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Abstract. Starting from the linearized weak forms of the kinematic equation and the
angular momentum balance equation of three-dimensional non-linear elasticity, a stress-
based dimensional reduction procedure is presented for elastic plates. After expanding the
three-dimensional non-symmetric stress tensor into power series with respect to the thickness
coordinate, the translational equilibrium equations, written in terms of the expanded stress
coefficients, are satisfied by introducing first-order stress functions. The symmetry of the
stress field is satisfied in a weak sense by applying the material rotations as Lagrangian
multipliers. The seven-field plate model developed in this way employs unmodified three-
dimensional strain-stress relations.

On the basis of the dimensionally reduced plate model derived, a new dual-mixed plate
bending finite element model is developed and presented. The numerical performance of the
hp-version plate elements is investigated through the solutions of standard plate bending
problems. It is shown that the modeling error of the stress-based plate model in the energy
norm is better than that of the displacement-based Kirchhoff- and Reissner-Mindlin plate
models. The numerical solutions and their comparisons to reference solutions indicate that
the dual-mixed hp elements are free from locking problems, in either the energy norm or the
stress computations, both for h- and p-extensions, and the results obtained for the stresses
are accurate and reliable even for extremely thin plates.

Mathematical Subject Classification: 05C38, 15A15
Keywords: plate model, dimensional reduction, stress-based approach, dual-mixed weak
formulation, locking-free hp finite element

1. Introduction

The finite element modeling of structural plate and shell problems has a long history
and several successful formulations exist and are being used today in commercial finite
element codes. The majority of the plate and shell elements are displacement-based
ones and they usually rely on some assumptions regarding the transverse variation of
the displacement components. Classical plate and shell theories, applying either the
Kirchhoff-Love- or the Reissner-Mindlin hypothesis, with respect to the motion of the
normal to the middle surface, are often called first-order theories [1].

There are two main directions in the construction of plate and shell finite elements:
discretization based on dimensionally reduced theories leading to two-dimensional sur-
face elements and continuum-based formulations leading to solid-shell, or degenerated
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three-dimensional, elements. Hierarchic sequences of plate and shell models and ele-
ments can also be constructed within the framework of either of these two modeling
directions [2, 3].

Considering the approach of dimensional reduction, the first-order shear deforma-
tion models and elements with Reissner-Mindlin kinematics are the most popular
ones. This is primarily due to the fact that they require C0-continuous approxi-
mation of the displacement variables, in contrast to the C1-continuity requirement
of the elements with Kirchhoff-Love kinematics. It is also well-known that when
low-order polynomial approximation is used for the displacements in these plate and
shell elements, some inconsistencies in the representation of the transverse shear and
membrane energies are introduced through the discretization, and the elements can
exhibit different kind of numerical over-stiffening problems, usually called locking [2,
3]. Although the resolution of transverse shear locking and membrane locking in plate
and shell elements has been the subject of intensive research in the last decades, and
several successful strategies and techniques have been developed to alleviate lock-
ing, the improvement and stabilization of the low-order elements based on first-order
plate and shell theories seems to be a never-ending story, see, e.g, [4, 5]. In the
framework of the displacement-based formulations, higher-order approximations and
the p-version of the finite element method are among the most reliable strategies for
avoiding numerical convergence problems [6–9].

Considering the direction of the solid-shell approach, the plate and shell elements
are usually deduced from continuum-based three-dimensional or solid finite elements
[10, 11]. One of the main advantages of this formulation is the applicability of unmodi-
fied three-dimensional constitutive equations, in contrast to the dimensionally reduced
first-order models, where the inconsistencies due to the kinematical constraints require
the modification of the original three-dimensional constitutive equations. However,
the solid-shell elements are not exempt from different kinds of numerical locking prob-
lems, either. In addition to the shear- and membrane locking, known from dimen-
sionally reduced models, thickness locking, trapezoidal locking and incompressibility
locking can also be present, especially when low-order approximation is used [11]. Al-
though the research efforts spent for solving these problems has resulted in successful
solutions, the improvement of solid-shell elements is still an active research area [4,
12].

Mixed-hybrid formulations and finite elements for plates and shells are usually
based on a Hu-Washizu or Hellinger-Reissner type, primal-mixed or dual-mixed, vari-
ational principle. These formulations have also been intensively researched in the last
few decades, especially because the elements of these types are proven or assumed to
be exempt from numerical locking problems. The price for that is a larger number of
independently approximated variables. An additional difficulty is that mixed-hybrid
formulations require the choice of stable approximation spaces for the simultaneously
approximated kinematic and stress variables [13]. It has also been long recognized
that the majority of the modified and locking-free displacement-based plate and shell
elements are equivalent or strongly related to elements deduced from mixed variational
principles [1, 14].
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Primal-mixed formulations and finite elements with continuous displacements and
discontinuous surface tractions are much more popular than dual-mixed formulations
and elements with continuous surface tractions and discontinuous displacements. This
is partly due to fact that dual-mixed models and elements are more sophisticated,
both theoretically and computationally, than the primal-mixed ones. An additional
difficulty with dual-mixed models is their limited applicability to non-linear problems,
as they rely on a complementary energy potential that should be expressed in terms of
stresses. This may require the inversion of a general non-linear strain-stress relation,
which can be a rather complicated task, if possible at all.

Dual-mixed elements can be formulated with either symmetric or non-symmetric
stresses as primarily approximated variables. When symmetric stresses are used, the
main problem is finding stable approximation spaces for them, even in the case of two-
dimensional elasticity problems. This difficulty can be traced back to the construction
of equilibrium elements with symmetric stresses, requiring C1-continuous approxima-
tion for the second-order stress functions [15]. One resolution for this problem is to
use dual-mixed variational principles with non-symmetric stresses and the symmetry
of the stress tensor, the balance of angular momentum, is enforced then in a weak
sense by applying the material rotations as Lagrangian multipliers [15, 16]. Finding
stable approximation spaces for dual-mixed elements with non-symmetric stress space
is relatively easy [17], which may be related to the fact that an equilibrated but non-
symmetric stress field can be generated by C0-continuous first-order stress functions.
The stress boundary conditions in dual-mixed formulations are essential conditions
and the related requirement of surface traction continuity is usually satisfied by em-
ploying hybridization techniques [13, 18].

The developments to be presented in this paper belong to a special research direc-
tion, the aim of which is the development of stress-based dimensionally reduced models
for plates and shells using dual-mixed weak formulations with non-symmetric stress
space. These models do not rely on the classical kinematical hypotheses and cannot be
considered as stress resultant-based formulations. Instead, the stress space is directly
approximated across the thickness by (truncated) power series, and the finite element
model is based on a dual-mixed variational principle of Hellinger-Reissner or Fraeijs
de Veubeke type. The former is a three-field principle and enforces both translational
and rotational equilibrium in a weak sense, while the latter is a two-field principle
and relies on equilibrated stress space, generated by first-order stress functions, and
only the symmetry of the stress space is enforced weakly. Inter-element equilibrium,
i.e., surface traction continuity, is satisfied by the related finite elements, and the
numerical results are obtained directly for the approximated stress or stress-function
variables.

Applying the two-field dual-mixed variational principle of Fraeijs de Veubeke, a
dimensionally reduced plate model has already been derived in [19], but only the
membrane problem was investigated by two-dimensional hp finite elements. Stress-
based dimensionally reduced models and hp finite elements for axisymmetric problems
of cylindrical shells have been presented by [20] using Fraeijs de Veubeke’s two-field
principle, and by [21] using the three-field dual-mixed principle of Hellinger-Reissner.
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The performance of these two types of hp finite element models was compared in [22].
A stress-based dimensional reduction procedure based on Hellinger-Reissner’s three-
field principle, and the related dual-mixed hp finite elements for shells of revolution
were developed in [23] for elastostatic problems, and in [24] for natural frequency
analysis.

The starting point of the formulation and developments reported in this paper is
the three-dimensional weak forms of the kinematic equation and the angular momen-
tum balance equation of non-linear elasticity, summarized in Section 2. Following
their consistent linearization, the dimensional reduction procedure for elastic plates
in terms of stresses is presented in Section 3. Section 4 gives a brief description of the
dual-mixed plate bending finite element formulation and the choice of stable approxi-
mation spaces for the first-order stress functions and the rotations. The performance
and the capabilities of the stress-based plate model and the dual-mixed hp finite el-
ements are investigated in Section 5 through the numerical solutions of well-known
plate benchmark problems.

2. Preliminaries, strong and weak formulation

This section summarizes the strong formulation of non-linear elasticity in material
description and recalls the weak forms of the kinematic equation and the balance of
angular momentum, including their consistent linearization. Both symbolic and index
notation of tensors will be used. Latin tensor indices are assumed to range over 1,2,3
and the Greek indices over 1 and 2. When index notation is used, the summation
convention is applied. The scalar product between two tensors is indicated by one
dot and the inner product is denoted by a colon. The tensorial product between two
tensors of any order has no special sign.

2.1. Strong formulation using material description. The motion of the elastic
body is investigated in a Cartesian reference frame. The initial configuration of the
body is denoted by 0V and its boundary by 0S with outward unit normal 0n. The
position of a material point in the stress-free initial configuration is denoted by 0x =
0xi ei and in the current deformed configuration by x = xi ei, where 0xi and xi
are the material and spatial coordinates of the same material point and ei are the
orthonormal base vectors. The differential operator with respect to the material
coordinates is denoted by 0∇ = (∂ /∂ 0xi) ei.

Applying material description, the governing equations of a nonlinear boundary-
value problem in three-dimensional elasticity are

• the kinematic equation:

F = 1+ u 0∇, (2.1)

where F = x 0∇ is the deformation gradient with determinant J = detF > 0,
1 is the second-order unit tensor and u = x− 0x is the displacement vector;

• the general form of the constitutive equation:

P = P (F ), (2.2)

where P is the first Piola-Kirchhoff stress tensor;
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• the balance of linear momentum (translational equilibrium equation):

P · 0∇+ 0ρb = 0, (2.3)

where 0ρ is the reference density and b is the prescribed body force density per
unit mass;

• the balance of angular momentum (rotational equilibrium equation):

P · F T − F · P T = 0, (2.4)

where a T in the right superscript refers to the transpose; this equation ex-
presses the symmetry of the Cauchy stress tensor σ = J−1P · F T .

The boundary conditions to the above system of partial differential equations are the
displacement boundary conditions

u = ũ , 0x ∈ 0Su , (2.5)

and the stress boundary conditions

P · 0n = 0p̃ , 0x ∈ 0Sp , (2.6)

where ũ is the prescribed displacement vector on 0Su and 0p̃ is the prescribed traction
vector on 0Sp, where

0Su ∪ 0Sp = 0S and 0Su ∩ 0Sp = ∅.

2.2. Angular momentum balance and constitutive equation in terms of the
Biot stress tensor. The polar decomposition of the deformation gradient is given
by

F = R ·U , (2.7)

where R is the orthogonal rotation tensor (RT · R = 1, detR = 1) and U is the
symmetric right stretch tensor. The polar decomposition of the first Piola-Kirchhoff
stress tensor P reads

P = R · T , (2.8)

where R is the same orthogonal rotation tensor that appears in (2.7) and T is the
(generally non-symmetric) Biot stress tensor.

The spatial Kirchhoff stress tensor Jσ can be expressed by the Biot stress tensor
and the right stretch tensor as

Jσ = P · F T = R · (T ·U) ·RT , (2.9)

and the rotated Kirchhoff stress tensor is given by

RT · (Jσ) ·R = T ·U . (2.10)

In view of (2.9)-(2.10), the material form of the balance of angular momentum (2.4)
can be written in terms of U and T as

T ·U −U · T T = 0. (2.11)

For the special case of isotropic materials T and U are coaxial and T is symmetric.

The right stretch tensor U and the Biot stress tensor T are work-conjugate strain
and stress measures and the constitutive relation between them is uniquely invertible
[25]. The inverse constitutive equation for the right stretch tensor can be given as

U = U(T ), (2.12)
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and the fourth-order tangent compliance tensor is defined by

C−1 =
∂U

∂T
, C−1

ijkℓ =
∂Uij

∂Tkℓ
(2.13)

with major and minor symmetries C−1
ijkℓ = C−1

kℓij = C−1
ijℓk.

2.3. Weak forms of the kinematic equation. The dual-mixed weak formulation
applied in this paper is based on the weak forms of the kinematic equation (2.1) and
the rotational equilibrium equation (2.11). The independent variables are the first
Piola-Kirchhoff stress tensor P and the orthogonal rotation tensor R.

Taking into account the polar decomposition (2.7) of the deformation gradient, the
first weak form of the kinematic equation (2.1) can be written as

δWK =

∫
0V

δP : (R ·U − 1− u 0∇) d 0V = 0, (2.14)

where δP is an arbitrary but differentiable tensorial test function called the virtual
first Piola-Kirchhoff stress tensor. Applying the divergence theorem, the second weak
form of (2.1) is obtained from (2.14) as

δWK =

∫
0V

[
δP : (R ·U − 1) + (δP · 0∇) ·u

]
d 0V −

∫
0S

u · δP · 0n d 0S = 0. (2.15)

The displacements can be eliminated from (2.15) by prescribing the constraint equa-
tions

δP · 0∇ = 0, 0x ∈ 0V , (2.16)

δP · 0n = 0, 0x ∈ 0Sp (2.17)

on δP , i.e., the virtual first Piola-Kirchhoff stress tensor is assumed to satisfy the
homogeneous equilibrium equation (2.16) and the stress boundary condition (2.17).
Making use of the displacement boundary condition (2.5) and (2.16)-(2.17), equation
(2.15) transforms into

δWK(P ,R, δP ) =

∫
0V

δP : (R ·U − 1) d 0V −
∫

0Su

ũ · δP · 0n d 0S = 0. (2.18)

2.4. Weak forms of the angular momentum balance. The weak form of the
symmetry condition (2.4) for the Cauchy stress tensor can be given by

δWS =

∫
0V

δΩ : (P · F T ) d 0V = 0, (2.19)

where δΩ is an arbitrary skew-symmetric tensor called the virtual spatial spin tensor.
Taking into account the polar decompositions (2.7) and (2.8), we can write:

δΩ : (P · F T ) = δΩ : (R · T ·U ·RT ) = (RT · δΩ ·R) : (T ·U), (2.20)

and the weak form of the angular momentum balance (2.19) can be written as

δWS(P ,R, δR) =

∫
0V

δΘ : (T ·U) d 0V = 0, (2.21)
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where δΘ = RT · δΩ · R is an arbitrary skew-symmetric tensor called the virtual
material spin tensor. The virtual spin tensors δΩ and δΘ are related to the virtual
rotation tensor δR as

δΩ = δR ·RT , δΘ = RT · δR. (2.22)

When the rotation tensor R is parameterized by a rotation vector ϕ, according to

R(ϕ) = exp(ϕ× 1), (2.23)

the relation between the spatial and the material spin tensors in (2.22) can be given
as [14, 26, 27]

δΩ = [Γ (ϕ) · δϕ ]× 1, δΘ = [Γ T (ϕ) · δϕ ]× 1, (2.24)

where

Γ (ϕ) = 1+
1− cosϕ

ϕ2
ϕ× 1+

1

ϕ2
(1− sinϕ

ϕ
)ϕ× (ϕ× 1). (2.25)

Note that the weak forms (2.18) and (2.21) can also be derived from the two-field
dual-mixed variational principle of Fraeijs de Veubeke [28].

2.5. Linearization. To linearize the weak forms of the kinematic equation and the
angular momentum balance equation, (2.18) and (2.21), their directional derivatives
should be computed in the independent variable directions ∆P and ∆R, which rep-
resent sufficiently small increments in the stress- and rotation tensors. Assuming that
the rotation tensor R is parameterized with respect to the rotation vector ϕ, accord-
ing to (2.23), the directional derivative of R = R(ϕ) at ϕ in the direction of the
vectorial rotation increment ∆ϕ can be computed as

∆R = DR(ϕ)[∆ϕ] = R ·∆Θ, ∆Θ = [Γ T (ϕ) ·∆ϕ ]× 1, (2.26)

where the tangent tensor Γ (ϕ) is given by (2.25).

