+ k1k3

}
∆grad div

]
V′

Φ′′′ = −γ2h1

hh7

(
∆− h2

h6

)
gradΦ1 −

h1

hh7

(
∆− h2

h6

)
grad∆X ′+

1

h6

[
∆2(∆− L2)− 1

hh7

{
(h4 + h5)h∆+ h1h3

}
∆grad div

]
W′,

Φ̂(x) = (Φ′,Φ′′,Φ′′′,Φ4,Φ5),Λ(∆) =

(
Λpq(∆)

)
11×11

Λii(∆) = ∆2,Λi+3;i+3(∆) = ∆2(∆−D2)

(
∆− k2

k6

)
,

Λi+6;i+6(∆) = ∆2(∆− L2)

(
∆− h2

h6

)
, Λ10;10 = ∆2(∆−D2),

Λ11;11 = ∆2(∆− L2), Λlj = 0, i, j = 1, 2, 3; l, j = 1, ......, 11; l ̸= j
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Appendix E

T(Dx) =

(
Tgl(Dx)

)
11×11

Tij(Dx) =
1

µ
∆ δij +m11(∆)

∂2

∂xi∂xj
,

Ti+3;j+3(Dx) =
1

k6
∆2(∆−D2) δij +m22(∆)
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1
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∆2(∆− L2) δij +m22(∆)

∂2

∂xi∂xj
,

T10;10(Dx) = m44(∆), T11;11(Dx) = m55(∆), Ti;j+3(Dx) = m12(∆)
∂2

∂xi∂xj
,

Ti;j+6(Dx) = m13(∆)
∂2

∂xi∂xj
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∂

∂xi
, Ti;11(Dx) = m15(∆)

∂

∂xi
,
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∂

∂xi
,

Ti+6;j(Dx) = Ti+6;j+3(Dx) = Ti+6;10(Dx) = 0, Ti+6;11(Dx) = m35(∆)
∂

∂xi
,
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∂

∂xi
,
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∂

∂xi
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hh6 h7
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Appendix F

ς∗3 (x) = −e−D|x|

4π|x|
, ς∗4 (x) = −e−L|x|

4π|x|
, ς∗5 (x) = −e−τ1|x|

4π|x|
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4π|x|
,
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1

D2τ21
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Abstract. The present work focuses on the numerical investigation of micro-shock wave
propagation in a two-dimensional magnetogasdynamic flow in the framework of the Dis-
continuous Galerkin-Finite Element Method (DG-FEM). The Lorentz force has been im-
plemented in the compressible, viscous Navier–Stokes equations as a source term using
first-order spatial and fourth-order temporal Runge–Kutta discretization schemes. To in-
vestigate the effect of the electrical conductivity on the micro-shock wave propagation, a
two-dimensional micro-shock channel problem with hydraulic diameter of 2.5 mm, length of
82 mm, and no-slip boundary conditions at the left and at the right wall is considered as
a benchmark problem. In this case, acoustic waves are generated behind after the rupture
of the membrane that separates two states of the same gas originally at different pressure
and density and both initially at rest. The magnetic field is taken into account as uniform
and stationary throughout the microchannel, and the numerical simulations are performed
in a short physical time, before the reflection of the waves on the lateral wall. A detailed
parametric study of the temperature, density, pressure, and u-velocity is carried out by a
variation of the electrical conductivity of the magnetogasdynamic flow, under the assumption
of low magnetic Reynolds numbers. It has been found that the jumps of the acoustic waves
become significantly intensified when the electrical conductivity of the gas is increased. It
has also been observed that the presence of the Lorentz force causes an acceleration in the
gasflow towards the outlet section of the microchannel at the low Knudsen number of 0.05.
The outcome of this research work could be relevant to biomedical applications where the
ability to control the flow in a microchannel has a significant impact on the development of
small devices aimed to deliver pharmaceutical drugs in specific locations.
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Nomenclature

Acronyms

DG-FEM Discontinuous Galerkin-Finite Element Method
EHD Electrohydrodynamics
FDM Finite Difference Method
FEM Finite Element Method
FVM Finite Volume Method
IVP Initial Value Problem
LSERK Low Storage Explicit Runge–Kutta
MGD Magnetogasdynamics
MHD Magnetohydrodynamics
ODE Ordinary Differential Equation
PDE Partial Differential Equation

Greek Symbols

γ Specific heat capacity [−]
µ Dynamic viscosity [Pa · s]
µ0 Magnetic permeability [H/m]
Ω Physical domain [m2]
Ωh Computational domain [m2]
φh Test function [−]
ρ Fluid density [kg/m3]
σ Electrical conductivity [S/m]
τ Viscous stress tensor [Pa]

S Rate-of-strain tensor [1/s]

Roman Symbols

v̄ Mean velocity along the height of the microchannel [m/s]
` Characteristic length [m]
n̂ Normal unit vector [−]
B Magnetic flux density [T]
f Flux vector
f∗ Numerical flux vector
fh Approximated flux vector
FL Lorentz force [N]
j Electric current density [A/m2]
u Conservative variables vector
uh Approximated conservative variables vector
v Velocity field of the fluid flow [m/s]
I Unit tensor [−]

Dk k-th triangular element [m2]
E Total energy per unit volume [J/m3]
FLx x-component of the Lorentz force in Cartesian coordinates [N]
FLy y-component of the Lorentz force in Cartesian coordinates [N]
Hy y-component of the magnetic field intensity [T]
k Thermal conductivity coefficient [W/(m · K)]
lki Multidimensional Lagrange polynomial [−]
Rem Magnetic Reynolds number [−]
u, v Velocity components in Cartesian coordinates [m/s]
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1. Introduction

Magnetohydrodynamics (MHD), [1, 2] including magnetogasdynamics (MGD), has
attracted the attention of researchers in the last decade in relation to the growing
field of microfluidics applications. The reason is that it is possible to replicate many
of the traditional analyses in a single chip made in a chemical laboratory through
the integration of several components (e.g., microchannel, micropumps, mixers and
microvalves). Among all the different industries, lab on a chip devices are particularly
used in the biomedical area as drug delivery systems or for manipulation of cells
and detection of small analytes. These portable and low-cost devices are used, for
instance, to detect and isolate the rare circulating tumour cells (CTCs) detached from
a primary tumour [3] or to perform a DNA sequencing analysis [4]. Magnetic drug
targeting is a promising treatment to avoid the collateral effect of a cancer drug by
adopting magnetic nanocarriers which are tied to the drug and then delivered to the
specific tissue through the application of an external magnetic field [5]. Therefore,
in this work, a magnetogasdynamic microflow benchmark problem is investigated
to understand better the physics of micro-shock wave propagation in the presence
of a uniform and stationary magnetic field, which could be relevant to biomedical
applications. It could be important in applications where the ability to control the
gasflow in a microchannel has an impact on the development of microfluidic devices
aimed to deliver pharmaceutical drugs in specific locations.

In comparison with macroscopic fluid dynamics, shrinking the length of a device can
change the physical and chemical behavior of fluids quite intensively, allowing in-
teresting phenomena such as electrokinetics, magnetohydrodynamics, and capillarity
effects that are not necessarily present in macro-scale fluid dynamics. It is reported
in the literature that the micropolar fluid theory [6, 7], an augmented version of the
Navier–Stokes equations, may be advantageous for experiments in microchannels. As
the characteristic length of a device decreases, the Reynolds number becomes smaller,
typically between 1 and 10, with mass transport phenomena led by viscosity rather
than inertial forces, as would occur at the macro-scale. At a low Reynolds number,
turbulent mixing is neglected and two different fluids can only mix by pure diffu-
sion with a long diffusion time, which can be advantageous in the fabrication of a
three-electrode system inside the microchannels [8] and disadvantageous in the case
of protein folding, where some optimization algorithms must be developed to mini-
mize the mixing time [9]. An exhaustive review of the physics of microfluidics with
special emphasis on biotechnology can be found in [10]. One of the most frequently
used applications of MHD flows in the scientific and engineering community is the
development of devices where the electromagnetic field is used to drive the flow inside
a channel. In contrast to macro-scale mechanical pumps where moving parts as actua-
tors are used to pump the flow, non-mechanical pumps as using electrohydrodynamics
(EHD) [11, 12] or electrokinetics [13] are increasingly being used in microfluidics for
their simplicity of fabrication and the absence of fatigue problems compared to the
traditional micropump. Moreover, both the direct current (DC) [14–16] and the al-
ternate current (AC) [17] MHD micropumps have additional advantages such as lower
actuation voltages, continuous and bi-directional fluid flow, and the ability to pump
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fluids with medium and high electrical conductivity. For example, a common prob-
lem for the DC micropump includes the degradation of the electrodes by the Faradaic
process, the formation of bubbles due to electrolysis when the aqueous solution is
used as a working fluid, and the Joule heating effect. In the AC-MHD micropump,
the formation of bubbles does not occur, and the presence of additional eddy currents
increases the Joule heating, which limits the intensity of the magnetic field at high
frequencies [18]. The working principle for MHD micropumps is given by the Lorentz
force

FL = j×B, (1.1)

where j is the electric current density of the flow and B is the magnetic flux density.
This force is generated by the interaction between the external magnetic field by
means of permanent magnets or electromagnets, and the electric current through
mutually orthogonal electrodes. When the fluid flow moves with the velocity v, the
electrical current density j can be expressed as

j = σ(E + v×B), (1.2)

which means that the Lorentz force (1.1) becomes

FL = σ(E + v×B)×B, (1.3)

where σ is the electrical conductivity of the flow. It is important to highlight that
most of the numerical investigations of the fluid flow inside an MHD micropump have
been carried out only for incompressible flows; however, the real fluid flow in place is
compressible. Patel and Kassegne [19] developed a general numerical solver for three-
dimensional MHD micropumps with a channel length of 20 mm, electrode length of
16 mm, electrical conductivity of 1.5 S/m and thermal conductivity of 0.6 W/(m ·K).
They also investigated the effects of electroosmosis and Joule heating in a rectangular
and trapezoidal microchannel. Wang et al. [20] investigated two-dimensional fully-
developed stationary incompressible MHD flow with the use of the Finite Difference
Method (FDM) for a channel of length 44 cm and electrode length of 35 mm in a
saline solution (NaCl) with a conductivity of 1.5 S/m and in a liquidous Gallium (Ga)
flow with an electrical conductivity of 7.30 · 106 S/m, concluding that the channel di-
mensions and the induced Lorentz forces have significant influences on the fluid flow
velocity. Lim and Choi [21] solved the incompressible MHD equations with an in-
house FDM based solver and with the commercial CFD-ACE Finite Volume Method
(FVM) for a phosphate-buffered saline (PBS) solution inside a microchannel of length
30 mm with σ = 1.5 S/m. Hasan et al. [22] performed a comparative study on the per-
formance of the micropump with different cross-sections through the Finite Element
Method (FEM) using again the PBS solution as filling fluid. The Lattice Boltzmann
Method (LBM) particle-based simulation of a two-dimensional incompressible tran-
sient flow and heat transfer phenomena for a DC-MHD micropump with a length
of 22 mm was performed by Chatterjee and Amiroudine [23], showing the ability to
extend the model for the investigation of a three-dimensional AC-MHD micropump.
In the present work, we focus on a transient compressible, viscous fluid flow phe-
nomenon, which can be called a magnetogasdynamic micro-shock wave propagation
benchmark problem. Therefore, it is important to note that for both macrochannels



Micro-shock waves in a planar magnetogasdynamic flow 109

and microchannels, the rupture of a membrane separating two states of a gas at dif-
ferent pressure and causes the formation of an unsteady flow composed by a fan of
acoustic waves, i.e., shock, rarefaction and compression waves. These acoustic waves
are extensively used for medical purposes, e.g., from non-invasive cancer treatment
[24] to removal of kidney stones [25].