2.5.1. Directional derivatives of T and U . In the present formulation the Biot stress
tensor

T (P ,R) = RT · P , (2.27)

introduced in (2.8), depends on both P and R. The directional derivatives of T at
P and R in the directions of ∆P and ∆R can be written as

∆T = ∆PT +∆RT , (2.28)

where, in view of (2.27) and (2.26),

∆PT ≡ D T [∆P ] =
∂T

∂P
: ∆P = RT ·∆P , (2.29)

and

∆RT ≡ D T [∆R] =
∂T

∂R
: ∆R = ∆ΘT · T . (2.30)

The directional derivative of the right stretch tensor U(T ) = U [T (P ,R)] at P and
R in the directions of ∆P and ∆R can be computed as

∆U = ∆PU +∆RU , (2.31)
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where, taking into account (2.28)-(2.30) and (2.13),

∆PU ≡ DU(T )[∆P ] =
∂U

∂T
: D T [∆P ] = C−1 : ∆PT , (2.32)

∆RU ≡ DU(T )[∆R] =
∂U

∂T
: D T [∆R] = C−1 : ∆RT . (2.33)

Then, in view of (2.28), equation (2.31) can be written as

∆U = C−1 : (∆PT +∆RT ) = C−1 : ∆T . (2.34)

2.5.2. Directional derivatives of δWK and δWS. Taking into account (2.26) and
(2.32)-(2.33), the directional derivatives of δWK in (2.18) at P andR in the directions
of ∆P and ∆R are

D∆P δWK =

∫
0V

δP :
{
R ·DU(T )[∆P ]

}
d 0V =

∫
0V

δPT : C−1 : ∆PT d 0V, (2.35)

D∆R δWK =

∫
0V

δP :
{
∆R ·U +R ·DU(T )[∆R]

}
d 0V

=

∫
0V

[
δPT : (∆Θ ·U) + δPT : C−1 : ∆RT

]
d 0V, (2.36)

where

δPT ≡ D T (P ,R)[δP ] =
∂T

∂P
: δP = RT · δP . (2.37)

Taking into account (2.26) and (2.29)-(2.30), as well as (2.32)-(2.33), the directional
derivatives of δWS in (2.21) at P and R in the directions of ∆P and ∆R are

D∆P δWS =

∫
0V

δΘ :
{
D T [∆P ] ·U + T ·DU(T )[∆P ]

}
d 0V

=

∫
0V

[
(δΘ ·U) : ∆PT + δRT : C−1 : ∆PT

]
d 0V, (2.38)

D∆R δWS =

∫
0V

δΘ :
{
D T [∆R] ·U + T ·DU(T )[∆R]

}
d 0V

=

∫
0V

[
(T ·U) : (δΘ ·∆Θ) + δRT : C−1 : ∆RT

]
d 0V, (2.39)

where

δRT ≡ D T (P ,R)[δR] =
∂T

∂R
: δR = δΘT · T . (2.40)

2.5.3. Linearized weak forms. Considering a trial solution tP and tR, the weak forms
of the kinematic equation (2.18) and the angular momentum balance equation (2.21)
can be linearized in the directions of the stress- and rotation increments ∆P and ∆R
at tP and tR according to

δWK(
tP , tR, δP ) +D∆P δWK(

tP , tR, δP ) +D∆R δWK(
tP , tR, δP ) = 0, (2.41)

δWS(
tP , tR, δR) +D∆P δWS(

tP , tR, δR) +D∆R δWS(
tP , tR, δR) = 0. (2.42)
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Taking into account (2.35)-(2.36) and (2.38)-(2.39), equations (2.41) and (2.42) can
be written as∫

0V

[
δPT : tC−1 : ∆T + δPT : (∆Θ · tU)

]
d 0V

+

∫
0V

δP : ( tR · tU − 1) d 0V −
∫

0Su

ũ · δP · 0n d 0S = 0, (2.43)

∫
0V

[
δRT : tC−1 : ∆T + ∆PT : (δΘ · tU)

+ ( tT · tU) : (δΘ ·∆Θ)
]
d 0V +

∫
0V

δΘ : ( tT · tU) d 0V = 0, (2.44)

where tC−1 is the tangent compliance tensor at tT = tRT · tP . The linearized weak
forms (2.43) and (2.44) serve as the basis for the dual-mixed finite element solution
procedure of the nonlinear elasticity problem. Note that when the approximation is
based on the Bubnov-Galerkin method, the above dual-mixed formulation leads to
symmetric system matrices.

Subsidiary conditions to the weak forms (2.43)-(2.44), to be a priori satisfied during
the incremental solution procedure, are the translational equilibrium equation

∆P · 0∇+ 0ρb = 0, 0x ∈ 0V, (2.45)

and the stress boundary condition

∆P · 0n = 0p̃ , 0x ∈ 0Sp . (2.46)

At the initial, stress-free configuration the trial solution in (2.43)-(2.44) is tP = 0

and tR = 1 from which it follows that tT = tRT · tP = 0 and

δRT = ∆RT = 0, δPT = δP = δT , ∆PT = ∆P = ∆T . (2.47)

Since tU = 1 and tϕ = 0 also hold, from (2.24)-(2.26) it follows that

δΘ = δϕ× 1, ∆Θ = ∆ϕ× 1, (2.48)

and the linearized weak forms (2.43)-(2.44) simplify to∫
0V

( δT : C−1 : ∆T + δT : ∆Θ ) d 0V −
∫

0Su

ũ · δT · 0n d 0S = 0, (2.49)∫
0V

δΘ : ∆T d 0V = 0. (2.50)

Finite element models based on the above weak forms requires a priori satisfaction of
the subsidiary conditions (2.45)-(2.46) and leads to a stress-based numerical solution
of the linear elasticity problem. The translational equilibrium equation (2.45) can
identically be satisfied by introducing first-order stress functions [15, 29]. The stress
boundary condition (2.46) is usually taken into account in the course of the finite
element solution procedure by applying hybridization techniques [13, 18].
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3. Dimensional reduction for plates in terms of stresses

This section presents a stress-based dimensional reduction procedure for linearly elas-
tic plates. The independent variables, the non-symmetric stresses and the rotations,
are expanded into power series with respect to the thickness coordinate. After making
assumptions on the transverse variations of the stress components across the thickness,
the translational equilibrium equations will be satisfied by introducing one first-order
stress function vector. The stress boundary conditions on the faces of the plate are
incorporated into the equilibrated stress space. The weak formulation for the plate
model, which serve as a basis for the development of the dual-mixed hp finite elements
in Sections 4 and 5, will be derived from the linearized three-dimensional weak forms
(2.49) and (2.50).

3.1. Notation for plates. In the developments of this section, the index notation of
tensor variables is used. The left superscript 0, referring to the initial configuration,
will be neglected for x, n, p, ρ, V, S and ∇, as notational distinction between the
reference and the current configuration is unnecessary in the linear elastic case.

The reference configuration of the three-dimensional plate of thickness d is denoted
by

V = {xa ∈ R3 : xα ∈ S̄, |x3| < d/2}, (3.1)

where S̄ ∈ R2 is the reference middle plane of the plate, parameterized by the Carte-
sian coordinates xα, and the coordinate x3 is measured along a straight line perpen-
dicular to S̄. It is assumed that both V and S̄ are simply connected and bounded
sets in R3 and R2, respectively, and the thickness d is independent of xα.

The boundary of V , denoted by S, consists of the top and bottom surfaces S±

and the lateral surface S× (S = S± ∪ S×, S± ∩ S× = ∅) with outward unit normals
n± = ±e3 and n× = n×λ eλ, respectively. It is assumed that the plate is subjected to

body forces ρb in V and surface loads p̃± on S±. On the lateral surface S× = S×
p ∪S×

u

(S×
p ∩ S×

u = ∅), surface load p̃× on S×
p and the displacement vector ũ× on S×

u are

prescribed. The boundary curve of the reference middle plane, S̄, is denoted by
ℓ = ℓu ∪ ℓp (ℓu ∩ ℓp = ∅).

3.2. Approximation of the stress space across the thickness. Applying index
notation, the linearized weak forms (2.49)-(2.50) can be written as∫

V

( δTij C−1
ijkℓ Tkℓ + δTkℓΘkℓ ) dV −

∫
S×
u

ũ×k δTkλ n
×
λ dS = 0, (3.2)∫

V

δΘkℓ Tkℓ dV = 0, (3.3)

where, for the sake of notational simplicity, the sign ∆ is neglected in the first incre-
ment of the stress- and rotation tensors, i.e., ∆Tkℓ = Tkℓ and ∆Θkℓ = Θkℓ correspond
to the linear solution. Assuming linearly elastic and isotropic material,

C−1
ijkℓ =

1

2µ

[1
2
(δikδjℓ + δiℓδjk)−

ν

1 + ν
δijδkℓ

]
(3.4)
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with Kronecker symbol δij , shear modulus µ and Poisson ratio ν. The components of
the stress tensor T = pℓ eℓ = Tkℓ ekeℓ with stress vector pℓ should a priori satisfy
the translational equilibrium equations

Tkℓ,ℓ + ρbk = 0 (3.5)

and the stress boundary conditions on the faces and on the lateral surfaces of the
plate:

T · n± = ±p3 = p̃± on S±
p , (3.6)

T · n× = n×λ pλ = p̃× on S×
p . (3.7)

In (3.5), the comma followed by the index ℓ in the right subscript denotes partial
differentiation with respect to xℓ.

The first step in the derivation of the stress-based, dimensionally reduced plate
model is the expansion of the stress components and the prescribed body forces into
power series with respect to the thickness coordinate x3, according to

Tkℓ(xα, x3) =

n∑
i=0

iTkℓ(xα) (x3)
i, bℓ(xα, x3) =

n∑
i=0

ibℓ(xα) (x3)
i, (3.8)

where n > 0 is an integer. According to the notation applied in (3.8), an index
on the left subscript refers to the power of x3. Substituting (3.8) into (3.5) and
making separation with respect to the powers of x3, we obtain a set of two-dimensional
equilibrium equations:

iTkλ,λ + (i+ 1) i+1Tk3 + ρ ibk = 0, i = 0, 1, 2, ..., n. (3.9)

Depending on the number of n chosen, a variety of plate models can be derived.

The next step in the derivation of the plate model is making assumptions on the
transverse variations of the three-dimensional stress components. In this paper, a
model described by n = 1 in (3.9) is chosen, which means that the first two equilibrium
equations of (3.9) are selected:

0Tkλ,λ + 1Tk3 + ρ 0bk = 0, (3.10)

1Tkλ,λ + 2 2Tk3 + ρ 1bk = 0, (3.11)

and the equations characterized by n > 1 are neglected with the assumption that
they are identically satisfied. Following from (3.10)-(3.11), the transverse variations
of the stress components in x3 are assumed to be

Tkλ(xα, x3) = 0Tkλ(xα) + 1Tkλ(xα)x3, (3.12)

Tk3(xα, x3) = 0Tk3(xα) + 1Tk3(xα)x3 + 2Tk3(xα) (x3)
2, (3.13)

i.e., the stress vectors pλ = T · eλ = Tkλ ek, parallel to the middle plane of the plate,
are linear functions of the coordinate x3, whereas the stress vector p3 = T·e3 = Tk3 ek,
perpendicular to the middle plane, is parabolic in x3.

To keep the number of the independent stress components as minimal as possible,
the stress boundary conditions on the top and bottom faces of the plate will be
incorporated in the equilibrium equations (3.10)-(3.11), just like in the case of the
stress resultant-based shell models. By the procedure described subsequently, the
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number of the independent stress coefficients in (3.12)-(3.13) can be reduced from 21
to 15.

Taking into account (3.13), the stress boundary conditions (3.6) on the top and
bottom faces of the plate can be written as

0Tk3 ± 1Tk3
d

2
+ 2Tk3

d2

4
= ±p̃±

k on S±
p . (3.14)

Adding and subtracting the two equations in (3.14) and defining the load vector

p̃ (xα, x3) = 0p̃ + 1p̃x
3, p̃ (xα, ± d/2) := ± p̃± (3.15)

with coefficients

0p̃ (xα) =
1

2
(p̃+ − p̃−), 1p̃ (xα) =

1

d
(p̃+ + p̃−), (3.16)

the stress boundary conditions (3.14) can be rewritten as

0Tk3 +
d2

4
2Tk3 = 0p̃k, (3.17)

1Tk3 = 1p̃k. (3.18)

Making use of (3.17)-(3.18), the two equilibrium equations in (3.10)-(3.11) take the
forms

0Tkλ,λ + 1p̃k + ρ 0bk = 0, (3.19)

1Tkλ,λ − 8

d2
0Tk3 +

8

d2
0p̃k + ρ 1bk = 0. (3.20)

To obtain a numerically more efficient formulation, the number of the independent
stress variables can be further reduced by satisfying the symmetry of the transverse
shear stresses in an integral average sense, according to the equation∫ +d/2

−d/2

Tλ3 dx3 =

∫ +d/2

−d/2

T3λ dx3. (3.21)

Carrying out the integration in (3.21) by taking into account (3.12)-(3.13) and the
stress boundary conditions (3.17)-(3.18), the following equations are obtained:

0Tλ3 =
3

2
0T3λ − 1

2
0p̃λ, 1Tλ3 = 1T3λ = 1p̃λ. (3.22)

Substituting them into (3.20), the three equilibrium equations take the forms

1Tκλ,λ − 12

d2
0T3κ +

12

d2
0p̃κ + ρ 1bκ = 0, (3.23)

0T33 = 0p̃3 +
d2

8
( 1p̃λ,λ + ρ 1b3). (3.24)

Equation (3.24) indicates that the transverse normal stress 0T33 is determined by the
prescribed surface and body loads. Since 1T33 is given by (3.18) and 2T33 is obtained
from (3.17) using (3.24), the parabolic transverse normal stress T33 is completely de-
termined by the prescribed surface loads on the top and bottom faces and by the body
forces. Thus, the equilibrium of the plate is described by three membrane equilibrium



Stress-based dimensional reduction and dual-mixed hp finite elements 15

equations in (3.19) and two bending equilibrium equations in (3.23), written in terms
of 10 independent stress coefficients.

3.3. Equilibrated stress space using first-order stress functions. The five two-
dimensional equilibrium equations in (3.19) and (3.23) can identically be satisfied by
introducing one first-order stress function vector

ψ(xα, x3) = 0ψ(xα) + 1ψ(xα)x3 = 0ψℓ(xα) eℓ + 1ψλ(xα)x3 eλ (3.25)

with component-wise transverse variations

ψλ(xα, x3) = 0ψλ(xα) + 1ψλ(xα)x3 , (3.26)

ψ3(xα, x3) = 0ψ3(xα). (3.27)

Applying the five two-dimensional stress function coefficients appearing in (3.26)-
(3.27), the three membrane equilibrium equations in (3.19) can be satisfied using
stress functions 0ψλ as

0T11 = 0ψ1,2 − 0f1, 0T12 = − 0ψ1,1, (3.28)

0T21 = 0ψ2,2, 0T22 = − 0ψ2,1 − 0f2, (3.29)

where

0fλ(xα) =

∫ xλ

ξ=0

( 1p̃λ + ρ 0bλ) dξ, (3.30)

and the two bending equilibrium equations in (3.23) can be satisfied using stress
functions 0ψ3 and 1ψλ as

0T31 = 0ψ3,2 −
1

2
f3,2, 0T32 = − 0ψ3,1 −

1

2
f3,1, (3.31)

1T11 = 1ψ1,2 − 1f1, 1T12 = − 1ψ1,1 +
12

d2
0ψ3 −

6

d2
f3,(3.32)

1T21 = 1ψ2,2 −
12

d2
0ψ3 −

6

d2
f3, 1T22 = − 1ψ2,1 − 1f2, (3.33)

where

1fλ(xα) =

∫ xλ

ξ=0

(
12

d2
0p̃λ+ρ 1bλ) dξ, f3(xα) =

∫ x2

η=0

∫ x1

ξ=0

( 1p̃3+ρ 0b3) dξ dη. (3.34)

Note that the stress coefficients iTk3, i = 0, 1, 2, appearing in the truncated power
series (3.13), are determined by equations (3.17)-(3.18), (3.22) and (3.24), i.e., by the
surface and body loads and the stress coefficients in (3.31). According to equations
(3.28)-(3.29) and (3.31)-(3.33), the equilibrium of the plate in terms of 10 independent
stress coefficients can be satisfied by 5 first-order stress functions.

3.4. Approximation of the rotation vector across the thickness. Considering
the equilibrated stress space given in Subsection 3.3 in terms of first-order stress
functions, the only symmetry condition remaining to be satisfied is the symmetry of
the shear stresses T12 = T21. This constraint is enforced weakly through functional
(3.3) by considering the rotation component ϕ3 = Θ21 as an independent variable.
Since the shear stresses T12 and T21 are approximated by linear polynomials in x3,
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according to (3.12), the corresponding Lagrange multiplier, i.e., the rotation ϕ3, is
approximated by linear polynomial as well through the thickness:

ϕ3(xα, x3) = 0ϕ3(xα) + 1ϕ3(xα)x3. (3.35)

The symmetry of the in-plane shear stresses 0T12 = 0T21 will be enforced by 0ϕ3, and
that of the torsional stresses 1T12 = 1T21 by 1ϕ3. Note that the rotation around the
normal to the middle surface has also been approximated by a linear function across
the thickness in [30], though in a different theoretical setting.

3.5. Weak forms of the plate model with first-order stress functions and
rotations. The weak forms of the stress-based dimensionally reduced plate model
in terms of first-order stress functions and rotations can be obtained from the three-
dimensional weak forms (3.2)-(3.3) by carrying out the following steps. First, the
expanded stress and rotation components (3.12)-(3.13) and (3.35), as well as the
elastic compliance tensor (3.4), should be inserted in (3.2)-(3.3). Note that using
C−1

ijkℓ in (3.2) means that this plate model relies on unmodified three-dimensional

constitutive equations. In the second step, relations (3.17)-(3.18), (3.22) and (3.24),
as well as (3.28)-(3.29) and (3.31)-(3.33) should be inserted in the weak forms. Finally,
by carrying out all the integrations with respect to the thickness coordinate x3, as a
third step, the following 2D weak forms of the kinematic equation and the angular
momentum balance are obtained from (3.2)-(3.3):

A (δψ,ψ) + B(δψ,ϕ) = P(δψ, p̃) + U (δψ, ũ), (3.36)

B(δϕ,ψ) = 0, (3.37)

where the bilinear forms A (δψ,ψ) and B(δϕ,ψ) and the linear forms P(δψ, p̃) and
U (δψ, ũ) are detailed subsequently. An important observation is that each of the
above bilinear and linear forms can be divided into a membrane part, a shear part,
and a bending part. The bilinear form A (δψ,ψ) in (3.36) can be written as

A (δψ,ψ) = Am(δ0ψλ, 0ψλ) + As(δ0ψ3, 0ψ3) + Ab(δ1ψλ, 1ψλ), (3.38)

where the membrane, shear and bending parts are given, respectively, by

Am(δ0ψλ, 0ψλ) = d

∫
S̄

[ 1
E
( δ0ψ1,2 0ψ1,2 + δ0ψ2,1 0ψ2,1 + ν δ0ψ1,2 0ψ2,1 + ν δ0ψ2,1 0ψ1,2)

+
1

4µ
(δ0ψ1,1 0ψ1,1 + δ0ψ2,2 0ψ2,2 − δ0ψ1,1 0ψ2,2 − δ0ψ2,2 0ψ1,1)

]
dS̄,

(3.39)

As(δ0ψ3, 0ψ3) =
21d

20µ

∫
S̄

( δ0ψ3,1 0ψ3,1+ δ0ψ3,2 0ψ3,2) dS̄, (3.40)

Ab(δ1ψλ, 1ψλ)=
d3

12

∫
S̄

[ 1
E
( δ1ψ1,2 1ψ1,2 + δ1ψ2,1 1ψ2,1 + ν δ1ψ1,2 1ψ2,1 + ν δ1ψ2,1 1ψ1,2)

+
1

4µ
(δ1ψ1,1 1ψ1,1 + δ1ψ2,2 1ψ2,2 − δ1ψ1,1 1ψ2,2 − δ1ψ2,2 1ψ1,1)

]
dS̄,

(3.41)
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with elasticity modulus E = 2µ(1 + ν). Note that the membrane part depends on
stress functions 0ψλ, the shear part on 0ψ3, and the bending part on 1ψλ; i.e., the
three parts, expressing the complementary virtual work of the inner forces in the
plate, are uncoupled.

The bilinear form B(δϕ,ψ) in (3.36) and (3.37) can be written as

B(δϕ,ψ) = Bm(δ0ϕ3, 0ψλ) + Bs(δ1ϕ3, 0ψ3) + Bb(δ1ϕ3, 1ψλ), (3.42)

where the membrane, shear and bending parts are given, respectively, by

Bm(δ0ϕ3, 0ψλ) = d

∫
S̄

δ0ϕ3 (0ψ1,1 + 0ψ2,2) dS̄, (3.43)

Bs(δ1ϕ3, 0ψ3) = −24

d3

∫
S̄

δ1ϕ3 0ψ3 dS̄, (3.44)

Bb(δ1ϕ3, 1ψλ) =
d3

12

∫
S̄

δ1ϕ3 (1ψ1,1 + 1ψ2,2) dS̄. (3.45)

Note that the membrane part depends on stress functions 0ψλ and rotation 0ϕ3, the
shear part on 0ψ3 and 1ϕ3, and the bending part on 1ψλ and and 1ϕ3. The membrane
part is uncoupled from the other two, the shear and bending parts are coupled by the
rotation 1ϕ3, but not by the stress functions.

The right-hand side of the equation (3.36) contains the prescribed loads on the top
and bottom faces S± and the prescribed displacements on the lateral surface S×. The
linear form P(δψ, p̃) can be written as

P(δψ, p̃) = Pm(δ0ψλ, p̃) + Ps(δ0ψ3, p̃) + Pb(δ1ψλ, p̃), (3.46)

where the membrane, shear and bending parts are given, respectively, by

Pm(δ0ψλ, p̃) =

∫
S̄

dν

E
(δ0ψ1,2 − δ0ψ2,1) 0p̃3 dS̄, (3.47)

Ps(δ0ψ3, p̃) =

∫
S̄

21d

40µ
(δ 0ψ3,2 f3,2 − δ 0ψ3,1 f3,1) dS̄, (3.48)

Pb(δ1ψλ, p̃) =

∫
S̄

d3ν

12E
(δ1ψ1,2 − δ1ψ2,1) 1p̃3 +

d

4µ
(δ1ψ2,2 − δ1ψ1,1)f3 dS̄. (3.49)

For more algebraic simplicity, the body forces and the tangential loads to the top and
bottom faces are neglected in P(δψ, p̃). The linear form U (δψ, ũ) can be written as

U (δψ, ũ) = Um(δ0ψκ, ũ) + Us(δ0ψ3, ũ) + Ub(δ1ψκ, ũ)

=

∫
ℓu

d(δ0ψκ)

ds
0Ũκ ds−

12

d2

∫
ℓu

δ0ψ3 1ŨT ds+

∫
ℓu

d(δ1ψκ)

ds
1Ũκ ds, (3.50)

where

0Ũκ(xα) =

∫ +d/2

−d/2

ũ×κ dx3 = d 0ũκ, (3.51)

1ŨT (xα) =

∫ +d/2

−d/2

x3 ũ
× · (ez × n×) dx3 =

d3

12
1ũT , (3.52)
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1Ũκ(xα) =

∫ +d/2

−d/2

x3 ũ
×
κ dx3 =

d3

12
1ũκ, (3.53)

and 1ũT is the tangential component of the prescribed displacement vector 1ũ on the
lateral surface S×. Note that the membrane parts of the linear forms P(δψ, p̃) and
U (δψ, ũ) depend on stress functions 0ψλ, the shear parts on 0ψ3, and the bending
parts on 1ψλ; i.e., the three parts, expressing the virtual work of the prescribed loads
and displacements, are uncoupled, just like the bilinear forms (3.39)-(3.41).

4. Finite element formulation

The dual-mixed finite element formulation for the dimensionally reduced plate model,
described in Section 3, is based on the the two-dimensional weak forms of the kine-
matic equation and the angular momentum balance equation, (3.36) and (3.37). The
finite element model requires the approximation of five stress functions and two ro-
tations. However, as pointed out in Subsection 3.5, the membrane problem can be
treated and solved separately from the bending-shearing problem of the plate, just
like in the case of the linear displacement-based models. The membrane model relies
on the bilinear forms Am, Bm and the linear forms Pm, Um, detailed in (3.39), (3.43)
and (3.47), (3.50), respectively, and requires the approximation of three variables: the
stress functions 0ψλ and the rotation 0ϕ3. The bending model relies on the bilinear
forms As, Ab, Bs, Bb, and the linear forms Ps, Pm, Us, Ub, detailed in (3.40)-
(3.41), (3.44)-(3.45) and (3.48)-(3.50), respectively, and requires the approximation
of four variables: the stress functions 0ψ3, 1ψλ and the rotation 1ϕ3.

The subsequent developments concentrate on the finite element model and solution
of the plate bending problem, as the membrane formulation and element have already
been developed and presented in [19]. Stable approximation spaces for the variables

1ψλ and 1ϕ3 can be chosen by utilizing the fact that Ab, Bb and Ub in terms of

1ψλ and 1ϕ3 have the same structure as Am, Bm and Um in terms of 0ψλ and 0ϕ3.
The stable approximation spaces for the membrane problem in [19] have been chosen
by exploiting the analogy between the weak forms of the membrane model and the
displacement-pressure formulation of elasticity (or the velocity-pressure formulation
of Stokes flow), for which stable approximation spaces have been developed in [31].
From the three sets of approximation spaces investigated and tested in [19] for the
membrane problem, the optimal space denoted by DMX-3 is applied here for the
variables 1ψλ and 1ϕ3. The choice of the approximation spaces for the stress function

0ψ3 is governed by the weak forms (3.44)-(3.45).

For the finite element solution of the plate problem, we consider a mesh on S̄ that
consists of convex disjoint quadrilateral elements. One element in the mesh is denoted
by e. The master element ê := {ξ, η : −1 ≤ ξ, η ≤ 1} is a square on the reference plane.
We assume a smooth mapping from ê to e. To introduce the approximation spaces
for the element variables, let Pp(ξ, η) denote the set of polynomials of total degree p
on ê, and let Qp(ξ, η) denote the set of polynomials of degree p in each variable. The
hp dual-mixed plate bending element is based on the following approximation spaces
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for p ≥ 2:

iψλ(ξ, η) ∈ Qp(ξ, η) ∩ Pp+2(ξ, η), i = 1, 2, (4.1)

0ψ3(ξ, η) ∈ Qp−1(ξ, η) ∩ Pp+1(ξ, η), (4.2)

iϕ3(ξ, η) ∈ Pp−1(ξ, η), i = 1, 2. (4.3)

Applying these approximation spaces, a hierarchic sequence of hp-version plate bend-
ing elements has been developed for 2 ≤ p ≤ 9.

The error of the numerical solution in the energy norm is computed using the
complementary strain energy of the stress space. A comparable error measure is
guaranteed by the fact that the strain energy is equal to the complementary strain
energy for a linearly elastic problem. Denoting the analytic solution for the stress
space by T and the numerical solution by TN , a monotonically convergent error
measure in energy norm is obtained by

∥ T −TN ∥E(V ) =
(∫

V

(T −TN) : C−1 : (T −TN) dV +
1

µ

∫
V

(TN −T T
N )2 dV

) 1
2

, (4.4)

where the second term on the right-hand side takes into account the error in the
unbalanced symmetry of the computed stress space.

5. Numerical results and comparisons

In this section, the approximation capabilities of the seven-field stress-based plate
model and the numerical performance of the related dual-mixed hp plate bending
finite elements, developed and described in Sections 3 and 4, will be presented. The
numerical results are obtained using a finite element research code written in the
C/C++ programming language. The polynomial space over the elements is spanned
by standard hierarchical basis functions based on orthogonal Legendre polynomials
[9]. The numerical integrations over the elements have been performed by applying a
14-point Gaussian quadrature rule. The finite element solution is computed for the
first-order stress functions and the rotations. The total number of degrees of freedom
is obtained as the sum of the stress function and rotational degrees of freedom.

One of the main points of interest in the numerical analysis is the computation
of the modeling error of the new plate model with respect to the three-dimensional
solution for different thicknesses, and the comparison of the modeling error to those of
the classical displacement-based Kirchhoff- and Reissner-Mindlin plate models. The
numerical justification of the shear-locking-free property and the incompressibility-
locking-free property of the dual-mixed plate element is another goal of the computa-
tions. As the present plate model relies on unmodified three-dimensional strain-stress
relations, a particularly interesting case is when, applying low-order approximations,
the Poisson’s ratio tends to 0.5 and the thickness of the plate tends to zero, simulta-
neously. The performance of the plate model and the dual-mixed hp finite elements
on distorted meshes and on plates having curvilinear boundaries is also investigated
and presented.
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5.1. Simply supported square plate. The simply supported square plate of side
length L = 1 m and thickness d is subjected to a uniformly distributed load q = 1
Pa on its middle surface S̄. The load is taken into account by prescribing p̃+

3 =
p̃−
3 = q/2 on its top and bottom faces. The material of the plate is isotropic and

characterized by its elasticity modulus E = 30 GPa and Poisson’s ratio ν = 0.3.
Three-dimensional benchmark solutions for this plate problem with side-length-to-
thickness ratios L/d = 10 and L/d = 100 can be found in [32], obtained by applying
displacement-based p-version finite elements. The main objectives of the numerical
analysis are (i) the computation of the modeling error of the stress-based plate model
and (ii) the performance of the dual-mixed hp plate bending element through the
convergence of the relative errors in energy norm. The extrapolated 3D strain energy
values reported in [32] are used for comparisons.

c

c

L

c
c

Figure 1. Graded mesh on a square plate with grading parameter c

The double symmetry of the problem allows the discretization of one quarter of the
plate only. Two meshes are used for the computations: the graded mesh in Figure
1(a) containing 2× 2 = 4 rectangular elements with a grading parameter denoted by
c, and a refined, 8× 8 = 64 element mesh shown in Figure 1(b), which is obtained by
uniform division of each element in Figure 1(a) into 16 elements. Two types of simple
supports are considered: soft and hard, according to the definitions given in [32].