The physical behavior of shock wave propagation in compressible, viscous flows in
macroscale channels has been widely studied both experimentally and numerically,
although the knowledge is still not satisfactory on the simulation of micro-shock wave
propagations at the microscale [26]. Furthermore, a knowledge gap can be identi-
fied in the investigation of compressible, viscous flows in a micro-shock benchmark
channel where the electrically conducting gasflow is exposed to an external magnetic
field. Therefore, the present work black attempts to contribute to this challenging
research field through the numerical investigation of an electrically conducting com-
pressible, viscous fluid flow in the case of a micro-shock channel benchmark problem
where the gasflow is exposed to a uniform and stationary external magnetic field. In
this work, the Lorentz force (1.1) has been added as a source term to the unsteady,
fully compressible Navier–Stokes equations discretized with the nodal Discontinuous
Galerkin-Finite Element Method (DG-FEM). For solving the governing equations dis-
cussed in Section 2, a DG-FEM based open-source MATLAB code has been used that
was developed by Hesthaven and Warburton [27] and further improved for microfluidic
gasflow applications by Zingaro and Könözsy [28].

2. Methodology

2.1. Governing equations and their solution approach. The conservative form
of the two-dimensional governing equations for compressible, viscous Newtonian fluid
flows can be formulated for the density ρ, x-momentum ρu, y-momentum ρv, the
total energy E transport equation, and the total pressure p. For two-dimensional
compressible flows, the scalar form of the continuity equation can be expressed by

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (2.1)

the Navier–Stokes momentum equations for the velocity components u and v are

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) +

∂

∂y
(ρuv) =

∂τxx
∂x

+
∂τxy
∂y

+ ρFLx
, (2.2)

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρv2 + p) =

∂τyx
∂x

+
∂τyy
∂y

+ ρFLy , (2.3)

and the total energy equation transport equation can be written as

∂E

∂t
+

∂

∂x
[(E + p)u] +

∂

∂y
[(E + p)v] =

∂

∂x
(τxxu+ τxyv) +

∂

∂y
(τyxu+ τyyv)+

+
∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+ ρ

(
FLx

u+ FLy
v
)
, (2.4)
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where k is the thermal conductivity coefficient. For compressible fluid flows, the
viscous stress tensor based on the Navier–Stokes hypothesis is

τ = 2µS − 2

3
µ (∇ · v) I, (2.5)

where µ is the temperature dependent dynamic viscosity which can be computed by
using the Sutherland law, see details in [28]. The rate-of-strain tensor S in equation

(2.5) can be expressed with vector notation as

S =
1

2

[
(∇⊗ v) + (∇⊗ v)

T
]
, (2.6)

where I is the unit tensor. The elements of the viscous stress tensor (2.5) for two-
dimensional compressible, viscous fluid flows are

τxx =2µ
∂u

∂x
− 2

3
µ

(
∂u

∂x
+
∂v

∂y

)
, (2.7)

τxy =τyx = µ

(
∂u

∂y
+
∂v

∂x

)
, (2.8)

τyy =2µ
∂v

∂y
− 2

3
µ

(
∂u

∂x
+
∂v

∂y

)
. (2.9)

The total energy E can be expressed through the equation of state for ideal gases as

E =
p

γ − 1
+
ρ

2
(u2 + v2), (2.10)

where γ is the specific heat capacity assumed here to be equal to 1.66 following the
work of Zeitoun et al. [26] for a monoatomic gas. Based on the assumption that
MHD flows are defined as electrically conducting fluids under the application of an
external magnetic field, the external electrical field E is neglected in equation (1.2),
thus the electrical current density is j = σ(v × B) in the present model. Therefore,
the two-dimensional Lorentz force can be expressed as{

FLx
= σ(−uB2

y + vBxBy),

FLy = σ(uBxBy − vB2
x).

(2.11)

The set of governing equations (2.1)–(2.11) can be written in a compact form as

∂u

∂t
+

∂

∂x
(fc − fv) +

∂

∂y
(gc − gv) = s, (2.12)

where u = u(x, t) = [ρ, ρu, ρv, E]
T

is the vector of the conservative variables, and

fc =
[
ρu, ρu2 + p, ρuv, (E + p)u

]T
and fv = [0, τxx, τyx, τxxu+ τxyv]

T

are the convective and viscous fluxes along the x and y directions, while

gc =
[
ρv, ρuv, ρv2 + p, (E + p)v

]T
and gv = [0, τxy, τyy, τxyu+ τyyv]

T
,

and the vector s =
[
0, ρFLx

, ρFLy
, ρ(FLx

u+ FLy
v)
]T

expresses the source term. By
incorporating the fluxes in a single matrix operator f, the governing equations in the
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domain Ω are given by a system of coupled nonlinear mixed hyperbolic-parabolic
partial differential equations (PDEs) as follows:

∂u

∂t
+∇ · f = s, (2.13)

with an additional initial condition at time t0 and boundary conditions on the bound-
ary ∂Ω. The numerical approximation of the problem above can be formulated as

∂uh

∂t
+∇ · fh = sh, (2.14)

where the numerical solution uh and the spatial operator ∇· fh have been discretized
with the nodal DG-FEM scheme [27] and then temporally integrated with the fourth-
order Runge–Kutta scheme [28]. Note that the verification of the implementation
of the governing equations (2.1)–(2.4) was carried out by Zingaro and Könözsy [28]
for another multiphysics problem in the framework of the nodal DG-FEM approach.
However, the implementation of the magnetic force terms (2.11) with an investigation
of the variation of the electrical conductivity σ for a magnetogasdynamic microflow
at different magnetic Reynolds numbers is carried out in this work.

2.2. Spatial discretization. The physical domain of the microchannel Ω ∈ R2 is re-
placed by the computational domain Ωh composed by the union of K non-overlapping
triangular elements Dk, with k = 1 . . .K. In each element, the local solution uk

h(x, t),
belonging in the space

Vh = {vh ∈ (L2(Ωh))d : uh|Dk
∈ (PN )d,∀Dk ∈ Dh}, d = 2, (2.15)

is approximated by

x ∈ Dk : uk
h(x, t) =

Np∑
i=1

uk
h(x, t)lki (x), (2.16)

where the N -th order piece-wise polynomial expansion of the local multidimensional

Lagrange polynomial lki (x) is based on the grid points xi with Np = (N+1)(N+2)
2

unknown coefficient ukh. The global solution of the nonlinear system is recovered by
the direct sum of K local polynomials uk

h(x, t) as follows:

u(x, t) ' uh(x, t) =

K⊕
k=1

uk
h(x, t). (2.17)

To achieve accurate results with the numerical integration and differentiation, each
triangle x ∈ Dk is mapped to a reference triangle r ∈ Ik ∈ [1,−1] through a linear
mapping, thus the new local solution can be expressed by

x ∈ Ik : uk
h(r, t) =

Np∑
i=1

uk
h(ri, t)l

k
i (r), (2.18)

where the two-dimensional Legendre–Gauss–Lobatto grid points ri are chosen to im-
prove the quality of the local interpolating polynomial solution.

In the DG-FEM formulation, the governing equations (2.13) are satisfied elemen-

twise through the L2 orthogonality between the residual ∂uh

∂t + ∇ · fh − sh and all
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the test functions φh(x) ∈ Vh which belong to the same functional space of the
multidimensional Lagrange interpolating polynomial lki (x), thus∫

Dk

[(
∂uk

h

∂t
+∇ · fh − sh

)
φh(x)

]
dx = 0. (2.19)

By applying the Gauss theorem, the weak formulation of the DG-FEM is obtained as∫
Dk

[
∂uk

h

∂t
lki (x)− fkh · ∇lki (x)− shl

k
i (x)

]
dx = −

∮
∂Dk

f∗ lki (x) · n̂dx. (2.20)

The choice of the numerical flux f∗ term is essential for the accurate modeling of
the physical problem, which ensures the stability of the scheme and the uniqueness
of the solution at the interface of two adjacent elements. In this work, the local
Lax-Friedrichs flux scheme [29] has been chosen for its simplicity. To avoid stability
problems due to the spurious unphysical oscillations resulting from the large gradient
flows, the slope limiter proposed by Tu and Aliabadi [30] has been employed black in
this work. Note that for more accurate MHD flow simulations, i.e., to improve the
accuracy of the solution, the Harten–Lax–van Leer Discontinuities (HLLD) approxi-
mate Riemann solver [31] can be implemented, which should be the subject of future
work.

2.3. Temporal discretization. The Initial Value Problem (IVP) of the system of
ordinary differential equations (ODEs) resulting from the spatial DG-FEM discretiza-
tion L(uh, t) at time t0 is {

duh

dt = L(uh, t),

uh(t0) = u0
h,

(2.21)

which has been solved with a fourth-order Low Storage Explicit Runge–Kutta (LSERK)
scheme from [32] as follows:

p(0) = un
h,

for i ∈ [1, ..., 5] :

{
ki = aik

(i−1) + ∆tLh(p(i−1), tn + ci∆t),

p(i) = p(i−1) + bik
i,

un+1
h = p(5).

(2.22)

The time integration scheme (2.22) guarantees the numerical stability for non-linear
problems and is suitable for problems with shock waves and discontinuities. The
coefficients in equation (2.22) and the equation for the time step can be found in [28].

2.4. Source term discretization. In the present numerical study, a uniform and a
stationary external magnetic field is applied in the y spatial direction and it varies in
its strength as a function of the x spatial coordinate, which is defined as

B = (0, By(x), 0). (2.23)

In the presence of homogenous media, the magnetic flux density By(x) can be ex-
pressed as a linear function of the magnetic intensity Hy(x) as

By(x) = µ0Hy(x), (2.24)
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where µ0 is the permeability of the medium. The mathematical expression for Hy(x)
has been taken from the work of Tzirtzilakis and Loukopoulos [33] as follows:

Hy(x) =
H0

2

[
tanh(a1(x− x1))− tanh(a2(x− x2))

]
, (2.25)

where H0 defines the magnitude of the magnetic intensity and the constants a1 and
a2 specify the magnetic field gradient at the points x1 and x2, respectively.

2.5. The benchmark test problem. The viscous micro-shock channel benchmark
problem proposed by Zeitoun et al. [26] has been adapted here in which case the vari-
ation of the electrical conductivity σ was neglected at different magnetic Reynolds
numbers. Therefore, the viscous micro-shock channel test problem of Zeitoun et al.
[26] can be considered as a reference test case for our study, because our aim is to
investigate the effect of the variation of the electrical conductivity σ on a magneto-
gasdynamic microflow at different magnetic Reynolds numbers. The schematic of the
viscous micro-shock channel benchmark problem is shown in Figure 1.

x

y

Hy(x)

32H

2H

Figure 1. The geometry of the microchannel with the hydraulic di-
ameter of H = 2.55 mm to investigate a magnetogasdynamic flow

At the initial time t0 = 0 s, the gas is separated by one membrane positioned at
xd = 29.69 mm into two states, whose values for pressure and density are shown in
Table 1 following the previous work of Zingaro and Könözsy [28].