5.1.1. Modeling error computation for soft simple support. The computations for the
modeling error were performed using the 64-element mesh shown in Figure 1(b),
applying p-extension with polynomial degree p varying from 2 to 9 (see Section 4),
where p is the highest polynomial degree used for the approximation of the first-order
stress functions in (3.36)-(3.37). The grading parameter is chosen to be c = 0.1 for
L/d = 10, and c = 0.03 for L/d = 100 (these choices are justified by the investigations
presented in Subsection 5.1.2). The convergence of the strain energy and the relative
error in the energy norm with respect to the 3D reference solution are summarized in
Tables 1 and 2. It can be seen that for p > 5, the first eight significant digits of the
energy values are the same1, indicating that the maximum capability of the 2D plate
model is reached for this problem. In other words this means that the discretization

1The strain energy values in [32] are given in seven significant digits.
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Table 1. Square plate, uniform load, soft simple support, L/d = 10:
relative error in strain energy and in energy norm with respect to the
3D reference solution, p-extension on a graded 8× 8 element mesh

p strain energy
rel. error in rel. error in

energy (%) energy norm (%)

2 7.0799145 e –7 0.625 7.90

3 7.0593276 e –7 0.332 5.76

4 7.0591129 e –7 0.329 5.73

5 7.0591100 e –7 0.329 5.73

6 7.0591099 e –7 0.329 5.73

7 7.0591099 e –7 0.329 5.73

8 7.0591099 e –7 0.329 5.73

9 7.0591099 e –7 0.329 5.73

3D [32] 7.035974 e –7 – –

Table 2. Square plate, uniform load, soft simple support, L/d = 100:
relative error in strain energy and in energy norm with respect to the
3D reference solution, p-extension on a graded 8× 8 element mesh

p strain energy
rel. error in rel. error in

energy (%) energy norm (%)

2 6.2739339 e –4 2.23 e –1 4.79 e+0

3 6.2608011 e –4 1.98 e –2 1.41 e+0

4 6.2599754 e –4 6.61 e –3 8.13 e –1

5 6.2599455 e –4 6.13 e –3 7.83 e –1

6 6.2599448 e –4 6.12 e –3 7.82 e –1

7 6.2599448 e –4 6.12 e –3 7.82 e –1

8 6.2599448 e –4 6.12 e –3 7.82 e –1

9 6.2599448 e –4 6.12 e –3 7.82 e –1

3D [32] 6.259562 e –4 – –

error becomes negligible for higher p values (using three significant digits) and the
modeling error of the plate model in energy norm is 5.73% for L/d = 10 (reached
for p > 3) and 0.782% for L/d = 100 (reached for p > 4). The comparison of these
modeling errors to those of the classical Kirchhoff and Reissner-Mindlin plate models,
computed in [32], is given in Table 3.
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Table 3. Square plate, uniform load, soft simple support: modeling
error in energy norm for different plate models

L/d
Kirchhoff Reissner-Mindlin present

plate model plate model plate model

10 34.5 % 11.2 % 5.73 %

100 9.88 % 2.94 % 0.782 %

5.1.2. Square plate with soft simple support: p-extension on 4-element meshes. The
capabilities of the stress-based plate model and the related dual-mixed hp finite el-
ements are investigated next using the 4-element mesh shown in Figure 1a) with
different grading parameters c: starting from a uniform mesh with c = 0.25, c takes
the values of 0.1, 0.05 and 0.03. p-extension with polynomial degree p varying from
2 to 9 is applied again.
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Figure 2. Square plate, uniform load, soft simple support, L/d = 10:
convergence of the relative error in energy norm with respect to the
3D reference solution; p-extension on a 2 × 2 element mesh with
different grading parameter c and the modeling error of plate models

Figures 2 and 3 show the convergence curves of the relative errors in energy norm
with respect to the 3D reference solution for L/d = 10 and L/d = 100, respectively.
Among the four graded meshes applied, the best rate of convergence is achieved when
c = 0.1 for L/d = 10, and c = 0.03 for L/d = 100. The modeling errors of the different
plate models (from Table 3) are illustrated by horizontal lines in the figures.
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Figure 3. Square plate, uniform load, soft simple support, L/d = 100:
convergence of the relative error in energy norm with respect to the
3D reference solution; p-extension on a 2 × 2 element mesh with
different grading parameter c and the modeling error of plate models

Figures 2 and 3 indicate that the discretization error can be controlled by p-
extension even on a 4-element mesh, and the modeling error, computed and tabulated
in Table 3 using a 64-element mesh, can be reached on a properly graded 4-element
mesh, as well. For L/d = 10, the modeling error is reached at higher polynomial de-
gree p for all values of the grading parameter c, whereas for L/d = 100, the modeling
error is reached when c = 0.03 and p > 7.

5.1.3. Square plate with hard simple support. The square plate investigated previ-
ously is considered now with hard simple support. The shear locking-free property
of the dual-mixed plate bending element developed will be demonstrated through the
convergence of the scaled displacement and bending moment defined by

ū3 = u3
102D

qL4
, M̄11 =M11

10

qL2
, D = Ed3/12(1− ν2) (5.1)

and computed at the center of the plate, where q is the applied load density on the
middle surface S̄ and D is the flexural rigidity of the plate. The computed values are
compared to the Navier-series solution given in [33].

First, the approximation capability of a higher-order element with polynomial de-
gree p = 8 is investigated and compared to the exact limit solution for thin plates,
given in [33], using a 2× 2 element mesh. In Figure 4, the scaled displacements and
bending moments (5.1) are plotted and tabulated for different thicknesses as d → 0.
It is seen that as the side-length-to-thickness ratio goes to infinity, the displacements
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and bending moments converge to the exact limit solution, indicating that the plate
model is asymptotically correct.

L/d ū3 M̄11

10 0.42465 0.48011

100 0.40642 0.47887

1 000 0.40624 0.47886

10 000 0.40624 0.47886

100 000 0.40624 0.47886

1 000 000 0.40624 0.47886

10 000 000 0.40624 0.47885

Series [33] 0.40624 0.47886

Figure 4. Square plate with hard simple support: scaled displace-
ment ū3 and bending moment M̄11 at the center of the plate as
d→ 0, uniform 2× 2 element mesh, p = 8,
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Figure 5. Square plate with hard simple support: convergence of the
central bending moment for different side-length-to-thickness ratios
applying dual-mixed elements and performing h-extension on regular
(left) and distorted (right) meshes

Since shear locking is more likely to appear when low-order polynomial approx-
imation is used, especially in the displacement-based models, the capability of the
present plate model is investigated next by performing h-extension with polynomial
degree p = 2 kept fixed. Note that p = 2 is the lowest possible polynomial degree
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in the stress-based plate element developed. Results were obtained by uniform mesh
refinement, starting with a single element and ending with a 16× 16 element mesh.

Figure 5 shows the convergence curves for the scaled bending moment at the center
of the plate for five different aspect ratios, applying a regular mesh (on the left)
and skew mesh with distorted elements (on the right). It is seen that the rates of
convergence are not sensitive to the thickness of the plate, whether either regular or
distorted elements are used. Practically, the same convergence curve was obtained
for all five side-length-to-thickness ratios considered, both for regular and irregular
meshes, which indicates that the dual-mixed plate bending element is completely free
from shear-locking. The skew mesh gives lower rates of convergence then the regular
mesh, independently of the thickness. It is also seen that a good approximation of the
exact limit solution can be obtained already with a 16 × 16 element mesh at p = 2,
even for the unrealistic side-length-to-thickness ratio of 106, which corresponds to a
plate of thickness d = 1 µm and side length L = 1 m.
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Figure 6. Square plate with hard simple support, dual-mixed ele-
ment, h-extension, uniform mesh refinement: convergence of the cen-
tral bending stress when the Poisson’s ratio approaches 0.5 with si-
multaneously increased side-length-to-thickness ratio

5.1.4. Square plate, hard simple support: h-extension with incompressibility constraint.
As the stress-based plate model relies on unmodified three-dimensional strain-stress
relations, the computations were also performed by investigating the effect of the
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Poisson’s ratio, when it approaches to the incompressibility limit of 0.5 and, at the
same time, the thickness of the plate goes to zero. Figure 6 shows the results obtained
for the convergence of the maximum bending stress as ν→ 0.5 and d → 0, obtained
by performing h-extension with regular meshes and polynomial degree p = 2 kept
fixed. The diagrams in Figure 6 clearly indicate that the rates of convergence of
the dual-mixed element is perfectly insensitive to the values of the Poisson’s ratio
and the thickness of the plate, i.e., the element is free from both shear locking and
incompressibility locking. It can also be seen from Figure 6 that the thin plate limit
values for different Poisson’s ratios, computed from the Navier-series solution given
in [33], are approximated well by applying a 16× 16 element mesh, independently of
the values of the Poisson’s ratio ν and the thickness d.

5.2. Thin circular plate with hard clamp and soft simple support. In this
example the classical problem of a circular plate is investigated in order to test the
performance of the stress-based plate model and the dual-mixed hp finite elements
on domains containing curved boundaries. The plate, made of isotropic material, is
subjected to a uniformly distributed load q = 1 Pa on its middle surface S̄. The
radius of the plate is R = 0.5 m, the elasticity modulus is E = 109.2 GPa and the
Poisson’s ratio is ν = 0.3. Two types of boundary condition are investigated: hard
clamp and soft simple support.

One quarter of the plate is discretized only with prescribed symmetry conditions on
the edges of symmetry. When h-extension is performed, a four-step mesh refinement
shown in Figure 7 is applied by keeping p = 2 constant. For p-extensions, the 3-
element mesh shown in Figure 7 is used. The exact mapping of the elements with
curved edges was performed using the blending function method [9].

Figure 7. Circular plate problem: the mesh refinement used for h-extension

Applying hardly clamped boundary conditions, the analytic solutions for the cen-
tral displacement and the boundary shear force are [34]

u3 =
qR4

64D
, Q =

qR

2
, (5.2)

where D is given by (5.1)3. For numerical comparisons, the scaled analytic displace-
ment ū3 = u3 10

2D/qR4 = 1.565 is used. The convergences of the scaled central
displacement and the shear force at the boundary are plotted in Figure 8, for both h-
and p-extensions, when the diameter-to-thickness ratio is increased from 103 to 106.
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Figure 8. Hardly clamped circular plate: convergence of the scaled
central displacement and the shear force at the boundary
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Figure 9. Simply supported circular plate: convergence of the scaled
displacement and the bending moment at the center of the plate
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When soft simple support is applied, the analytic solutions for the displacement
and the bending moment at the center of the plate are [35]

u3 =
qR4

64D

5 + ν

1 + ν
, M =

qR2

16
(3 + ν), (5.3)

where D is defined by (5.1)3. For numerical comparisons, the scaled analytic displace-
ment ū3 = u3 10

2D(1+ν)/qR4(5+ν) = 1.565 is used. Figure 9 shows the convergence
of the scaled central displacement and the central bending moment for both h- and
p-extensions, considering four diameter-to-thickness parameters with decreasing plate
thickness d.

It can be seen from Figures 8 and 9 that the thickness change has no influence at all
for the rates of convergences, either the displacement or the shear force or the bending
moment is considered. This property seems to be independent of the applied boundary
conditions as well. As expected, the p-extension on the three-element mesh gives much
faster convergence for each variable than the mesh refinement with polynomial degree
p = 2 kept fixed.

5.3. Clamped square plate with a circular hole. The last example is a square
plate of side length L = 2 m with a central hole of radius r = 0.2 m (Figure 10). The
thickness of the plate is 0.1 m, the side-length-to-thickness ratio is L/d = 20. The
outer edge of the plate is clamped, the boundary of the circular hole is traction-free.
The plate, made of isotropic material, is subjected to a uniformly distributed load
with intensity q = 1 Pa on its middle surface. The elasticity modulus is E = 30 GPa
and the Poisson’s ratio is ν = 0.3.

c
r

x

y

c

c
c

Figure 10. Clamped square plate with a circular hole and the graded
16 element mesh
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A solution for this plate problem, considering a hierarchic sequence of displacement-
based plated models, and the modeling error computation with respect to the 3D finite
element solution can be found in [36]. The 3D solution given in [36] is considered here
as a reference solution. All the computations were performed on one-quarter of the
plate applying a 12-element graded mesh, shown in Figure 10. The strain energy
computations correspond to this sub-domain as well. The same mesh used in [36]
is applied here, the grading parameters of c1 = 0.03 m and c2 = 0.11 m (see Figure
10) take into account the boundary layers at the inner and outer edges of the plate.
Note that the mesh contains elements with curved boundaries and straight edges as
well. The blending function method [9] is used for exact mapping of the elements
with curved edges.

Performing p-extension with polynomial degree 2 ≤ p ≤ 9, the convergence of the
strain energy and the relative discretization error in energy norm, with respect to the
estimated exact strain energy of the plate model, as well as the rates of convergence
in energy norm are shown in Table 4. The extrapolated exact strain energy (corre-
sponding to p = ∞) of the plate model was computed from the solutions at p = 7, 8, 9,
according to the a posteriori error estimation method described in [9].

Table 4. Clamped square plate with a central hole, uniform load,
L/d = 20: convergence of the strain energy and the discretization
error in energy norm with the rates of convergence on a graded 12
element mesh using the dual-mixed plate element with p-extension

p DOF strain energy
rel. error in rate of

energy norm (%) convergence

2 138 6.533638028 e –7 4.160 e+1 –
3 300 5.603839912 e –7 7.841 e+0 2.15
4 510 5.570927830 e –7 1.544 e+0 3.06
5 768 5.569858174 e –7 6.815 e –1 2.00
6 1074 5.569640950 e –7 2.729 e –1 2.73
7 1428 5.569606279 e –7 1.106 e –1 3.17
8 1830 5.569601009 e –7 5.258 e –2 3.00
9 2280 5.569599881 e –7 2.720 e –2 3.00

∞ 5.569599469 e –7 – –

The convergences of the strain energy and the relative error in the energy norm
with respect to the 3D reference solution of [36] are given in Table 5. It can be seen
that the discretization error becomes negligible for p > 7 (using 4 significant digits of
precision), and the relative error of 8.000% is the modeling error of the stress-based
plate model for this problem. In Table 6, the modeling error of the present plate model
is compared to those of two higher-order displacement-based plate models, referred
as (1, 1, 2) and (3, 3, 2) in the hierarchic sequence of models in [36] (the numbers in
parentheses refer to the polynomial degree of the three displacement components in
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Table 5. Clamped square plate with a central hole, uniform load,
L/d = 20: relative errors in strain energy and in energy norm with
respect to the 3D reference solution on a graded 12 element mesh
using the dual-mixed plate element with p-extension

p strain energy
rel. error in rel. error in

energy (%) energy norm (%)

2 6.533638028 e –7 1.799 e+1 42.50

3 5.603839912 e –7 1.259 e+0 11.22

4 5.570927830 e –7 6.640 e –1 8.149

5 5.569858174 e –7 6.446 e –1 8.029

6 5.569640950 e –7 6.407 e –1 8.005

7 5.569606279 e –7 6.401 e –1 8.001

8 5.569601009 e –7 6.400 e –1 8.000

9 5.569599881 e –7 6.400 e –1 8.000

∞ 5.569599469 e -7 6.400 e –1 8.000

3D [36] 5.534181949 e –7 – –

the thickness direction). The results indicate that the seven-field stress-based plate
model gives better modeling error than the seven-field displacement-based (1, 1, 2)
model, but is not as accurate as the eleven-field (3, 3, 2) model.

Table 6. Clamped square plate with a central hole, uniform load,
L/d = 20: comparison of the modeling errors in energy norm for two
higher-order displacement-based plate models and the stress-based
plate model

plate model strain energy
modeling error in

energy norm (%)

(1, 1, 2) [36] 5.463957687 e –7 11.26

(3, 3, 2) [36] 5.512825921 e –7 6.212

present 5.569599881 e –7 8.000

3D [36] 5.534181949 e –7 –

The convergences of the bending moments Mx(L/2, 0) and My(L/2, 0) at the mid-
point of the outer boundary are shown in Figure 11, performing p-extension. It is
seen that the convergence of the bending moments is very fast and their computed
values for p > 4 are very close to the limiting values, computed as the average values
of the solutions with polynomial degrees p = 7, 8, 9.
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Figure 11. Clamped square plate with a central hole, uniform load,
L/d = 20: convergence of the bending moments at the midpoint of
the outer edge of the plate, performing p-extension

6. Concluding remarks

A stress-based dimensional reduction procedure has been presented for elastic plates
and a related dual-mixed hp-version plate bending finite element model has been de-
veloped. The derivation of the plate model and the construction of the elements were
based on the linearized weak forms of the kinematic equation and the angular mo-
mentum balance equation of three-dimensional non-linear elasticity. The independent
variables in the formulation are the three-dimensional stresses and rotations. Their
expansion into truncated power series with respect to the thickness coordinate and the
satisfaction of the expanded translational equilibrium equations by the introduction
of first-order stress functions have led to a seven-field dimensionally reduced plate
model. Out of the seven fields, three fields describe the membrane problem and four
fields describe the plate bending problem. Stable approximation spaces for the stress
function and rotation components have been chosen by utilizing the analogy between
the weak forms of the membrane and the bending models of the present formulation
and the displacement-pressure formulation of elasticity. The plate model and the hp
finite elements employ unmodified three-dimensional strain-stress relations.