ρL [kg/m3] 8.43 · 10−3

ρR [kg/m3] 7.08 · 10−4

pL [Pa] 525.98

pR [Pa] 44.2

Table 1. Numerical values of pressure and density at the left (pL, ρL)
and right (pR, ρR) section of the viscous micro-shock channel [28]
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The initial conditions before and after the rupture of the membrane, taken from the
previous work of Zeitoun et al. [26], are

ρ(x, y, 0) =

{
ρL x < xd, (xd = 29.69 mm) ,

ρR x ≥ xd,
(2.26)

u(x, y, 0) = 0, (2.27)

v(x, y, 0) = 0, (2.28)

p(x, y, 0) =

{
pL x < xd, (xd = 29.69 mm) ,

pR x ≥ xd,
(2.29)

and the boundary conditions are no-slip at the left and right walls of the microchan-
nel. For this benchmark test problem, a grid convergence/mesh sensitivity study has
already been carried out on different mesh sizes in the previous work of Zingaro and
Könözsy [28] for the numerical solution of the compressible, viscous Navier–Stokes
equations without the inclusion of the electromagnetic field (see Table 2). Therefore,
the fine mesh employed by Zingaro and Könözsy [28] has also been adopted here,
because an accurate numerical solution for the benchmark test problem of Zeitoun et
al. [26] can be obtained [28]. The details of different grid size resolutions are shown
in Table 2, where Nx and Ny are the number of grid points in x and y coordinates,
and ∆x and ∆y are the grid spacing in x and y directions, respectively.

Mesh Nx Ny ∆x [mm] ∆y [mm]

Coarse 97 7 8.33 · 10−1 8.33 · 10−1

Medium 193 13 4.17 · 10−1 4.17 · 10−1

Fine 385 25 2.08 · 10−1 2.08 · 10−1

Table 2. Grid resolutions used in this study and in the previous work [28]

The simulations presented here have been performed with a first-order polynomial
approximation for the spatial terms to ensure the monotonicity behavior of the dis-
cretization scheme with a fourth-order Low Storage Explicit Runge–Kutta (LSERK)
scheme for the temporal part.

3. Results and Discussion

The investigation of the impact of the electromagnetic field on the viscous micro-shock
channel is carried out through a variation of the flow conductivity σ which affects the
magnetic Reynolds number defined as Rem = σµ0v̄`, where µ0 = 1.4 · 10−6 H/m is the
magnetic permeability, v̄ = 0.4 m/s is the mean velocity along the height of the mi-
crochannel, and ` = 2.5 · 10−3 m is the characteristic length. The magnetic Reynolds
number is defined as the ratio between the advective and diffusive forces of the mag-
netic field and in this work different low Rem are computed through a variation of the
electrical conductivity σ (see Table 3) in such a way that the low magnetic Reynolds
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number assumption [34], commonly used in microfluidics, holds. Furthermore, for the
sake of simplicity, the thermal conductivity coefficient k is considered to be constant
in the total energy equation (2.4) with the value of 0.0172 W/(mK).

Electrical conductivity σ [S/m] Magnetic Reynolds numbers [–]

100 1.4 · 10−7

1.0 · 103 1.4 · 10−6

5.0 · 103 7.0 · 10−6

10 · 103 14 · 10−6

Table 3. Magnetic Reynolds numbers Rem computed based on dif-
ferent electrical conductivity coefficient σ

The low magnetic Reynolds number assumption [34] implies that at the current length,
even in the presence of high electrical conductivity σ, the magnetic field exhibits a
dissipative behavior that spreads out rather than being advected by the flow. To gain
a better insight into the physical behavior of the acoustic waves generated behind and
in front of the rupture of the membrane, the profiles of the relevant quantities are
non-dimensionalized with their respective values of the driven section and extracted
at the centerline (y = H) of the microchannel (see Figure 2). Furthermore, the
physical time scale of the investigated experimental micro-shock channel benchmark
problem of Zeitoun et al. [26] is extremely short, i.e., 80 µ; therefore, the analysis of
the complex flow physics originating from the reflection of the acoustic waves against
the lateral wall has not been addressed in the present work and it is recommended as
a future topic of research.

It has been found that there are no visible effects of the electrical conductivity inves-
tigated for σ = 100 S/m; visible effects start from σ = 1 · 103 S/m. As the electrical
conductivity σ is further increased, all the variables change the characteristic be-
havior of their profiles substantially. Regarding the pressure (see Figure 2a), for
σ = 10 · 103 S/m, a strong and fast shock wave moves to the right, followed by a
smooth expansion fan, while the contact discontinuity is no longer visible. Similar to
the pressure, velocity and temperature profiles are subject to a rapid increase in the
shock wave region, where again the flow is moves to the right of the microchannel (see
Figures 2b and 2c). The increase in the temperature might be explained through the
Joule heating effect, while the increase in the velocity can be explained based on the
effect of the Lorentz force, which is able to accelerate the flow in the x spatial direc-
tion. The density profile is characterized by the presence of a constant state in the
center of the shock tube with a consequent change in the position and the magnitude
of the shock wave (see Figure 2d). Furthermore, a comparison can be plotted with
the reference values taken from the work of Zeitoun et al. [26] for the temperature
and density profiles in Figures 2c and 2d, respectively.
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(a) Pressure profile (b) Velocity profile

(c) Temperature profile (d) Density profile

Figure 2. Effects of the electrical conductivity σ on different flow
field variables extracted at the centerline of the microchannel

The magnetic field gradient in the points x1 and x2 is controlled by the two constants
a1 and a2 in equation (2.25), which has been taken from the work of Tzirtzilakis and
Loukopoulos [33] to simulate a physically realistic phenomenon relevant to biomedical
applications. Figure 3 shows the effect of three different values for a1 and a2 on the
dimensionless magnetic intensity H/H0 for σ = 5 · 103 S/m and H0 = 6.0 · 106 A/m,
respectively. The numerical results suggest that the magnetic field intensity is slightly
affected by changes in the magnitude of the magnetic field gradient. For a1 = a2 = 10,
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the magnetic field intensity has a semi-quadratic variation over the entire microchan-
nel, while it remains constant for a1 = a2 = 1 and a1 = a2 = 2.

In Figures 4, 5, 6 and 7, the contour plots of the temperature, pressure, density
and the velocity component u at σ = 5 · 103 S/m are shown in comparison with the
value of the electrical conductivity σ = 0 S/m as a reference value. The numeri-
cal solution is obtained by solving the compressible, viscous Navier-Stokes equations
(2.1)–(2.4) with the inclusion of the Lorentz force terms (2.11) as source terms using
the DG-FEM discretization approach discussed in Section 2. It has been observed
regarding all the conservative variables that the left portion of the microchannel is
not influenced by the magnetic field, whereas in the right section, the effect of the
Lorentz force is particularly visible.

Figure 3. Magnetic field intensity for three different a1, a2 values
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(a) Solution of the compressible

Navier–Stokes equations without the

Lorentz force terms

(b) Solution of the compressible

Navier–Stokes equations with the

MHD Lorentz force terms

Figure 4. Temperature distribution in the microchannel

(a) Solution of the compressible

Navier–Stokes equations without the

Lorentz force terms

(b) Solution of the compressible

Navier–Stokes equations with the
MHD Lorentz force terms

Figure 5. Pressure distribution in the microchannel
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(a) Solution of the compressible
Navier–Stokes equations without the

Lorentz force terms

(b) Solution of the compressible
Navier–Stokes equations with the

MHD Lorentz force terms

Figure 6. Density distribution in the microchannel

(a) Solution of the compressible

Navier–Stokes equations without the
Lorentz force terms

(b) Solution of the compressible

Navier–Stokes equations with the
MHD Lorentz force terms

Figure 7. Velocity component u distribution in the microchannel
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4. Conclusions and Future Work

In this work, the effect of the electrical conductivity coefficient σ on a two-dimensional
compressible, viscous micro-shock channel was analyzed behind the rupture of a mem-
brane which separates two states of the same gas initially at rest. The Lorentz force
terms (2.11) were included as source terms in the compressible Navier–Stokes equa-
tions (2.3), which were discretized with the use of the Discontinuous Galerkin-Finite
Element Method (DG-FEM). Different magnetic Reynolds numbers were considered
along with the variation of the electrical conductivity σ of the flow, from σ = 100 S/m
to σ = 10 · 103 S/m. The acoustic waves after 80µs behind the rupture rupture point
of the membrane were investigated. The numerical results suggest that the Lorentz
force has a significant impact on the flow field variables from σ > 100 S/m. As
the electrical conductivity σ is increased, all the conservative variables (temperature,
pressure, density and velocity) showed a significant increase in their quantity toward
the right section of the magnetogasdynamic microchannel. In particular, the temper-
ature jump may be caused by the Joule effect while the sharp increase in the velocity
profile can be explained by the acceleration of the flow produced by the Lorentz force
terms (2.11) in the compressible Navier–Stokes equations (2.3). To achieve high-order
spatial accuracy of the numerical solution and obtain even a more accurate prediction
of the acoustic waves, the implementation of the Harten–Lax–van Leer Discontinu-
ities (HLLD) Riemann solver [31] is recommended as future work. Furthermore, it is
suggested to increase the physical time of the numerical simulation to get insights on
the complex flow physics originating from the reflection of the acoustic waves against
the lateral wall and to verify the stability of the present numerical scheme.

Acknowledgement. This project was financially supported by the Centre for Computa-
tional Engineering Sciences at Cranfield University under project code EEB6001R. For the
purpose of open access, the authors have applied a Creative Commons Attribution (CC BY)
licence to any author-accepted manuscript version arising.

References

1. Lawal, M. O. and Ajadi, S. O. “The behavior of MHD flow and heat transfer
in the presence of heat source and chemical reaction over a flat plate.” Journal
of Computational and Applied Mechanics, 11(2), (2016), pp. 159–178.

2. Sekhar, T. V. S., Sivakumar, R., and Kumar, H. “Numerical solutions for
steady viscous flow past a circular cylinder in an aligned magnetic field.” Journal
of Computational and Applied Mechanics, 9(2), (2014), pp. 201–217.

3. Stott, S. L., Hsu, Chia-Hsien, Tsukrov, D. I., Yu, Min, Miyamoto,
D. T., Waltman, B. A, Rothenberg, S. M., Shah, A. M., Smas, M. E.,
Korir, G. K., et al. “Isolation of circulating tumor cells using a microvortex-
generating herringbone-chip.” Proceedings of the National Academy of Sciences,
107(43), (2010), pp. 18392–18397. doi: 10.1073/pnas.1012539107.

4. Zhao, Y., Chen, D., Yue, H., French, J. B., Rufo, J., Benkovic, S. J.,
and Huang, T. J. “Lab-on-a-chip technologies for single-molecule studies”. Lab
on a Chip, 13(12), (2013), pp. 2183–2198. doi: 10.1039/c3lc90042h.

https://doi.org/10.1073/pnas.1012539107
https://doi.org/10.1039/c3lc90042h


Micro-shock waves in a planar magnetogasdynamic flow 121

5. Shaw, S. “Mathematical model on magnetic drug targeting in microvessel.”
Magnetism and Magnetic Materials. Ed. by Neeraj Panwar. IntechOpen, 2018,
pp. 83–107. doi: 10.5772/intechopen.68579.

6. Hegab, H. E. and Liu, G. “Fluid flow modeling of micro-orifices using mi-
cropolar fluid theory.” Microfluidic Devices and Systems III. Vol. 4177. Society
of Photo-Optical Instrumentation Engineers. 2000, pp. 257–267. doi: 10.1117/
12.395670.

7. Aissa, W. A. and Mohammadein, A. A. “Joule heating effects on a microp-
olar fluid past a stretching sheet with variable electric conductivity.” Journal of
Computational and Applied Mechanics 6(1), (2005), pp. 3–13.

8. Kenis, P. J., Ismagilov, R. F., and Whitesides, G. M. “Microfabrication
inside capillaries using multiphase laminar flow patterning”. Science, 285(5424),
(1999), pp. 83–85. doi: 10.1126/science.285.5424.83.

9. Hertzog, D. E., Ivorra, B., Mohammadi, B., Bakajin, O., and Santi-
ago, J. G. “Optimization of a microfluidic mixer for studying protein folding
kinetics”. Analytical Chemistry, 78(13), (2006), pp. 4299–4306. doi: 10.1021/
ac051903j.

10. Squires, T. M. and Quake, S. R. “Microfluidics: Fluid physics at the nanoliter
scale.” Reviews of Modern Physics, 77(3), (2005), pp. 977–1026. doi: 10.1103/
RevModPhys.77.977.

11. Bart, S. F., Tavrow, L. S., Mehregany, M., and Lang, J. H. “Microfabri-
cated electrohydrodynamic pumps.” Sensors and Actuators A: Physical, 21(1-3)
(1990), pp. 193–197. doi: 10.1016/0924-4247(90)85037-5.

12. Richter, A., Plettner, A., Hofmann, K. A., and Sandmaier, H. “A
micromachined electrohydrodynamic (EHD) pump.” Sensors and Actuators A:
Physical, 29(2), (1991), pp. 159–168. doi: 10.1016/0924-4247(91)87118-M.

13. Manz, A., Effenhauser, C. S., Burggraf, N., Harrison, D. J., Seiler,
K., and Fluri, K. “Electroosmotic pumping and electrophoretic separations
for miniaturized chemical analysis systems.” Journal of Micromechanics and
Microengineering, 4(4), (1994), p. 257. doi: 10.1088/0960-1317/4/4/010.

14. Jang, J. and Lee, S. S. “Theoretical and experimental study of MHD (mag-
netohydrodynamic) micropump.” Sensors and Actuators A: Physical, 80(1),
(2000), pp. 84–89. doi: 10.1016/S0924-4247(99)00302-7.

15. Nguyen, B. and Kassegne, S. K. “High-current density DC magenetohydro-
dynamics micropump with bubble isolation and release system.” Microfluidics
and Nanofluidics, 5(3), (2008), pp. 383–393. doi: 10.1007/s10404-007-0255-3.

16. Homsy, A., Koster, S., Eijkel, J. C. T., Berg, A., Lucklum, F., Ver-
poorte, E., and Rooij, N. F. “A high current density DC magnetohydrody-
namic (MHD) micropump.” Lab on a Chip, 5(4), (2005), pp. 466–471.

17. Lemoff, A. V. and Lee, A. P. “An AC magnetohydrodynamic micropump.”
Sensors and Actuators B: Chemical, 63(3), (2000), pp. 178–185. doi: 10.1016/
S0925-4005(00)00355-5.

https://doi.org/10.5772/intechopen.68579
https://doi.org/10.1117/12.395670
https://doi.org/10.1117/12.395670
https://doi.org/10.1126/science.285.5424.83
https://doi.org/10.1021/ac051903j
https://doi.org/10.1021/ac051903j
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.1016/0924-4247(90)85037-5
https://doi.org/10.1016/0924-4247(91)87118-M
https://doi.org/10.1088/0960-1317/4/4/010
https://doi.org/10.1016/S0924-4247(99)00302-7
https://doi.org/10.1007/s10404-007-0255-3
https://doi.org/10.1016/S0925-4005(00)00355-5
https://doi.org/10.1016/S0925-4005(00)00355-5


122 A. Gallottini, L. Könözsy
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Abstract. The goal of this study is to calculate the eigenvalues that provide the eigenfre-
quencies and the critical loads for two heterogeneous beams with three supports: the (first)
[second] beam is (fixed)[pinned] at the left end, the intermediate support is a roller while the
right end of the beams can move vertically but the rotation is prevented there. The beams
are referred to as FrsRp and PrsRp beams. Determination of the (eigenfrequencies) [critical
loads] leads to three point eigenvalue problems associated with homogeneous boundary con-
ditions. With the Green functions that belong to these eigenvalue problems we can transform
them into eigenvalue problems governed by homogeneous Fredholm integral equations. The
eigenvalue problems can then be reduced to algebraic eigenvalue problems that are solvable
numerically by utilizing effective solution algorithms.
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1. Introduction

Since beam buckling can be a prevalent cause of failure in engineering applications,
it has been the focus of research for a long time. The Swiss mathematician Leonhard
Euler was a pioneer in this subject, publishing his well-known formula for the critical
(buckling) load of straight bars under compression in 1759. There are multiple sources
about shells, columns, arches and other structures [1–3]. For example, the books
[3, 4] provide extremely thorough information about solutions to a wide range of
engineering problems, as well as applications. Article [5] investigates experimentally,
analytically and numerically the static and dynamic stability problem of columns
under self-weight. In [6] both geometrical and load imperfections are considerred in
the buckling studies of columns.

Furthermore, the first concept of the Green function was published by George Green
in 1828. His book [7] presents, discusses, and demonstrates how to use the Green
function approach to electrostatic issues governed by partial differential equations.
In the publication [8], the Green function for two-point boundary value problems
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governed by ordinary differential equations was established. In 1926, the first book
[9] that comprehensively covered the notion of the Green function was published.

The results published in [10] were generalized for degenerated ordinary differential
equation systems in 1975 [11, 12].

In the publication [13], the existence proof for several three-point boundary value
issues linked to third-order nonlinear differential equations is presented by using Green
functions. The related Green functions for some three-point boundary value problems
governed by linear ordinary differential equations of order two are provided in article
[14].

The free vibration and buckling problems of two heterogeneous beams are solved
in this article based on the aforementioned literature. Cross-sectional inhomogene-
ity refers to the fact that the material is linearly elastic, isotropic, and the material
distribution can change throughout the cross-section. Free vibration and stability
equations are given for three-point boundary value issues. These are subsequently
replaced with Fredholm integral equations using the Kernel function. A formulation
of the Green function for three-point boundary value issues with homogeneous bound-
ary conditions is also included. The boundary element approach is used to provide
numerical solutions to integral equations, and algebraic equations are introduced in
this manner. The eigenvalues of free vibration and the linear buckling loads are af-
fected significantly by the location of the middle support in general. The results are
compared to the results of some finite element calculations and high correlation is
found.

2. Differential equations

2.1. Governing equations. The considerred heterogeneous FrsRp and PrsRp beams
are shown in Figure 1. The axial force N acting on the beams is compressive. The
cross section of the beams is uniform throughout their length. The axis x̂ of the
coordinate system x̂, ŷ, ẑ coincide with the E-weighted center line of the beams. Its
origin is located at the left end of the beam. The beams are symmetric with respect
to the coordinate plane x̂ẑ. It is assumed that the modulus of elasticity E satisfies

N

N

ŵ

z

x

x

ŵ

L

b

z

Figure 1. FrsRp and PrsRp beams
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the condition E(ŷ, ẑ) = E(−ŷ, ẑ) over the cross section A, i.e., it is independent of
the coordinate ẑ. In this case the beam has cross sectional heterogeneity [15]. L is

the length of the beams while b̂ gives the position of the middle roller support.

The E-weighted first moment Qŷ is zero in this coordinate system:

Qŷ =

∫
A

ẑE(ŷ, ẑ)dA = 0 . (2.1)

Equilibrium problems of beams with cross sectional heterogeneity – the axial force N
is zero – are governed by the ordinary differential equation [15]:

d4ŵ

dx̂4
=

f̂z
Iey

, (2.2)

where ŵ(x) is the vertical displacement of the material points on the E-weighted

center line, f̂z(x) is the intensity of the verical distributed load acing on the beam.
The E-weighted moment of inertia Iey is defined by the equation

Iey =

∫
A

E(ŷ, ẑ)z2 dA . (2.3)

If the beam is homogeneous the modulus of elasticity E is constant. Hence

Iey = IE, I =

∫
A

z2 dA (2.4)

in which I is the moment of inertia.

In what follows we shall use dimensionless variables defined by the following rela-
tions [16]

x = x̂/L, ξ = ξ̂/L, w = ŵ/L,

y =
dŵ

dx̂
=

dw

dx
, b = b̂/ℓ̂ , ℓ =

x

L

∣∣∣
x=L

= 1 ,
(2.5)

where ξ̂ is also a coordinate measured on the axis x̂ with the same origin as for x̂.
Applying dimensionless quantities to equation (2.2) we have

w(4) = fz , w(0) = w , w(k) =
dk w

dxk
, (k = 1, . . . , 4); fz =

L3f̂z
Iey

(2.6)
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Table 1.

Boundary conditions

FrsRp beams PrsRp beam

w(0) = 0 , w(1)(0) = 0 w(0) = 0 , w(2)(0) = 0

w(1)(ℓ) = 0 , w(3)(ℓ) = 0 w(1)(ℓ) = 0 , w(3)(ℓ) = 0

Continuity conditions

w(b− 0) = w(b+ 0) = 0 ,

w(1)(b− 0) = w(1)(b+ 0) ,

w(2)(b− 0) = w(2)(b+ 0) ,

The ordinary differential equation (2.6)1 (ODE) is associated with the boundary
and continuity conditions presented in Table 1.

The general solution for the homogeneous ODE

w(4) = 0 (2.7)

is very simple:

w =

n=4∑
n=0

anwn = an + a1x
1 + a2x

2 + a3x
3 + a4x

4 , (2.8)

in which ak (k = 0, . . . , 4) are undetermined integration constants.

Making use of the Green functions that belongs to the boundary value problems
determined by ODE (2.6) and the corresponding boundary and continuity conditions
presented in Table 1 the solution for the dimensionless deflection w is given by the
integral

w(x) =

∫ ℓ

0

G(x, ξ)fz(ξ) dξ . (2.9)

where G(x, ξ) stand for the Green functions in question.

The Green functions we shall need are presented in Section 3.

2.2. Vibration problem. The dimensionless amplitude for the free vibrations of
FrsRp and PrsRp beams will also be denoted by w. It should fulfill the the following
homogeneous ODE

d4w

dx4
= λw , λ =

ρaAω2L4

Iey
, (2.10)

where λ is the eigenvalue sought, ρa is the average density over the cross section while
ω is the circular frequency of the vibrations.

Substituting λw(ξ) for f(ξ) in (2.9) yields the homogeneous Fredholm integral
equation

w(x) = λ

∫ ℓ=1

ξ=0

G(x, ξ)w(ξ) dξ . (2.11)

In this approach, the three point eigenvalue problem determined by ODE (2.10) and
the boundary and continuity conditions presented in Table 1 is reduced to an eigen-
value problem governed by the homogeneous Fredholm integral equation (2.11).
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2.3. Stability problem. If the uniform heterogeneous beams shown in Figure 1 are
subjected to an axial force N the corresponding equilibrium problems are governed
by ODE

w(4) ±N w(2) = fz, N = L2 N

Iey
, (2.12)

where the axial force N is constant (N > 0) while the sign of N is [positive] (negative)
if the axial force is [compressive] (tensile).

If the stability problem is considered the axial force is compressive and fz = 0. We
have, therefore, two eigenvalue problems (one for each beam shown in Figure 1) – the
eigenvalue sought is N – determined by ODE

w(4) = −N w(2) (2.13)

and the boundary and continuity conditions in Table 1. If we write −N w(2) for fz
in (2.9) we get

w(x)=−N
∫ ℓ

0

G(x, ξ)
d2w(ξ)

dξ2
dξ=−N

(
G(x, ξ)

dw(ξ)

dξ

∣∣∣∣ℓ
ξ=0

−
∫ ℓ

0

∂G(x, ξ)

∂ξ

dw(ξ)

dξ
dξ

)

where

G(x, ξ)
dw(ξ)

dξ

∣∣∣∣ℓ
ξ=0

= 0

since G(x, 0) is zero and the derivative dw(ξ)/dξ is also zero if ξ = ℓ = 1. Hence

w(x) = N
∫ ℓ

0

∂G(x, ξ)

∂ξ

dw(ξ)

dξ
dξ . (2.14)

Introduce the notations

dw

dx
= y,

∂2G(x, ξ)

∂x ∂ξ
= K(x, ξ)

and derive equation (2.14) with respect to x. In this way we get a homogeneous
Fredholm integral equation:

y(x) = N
∫ ℓ

0

K(x, ξ) y(ξ) dξ . (2.15)

Consequently, the eigenvalue problems determined by ODE (2.13) and the homoge-
neous boundary and continuity conditions presented in Table 1 are reduced to eigen-
value problems governed by homogeneous Fredholm integral equations. It should be
mentioned that the above line of thought is based on book [17] and paper [16].
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3. Green function for three-point boundary value problems

3.1. Definition. In this subsection we present the definition that provides the main
properties of the Green function for ODEs. The definition is based on book [18].