The main interest in the numerical analysis and comparisons was twofold: firstly,
the computation of the modeling error of the stress-based plate model and, secondly,
the justification of the locking-free behavior of the dual-mixed finite elements. The
first goal could be achieved by applying the p-extension capabilities of the element
model. In the case of the problem of a uniformly loaded square plate it was shown that
the modeling error of the present plate model is better than the classical displacement
based first-order plate theories. The modeling error of the stress-based plate model
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was also compared to those of higher-order displacement-based models by solving the
problem of a square plate with a central circular hole. The locking-free property of the
formulation and the dual-mixed plate bending elements has been justified numerically
for both h- and p-extensions by investigating the model problems of a square plate
under uniform load with soft and hard simple support and a uniformly loaded circular
plate with hard clamp and soft simple support. It was confirmed that the convergence
properties of the hp dual-mixed elements are insensitive to the thickness change and
to the value of the Poisson’s ratio, i.e., the finite element model has been proved to
be free from shear locking and incompressibility locking when either low-order h-, or
higher-order p-version elements were applied.
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Abstract. The formulation of a system of hierarchic models for the simulation of the me-
chanical response of slender elastic bodies, such as elastic rods, is considered. The present
work is concerned with aspects of implementation and numerical examples. We use a finite
element formulation based on the principle of minimum potential energy. The displacement
fields are represented by the product of one-dimensional field functions and two-dimensional
director functions. The field functions are approximated by the p-version of the finite element
method. Our objective is to control both the model form errors and the errors of discretiza-
tion with a view toward the development of advanced engineering applications equipped
with autonomous error control procedures. We present numerical examples that illustrate
the performance characteristics of the algorithm.
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1. Introduction

There is growing interest in the democratization of recurrent numerical simulation
tasks. Democratization aims to make software tools of numerical simulation easily and
broadly accessible. We argue that making data generated by numerical simulation
broadly accessible makes sense only if information about its quality and reliability
are provided in a form understandable by persons whose expertise is not in numerical
simulation. The advantages of democratization include productivity, consistency and
compatibility with simulation process and data management (SPDM) systems. On
the other hand, implementation without appropriate safeguards and error control can
lead to errors that may not be detected in the early phases of design.
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The idea of democratization is not new. Engineering handbooks and design man-
uals are examples of democratization practiced in the pre-computer age. Experts
solved a variety of problems in mechanics by classical methods in parametric form.
Those solutions were collected and made available to engineers through handbooks.

The classical approach to democratization had a serious limitation, however: Only
highly simplified problems can be solved by classical methods. Therefore the hand-
book entries were not the problems engineers actually needed to solve. To get a
rough estimate of the quantities of interest, engineers had to find handbook entries
that were close in some sense to their problem on hand. The errors were primar-
ily model form errors, that is, errors coming from simplifications in geometry and
boundary conditions.

With the maturing of numerical simulation technology it is now possible to remove
the limitations of classical engineering handbooks and provide parametric solutions
for the problems that engineers actually need to solve. This is the main goal of
democratization. The exceptionally rare talents of engineer-scientists who had pop-
ulated conventional handbooks have to be democratized, that is, mapped into the
world of modern-day analysts. Other important objectives are the accumulation and
preservation of corporate knowledge and increased productivity.

The types of problems that are well suited for democratization have the following
characteristics: The parameter space is small, the goals of computation are clearly
defined and the number of times the problems have to be solved is sufficiently large
to justify the investment of creating a dedicated application.

Questions relating to the level of confidence in the accuracy of the numerical solu-
tion have to be addressed by the expert analysts who create dedicated applications.
When a mathematical problem is solved by a numerical method, commonly the finite
element method, then it is necessary to provide information on how large the error in
the quantity of interest (QoI) is. Without such an estimate the answer is incomplete.
In many cases model form error is dominant. Ideally, the model form errors and the
errors of approximation are equal. Applications must be designed so as to estimate
and control both types of error.

In this paper the formulation of a system of hierarchic models is considered for the
simulation of the mechanical response of slender elastic bodies, such as elastic rods.
The displacement fields are represented by the product of one -dimensional field func-
tions and two-dimensional director functions in the following functional form:

u = u(x, y, s) =

M∑
m=1

U(m)(x, y) h
(m)(s) , (1)

where h(m)(s) are the field functions of the centerline coordinate s and U(m)(x, y) are
fixed director functions of the orthogonal coordinates in the direction of the normal
and binormal to the centerline, respectively. In the case of homogeneous bars the
director functions are polynomials (see, for example, Szabó and Babuška [1]. In
the case of bars made of laminated composites, the director functions are piecewise
polynomials (Actis [2]).

The field functions usually are Lagrange or Legendre polynomials, or more recently
use of B-splines and isogeometric functional has also been discussed [3, 4].
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The essential features of hierarchic models are: (a) The exact solutions correspond-
ing to a hierarchic sequence of models converge in energy norm to the exact solution
of the corresponding problem of elasticity, and (b) the exact solution of each model
converges in energy norm to the same limit as the exact solution of the corresponding
problem of elasticity with respect to the diameter of the cross section approaching
zero.

A comprehensive overview of the theory of curved bars was presented by Antmann
in [5]. As evidenced by Antmann’s paper, the mathematical theory of curved bars
is highly developed. We are concerned here with aspects of implementation and
applications to problems of engineering interest.

The formulation of hierarchic models follows the same pattern as the formulation
of three-dimensional models of continuum mechanics cast in variational form. Here
we will consider the displacement formulation. Since the director functions are fixed,
it is possible to integrate in the plane defined by the normal and binormal to obtain
a set of one-dimensional field functions h(m)(s), m = 1, . . . ,M . This process is called
dimensional reduction or semi-discretization.

In order to satisfy the condition that the exact solution of each model must converge
in energy norm to the same limit as the exact solution of the corresponding problem
of elasticity with respect to the diameter of the cross section approaching zero, it is
necessary to make certain adjustments in the formulation for the low-order models.
The Timoshenko beam model is an example of such adjustments (for a discussion of
this point see Szabó and Babuška [1]).

Without any claim to completeness, we mention some important papers on dimen-
sionally reduction in models in the following.

There are many papers on straight or curved beams [6–14], [15], plates [16–18] and
shells [19–21], subjected to static loading as well as undergoing free vibration [22–24].
Varying material properties were examined in [25, 26], rods including piezo elements
in [27], rod structures exposed to thermal effects in [28], and geometrically nonlinear
cases in [29–31]. Solutions of contact problems are found for hierarchical beams in the
case of elastic material in [32] and in the case of elastic-plastic deformation in [33].

In [34], we find analyses of hierarchical models for plates and shells covering static
and eigenvalue problems. The paper addresses the question of whether models based
on Kirchhoff’s hypothesis are members of the hierarchic family. The effects of the
boundary layer were also investigated. The complex nature of this topic is evidenced
by the hundreds of references in the article.

Our primary goal is to present numerical results that highlight the main features of
hierarchic models. We examine prismatic and plane-curved rods and rods with a spiral
centerline, assuming that the material is homogeneous, isotropic, linearly elastic, the
load is quasi-static, and the displacements and deformations are small, i.e., boundary
value problems are solved within the framework of linear elasticity theory.

The three-dimensional reference solutions were obtained using the StressCheck fi-
nite element program [35] and Abaqus program [36]. In either case error control
procedures were applied to ensure that the numerical errors are negligibly small.
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We pay special attention to formulating the contact problem for beams and solving
it effectively. We construct a solution in which class C problems defined in [1, 37]
are reduced to class B problems using a positioning technique [38, 39] whereby the
boundaries of the contact regions are also element boundaries.

Few works can be found in the literature related to the p-version finite element
modeling of contact problems, even in the case of small displacements and deforma-
tions: References [40, 41] examine smooth problems, an axisymmetric friction problem
is solved in [42] and a 3D spatial contact problem is solved using splines in [43]. Ex-
amples of wear calculations can be found in [44]. Frictionless and frictional contact
of spatial supports at large displacements are addressed in [45–48]. Examples of hi-
erarchical modeling are presented in [49]. Parts of the structure are modeled as 3D,
2D, 1D finite elements, using special transition elements.

This paper is organized as follows: The formulation of hierarchical models is de-
scribed in Section 2. The problem of frictionless contact is formulated in Section 3.
Examples, highlighting various aspects of dimensionally reduced hierarchic models,
are presented in Section 4. In order to simplify the discussion, details are presented
in the Appendices.

2. Formulation

2.1. Model in the local curvilinear coordinate system. We examine a linearly
elastic body with a helical centerline of pitch H wound on a cylindrical surface of
radius Ro as shown in Figure 1. The position vector of the centerline is:

r = r(φ̄) = R0 (cos(φ̄) i+ sin(φ̄) j) +
H

2π
φ̄k, (2)

where φ̄ is the angle coordinate of the cylindrical coordinate system and s is the
arc coordinate of the centerline. Using the Serret-Frenet reference frame [25], the
normal, binormal and tangent unit vectors (n,b, t) of the local coordinate system,
the curvature κ, and the twist per unit length τ are obtained. The n, b axes are the
principal axes of the cross section. The notation is indicated in Figure 1.

Figure 1. Centerline and unit vectors of the local coordinate system

2.2. Displacements. The displacement of an arbitrary point P of the body in the
local curvilinear local coordinate system is given by (see Figure 2)

u = u(x, y, s) = unn+ ubb+ utt ≡ u1e1 + u2e2 + u3e3 , (3)
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where

u = u(x, y, s) =

M∑
m=1

h̄(m)(x, y, s) =

M∑
m=1

U(m)(x, y) h
(m)(s) (4)

is the functional form of our approximation. The definition of

h̄(m)(x, y, s)

depends on the choice of the hierarchic model. The function

U(m)(x, y)

represents the director functions. For example, letting M = 3, for homogeneous
isotropic material we have

h̄(1)(x, y, s) =

u01 − y χ3

u02 + xχ3

u03 + y χ1 − xχ2

+

xu1xyu2y

0

 = h̄(1)0 + h̄(1)1 =

= U(1),0(x, y)h
(1)0(s) +U(1),1(x, y)h

(1)1(s) = U(1)(x, y)h
(1)(s) , (5a)

h̄(2)(x, y, s) =

(x
2 u1x2 + xy u1xy + y2u1y2)

(x2 u2x2 + xy u2xy + y2 u2y2)

(x2 u3x2 + xy u3xy + y2 u3y2)

 = U(2)(x, y)h
(2)(s) , (5b)

h̄(3)(x, y, s) =

(u1x3x3 + u1x2yx
2y + u1xy2xy2 + u1y3y3)

(u2x3x3 + u2x2yx
2y + u2xy2xy2 + u2y3y3)

(u3x3x3 + u3x2yx
2y + u3xy2xy2 + u3y3y3)

 = U(3)(x, y)h
(3)(s) .

(5c)
Furthermore

U(1),0=

 1 0 0 0 0 −y
0 1 0 0 0 x
0 0 1 y −x 0

, U(1),1=

 x 0
0 y
0 0

 ,
U(1)=

 1 0 0 0 0 −y x 0
0 1 0 0 0 x 0 y
0 0 1 y −x 0 0 0

 , (6a)

U(2) =

 x2 xy y2 0 0 0 0 0 0
0 0 0 x2 xy y2 0 0 0
0 0 0 0 0 0 x2 xy y2

 , (6b)

U(3) =

 x3 x2y xy2 y3 0 0 0 0 0 0 0 0
0 0 0 0 x3 x2y xy2 y3 0 0 0 0
0 0 0 0 0 0 0 0 x3 x2y xy2 y3

 , (6c)

where u1x, u2y; u0i, χi; uix2 , uixy, uiy2 ; uix3 , uix2y, uixy2 , uiy3 i = 1, 2, 3 are the one-
dimensional field functions of s, the monomials 1, x, y; x2, xy, y2 ;x3, x2y, xy2, y3

are the director functions. In the classical theory of beams only the linear terms



40 I. Páczelt, B. Szabó and A. Baksa

Figure 2. Notation: x, y, s – local coordinate system, e1, e2, e3 are
the unit vectors, u01, u02, u03 are displacements of the center line,
u1, u2, u3 are displacements at an arbitrary point P , R0 is the radius
of cylinder

are retained. This is justified when the diameter of the cross section approaches
zero. However, in practical problems one has to consider bars that have cross sec-
tions of finite diameters, in which case the higher-order terms may play an important
role, depending on the goals of computation. As M increases, the solution of the
fully three-dimensional problems is approximated progressively better in the norm
of the formulation, in our case the energy norm, and the types of boundary condi-
tions that can be applied increase. The director functions U(m)(x, y) are polynomials
constructed from the monomials of Pascal’s triangle (see Appendix A).

2.3. Deformations. The deformation tensor at small deformation

ε = ε(x, y, s) =
1

2
(u⊗∇+∇⊗ u) (7)

can be calculated through a geometric equation. Here ⊗ denotes dyadic multiplica-
tion. The nabla operator is:

∇ =
∂

∂x
e1 +

∂

∂y
e2 +

R1

R1 − x

∂

∂s
e3 ≡ ∂

∂x
n+

∂

∂y
b+

R1

R1 − x

∂

∂s
t (8)

, where R1 = 1/κ is the radius of curvature.
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The axial and shear strains can be calculated as follows in the adopted curvilinear
coordinate system:

ε1 =
∂u1
∂x

, ε2 =
∂u2
∂y

, ε3 =
R1

R1 − x

(
∂u3
∂s

− u1
R1

)
,

γ12 =
∂u1
∂y

+
∂u2
∂x

, γ13 =
R1

R1 − x

(
∂u1
∂s

− τ u2 + κu3

)
+
∂u3
∂x

,

γ23 =
R1

R1 − x

(
∂u2
∂s

+ τu1

)
+
∂u3
∂y

.

(9)

It is seen from these relationships that some of the deformations depend only on
the function itself and its x, y derivative, while others depend on the derivative with
respect to s. We will introduce the following vectors using notation (...)

′
= ∂(...)/∂s:

For Model 0:

h(1)0T = [u01 u02 u03 χ1 χ2 χ3] , h(1)0 ′T = [u′01 u
′
02 u

′
03 χ

′
1 χ

′
2 χ

′
3]

ψ̃
T

0 = ψ̃
T

0 (s) =
[
h(1)0T h(1)0 ′T

]
=

= [u01 u02 u03 χ1 χ2 χ3 u′01 u
′
02 u

′
03 χ′

1 χ
′
2 χ′

3] .

(10)

For Model 1:

h(1)T =
[
h(1)0T h(1)1T

]
, h(1)1T = [u1x, u2y] , h(1)1 ′T =

[
u′1x, u

′
2y

]
,

ψ̃
T

1 = ψ̃
T

1 (s) =

[
ψ̃

T

0 ψ̃
h(1)1T

]
,

ψ̃
h(1)1T

= ψ̃ h(1)1T (s) =
[
h(1)1T h(1)1′T

]
=

[
u1x, u2y, u

′
1x, u

′
2y

]
.

(11)

For Model 2:

ψ̃
T

2
= ψ̃

T

2
(s) =

[
ψ̃

T

1 ψ̃
h(2)T

]
, ψ̃

h(2)T
=

[
h(2)T h(2)′T

]
,

h(2)T =
[
u1x2 u1xy u1y2 u2x2 u2xy u2y2 u3x2 u3xy u3y2

]
,

h(2)′T =
[
u′1x2 u′1xy u

′
1y2 u′2x2 u′2xy u

′
2y2 u′3x2 u′3xy u

′
3y2

]
.

(12)

For Model 3:

ψ̃
T

3
= ψ̃

T

3 (s) =

[
ψ̃

T

1 ψ̃
h(2)T

ψ̃
h(3)T

]
,

ψ̃
T

3
=

[
ψ̃

T

2 ψ̃
h(3)T

]
, ψ̃

h(3)T
= ψ̃

h(3)T
(s) =

[
h(3)T h(3)′T

]
,

h(3)T =
[
u1x3 u1x2y u1xy2 u1y3 u2x3 u2x2y u2xy2 u2y3 u3x3 u3x2y u3xy2 u3y3

]
.

(13)

For higher approximations we write:

ψ̃
T

m =

[
ψ̃

T

m−1 ψ̃
h(m)T

]
, ψ̃

h(m)T
= ψ̃

h(m)T
(s) =

[
h(m)T h(m)′T

]
. (14)

Additional director functions are listed in Appendix A.
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Based on the above, the deformation vector can be concisely written in the following
form for the m-th model

ε =


ε1
ε2
ε3
γ12
γ13
γ23

 = [Γ1 Γh(2) ... Γh(m−1) Γh(m) ]



ψ̃1

ψ̃
h(2)

...

ψ̃
h(m−1)

ψ̃
h(m)


= Γm

ψ̃m−1

ψ̃
h(m)

 = Γmψ̃m,

(15)
where Γm(x, y) is generated based on the derivation relations under (9) and the field

functions in ψ̃m(s). We will approximate based on the p-version finite element

ψ̃m(s) = Gtotal
m (s)qm +Φtotal

mp (s)amp (16)

where qm comprises the nodal values, amp is the vector of parameters related to
the internal functions, Gtotal

m (s), Φtotal
mp (s) are the approximation matrices. Figure 3

shows the approximation of an arbitrary function h.

Figure 3. Approximation of field functions within a finite element

G(s)h describes the linear change along the rod, while Φh
p(s) ah p provides the

approximation with a higher degree (maximum p-th degree) polynomial, as indicated
in Figure 3. The nodal values hI , hJ and the additional constants in the vector
ah p are the unknowns. The derivation of matrices and vectors in (16) is included in
Appendix B.

2.4. Stresses. The six independent elements of the stress tensor define the stress
vector σ of size (6× 1):

σ = D ε (17)

where D is the matrix of the material constants.

2.4.1. In the case of Model-0 this is simplified. It has the following form

εT = [ε3 γ13 γ23] , σT = [σ3 τ13 τ23] , D = ⟨E G G⟩ diagonal matrix (18)

where E is the Young’s modulus, G is the shear modulus.
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2.4.2. Model-1,...,6d. Then we have

εT = [ε1 ε2 ε3 γ12 γ13 γ23] , σT = [σ1 σ2 σ3 τ12τ13 τ23] . (19)

For these cases matrix D is a (6× 6) material constant matrix corresponding to the
3D state of stress.

2.5. Potential energy. The total potential energy is [1] is given by

Πp =
1

2

∫
V

εTD ε dV −Wwork =
1

2

∫
L

ψ̃T
m(

∫
S

ΓT
mDΓm dS )ψ̃mds−Wwork, (20)

where Wwork is the work of the external load and the integral over the volume was
written as the product of two integrals, one over the length coordinate s, the other
over the the cross section S. The integral over the cross section is a function of s,

D̃m =

∫
S

ΓT
mDΓm dS. m = 1, . . . , 6 (21)

Thus the potential energy is

Πp =
1

2

∫
L

ψ̃
T

m D̃m ψ̃mds−Wwork. m = 1, . . . , 6 (22)

The integration should be performed over the domain of s. Using the relations

q = qm, a = amp, D̃ = D̃m =

∫
S

ΓT
mDΓm dS, G = Gtotal

m and Φ = Φtotal
mp

the potential energy can be rewritten into the form

Πp =
1

2

∫
L

(qTGT + aTΦT ) D̃ (Gq+Φa) ds−Wwork = U −Wwork (23)

from which the functional form of the stiffness matrix is yielded as

K =

[
Kqq Kqa

Kaq Kaa

]
, Kqq =

∫
L

GT D̃ G ds, (24a)

Kaa =

∫
L

ΦT D̃ Φ ds, Kqa =

∫
L

GT D̃ Φ ds = KT
aq. (24b)

The reduced load vector is given by fT =
[
fTq fTa

]
.

Finally, eliminating the internal variables, the reduced stiffness matrix and load
vector are obtained:

Kred = Kqq −Kqa(Kaa)
−1

Kaq, fred = fq −Kqa(Kaa)
−1

fa. (25)

The internal variables are recovered in the post-solution process using the relationship

a = (Kaa)
−1

fa − (Kaa)
−1

Kaqq. (26)
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Figure 4. Unknowns associated with the external and internal nodes
of the finite element belonging to the h3 model

2.6. The load vectors.

1. In the case of the h0 model the applied loads, as well as the stress resultants,
are functions of the center line coordinate.

2. In the case of the h1, h2, h3, . . . models, we calculate the work of the loads
distributed on the surface. The process is illustrated for the h3 model in the
following. The approximate displacement field for this model is calculated
based on (4). Collecting the functions depending on s, we write:

ψdispl
3 =ψdispl

3 (s)=


u0(s)
χ (s)
h(1)1(s)
h(2)(s)
h(3)(s)

=

h(1)(s)
h(2)(s)
h(3)(s)

=R3
red



h(1)(s)

h(1)′(s)
h(2)(s)

h(2)′(s)
h(3)(s)

h(3)′(s)


=R3

red ψ̃3(s), (27)

where the operator R3
red(29,58) produces the displacements ψdispl

3 from the ψ3

vector, including the derivatives. Therefore the displacement vector defined in
(4), taking into account (27), is

u = u(x, y, s) =
[
U(1) U(2) U(3)

]
ψdispl

3 =

= U3(x, y)ψdispl
3 (s) = U3(x, y)R3

redψ̃3(s). (28)
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Furthermore, in a view of (16) we have

ψ̃3(s) = Gtotal(s) qtotal +Φtotal(s) atotal. (29)

Hence the work of the load acting on the surface Sload is

Wwork=

∫
Sload

ψ̃
T

3 (s)R
3,T
red U3,T (x, y) pload(x, y, s) dS, (30)

from which the reduced load vectors are calculated. When the load is a function
of x, y (i.e. the load acts on the cross-section of the bar, marked I or J) and
the cross section of the body is rectangular, with dimensions a, b in the x and
y directions, then the distributed load can be written as

pload =


τ013

(
1−

(
x

a/2

)2
)

τ023

(
1−

(
y

b/2

)2
)

σ0 − σ+

b/2y

 (31)

where τ013, τ023, σ0, σ+ are given quantities. Then the work of the load is

Wwork=ψ̃
T

3 (sI(J))R
3,T
red

∫
SI(J)

U3,T (x, y) pload(x, y) dSxy . (32)

With (32) the reduced load vectors are

fq =
(
Gtotal,T (sI(J))

)
R3,T

red

∫
SI(J)

U3,T (x, y) pload(x, y) dSxy ,

fa =
(
Φtotal,T (sI(J))

)
R3,T

red

∫
SI(J)

U3,T (x, y) pload(x, y) dSxy .

(33)

If the load is exerted on a planar surface defined by x = −a/2 then

Wwork =

∫
Sload

ψ̃
T

3 (s)R
3,T
red U3,T (x = −a/2, y) pload(y, s) dSys. (34)

The procedure is analogous for the other hierarchic models.

2.7. Treatment of elastic foundation. Let us assume that on the surface y = b/2
a ring-shaped body is in contact with a Winkler-type foundation characterized by
spring constant c. Then the strain energy is

Ufound =
1

2

∫
Sfound

uy(x, y = b/2, s) cuy(x, y = b/2, s) dSxs . (35)

Therefore, in view of the approximation of u(x, y, s) under (28) we get
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uy = u(x, y, s)Te2 =
(
u(x, y, s)

T
e2

)T

= eT2 u(x, y, s) = u(x, y, s)T

 0
1
0

 =

[0 1 0]u(x, y, s) = ψ̃
T

3 (s)R
3,T
redU

3,T (x, y)

 0
1
0

 = [0 1 0]U3(x, y)R3
redψ̃3(s), (36)

that is

Ufound=
1

2

∫
Sfound

ψ̃
T

3 (s)R
3,T
redU

3,T (x, y=b/2)

 0 0 0
0 c 0
0 0 0

U3(x, y=b/2)R3
redψ̃3(s)dSxs .

(37)

Using (29), omitting the upper index and performing the integrations, the energy is
written in the form

Ufound =
1

2

[
qT aT

] [ Cqq Cqa

Caq Caa

] [
q
a

]
, (38)

where the stiffness matrix of the elastic support is

C =

[
Cqq Cqa

Caq Caa

]
in which

Cqq=

∫
Sxs

GTW G dSxs , Caa=

∫
Sxs

ΦT W Φ dSxs , Cqa=

∫
Sxs

GT W ΦdSxs=CT
aq

and

W = W (x, y = b/2) = R3,T
redU

3,T (x, y = b/2)

0 0 0

0 c 0

0 0 0

U3(x, y = b/2)R3
red.

3. Formulation of frictionless contact problem

3.1. General equations. The line of thought in this subsection is based on [38, 39,
50, 51]. Let the displacement of the bodies in the normal direction of contact nc be
ui = ui · nc, i = 1, 2, and g be the initial gap in the contact region Sc – see Figure 5.

Figure 5. Bodies in contact. Notations
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There is contact when d = u
(1)
n − u

(2)
n + g = 0 and pn ⩾ 0, while a gap is present if

d = u
(1)
n − u

(2)
n + g > 0 and pn = 0, where d is the gap formed after deformation and

pn is the contact pressure.

The pnd = 0 condition is fulfilled over the entire Sc domain. Solving the con-
tact problem with the augmented Lagrange multiplier method [17, 28, 32, 42], it is
necessary to incorporate the contact penalty energy:

U cont =
1

2

∫
Sc

d− cn d
− dSc =

1

2

∫
Sc

(u(1)n − u(2)n + g)cn (u
(1)
n − u(2)n + g) dSc (39)

and the Lagrangian term:

Waug =

∫
Sc

pnd dS =

∫
Sc

pn(u
(1)
n − u(2)n + g)dS, (40)

where d− ≤ 0, cn >> 0 is the penalty parameter. The displacement in the normal
direction is given by

u(i)n = nc · u(i) = nTu(i), i = 1, 2.

The total energy, the minimum of which is sought subject to the stated inequalities,
is:

Laug = Πp −Waug + U cont. (41)

Considering the relation u
(i)
n = nc · u(i) = nTu(i) and using (28), (29) for the dis-

placement of the i-th body in the normal direction on the surface y
(i)
b (the formulae

are general, so we ignore the reference to the h3 model, the index 3), we get

u(i)n = nTU(i)(x, y
(i)
b )Rred

(
G(i)(s)q(i) +Φ(i)(s)a(i)

)
=

= nT Ũ(i)(x, y
(i)
b )

(
G(i)(s)q(i) +Φ(i)(s)a(i)

)
(42)

and, defining Cn = cn n
Tn, the penalty energy given in (39), neglecting the constant

term from the initial gap, is written in compact form:

U cont =
1

2

[
aTqT

]([ Cqq Cqa

Caq Caa

] [
q
a

]
− 2

[
fcq
fca

])
=

1

2
q̃T

(
C̃ q̃− 2f̃

)
, (43)

where

qT =
[
q(1)T q(2)T

]
, aT =

[
a(1)T a(2)T

]
,

Cqq =

∫
Sc

[
G(1)T Ũ(1)TCnŨ

(1)G(1) −G(1)T Ũ(1)TCnŨ
(2)G(2)

−G(2)T Ũ(2)TCnŨ
(1)G(1) G(2)T Ũ(2)TCnŨ

(2)G(2)

]
dSc ,

fcq = −
∫
Sc

cn

[
G(1)T Ũ(1)Tng

−G(2)T Ũ(2)Tng

]
dSc ,

Caq = CT
qa =

∫
Sc

[
Φ(1)T Ũ(1)TCnŨ

(1)G(1) −Φ(1)T Ũ(1)TCnŨ
(2)G(2)

−Φ(2)T Ũ(2)TCnŨ
(1)G(1) Φ(2)T Ũ(2)TCnŨ

(2)G(2)

]
dSc ,
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Caa =

∫
Sc

[
Φ(1)T Ũ(1)TCnŨ

(1)Φ(1) −Φ(1)T Ũ(1)TCnŨ
(2)Φ(2)

−Φ(2)T Ũ(2)TCnŨ
(1)Φ(1) Φ(2)T Ũ(2)TCnŨ

(2)Φ(2)

]
dSc ,

fca = −
∫
Sc

cn

[
Φ(1)T Ũ(1)Tng

−Φ(2)T Ũ(2)Tng

]
dSc ,

and C̃, f̃ are the stiffness matrix and load vector of the contact element, respectively.

When u
(1)
n = 0, then we get the stiffness matrix of the Winkler-type foundation for

body 2.

The work term corresponding to augmentation is:

Waug =

∫
Sc

pnd dS =

∫
Sc

pn(q
(1),TG(1)T Ũ(1)Tn− q(2),TG(2)T Ũ(2)Tn+ g)dS+

+

∫
Sc

pn(a
(1),TΦ(1)T Ũ(1)Tn− a(2),TΦ(2)T Ũ(2)Tn)dS,

that is

Waug = qT faug,q + aT faug,a , (44a)

where

faug,q =


∫
Sc

pnG
(1)T Ũ(1)Tn dS

−
∫
Sc

pnG
(2)T Ũ(2)Tn dS

 , faug,a =


∫
Sc

pnΦ
(1)T Ũ(1)Tn dS

−
∫
Sc

pnΦ
(2)T Ũ(2)Tn dS

 . (44b)

In the iterative solution process the contact pressure is calculated from the following
formula using Macaulay brackets

p(j+1)
n =

〈
p(j)n − cnd

(j)
〉
, x(j+1) =

〈
x(j) +

∣∣x(j)∣∣
2

〉
. (45)

The iteration process is started by solving the problem using the penalty method and
continued by incrementing the pressure where the term in parenthesis is positive, and
setting the value of cn to zero where it is negative. This gives us the modified contact
stiffness and load vector. The iteration process is generally stable when the cn value
is sufficiently small.
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3.2. Model in the global coordinate system.

3.2.1. Hierarchical bar elements in cases when the displacement field is approximated
by Taylor or Legendre polynomials. The displacement vector in the XY Z global co-
ordinate system is written as:

u = u eX + v eY + w eZ . (46)

The displacement in the cross section of a rod is approximated by the function
U(m)(ξ, η), in the longitudinal direction it is approximated by the function h(m)(ζ).
The displacement vector is the product of the two functions:

u = u(ξ, η, ζ) =

M∑
m=1

h̄(m)(ξ, η, ζ) =

M∑
m=1

U(m)(ξ, η) h
(m)(ζ), (47)

where −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1, −1 ≤ ζ ≤ 1 are the coordinates of the standard
hexahedral element.

Depending on the degree of the polynomial functions included in the series expan-
sion, we arrive at a sequence of hierarchical rod models, characterized by polynomials
of degree Tm or Lm. At a given level, the longitudinal distribution of the displace-
ment field is determined by the highest power of the polynomial in the definition of
h(m)(ζ). The maximum of the degree will be denoted by p.

polynomial order : Lm

polynomial order : Lm

polynomial order : p

Figure 6. A prismatic rod with a rectangular cross section in the
adopted local coordinate system (ξ, η, ζ). I and J are the initial and
final cross section labels.