Consider the inhomogeneous ordinary differential equation

L[y(x)] =

2k∑
n=0

pn(x)y
(n)(x) = r(x) , (3.1)

where k is a natural number, the functions pn(x) and r(x) are continuous and p2k(x) ̸=
0 if x ∈ [0, ℓ] (ℓ > 0). Moreover let b an inner point in the interval [0, ℓ]: b = ℓ1,
ℓ− b = ℓ2 and ℓ1 + ℓ2 = ℓ.

The inhomogeneous differential equation (3.1) is associated with the following ho-
mogeneous boundary and continuity conditions:

2k∑
n=0

αnrIy
(n−1)
I (0) = 0 , r = 1, 2, . . . , k

2k∑
n=0

βnrIy
(n−1)
I (b)−

2k∑
n=0

βnrIIy
(n−1)
II (b) = 0 , r = 1, 2, ...., 2k

2k∑
n=0

γnrIIy
(n−1)
II (ℓ) = 0 . r = 1, 2, . . . , k

(3.2)

The Roman numeral I and II belong to the intervals [0, b] and [b, ℓ]: yI and yII are
the solutions to the differential equation in the intervals I and II. It is assumed that
αnrI , βnrI , βnrII and γnrII are arbitrary constants.

The Green function G(x, ξ) that belongs to the three point boundary value problem
(3.1), and (3.2) is defined by the following formulas and properties [18]:

Formulas:

G(x, ξ) =


G1I(x, ξ) if x, ξ ∈ [0, ℓ],
G2I(x, ξ) if x ∈ [b, ℓ] and ξ ∈ [0, ℓ],
G1II(x, ξ) if x ∈ [0, b] and ξ ∈ [b, ℓ],
G2II(x, ξ) if x, ξ ∈ [b, ℓ].

(3.3)

Properties:
1. The function G1I(x, ξ) is a continuous function of x and ξ if 0 ≤ x ≤ ξ ≤ b and
0 ≤ ξ ≤ x ≤ b. In addition it is 2k times differentiable with respect to x and the
derivatives

∂nG1I(x, ξ)

∂xn
= G1I(x, ξ)

(n)(x, ξ) , n = 1, 2, . . . , 2k (3.4)

are also continuous functions of x and ξ in the triangles 0 ≤ x ≤ ξ ≤ b and 0 ≤ ξ ≤
x ≤ b.

2. Let ξ be fixed in [0, b]. Then the function G1I(x, ξ) and its derivatives

G
(n)
1I (x, ξ) =

∂nG1I(x, ξ)

∂xn
, n = 1, 2, . . . , 2k − 2 (3.5)
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should be continuous for x = ξ:

G
(n)
1I (ξ + 0, ξ)−G

(n)
1I (ξ − 0, ξ) = 0 , n = 0, 1, 2, . . . 2k − 2 (3.6a)

The derivative G
(2k−1)
1I (x, ξ) should, however, have a jump if x = ξ:

G
(2k−1)
1I (ξ + 0, ξ)−G

(2k−1)
1I (ξ − 0, ξ) =

1

p2k(ξ)
. (3.6b)

In contrast to this, G2I(x, ξ) and its derivatives

G
(n)
2I (x, ξ) =

∂nG2I(x, ξ)

∂xn
, n = 1, 2, . . . , 2k (3.7)

are all continuous functions for any x in [b, ℓ].
3. Let ξ be fixed in [b, ℓ]. The function G1II(x, ξ) and its derivatives

G
(n)
1II(x, ξ) =

∂nG1II(x, ξ)

∂xn
, n = 1, 2, . . . , 2k (3.8)

are all continuous functions for any x in [0, b].

4. Though the function G2II(x, ξ) and its derivatives

G
(n)
2II(x, ξ) =

∂nG2II(x, ξ)

∂xn
, n = 1, 2, . . . , 2k − 2 (3.9)

should also be continuous for x = ξ:

G
(n)
2II(ξ + 0, ξ)−G

(n)
2II(ξ − 0, ξ) = 0 , n = 0, 1, 2, . . . 2k − 2 (3.10a)

the derivative G
(2k−1)
2II (x, ξ) should, however, have a jump if x = ξ:

G
(2k−1)
2II (ξ + 0, ξ)−G

(2k−1)
2II (ξ − 0, ξ) =

1

p2k(ξ)
. (3.10b)

5. Let α be an arbitrary but finite non-zero constant. For a fixed ξ ∈ [0, ℓ] the
product G(x, ξ)α as a function of x (x ̸= ξ) should satisfy the homogeneous differential
equation

M [G(x, ξ)α] = 0 .

6. The productG(x, ξ)α as a function of x should satisfy both the boundary conditions
and the continuity conditions∑2k

n=1 αnrI G
(n−1)(0) = 0 , r = 1, . . . , k∑2κ

n=1

(
βnrI G

(n−1)(b− 0)− βnrII G
(n−1)(b+ 0)

)
= 0 , r = 1, . . . , 2k∑2k

n=1 γnrII G
(n−1)(ℓ) = 0 . r = 1, . . . , k

(3.11)

The above continuity conditions should be satisfied by the function pairs G1I(x, ξ),
G2I(x, ξ) and G1II(x, ξ), G2II(x, ξ) as well.

Remark 1. It can be proved – see paper [18] for details – that the solution of the
three-point boundary value problem (3.1), and (3.2) has the form

y(x) =

∫ ℓ

0

G(x, ξ)r(ξ)dξ . (3.12)
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Remark 2. If the boundary value problem defined by (3.1) and (3.2) is self adjoint
then the Green function is symmetric [18]:

G(x, ξ) = G(ξ, x) . (3.13)

In Subsections 3.2 and 3.3 we present the Green functions that belong to differential
equation (2.6) under the boundary and continuity conditions presented in Table 1.
The calculations are detailed for FrsRp beams only. As regards PrsRp beams we shall
give the final formulae only.

3.2. Green function for FrsRp beams.

3.2.1. Calculation of the Green function if ξ ∈ [0, b]. We shall assume that G1I(x, ξ)
has the following form:

G1I(x, ξ) =

4∑
m=1

(amI(ξ) + bmI(ξ))wm(x), x < ξ

G1I(x, ξ) =

4∑
m=1

(amI(ξ)− bmI(ξ))wm(x), x > ξ

(3.14)

if x ∈ [0, b]. On the contrary, we search G2I(x, ξ) as

G2I(x, ξ) =

4∑
m=1

cmI(ξ)wm(x), (3.15)

if x ∈ [b, ℓ]. The coefficients amI(ξ), bmI(ξ) and cmI(ξ) are unknown functions, wm(x)
is given by (2.8).

Note that representation (3.14) and (3.15) for G1I(x, ξ) and G2I(x, ξ) ensure the
fulfillment of Properties 1 and 5 of the definition.

Continuity and discontinuity conditions (3.6) result in the following equations

4∑
m=1

bmI(ξ)w
(n)
m (ξ) = 0, n = 0, 1, 2 (3.16a)

and

4∑
m=1

bmI(ξ)w
(3)
m (ξ) = −1

2
. (3.16b)

For FrsRp beams equations (3.16a) and (3.16b) assume the form
1 ξ ξ2 ξ3

0 1 2ξ 3ξ2

0 0 2 6ξ
0 0 0 6




b1I
b2I
b3I
b4I

 =


0
0
0
− 1

2

 . (3.17)

Hence

b1I =
ξ3

12
, b2I = −ξ2

4
, b3I =

ξ

4
, b4I =

1

12
. (3.18)
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Remark 3. Note that (a) the determination of bmI ensures the fulfillment of Property
2 of the Green function; (b) the results obtained for bmI are independent of the
boundary and continuity conditions.

According to Property 6 of the definition G1I(x, ξ) and G2I(x, ξ) should satisfy the
boundary and continuity conditions in Table 1. Utilizing them we get:

(a) Boundary conditions at x = 0:

4∑
k=1

akIwk(0) = −
4∑

k=1

bkIwk(0) , (3.19a)

4∑
k=1

akIw
(1)
k (0) = −

4∑
k=1

bkIw
(1)
k (0) . (3.19b)

(b) Continuity conditions at x = b:

4∑
k=1

akIwk(b) =

4∑
k=1

bkIwk(b) , (3.19c)

4∑
k=1

ckIwk(b) = 0 , (3.19d)

4∑
k=1

akIw
(1)
k (b)−

4∑
k=1

ckIw
(1)
k (b) =

4∑
k=1

bkIw
(1)
k (b) , (3.19e)

4∑
k=1

akIw
(2)
k (b)−

4∑
k=1

ckIw
(2)
k (b) =

4∑
k=1

bkIw
(2)
k (b) . (3.19f)

(c) Boundary conditions at x = ℓ:

4∑
k=1

ckIw
(1)
k (ℓ) = 0 , (3.19g)

4∑
k=1

ckIw
(2)
k (ℓ) = 0 . (3.19h)

The previous linear equations can be given in matrix form as well:



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 b b2 b3 0 0 0 0
0 0 0 0 1 b b2 b3

0 1 2b 3b2 0 −1 −2b −3b2

0 0 2 6b 0 0 −2 −6b
0 0 0 0 0 1 2ℓ 3ℓ2

0 0 0 0 0 0 0 1





a1I
a2I
a3I
a4I
c1I
c2I
c3I
c4I


=

1

12



−ξ3

3ξ2

ξ3 − 3ξ2b+ 3ξb2 − b3

0
−3ξ2 + 6ξb− 3b2

6ξ − 6b
0
0


. (3.20)
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After solving the linear equation system (3.20) the following relationship is obtained
for G1I(x, ξ):

G1I(x, ξ)=

4∑
ℓ=1

(aℓI(ξ)± bℓI(ξ))wℓ(x)=− 1

12
ξ3 ± 1

12
ξ3 +

(
3ξ2

12
±
(
−3ξ2

12

))
x+

+

(
3ξ

12b2 (4ℓ− 3b)

(
8ξb2 − 12ξbℓ+ 4ℓξ2 − 2ξ2b− 3b3 + 4b2ℓ

)
± 3ξ

12

)
x2+

+

(
− 1

12b3 (4ℓ− 3b)

(
6ξ2b2 − 12ξ2bℓ− 3b4 + 4b3ℓ+ 4ℓξ3

)
± −1

12

)
x3 (3.21a)

As regards G2I(x, ξ) we have

G2I(x, ξ) =

4∑
ℓ=1

cℓI(ξ)wℓ(x) = ξ2
(ξ − b) (x− b) (2ℓ− x− b)

2b (4ℓ− 3b)
(3.21b)

3.2.2. Calculation of the Green function if ξ ∈ [b, ℓ]. The assumptions that are used
are similar to those presented in Subsection 3.2.1:

If x ∈ [b, ℓ] then

G2II(x, ξ) =

4∑
m=1

(amII(ξ) + bmII(ξ))wm(x), x < ξ

G2II(x, ξ) =

4∑
m=1

(amII(ξ)− bmII(ξ))wm(x), x > ξ

(3.22)

however, if x ∈ [0, b] then

G1II(x, ξ) =

4∑
m=1

cmII(ξ)wm(x). (3.23)

Here the coefficients amII(ξ), bmII(ξ) and cmII(ξ) are again unknown functions.

We remind the reader of the fact that the above representations for G1II(x, ξ) and
G2II(x, ξ) ensure the fulfillment of Property 1 and 5 of the definition.

Continuity and discontinuity conditions (3.10) lead again to equation system (3.17)
in which now the coefficients bmII(ξ), m = 1, 2, 3, 4 are the unknowns. Hence
bmII(ξ) = bmI(ξ).

It’s worth noting that determining the coefficients bmII assures that the Green
function’s Properties 3 and 4 are satisfied. Making use of the boundary and continuity
conditions given in Table 1 equations again the following equations can be obtained
for the eight unknown coefficients amII(ξ) and cmII(ξ):

(a) Boundary conditions at x = 0:

4∑
k=1

ckII wk(0) = 0 , (3.24a)

4∑
k=1

ckII w
(1)
k (0) = 0 , (3.24b)
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(b) Continuity conditions at x = b:

4∑
k=1

ckII wk(b) = 0 , (3.24c)

4∑
k=1

akII wk(b) = −
4∑

k=1

bkII wk(b) , (3.24d)

4∑
k=1

a
(1)
kII wk(b)−

4∑
k=1

c
(1)
kII wk(b) = −

4∑
k=1

b
(1)
kII wk(b) , (3.24e)

4∑
k=1

a
(2)
kII wk(b)−

4∑
k=1

c
(2)
kII wk(b) = −

4∑
k=1

b
(2)
kII wk(b) . (3.24f)

(c) Boundary conditions at x = ℓ:

4∑
k=1

a
(1)
kII wk(ℓ) =

4∑
k=1

b
(1)
kII wk(ℓ) , (3.24g)

4∑
k=1

a
(3)
kII wk(ℓ) =

4∑
k=1

b
(3)
kII wk(ℓ) , (3.24h)

Since c1II = c2II = 0 the final equation system has the following form:
0 0 0 0 b2 b3

1 b b2 b3 0 0
0 1 2b 3b2 −2b −3b2

0 0 2 6b −2 −6b
0 1 2ℓ 3ℓ2 0 0
0 0 0 1 0 0




a1II
a2II
a3II
a4II
c3II
c4II

 =
1

12


0

−ξ3 + 3bξ2 − 3b2ξ + b3

3ξ2 − 6bξ + 3b2

−6ξ + 6b
−3ξ2 + 6ξℓ− 3ℓ2

−1

 (3.25)

After having solved the previous equation system substitution of the results obtained
into equations (3.22), (3.23) and using some algebra yield:

G1II(x, ξ) =

4∑
ℓ=1

cℓII(ξ)wℓ(x) = x2 (x− b) (ξ − b) (2ℓ− ξ − b)

2b (4ℓ− 3b)
(3.26a)

and

G2II(x, ξ) =

4∑
ℓ=1

(aℓII(ξ)± bℓII(ξ))wℓ(x) =

= − 1

12 (4ℓ− 3b)

(
4b3ℓ− 12b2ξℓ+ 6ξ2b2 + 4ℓξ3 − 3ξ3b

)
± ξ3

12
+

+

(
3

12 (4ℓ− 3b)

(
4b2ℓ− 12ξbℓ+ 3ξ2b+ 4ℓξ2

)
± −3ξ2

12

)
x+

+

(
3

12 (4ℓ− 3b)

(
−2b2 + 4ξℓ− 4ξ2 + 3ξb

)
± 3ξ

12

)
x2 +

(
− 1

12
± −1

12

)
x3

(3.26b)
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Note that the calculation of the functions aℓII and cℓII is based on Property 6 of
the definition.

Figure 2 depicts the Green function for an FrsRp beam. It is assumed that L = 100

mm, b̂ = 50 mm and ξ̂ = 75 mm. The computed points are drawn by red diamonds
and the function itself is shown using a continuous line. This notation convention will
be applied to the other figures in the present paper. The Green function shown in
Figure 2 is the dimensionless displacement due to a dimensionless vertical unit force
exerted on the beam at the point ξ = 0.75.
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Figure 2. The Green function of an FrsRp beam

3.3. Green function for PrsRp beams. Repeating the calculations steps pre-
sented in Subsection 3.2 for PrsRp beams yields the following four elements for the
corresponding Green function – the calculation details are all omitted here.

G1I(x, ξ) =

4∑
ℓ=1

(aℓI(ξ)± bℓI(ξ))wℓ(x) =

(
− 1

12
ξ3 ± 1

12
ξ3
)
+

+

(
− 1

12b (2b−3ℓ)

(
−9b3ξ+6b2ξ2+12ℓb2ξ−3bξ3−9ℓbξ2 + 6ℓξ3

)
±
(
−3ξ2

12

))
x+

+

(
− 3

12
ξ ± 3

12
ξ

)
x2 +

(
1

12b2 (2b−3ℓ)

(
−2b3+3b2ξ+3ℓb2−6ℓbξ+ξ3

)
± −1

12

)
x3,

(3.27a)
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G2I(x, ξ) =

4∑
ℓ=1

cℓI(ξ)wℓ(x) =
1

4b

ξ

3ℓ− 2b
(b− x)

(
ξ2 − b2

)
(b+ x− 2ℓ) , (3.27b)

G1II(x, ξ)=

4∑
ℓ=1

cℓII(ξ)wℓ(x)=
1

4b

x

3ℓ− 2b
(b− ξ)

(
x2 − b2

)
(b+ ξ − 2ℓ) , (3.27c)

G2II(x, ξ) =

4∑
ℓ=1

(aℓII(ξ)± bℓII(ξ)) zℓ(x) =

=
1

12 (3ℓ− 2b)

(
−b4 + 6b2ξℓ− 3b2ξ2 − 3ξ3ℓ+ 2ξ3b

)
± ξ3

12
+

+

(
3

12 (3ℓ− 2b)

(
2b2ℓ− 8bξℓ+ 2bξ2 + 3ξ2ℓ

)
± −3ξ2

12

)
x+

+

(
3

12 (3ℓ− 2b)

(
−b2 + 3ξℓ− 3ξ2 + 2bξ

)
± 3ξ

12

)
x2 +

(
− 1

12
± −1

12

)
x3. (3.27d)

Figure 3 shows the Green function of a PrsRp beam under the same conditions as
Figure 2 depicts the Green function of an FrsRp beam.
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Figure 3. The Green function of an PrsRp beam

Remark 4. The Green function given by equations (3.21) and (3.26) (FrsRp beams),
(3.27) (PrsRp beams), should satisfy symmetry condition (3.13). It can be proved by
paper and pencil calculations that this condition is really fulfilled. Note that for G2I
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and G1II a comparison of (3.21b) and (3.26a) as well as that of (3.27b) and (3.27c)
clearly shows the fulfillment of the symmetry condition.

Remark 5. The Green functions (3.21), (3.26) and (3.27) are dimensionless quanti-

ties. By substituting b̂, L, x̂ and ξ̂ for b, ℓ, x andξ in (3.21), (3.26) and (3.27) we
obtain the Green functions for a selected length unit. Then the unit of the Green
function is the cube of the length unit selected.

4. Numerical solutions for the free vibration and stability problems

4.1. The free vibration of FrsRp and PrsRp beams. Making use of the algo-
rithm detailed in Subsection 7.2 of the book [18] a Fortran 90 program was developed
for solving eigenvalue problem (2.11), i.e., for computing the eigenvalues λ (the nat-
ural circular frequencies) of the freely vibrating FrsRp and PrsRp beams (the axial
force is now zero) shown in Figure 1. Table 2 and Table 3 present the values of
λi/4.730042

2, (i = 1; 2; 3) for FrsRp and PrsRp against 21 uniformly increasing b
values in the interval [0.0, 1.0].

Table 2. Solutions for the eigenvalues λ of FrsRp beams

b
√
λ1

4.730042

√
λ2

4.730042

√
λ3

4.730042

0.000 0.2545 1.3707 3.3876
0.050 0.2751 1.4832 3.6692

0.100 0.2989 1.6159 4.0085
0.150 0.3264 1.7737 4.4165
0.200 0.3587 1.9626 4.9052

0.250 0.3970 2.1896 5.4794
0.300 0.4428 2.4631 6.0887
0.350 0.4983 2.7884 6.1999

0.400 0.5667 3.1487 5.3372
0.450 0.6520 3.3867 4.7648
0.500 0.7599 3.1710 5.0303

0.550 0.8973 2.7863 5.8037
0.600 1.0688 2.4707 6.2988
0.650 1.2566 2.2989 5.7913

0.700 1.3675 2.4086 5.1793
0.750 1.3348 2.9030 4.7797

0.800 1.2429 3.3735 5.1642
0.850 1.1494 3.2747 6.2815
0.900 1.0727 3.0380 6.0457

0.950 1.0203 2.8423 5.6192
1.000 1.0000 2.7568 5.4059

Polynomials (4.1), (4.2) and (4.2) are fitted onto the computed discrete values of√
λk/4.73004

2(k = 1, 2, 3) presented in Table 2.

Polynomials for the first eigenvalue:
√
λ1

4.730042
= −30. 475 109 9b6 + 55. 991 058 8b5 − 33. 778 406 3b4 + 10. 464 803 2b3

− 0.743 507 022b2 + 0.443 726 955 b+ 0.254 099 177, b ∈ [0, 0.625] (4.1a)
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√
λ1

4.730042
= 4172. 108 44b6 − 20498. 081 7b5 + 41635. 160 7b4 − 44700. 075 2b3+

+ 26718. 075 5b2 − 8418. 283 6b+ 1092. 096 96, b ∈ [0.625, 1] (4.1b)

Polynomials for the second eigenvalue:
√
λ2

4.730042
= −173. 518 714b6 + 150. 076 835b5 − 40. 246 420 1b4 + 11. 010 604 2b3+

+ 2. 870 516 97b2 + 2. 082 056 16b+ 1. 370 692 02, b ∈ [0, 0.35] (4.2a)

√
λ2

4.730042
= −310557. 518b6 + 845065. 5b5 − 950123. 189b4 + 564838. 656b3−

− 187284. 725b2 + 32856. 293 2b− 2381. 762 03, b ∈ [0.35, 0.55] (4.2b)

√
λ2

4.730042
= −30502. 323 2b6 + 110600. 102b5 − 166009. 888b4 + 132140. 138b3−

− 58844. 558 6b2 + 13891. 813 1b− 1353. 111 55, b ∈ [0.55, 0.775] (4.2c)
√
λ2

4.730042
= −11948. 296 5 b6 + 71424. 316 6 b5 − 176869. 672 b4 + 232479. 487 b3−

− 171191. 813 b2 + 66992. 127 4 b− 10883. 393 7, b ∈ [0.775, 1] (4.2d)

Polynomials for the third eigenvalue:
√
λ3

4.730042
= 413332. 622b6 − 649900. 151b5 + 411344. 981b4 − 133672. 324b3+

+ 23342. 110 5b2 − 2033. 367 18b+ 70. 510 977 0, b ∈ [0.25, 0.4] (4.2e)

√
λ3

4.730042
= 48544. 085 3b6 − 91571. 404 8b5 + 48349. 687 5b4 + 9960. 134 03b3−

− 18412. 920 1b2 + 6294. 346 68b− 702. 680 179, b ∈ [0.4, 0.55] (4.2f)

√
λ3

4.730042
= 2073702. 86b6 − 7913552. 44x5 + 12563013. 6x4 − 10618667. 1x3+

+ 5039221. 87x2 − 1272877. 15x+ 133685. 395, b ∈ [0.55, 0.7] (4.2g)

√
λ3

4.730042
= −243505. 380x6 + 882582. 997b5 − 1246562. 71b4 + 831781. 698b3−

− 231920. 390b2 − 1744. 473 18b+ 9178. 324 82, b ∈ [0.7, 0.825] (4.2h)

√
λ3

4.730042
= −284198. 684x6 + 1619914. 01x5 − 3845547. 04x4 + 4867005. 53x3−

− 3463802. 03x2 + 1314397. 42x− 207763. 794, b ∈ [0.825, 1.0] (4.2i)

Figures 4, 5 and 6 show the graphs of the functions
√

λk(b)/4.73004
2(k = 1, 2, 3).
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For PrsPRp beams Table 3 contains the computational results.