We denote the shape functions containing Lm-order Legendre polynomials [1, 37]
describing the director functions by Ni(ξ, η), and the longitudinal ones by ψi(ζ). We
get

uτ =

nLm∑
i=1

Ni(ξ, η) · ψi
τ (ζ), τ = 1, 2, 3 (48)
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which in matrix form is written as

uτ = Nτ (ξ, η)ψτ (ζ), τ = 1, 2, 3 (49)

where

Nτ (ξ, η) = [N1(ξ, η) N2(ξ, η), ..., Ni(ξ, η), ..., NnLm(ξ, η)](1,nLm),

in which nLm is the number of Legendre polynomials. The ψτ function is approxi-
mated as outlined in Figure 7. The displacement of the bodies will be approximated

Figure 7. Approximation along the length of the rod for an arbitrary
function h

by linear approximation and higher power Legendre functions through the values in
the nodes I and J of the element. In concise form:

ψi
τ =ψ

i
τ (ζ)=

1

2
(1− ζ)ui,Iτ +

1

2
(1 + ζ)ui,Jτ +

p∑
j=2

Hj(ζ)a
i,j
τ , i=1, ..., nLm, τ=1, 2, 3

(50a)

ψi
τ =ψ

i
τ (ζ)=

[
1

2
(1−ζ) 1

2
(1+ζ)

] [
ui,Iτ
ui,Jτ

]
+

p∑
j=2

Hj(ζ)a
i,j
τ , i=1, ..., nLm, τ=1, 2, 3

(50b)

ψi
τ = ψi

τ (ζ) = g̃(ζ)qi
τ + h̃(ζ)aiτ , i=1, ..., nLm, τ=1, 2, 3 (50c)

It can be seen from the approximation displayed in (50) that one component of the
displacement is approximated through nLm ∗ (p + 1) parameters. Note that Hj(ζ)
can be obtained from Legendre polynomials Pj(ζ) using the formula

Hj(ζ) =
1√

2(2j − 1)
(Pj(ζ)− Pj−2(ζ)),

see, for example [1, 37]. In matrix form (np = p− 1):

ψτ(nLm,1) = ψτ (ζ) =

= G̃(ζ)(nLm,2×nLm)qτ(2×nLm,1) + H̃(ζ)(nLm,nLm×np)aτ(nLm×np,1), τ = 1, 2, 3

(51)
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Introducing the following matrix:

N(ξ, η)
(3,3×nLm)

=

 N1(ξ, η) 0 0 . . . Ni(ξ, η) 0 0 . . .
0 N1(ξ, η) 0 . . . 0 Ni(ξ, η) 0 . . .
0 0 N1(ξ, η) . . . 0 0 Ni(ξ, η) . . .

 (52)

the displacement vector uT = [u1 u2 u3] is written in the following form:

u = N(ξ, η)ψ(ζ). (53)

In addition the vector ψ = ψ(ζ) is:

ψ(3×nLm,1) = ψ(ζ) =

= G(ζ)(3×nLm,6×nLm)q(6×nLm,1) +Φ(ζ)(3×nLm,3×nLm×np)a(3×nLm×np,1) (54)

h̃
(1,np)

=
[
H2(ζ) H3(ζ) . . . Hp(ζ)

]
, H̃(ζ)

(nLm,nLm×np)

=


h̃(ζ) . . .

h̃(ζ) . . .
. . . . . . . . . . . . . . . . . . .

. . . h̃(ζ)

 ,
(55a)

qτ
(2×nLm,1)

=


q1

q2

· · ·
qnLm

 , aτ
(nLm×np,1)

=


a1

a2

· · ·
anLm

 , (55b)

G̃
(nLm,2×nLm)

=


G̃11 0 · · · 0 G̃1,nLm+1 0 · · · 0

0 G̃22 · · · 0 0 G̃2,nLm+2 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · G̃nLm,nLm 0 0 · · · G̃nLm,2×nLm

 ,
G̃11 = G̃22 = · · · = G̃nLm,nLm =

1− ζ

2
,

G̃1,nLm+1 = G̃2,nLm+2 = · · · = G̃nLm,2×nLm =
1 + ζ

2
,

(55c)

G
(3×nLm,6×nLm)

=
G11 0 · · · 0 G1,3×nLm+1 0 · · · 0

0 G̃22 · · · 0 0 G̃2,3×nLm+2 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · G̃3×nLm,3×nLm 0 0 · · · G̃3×nLm,6×nLm

 ,
G11 = G22 = · · · = G3×nLm,3×nLm =

1− ζ

2
,

G1,3×nLm+1 = G2,3×nLm+2 = · · · = G3×nLm,6×nLm =
1 + ζ

2
.

(55d)
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Φ(ζ)
(3×nLm,3×nLm×np)

=


H2 H3 · · · Hp 0 0 · · · 0 · · · · · · 0 0 · · · 0
0 0 · · · 0 H2 H3 · · · Hp · · · · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0 0 · · · 0 · · · · · · H2 H3 · · · Hp

 .
(55e)

The internal coordinates displacement coordinates of the element are approximated
via NDhLm

1 = 2× nLm+ nLm× (p− 1) = nLm(p+ 1) parameters. So, the vector
q(6×nLm,1) contains the coefficients of hLm polynomials interpreted on the I and J

planes, while the vector a(3×nLm×np,1) contains the coefficients ai,jτ that multiply the
polynomials Hj(ζ), i.e.

qT

(1,6×nLm)

=
[
u1,I1 u1,I2 u1,I3 u2,I1 u2,I2 u2,I3 . . . unLm,I

1 unLm,I
2 unLm,I

3

u1,J1 u1,J2 u1,J3 u2,J1 u2,J2 u2,J3 . . . unLm,J
1 unLm,J

2 unLm,J
3

]
(56)

aT
(1,3×nLm×np)

=
[
a1,21 . . . a1,p1 a1,22 . . . a1,p2 a1,23 ... a1,p3 . . .

anLm,2
1 . . . anLm,p

1 anLm,2
2 . . . anLm,p

2 anLm,2
3 . . . anLm,p

3

]
(57)

Using the notation u = u1, v = u2 w = u3 the components of the strain tensor are
calculated as follows:

εX =
∂u

∂X
, εY =

∂v

∂Y
, εZ =

∂w

∂Z
,

γXY =
∂u

∂Y
+

∂v

∂X
, γY Z =

∂v

∂Z
+
∂W

∂Y
, γZX =

∂w

∂X
+
∂u

∂Z
.

(58)

Since the displacement field is approximated in the local system ξ, η, ζ, it will be
necessary to calculate the derivative of the displacement u in the global system:

∂Gu =


∂u
∂X
∂u
∂Y
∂u
∂Z

 = J−1


∂u
∂ξ
∂u
∂η
∂u
∂ζ

 = J−1∂Lu ,

where J−1 is the inverse of Jacobian matrix J:

J =


∂X
∂ξ

∂Y
∂ξ

∂Z
∂ξ

∂X
∂η

∂Y
∂η

∂Z
∂η

∂X
∂ζ

∂Y
∂ζ

∂Z
∂ζ

 . (59)

We remark that J is calculated from the mapping functions. For later consideration
we shall introduce the following notations:

∂ξN(ξ, η)=N,ξ(ξ, η), ∂ηN(ξ, η)=N,η(ξ, η), ∂ζG̃(ζ)=G̃,ζ(ζ), ∂ζH̃(ζ)=H̃,ζ(ζ)
(60)
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The derivatives of the displacement fields in the local system are:

u,ξ =
∂u

∂ξ
= N,ξ(ξ, η)(G̃(ζ)qu + H̃(ζ)au), u = u1 ↔ v = u2 ↔ w = u3

u,η =
∂u

∂η
= N,η(ξ, η)(G̃(ζ)qu + H̃(ζ)au), u = u1 ↔ v = u2 ↔ w = u3

u,ζ =
∂u

∂ζ
= N(ξ, η)(G̃,ζ(ζ)q

u + H̃,ζ(ζ)a
u), u = u1 ↔ v = u2 ↔ w = u3

(61)

Based on (58), the derivatives of the displacement components are computed in the
global coordinate system from which the 3D strain tensor and, through application
of Hooke’s law, the stress tensor are computed.

Figure 8. Relationship betweern the local coordinates ξ, η, ζ and the
global ones

The mapping for a curved element is illustrated in Figure 8 where the blending
technique was used to produce a smooth mapping function [1, 37].

Note that φ̄m = (φ̄I + φ̄J)/2, φ̄d = (φ̄J − φ̄I)/2, φ̄ = φ̄m + ζφ̄d.

It is worth comparing the number of unknowns associated with the 3D p-version
with the hierarchical element: Using the trunk space described [1, 37], each field is
approximated with ND3D

1 unknowns whereas there are NDhLm
1 unknowns in the

hierarchic formulation.

The three displacement fields are approximated using NDhLm = 3 × nLm × 2 +
3 × nLm × (p − 1) = 3 × nLm × (p + 1) degrees of freedom per element. Of these,
3 × nLm × 2 belong to the boundary points (nodes I and J), the rest are internal
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functions. For 3D elements (hexahedral element), the number of unknowns used to
describe one or three fields is ND3D

1 or ND3D
3, i.e.,

p = 2 3 4 5 6

ND3D
1 20 35 54 79 111

ND3D
3 60 105 162 237 333

For the planar trunk space, the number of unknowns is:

p = 2 3 4 5 6 7 8

ND2D
1 8 12 17 23 30 38 47

ND2D
2 16 24 34 46 50 76 94

These relationships also hold when Tm polynomials rather than Lm polynomials
are used.

The director functions for the hTm elements are the polynomials constructed by
substituting x→ ξ, y → η for the monomials of the Pascal triangle (see Appendix A)
for the hm element, where −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1, i.e. hm→ hTm.

Since three-dimensional displacements are approximated by both the hTm and
hLm elements, the total number of unknowns is NDhTm

1 and NDhTm, respectively.

hTm beam element with Taylor expansion

ht2 ht3 ht4 ht5 ht6 ht7 ht8

NDhTm
1 6(p+1) 10(p+1) 15(p+1) 21(p+1) 28(p+1) 36(p+1) 45(p+1)

NDhTm 18(p+1) 30(p+1) 45(p+1) 63(p+1) 84(p+1) 108(p+1) 134(p+1)

hLm beam element with 2D Legendre function

hL2 hL3 hL4 hL5 hL6 hL7 hL8

NDhLm
1 8(p+1) 12(p+1) 17(p+1) 23(p+1) 30(p+1) 38(p+1) 47(p+1)

NDhLm 24(p+1) 36(p+1) 51(p+1) 69(p+1) 90(p+1) 114(p+1) 141(p+1)

For hTm elements, we use polynomials defined by

Hj+1(ζ) = [0.5(1 + ζ)]
j+1 − 0.5(1 + ζ), j = 1, 2, ....

It is seen that for the 3D approximation at p = 6, the degree of freedom of the element
is 333, while for the hierarchical element hTm (hT6) it is 588, and for the hierarchical
element hLm (hL6) it is 630. Here we assumed that the polynomial degree assigned
to the longitudinal approximation is 6.

Note: Given that the displacement field of the i-th element is approximated in
the form u(i) = N(i)(ξ, η)ψ(i)(ζ), the N(i)(ξ, η) and N(i)(ξ, η = ±1) matrices must

be used instead of the U(3)(x, y)R
(3)
red and Ũ(i)(x, y

(i)
b ) matrices when a Winkler-type

foundation is used or the contact problem described previously has to be solved.
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4. Numerical examples

4.1. Prismatic beam. Let the geometric dimensions of a prismatic beam be a = 40,
b = 20, L = 157.0796 mm (200π/4 = 50π), and the material constants be: Elastic
modulus E = 2 · 105 MPa, Poisson’s ratio ν = 0.3. The beam is shown in Figure 9.

In the following we present results for two load cases. In the first load case, at
the end of the rod, on the Z = 0 boundary, a parabolic distributed load acts in the
direction y which has the resultant FY = 200 N. In the second load case a distributed
load with an intensity of py = −pY = 0.25N/mm

2
acts on the y = −b/2 surface in

the direction y.

Figure 9. The geometry of a cantilever prismatic beam, the global
XY Z and the local coordinate system xys (s = Z). The beam is
fixed in the Z = L plane

Solving a sequence hierarchical models, we get the results for degrees p = 2, ..., 6
in terms of the Y -component of the displacement of the centroid of the cross section
Z = 0 shown in Figure 10. The results of the 3D finite element model (obtained
by the StressCheck program) are also shown. It is clear that as the hierarchic level
increases, displacement converges to the 3D result. The results for a sequence of
hLm models are shown in Figure 11. The differences between the hierarchic models
and the 3D finite element solution are model form errors within the family of models
formulated under the assumptions of the linear theory of elasticity.
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a

 

b

Figure 10. Convergence diagrams for hm models: a) the parabolic
distributed load on the end plate acts (1st load), resulting in FY =

−200 N, b) py = −pY = 0.25N/mm
2
load is distributed on the

y = −b/2 surface (2nd load)

 

a

 

b

Figure 11. Convergence diagrams for hLm models, a) 1st load case,
the displacement of the point x = y = 0 of the end plate in the Y
direction in the case of different hierarchical models, b) 2nd load case

It is seen that in the case of load 2 the displacement values agree to 4 decimal digits
when 16 elements and the hL6 and hL7 models are used. The numerical values are:
hL6 - 0.482632D-01, hL7 - 0.482690D-01 mm for load case 1; hL6 - 0.142313D+00,
hL7 - 0.142336D+00 mm for load case 2.

Solving the same problem using the Abaqus software, we get:

Mesh 1: 10 × 10 × 9.862 hexahedral elements (C3D20R), 20 nodes, quadratic, re-
duced integration, the number of nodes is 869 (2496 degrees of freedom, lnNDOF=7.82)
Mesh 2: 2 × 2× 1.987 hexahedral elements (C3D20R), 20 nodes, quadratic, reduced
integration, thus the total node number: 71129 (212726 unknown, lnNDOF=12.27)
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• Load case 1 for Mesh 1 -0.0541153 [mm]; for Mesh 2 -0.0485062 [mm]
• Load case 2 for Mesh 1 -0.1416740 [mm]; for Mesh 2 -0.142314 [mm].

On comparing the results with those obtained by StressCheck (load case 1 -0.0484
mm, load case 2 -0.143 mm), a much lower rate of convergence is observed.

Furthermore, we note that reduced integration introduces a type error that cannot
be treated by mesh refinement. Reduced integration is one of the variational crimes
[52].

The distributions of the stress σ2 for the models h3 and h6 are shown for load
case 2 in Figure 12. Here py = 0.25 MPa acts as a compressive stress on the surface
y = −b/2.

  

Figure 12. σ2 stress distributions in load case 2 (models h3, h6)

We observe that the weak boundary conditions are well approximated by the h6
model: σ2 is zero at the y = 10 mm boundary and it is = −0.25 MPa at the y = −10
mm boundary. This is not the case for lower order models such as model h3.

4.2. Curved beam. Next we consider the curved beam shown in Figure 13. The
geometric parameters are: R0 = 100 mm, a = 40 mm, b = 20 mm. The material is
assumed to be linearly elastic, homogeneous and isotropic, the modulus of elasticity
is E = 2.0 · 105 MPa, Poisson’s ratio is 0.3.

We examine the behavior of the structure under two load cases: In load case 1,
parabolic distributed traction is applied on the cross section φ̄ = π in the Z direction,
the resultant of which is Fz = 200 N. In load case 2 distributed normal traction
is exerted on the surface y = −b/2 in the Z direction, the magnitude of which is
py = 0.25 MPa.