Table 3. Solutions for the eigenvalues λ of PrsRp beams

b
√
λ1

4.730042

√
λ2

4.730042

√
λ3

4.730042

0.000 0.2545 1.3707 3.3876
0.050 0.2729 1.4722 3.6446

0.100 0.2942 1.5951 3.9650

0.150 0.3191 1.7435 4.3553
0.200 0.3484 1.9225 4.8163

0.250 0.3836 2.1369 5.3049
0.300 0.4251 2.3877 5.4168
0.350 0.4756 2.6539 4.6226
0.400 0.5383 2.7983 4.0604
0.450 0.6153 2.5824 4.2051

0.500 0.7101 2.2442 4.7850
0.550 0.8229 1.9719 5.4203
0.600 0.9388 1.8167 5.2861

0.650 1.0050 1.8513 4.7224

0.700 0.9830 2.1426 4.2451
0.750 0.9163 2.6083 4.0641

0.800 0.8445 2.7945 4.7548
0.850 0.7819 2.6420 5.4909
0.900 0.7333 2.4480 5.1979

0.950 0.7012 2.2972 4.8356

1.000 0.6891 2.2338 4.6607
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Polynomials (4.3), (4.4) and (4.5) are fitted onto the computed discrete values of√
λk/4.73004

2(k = 1, 2, 3) presented in Table 3.

Polynomials for the first eigenvalue:

√
λ1

4.730042
=−41. 080 096 2b6+63. 147 880 9b5−33. 556 975 5b4 + 9. 262 020 48b3−

− 0.510 379 219b2 + 0.383 506 985b+ 0.254 263 737, b ∈ [0, 0.575] (4.3a)

√
λ1

4.730042
= 1322. 696 25b6 − 6268. 407 31b5 + 12232. 936 9b4 − 12555. 559 8b3+

+ 7129. 384 25b2 − 2117. 638 81b+ 257. 278 716, b ∈ [0.575, 1] (4.3b)

Polynomials for the second eigenvalue:

√
λ2

4.730042
= −295. 492 865b6 + 201. 661 94b5 − 47. 755 381 3b4 + 10. 626 197 6b3+

+ 3. 195 613 34b2 + 1. 848 783 9b+ 1. 370 702 43, b ∈ [0, 0.3] (4.4a)

√
λ2

4.730042
= −230 912.0 83b6 + 557 443.625b5 − 554 657.434b4 + 291 066.631b3−

− 84987. 941 7b2+13104. 515 1b−832. 379 11, b ∈ [0.3, 0.5] (4.4b)

√
λ2

4.730042
= −5813. 451 13b6 + 18042. 657 9b5 − 22715. 726b4 + 14807. 845 8b3−

− 5220. 857 11b2 + 918. 110 040b− 55. 842 264 2, b ∈ [0.5, 0.75] (4.4c)

√
λ2

4.730042
= 4928. 738 89b6 − 22244. 172 9b5 + 39776. 050 7b4 − 34844. 077 6b3+

+ 14431. 718 2b2 − 1786. 725 11b− 259. 298 607, b ∈ [0.75, 1] (4.4d)

Polynomials for the third eigenvalue:

√
λ3

4.730042
= −2623. 305 96b6 + 1237. 635 68b5 − 231. 339 925b4 + 30. 257 014 1b3+

+ 10. 385 009 6b2 + 4. 566 326 26b+ 3. 387 600 46, b ∈ [0, 0.2] (4.5a)

√
λ3

4.730042
= 1. 131 061 48× 105b6 − 20897. 459 2b5 − 90629. 798b4 + 66709. 594 1b3−

− 19457. 354 7b2 + 2639. 576 61b− 134. 025 486, b ∈ [0.2, 0.35] (4.5b)
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√
λ3

4.730042
= 29681. 777 8b6 − 36384. 972 8b5 − 6235. 294 22b4 + 30141. 818 9b3−

− 18135. 112 4b2 + 4465. 631 98b− 399. 021 738, b ∈ [0.35, 0.5] (4.5c)

√
λ3

4.730042
= −1 479 416.38b6+ 500 694.40b5−7 035 081.66b4+5252 557.83×106b3−

− 2 197 910.20b2 + 488 766.44b− 45129. 13, b ∈ [0.5, 0.65] (4.5d)

√
λ3

4.730042
= −743 272.68b6+3194 975.26× 106b5− 5 713 572.25b4+5441 676.39b3−

− 2 911 437.16b2 + 829 724.55b− 98399.24, b ∈ [0.65, 0.8] (4.5e)

√
λ3

4.730042
= 372 346.0b6 − 2 006 546.6b5 + 4496 069.4b4 − 5 360 883.7b3+

+ 3586 778.1b2 − 1 276 523.3b+ 188 764.8 b ∈ [0.8, 1.0] (4.5f)
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Figure 7. Function
√
λ1/4.73004

2 against b
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Figures 7,8, and 9 show the graphs of the functions
√
λk(b)/4.73004

2(k = 1, 2, 3).
As regards Figures 4, 5, 6, 7, 8, and 9 the discrete point pairs are denoted by diamonds.
The continuous lines are drawn by using polynomials (4.1), (4.2), (4.2), (4.3), (4.4)
and (4.5) which fit onto the discrete point pairs with four digit accuracy.

4.2. Stability problems of FrsRp and PrsRp beams.

4.2.1. Solution procedures. There are various methods for calculating the critical load.
(a) It is possible to solve the eigenvalue problem determined by the homogeneous Fred-
holm integral equation (2.15) numerically if we apply the boundary element technique.
See for instance [16] which uses this technique for other support arrangements. (b) It
is also possible to establish the nonlinear characteristic equations and then to solve
them for the critical load In the present paper the boundary element approach will
be preferred, and the numerical solution of the characteristic problem is used to val-
idate the findings obtained using this approach. As regards the boundary element
technique the solution steps are detailed in Subsection 8.15.2 in [12]. A Fortran 90
program was developed. The kernel in equation (2.15) has the following form

K(x, ξ) =


K1I(x, ξ) if x, ξ ∈ [0, ℓ],
K2I(x, ξ) if x ∈ [b, ℓ] and ξ ∈ [0, ℓ],
K1II(x, ξ) if x ∈ [0, b] and ξ ∈ [b, ℓ],
K2II(x, ξ) if x, ξ ∈ [b, ℓ],

(4.6a)

where

K1I(x, ξ) =
∂2G1I(x, ξ)

∂x ∂ξ
, K2I(x, ξ) =

∂2G2I(x, ξ)

∂x ∂ξ
,

K1II(x, ξ) =
∂2G1II(x, ξ)

∂x ∂ξ
, K2II(x, ξ) =

∂2G2II(x, ξ)

∂x ∂ξ
.

(4.6b)

It is obvious from equations (4.6) that the determination of the kernel K(x, ξ) requires
the calculation of second derivatives.

4.2.2. The kernel function for FrsRp beams. Making use of equations (3.21), (3.26)
and (4.6) we get the elements of the kernel function for FrsRp beams in the following
form:

K1I(x, ξ) =
∂2

∂x∂ξ
G1I(x, ξ) =

(
6

12
ξ ±

(
− 6

12
ξ

))
+

+

(
− 6

12b2 (4ℓ− 3b)

(
3b3 − 16b2ξ − 4ℓb2 + 6bξ2 + 24ℓbξ − 12ℓξ2

)
± 6

12

)
x+

− 36

12b3
ξ

4ℓ− 3b

(
b2 − 2ℓb+ ξℓ

)
x2, (4.7a)

K2I(x, ξ) =
∂2

∂x∂ξ
G2I(x, ξ) =

1

b
ξ
2b− 3ξ

4ℓ− 3b
(x− ℓ) , (4.7b)

K1II(x, ξ) =
∂2

∂x∂ξ
G1II(x, ξ) =

1

b
x
2b− 3x

4ℓ− 3b
(ξ − ℓ) , (4.7c)
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K2II(x, ξ)=
∂2

∂x∂ξ
G2II(x, ξ) =

(
3

12 (4ℓ− 3b)
(6bξ − 12bℓ+ 8ξℓ)± −6ξ

12

)
+

+

(
6

12 (4ℓ− 3b)
(3b− 8ξ + 4ℓ)± 6

12

)
x. (4.7d)

Figure 10 depicts the kernel function of an FrsRp beam provided that

L = 100 mm, b̂ = 50 mm and ξ̂ = 75 mm.
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Figure 10. The kernel function of an FrsRp beam

4.2.3. The kernel function for PrsRp beams. Making use of equations (3.27) and (4.6)
we can derive the elements of the kernel function for PrsRp beams:

K1I(x, ξ) =
∂2

∂x∂ξ
G1I(x, ξ) =(

− 1

12b (2b− 3ℓ)

(
−9b3 + 12b2ξ + 12ℓb2 − 9bξ2 − 18ℓbξ + 18ℓξ2

)
±
(
−6ξ

12

))
+

(
− 6

12
± 6

12

)
x+

(
3

12b2 (2b− 3ℓ)

(
3b2 − 6ℓb+ 3ξ2

))
x2, (4.8a)

K2I(x, ξ) =
∂2

∂x∂ξ
G2I(x, ξ) = − 1

2b (3ℓ− 2b)

(
3ξ2 − b2

)
(x− ℓ) , (4.8b)

K1II(x, ξ) =
∂2

∂x∂ξ
G1II(x, ξ) = − 1

2b (3ℓ− 2b)

(
3x2 − b2

)
(ξ − ℓ) , (4.8c)
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K2II(x, ξ) =
∂2

∂x∂ξ
G2II(x, ξ) =

(
3

12 (3ℓ− 2b)
(4bξ − 8bℓ+ 6ξℓ)± −6ξ

12

)
+

+

(
6

12 (3ℓ− 2b)
(2b− 6ξ + 3ℓ)± 6

12

)
x. (4.8d)

Figure 11 shows the kernel function of a PrsRp beam assuming that

L = 100 mm, b̂ = 50 mm and ξ̂ = 75 mm.
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Figure 11. The kernel function of a PrsRp beam

Remark 6. The kernel functions given by equations (4.7) and (4.8) (FrsRp beams),
(3.27) (PrsRp beams), satisfy the symmetry condition K(x, ξ) = K(ξ, x). It can be
proved by paper and pencil calculations that this condition is really fulfilled. As
regards K2I and K1II , however, a comparison of (4.7b) and (4.7b) as well as that of
(4.8b) and (4.8c) clearly shows the fulfillment of the previous symmetry condition.

4.3. Computational results.

4.3.1. FrsRp beams. Tables 4 contain the values of the dimensionless critical force√
Ncrit /π as a function of b.
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Table 4. The critical forces of FrsRp beam

b

√
Ncrit /π

√
N (b) /π b

√
Ncrit /π

√
N (b) /π

0.000 1.00000 1.00003 0.500 1.57277 1.57282

0.025 1.01910 1.01908 0.525 1.61363 1.61370

0.050 1.03895 1.03893 0.550 1.65509 1.6541
0.075 1.05958 1.05957 0.575 1.69675 1.69650

0.100 1.08104 1.08105 0.600 1.73809 1.73862

0.125 1.10336 1.10338 0.625 1.77845 1.77940
0.150 1.12659 1.12661 0.650 1.81707 1.81793

0.175 1.15078 1.15079 0.675 1.85313 1.85350

0.200 1.17599 1.17599 0.700 1.88580 1.88552
0.225 1.20226 1.20224 0.725 1.91439 1.91360

0.250 1.22964 1.22962 0.750 1.93846 1.93750
0.275 1.25819 1.25817 0.775 1.95784 1.95711
0.300 1.28796 1.28794 0.800 1.97270 1.97252

0.325 1.31898 1.31898 0.825 1.98350 1.98393
0.350 1.35131 1.35132 0.850 1.99086 1.99171
0.375 1.38496 1.38499 0.875 1.99550 1.99638

0.400 1.41996 1.41998 0.900 1.99812 1.99859
0.425 1.45630 1.45629 0.925 1.99940 1.99914
0.450 1.49394 1.49391 0.950 1.99989 1.99897

0.475 1.53281 1.53277 0.975 2.00000 1.99915
0.500 1.57277 1.57282 1.000 2.00001 2.00087

The dimensionless parameter b in the first column shows the location of the middle
roller support. The second column contains the critical value for the dimensionless

compressive force, more precisely, the quantity
√
Ncrit /π against the discrete values of

b. The third column contains the approximations computed by using the polynomials√
N (b) /π fitted onto the point pairs taken from the first two columns of Table 4:

√
Ncrit(b) /π = −1. 930 307 982b5 + 1. 921 741 813b4 − 0.156 388 723 6b3+

+ 0.637 849 474 6b2 + 0.746 170 973 5b+ 1. 000 037 785 , bin [0, 0.5] (4.9a)

√
Ncrit(b) /π = −2. 260 967 607b5 + 24. 937 737 41b4 − 62. 207 343 07b3+

+ 61. 907 897 88b2 − 25. 522 238 92b+ 5. 145 794 214 . b in [0.5, 1.0] (4.9b)

Figure 12 depicts the dimensionless critical force against b. The discrete points are
depicted by diamonds, while the corresponding polynomials are drawn using contin-
uous lines.
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Figure 12. The dimensionless critical force for an FrsRp beam

4.3.2. PrsRp beams. Tables 5 contains the values of the dimensionless critical force√
Ncrit /π as a function of b. The schemes of these tables are the same as those for

Tables 4.

Table 5. The critical forces of PrsRp beam

b

√
Ncrit /π

√
N (b) /π x = b

√
Ncrit /π

√
N (b) /π

0.000 1.00000 1.00004 0.500 1.43029 1.43033
0.025 1.01694 1.01692 0.525 1.44907 1.44919
0.050 1.03446 1.03444 0.550 1.46537 1.46560

0.075 1.05258 1.05257 0.575 1.47877 1.47889
0.100 1.07130 1.07131 0.600 1.48897 1.48889
0.125 1.09063 1.09066 0.625 1.49581 1.49559

0.150 1.11060 1.11062 0.650 1.49935 1.49912
0.175 1.13120 1.13121 0.675 1.49984 1.49971

0.200 1.15243 1.15242 0.700 1.49768 1.49771

0.225 1.17428 1.17426 0.725 1.49334 1.49352
0.250 1.19673 1.19670 0.750 1.48736 1.48760

0.275 1.21973 1.21971 0.775 1.48025 1.48046

0.300 1.24323 1.24323 0.800 1.47251 1.47258
0.325 1.26715 1.26717 0.825 1.46456 1.46447

0.350 1.29137 1.29139 0.850 1.45679 1.45657
0.375 1.31573 1.31575 0.875 1.44954 1.44930
0.400 1.34002 1.34003 0.900 1.44311 1.44297

0.425 1.36398 1.36397 0.925 1.43776 1.43783
0.450 1.38728 1.38725 0.950 1.43371 1.43397

0.475 1.40954 1.40952 0.975 1.43117 1.43139

0.500 1.43029 1.43033 1.000 1.43029 1.42989
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The polynomials fitted onto the computational results are given below:√
Ncrit(b) /π = −4. 332 224 892b5 + 2. 844 038 856b4 − 0.646 783 773 5b3+

+ 0.551 935 872 4x2 + 0.661 558 617 6b+ 1. 000 046 948 , bin[0, 0.5] (4.10a)

√
Ncrit(b) /π = −18. 118 635 59x5 + 68. 962 372 98x4 − 99. 608 791 11x3+

+ 66. 823 638 2x2 − 20. 119 893 78x+ 3. 491 203 828 , bin[0.5, 1.0] (4.10b)

Figure 13 depicts the dimensionless critical force against b. The continuous lines
belong to polynomials (4.10). Note that the dimensionless critical force reaches its
maximum if b ∈ [0.65, 0.68].
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Figure 13. The dimensionless critical force for an PrsRp beam

Remark 7. The corresponding nonlinear characteristic equations are presented in
Appendix A – see equations (A.4) and (A.5). They are also solved numerically. The
results obtained coincide up to five to six digit accuracy with those presented in Tables
4 and 5.

5. Example

Consider an FrsRp beam with the cross section shown in Figure 14. It is assumed
that a = c = 100 mm, a1 = a2 = a/3, E1 = Ealuminium ≈ 7.0 · 104 N/mm

2
while

E2 = Esteel ≈ 2.1 · 105 N/mm
2
. The length L of the beam is 3000 mm.
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Figure 14. The cross section of an FrsRp beam

Under these conditions

Iey =
a4

12
(
2E1 + E2

3
) =

1004

12
(
2× 0.71 + 2.0

3
)105 =

= 9.5× 1011 Nmm2 = 9.5× 1014 kgmm3/ sec2 (5.1)

and

ρa =
1

A

∫
A

ρdA =
(2ρ1 + ρ2)A1

A
=

(2× 2710 + 7850)× 100× 100
3

109 × 1002
= (5.2)

= 4.423333× 10−6 kg/mm
3

(5.3)

According to Table 2 the dimmensionless critical load for b = 0.4 is given by the
equation

√
Ncrit/π = 1.41996 from where we get

Ncrit = (1.41996× 3.14)
2
= 19. 879 (5.4)

With Ncrit equation (2.6) yields

Ncrit =
IeyNcrit

L2
=

9.5× 1011 × 19. 879

30002
= 2.0983× 106 N (5.5)

As regards the first eigenvalue λ1 concorning the free vibrations it follows from Table
2 that √

λ1|b=0.4 = 0.5667× 4.730042 = 12. 678 (5.6)

With
√
λ1|b=0.4 equation (2.10) yields

ω1 =

√
λ1|b=0.4

L2

√
Iey
ρaA

from where substituting (5.1), (5.2) and (5.6) we obtain

ω1 =
12. 678

30002
×
√

9.5× 1014

4.423333× 10−6 × 1002
= 206. 440

rad

sec
(5.7)

The above results are validated by the commercial finite element program Ansys. 228
uniform hexahedral elements (SOLID185) were used to generate the geometry mesh.
Table 6 shows a comparison.
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Table 6. Comparison of the results

Our Ansys Relative
solution solution error

Critical load Ncrit 2.0983× 106 2.0731× 106 1.2%

Eigenfrequency for the
206.440

2π
= 32.85 32.30 1.67%unloaded beam

There is a good agreement between our solutions and the finite element findings.

6. Concluding remarks

Making use of the definition given in paper [18] the Green functions for the three
point boundary value issues have been derived, which describe the mechanical behav-
ior of a beam fixed at the left end and rotation prevented at the right end, and pinned
beam at the left end and rotation prevented at the right end with an intermediate
roller support. It is assumed that the beams have cross sectional heterogeneity [15].

Utilizing the Green functions the free vibration and linear stability problems of
these beams are transformed into eigenvalue problems governed by the homogeneous
Fredholm integral equation:

w(x) = λ

∫ ℓ=1

ξ=0

G(x, ξ)w(ξ) dξ,

y(x) =

∫ ℓ=1

0

K(x, ξ)y(ξ)dξ,

K(x, ξ) =
∂2G(x, ξ)

∂x ∂ξ
, y(x) =

dw(x)

dx

(6.1)

It is clear from [Figure 4 – FrsRp beam] (Figure 7 – PrsRp beam) that the smallest
eigenvalue λ1 reaches its maximum if [b ≈ 0.7125] (b ≈ 0.667). It is also clear from
Figure 14 – PrsRp beam – that the critical force has a maximum if b ≈ 0.674.

The eigenvalue problem (6.1) is replaced by algebraic eigenvalue problems using the
boundary element technique. The numerical solution of stability problems is com-
pared to the solutions obtained numerically solving the corresponding characteristic
equations presented for completeness in the Appendix A, The two solutions coincide
with each other with the accuracy of four to five digits.

Appendix A. Characteristic equations

In this Appendix we present the characteristic equations. It is worthwhile to direct the
reader to Table 2.8. in book [3].

If the axial force is not zero (N ̸= 0) but a compressive force then, according to equations
(2.13), the stability problem of beams are governed by the differential equation

w(4) + p2w(2) = 0 , p2 = N = L2N/Iey . (A.1)

The general solutions are

wr = a1 + a2x+ a3 cos px+ a4 sin px x ∈ [0, b] (A.2a)
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and
wℓ = c1 + c2x+ c3 cos px+ c4 sin px x ∈ [b, ℓ = 1] (A.2b)

where ak and ck (k = 1, . . . , 4) are undermined integration constants. For FrsRp beams
equation (A.1) is associated with the following boundary and continuity conditions:

wr(0) = 0 , w(1)
r (0) = 0 ; w

(1)
ℓ (ℓ) = 0 , w

(3)
ℓ (ℓ) = 0 , (A.3a)

wr(b− 0) = 0, , wℓ(b+ 0) ,

w(1)
r (b− 0) = w

(1)
ℓ (b+ 0) ,

w(2)
r (b− 0) = w

(2)
ℓ (b+ 0) ,

.

(A.3b)

Differential equation (A.1), boundary and continuity conditions (A.3) determine a self
adjoint eigenvalue problem with p as eigenvalue. Boundary and continuity conditions (A.3)
lead to the following homogeneous equation system:

Boundary conditions if x = 0:

a1 + a3 = 0 ,

a2 + pa4 = 0 .

Continuity conditions at x = b:

a1 + a2b+ a3 cos pb+ a4 sin pb = 0,

c1 + c2b+ c3 cos pb+ c4 sin pb = 0,

a2 − pa3 sin pb+ pa4 cos pb− (c2 − pc3 sin pb+ pc4 cos pb) = 0,

−a3 cos pb− a4 sin pb− (−c3 cos pb− c4 sin pb) = 0,

Boundary conditions at x = ℓ = 1:

c2 − pc3 sin p+ pc4 cos p = 0,

p3c3 sin p− p3c4 cos p = 0.

Since this equation system is homogeneous non-zero solutions for the integration constants
a1, . . . , a4 and c1, . . . , c4 exist if and only if the determinant of the coefficient matrix vanishes,
i.e., it holds that

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 0 0 0
0 1 0 p 0 0 0 0
1 b cos pb sin pb 0 0 0 0
0 0 0 0 1 b cos pb sin pb
0 1 −p sin pb p cos pb 0 −1 p sin pb −p cos pb
0 0 − cos pb − sin pb 0 0 cos pb sin pb
0 0 0 0 0 1 −p sin p p cos p
0 0 0 0 0 0 p3 sin p −p3 cos p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

2
p4 (cos (p− 2bp)− 4 cos p (b− 1) + 3 cos p) + bp5 sin p = 0 . (A.4)

If b = 1 the solution for p is 2π. If b −→ 0 the solution for p is π.

As regards PrsRp boundary condition (A.3a)2 changes to w
(2)
r = 0. Then the character-

istic equation assumes the form:

1

2
sin p− 1

2
sin (p− 2bp)− bp cos p = 0 (A.5)

If b = 1 the solution for p is 4.4934. If b = 0 the solution for p is π.
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