Application of hm type elements.The convergence diagrams obtained for two load
cases are shown in Figures 14-15. The results of the 3D solution obtained with
the StressCheck finite element program [35] are also shown. The diagrams clearly
show the rapid convergence of the quantities of interest computed from the numerical
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solutions. The relative errors defined by

error =
|uFEM | − |uhierarc|

|uFEM |
100% (62)

are below 4% for both load cases in the h6, h7 models, whereas the relative error is
over 17% at the initial low hierarchical level.

X

Z y

x

X

Y

b
a

0R

s

x



3   

0 / 2iR R a 
0 / 2eR R a 

Figure 13. Geometry of the curved rod, the global XY Z coordinate
system and the local xys coordinate system. The beam is fixed in
the plane φ̄ = 3π

Load case 1

 

a b

Figure 14. Convergence diagrams for hm elements for load case 1
(Fz = 200 N), a) displacement values, b) relative errors in displace-
ments
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Load case 2

 

a

 

b

Figure 15. Convergence diagrams for hm elements in load case 2: a)
displacements, b) relative errors in displacements

Application of hLm type elements. In this section we demonstrate that much faster
convergence can be obtained with hLm type elements. Polynomial approximations
p = 3, 4, 5, 6 were used in the longitudinal direction.

Load case 1:

 

a 4 elements

 

b 8 elements

 

c 16 elements

Figure 16. Convergence diagrams for hLm elements: at Fz = 200 N
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Load case 2:

 

a 4 elements

 

b 8 elements

 

c 16 elements

Figure 17. Convergence diagrams for load case 2

The relative errors do not exceed 1.2% when 8 elements and p = 6− 8 are used.

a b

Figure 18. Relative errors for 8 elements, p = 8, a) in load case 1, b)
in load case 2
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Application of hTm elements. The relative errors in terms of the maximum displace-
ment are shown for load cases 1 and 2 in Figure 19. Four hTm elements were used.

 

a

 

b

Figure 19. Convergence diagrams for load cases 1 and 2 using four
htm elements

 

a

 

b

c

Figure 20. Relative errors for hierarchical elements of type hTm, four
elements, a) load case 1, b) load case 2, c) potential energy for load
case 2
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Figure 20 shows the relative errors. Figure 20c shows the convergence of in potential
energy. It is clearly visible that the potential energy decreases as p increases, and the
smallest value was obtained by the hT7 model.

The hTm solution is more accurate than our original hm model. Comparing the
results obtained with the hTm and hLm approximations, we can see that the hLm
hierarchical approximation gives the more accurate result. This is because if the
maximum degree in Taylor expansion is q, then the trunk space will have two more
terms. The sum of the powers of the polynomial product terms is q + 1. It can be
seen that the results for the excessively low hT3, hL3 hierarchical level are far from
the exact solution.

4.3. Numerical example for the contact problem of prismatic beams. Let us
consider two flexible, prismatic cantilever beams as shown in Figure 21. The geometric
dimensions are: a = b = 15 mm. l = 66.66 mm. The possible contact domain is:
X ∈ (200, 300). The elastic constants are: E1 = 200 GPa, E2 = 50 GPa, or 20 GPa,
Poisson’s ratio ν = 0.3. The applied load is F0 = 1 kN.

Z
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x s
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'7ll

100
200 / 3l 

Figure 21. Contact problem of two prismatic beams. There are 12
elements. The points indicated by the open circles represent nodal
points

The calculations are performed with the h5 hierarchical rod model.

The contact conditions are checked in the Lobatto points, see, for example, [1, 37].
The penalty parameter was set to cn = 1000E1. Moving along the X axis from right
to left, we reach the point where we first find a negative d value.

At this value of X, we assume contact along the x axis in the transverse direction.
We will then select this point as the penultimate integration point of the element,
which we can use to determine the right-hand side, e.g. the position of the 6th
node. With repeated calculations, we move the edge of the element until we reach
the position in Figure 22.

Thus, there is contact on the entire surface of this element, and the one to the right
already has a gap [38, 39]. Figures 22-26 show some results for this. In the case of
E2 = 50 GPa, nodes 3′−4′ were moved, while in the case of E2 = 20 GPa , nodes 3′−4′

and 5′−6′ were moved. With the 12 element mesh, p = 6, the number of unknowns is
NDOF = 4464. The contact element boundaries were established in 10–20 iterations.
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Figure 22. Contact element

Comparing the results with those calculated by the Abaqus [36] and StressCheck [35]
3D finite element programs, looking at the deflection diagrams (Figures 23, 24 and 25),
we obtained very close approximations. The deformed configuration obtained with
StressCheck can be seen in Figure 23b. We note that the 3D solution with p = 6,
product space [1, 37], the number of unknowns exceeded the number of unknowns in
our h5 hierarchical beam model by the factor of nearly 7.

The edge of the contact range and the maximum bending stress in beam 1 are as
follows:

g = 0, Xc = 221.71 mm, σ(1)
max = 117.15 MPa,

g = 0.5, Xc = 207.47 mm, σ(1)
max = 124.40 MPa.

The distribution of the contact pressure as a function of s is shown in Figure 26. It
is clearly visible that the solution satisfies the constraint condition pnd = 0.

ba

Figure 23. The modulus of elasticity of beam 2 is E2 = 50 GPa, a)
Contact pressure with initial gap of 0.5 mm, b) deflection obtained
with the StressCheck program with zero initial gap. The number of
unknowns (NDOF) is 31,104
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Figure 24. Deflection of the beams

 

Figure 25. Deflection of the beams for beam 2 with a lower elasticity
modulus (E2 = 20 GPa)
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The edges of the contact range and the maximum bending stress in beam 1:

g = 0, Xc = 237.52− 262.05 mm, σ(1)
max = 100.71 MPa,

g = 0.5, Xc = 232.69− 257.29 mm σ(1)
max = 104.85 MPa.

4.4. Numerical example: Curved beam contact problem. We examine the
curved beam shown in Figure 13. The beam is resting on a Winkler-type elastic
foundation on the surface y = b/2. A parabolic distributed force Fz = 800 N is acting
on the face φ̄ = π . The geometric parameters are R0 = 100 mm, a = 40 mm, b = 20
mm. The material constants are E = 200 GPa, ν = 0.3. The Winkler constant is
cn = 50N/mm

2
. The beam is fixed at φ̄ = 3π. The calculations are performed using

the hierarchic model h6, that is, the polynomial degree of the field functions is 6.

The displacement component in the Z direction on the circular curve x = 0,
y = −b/2, i.e., the curve on the surface on which the Winkler boundary condition is
prescribed, is shown in Figure 27. The displacement curve obtained for the Winkler
support is displayed in Figure 27a. Observe that tensile stresses occur. The maxi-
mum vertical displacement estimated by our method was 0.0154 mm whereas Abaqus
estimated it at 0.01616 mm, while the StressCheck estimation is 0.0164 mm. The
error in our approximation, compared with StressCheck, is approximately 6%.

Assuming one-sided frictionless contact between the elastic body and the founda-
tion, i.e. permitting compressive stresses only, the solution is shown in Figure 27b.
The first element is in contact, then a gap occurs and at the end there are four
elements on which contact occurs again.

The vertical displacement of the y = b/2 surface, corresponding to the the h6
model with 6 elements (NDOF=7996), is shown in Figure 28. The convergence of
the displacement of the point x = 0, y = b/2, s = 0 on the loaded surface and the
convergence curve including the maximum occurring at x = −a/2, y = b/2, s = 0 of
the loaded surface is shown in Table 1.

 

a

 

b

Figure 27. Displacement of the center line x = 0, y = b/2: a) Winkler
support, b) contact condition
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Figure 28. Vertical displacement of the surface y = b/2. The dis-
placement of the point x = 0, y = b/2, s = 0 is equal to maxuz =
25.76 µmm

Strong convergence is evident. Figure 29 shows the change in the value of the
angle φ̄, which marks the boundary of the first element. It can be seen that after 10
iterations we have already obtained the solution of the contact problem with negligibly
small error.

Solving the problem with 3D finite element programs (Abaqus, StressCheck), we
find that, considering Figures 30 and 31, the maxuz is in the point (x = −a/2,
y = b/2, s = 0), that is maxuz = 29.88 µmm obtained with Abaqus and the maxuz =
27.9 µmm (maxσz = 1.396 MPa, cn = 50 n/mm3) obtained with StressCheck with
maxuz = 29.61 µmm; we used the h6. The calculated error is Error= 100(29.61 −
27.9)/27.9 = 6.1%, which is a reasonable value considering the significantly smaller
number of unknowns in model h6. It should be mentioned that the Abaqus program
is based on the h-version whereas StressCheck program is based on the p-version. The
latter provides faster convergence and a sequence of solutions from which the limit
value of the quantities of interest can be estimated. This is an essential requirement
of solution verification.

Table 1. Demonstration of the convergence of the p-version method

p NDF uz [mm] maxuz [mm]

(x = 0, y = b/2, s = 0) (x = −a/2, y = b/2, s = 0)

2 2863 0.0256558 0.02955

3 4012 0.0257587 0.02964

4 5339 0.0257623 0.02963

5 6668 0.0257666 0.02962

6 7996 0.0257685 0.02961
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Figure 29. Location of the boundary of the first element as a function
of the iteration number when the positioning technique is used

 

Figure 30. Solutions obtained by the Abaqus program for differ-
ent numbers of elements using quadratic finite elements C3D20R
(NDOF= 20343, NDOF= 6174)
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Figure 31. The distribution of σz obtained by the StressCheck p-
version finite element program, (NDOF=41616)

4.5. The second numerical example for the contact problem of prismatic
beams. We examine the intersecting prismatic beams shown in Figure 32. Curved
surfaces, characterized by a parabolic function, is formed on the y = ±b/2 surfaces of
the beams. The extent of this is characterized by the cz amplitude value.

The elastic material parameters are Young modulus: E = 200 GPa, and Pois-
son’s ratio ν = 0.3. The dimensions and location coordinates of the beams result in
symmetrical contact when the loads have the appropriate symmetry.
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Figure 34. Finite element for mapping a) local system −1 ≤
ξ, η, ζ ≤ 1 , b) second order’s boundary is characterized by pa-
rameter cz

Load case 1:
We assign the values F8 = F11 = −F0 = −10 kN (in the −Z direction) and fix the
boundary A and B.

The hT6 hierarchical model and 16-node elements, shown in Figure 34, were used,
however the locations of the mid-side nodes 9, 11, 13, 15 were assigned values to
obtain curved surfaces. The assignment of nodes 9 and 11 is indicated in Figure
34. The assignment of nodes 13 and 15 was analogous. The penalty parameter was
assigned the value cn = 100000.

Using 5 elements per bar, taking into account the boundary conditions, the total
number of unknowns was 4874. The forces F8 F11 act as concentrated forces, since
the first term of the director function in the hT6 model is 1. This means that the
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force acts in the centroid of the cross section. The initial gap is provided by the
difference between the Z coordinates of the contact surfaces of bodies B1 and B2:
g = Z(B1, y = −b/2) − Z(B2, y = b/2) . We calculate this from the finite element
solution. The function obtained at cz = 0.1 is a quadratic function. (See e.g. Figure
36a.)

The estimated contact pressure is shown in Figure 35. The initial gap, the dis-
placement of the beams, the shear force and bending moment are shown in Figure 36.
The contact pressure was calculated in 19×19 Gauss integration points. The contact
conditions were enforced on the same 361 points. It is seen that contact occurs on a
relatively small surface area which was determined by augmentation. There was no
change in the final iterations, the gap between the bodies formed during the shape
change: d is of the order of 10−3. As expected, due to the vertical equilibrium, the re-
sulting contact force is 10.0 kN, its line of action passes through the point Xc = 75.0,
Yc = 0.0.

 

a

 

b

 

c

 

d

Figure 35. The distribution of the contact pressure in the configu-
ration is shown in this figure for load case 1, a) without augmenta-
tion step=1, b) with augmentation, step=13, c), d) normal contact
stresses calculated from Hooke’s law: c) augmentation step=0, d)
augmentation step=13
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The symmetry of the displacements is clearly visible in Figure 36b. The normal
stress calculated from the derivatives of the displacement field in the contact region via
Hooke’s law is shown in Figures 35c,d. Owing to the continuity of the approximation
fields in the assumed contact region, approximated by one element, we cannot recover
the negative of the contact pressure. The pressure is high in the middle of the contact
domain, and small at the edges; however, the hT6 model cannot accurately represent
the pressure distribution with the number of elements used in this example. On
the other hand, the contact pressure can be reliably estimated with the augmented
Lagrangian technique as indicated below.

 
a b

 c  d

Figure 36. Results for configuration 2 at load case 1, a) initial gap
function, b) vertical displacement on middle line of beam, c) distri-
bution of the shear force T , d) bending moment M1
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a b

Figure 37. Vertical displacement in the contact zone, a) for body B1,
b) for body B2 at initial gap cz = 0.1, load case 1

At cz = 0 the initial gap between the supports is zero. The normal stress in the
corner points of the contact region is not analytic. The numerical results obtained
on a grid of 19 × 19 Gauss points are shown in Figure 38. The resulting solution is
symmetric, resulting from the contact force of Fcont = 10.0 kN.

 

a

 

b

Figure 38. Contact pressure distribution interpolated on a grid of
19× 19 Gauss points, a) without augmentation step=1, b) with aug-
mentation, step=13. The initial gap was zero

Load case 2:
The l load is Fc = −5 kN (in the −Z direction). Referring to Figure 32, the B and
C boundaries are free, A and D are fixed.

We define second-order surfaces by letting cz = 0, 0.04, 0.08, 0.12, 0.4, 0.6, 0.8.
The resulting contact pressures and position of contact resulting force are shown in
Table 2. Note that as the curvature decreases, the contact area shifts inward of the
supposed contact area (65 ≤ X ≤ 85, −10 ≤ Y ≤ 10) and extends to a very small
surface area.
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At cz = 0, the contact is in the left corner of the relevant domain. Then, depending
on the curved surfaces of the beams, the contact shifts towards the middle of the
assumed contact area.

Table 2. Resulting contact forces and their positions at different pa-
rameters cz

cz Xs mm Ys mm Fz kN

0.00 66.41 -9.647 6.740

0.04 67.52 -9.560 6.665

0.08 69.10 -8.596 6.474

0.12 70.68 -6.842 6.297

0.40 72.99 -2.012 6.247

0.60 74.26 -2.100 6.110

0.80 75.00 -1.500 6.049

  a b

 
c

Figure 39. Results for case cz = 0.12 a) vertical displacement on the
center line of the beam, b) vertical displacement on middle line of
beam, c) distribution of the shear force T2, d) bending moment M1
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It is also obvious that, as the resultant of the contact pressure moves towards the
larger Y by increasing cz = 0, the resulting contact force decreases. The resulting dis-
tributions of bending moments and shear forces are essentially the same for different
variants. Therefore only one is presented here; Figure 39 represents the case cz = 0.12.

5. Summary and conclusions

We have investigated the algorithmic aspects hierarchic models for elastic rods us-
ing sequences of polynomial approximations. The models are semi-discretizations, in
which the displacement components that lie in the cross-sectional plane are repre-
sented by polynomials of a fixed degree when the rod is homogeneous, or piecewise
polynomials when the rod is made of composite materials. These are the director
functions. The coefficients of the director functions are functions of the lengthwise
coordinate and are discretized by the finite element method. In this way, the three-
dimensional problem of elasticity is transformed into sets of one-dimensional problems
that can be solved very efficiently. An important practical advantage is that the model
form errors as well as the discretization errors can be controlled.

Classical models of rods are extensively used in conventional engineering handbooks
and design manuals, see for example [53].

Through application of the algorithmic procedures outlined in this paper, is pos-
sible to extend the number and type of entries to a much broader class of problems
while removing the limitations inherent in the classical formulations. In other words,
numerical techniques, examples of which were discussed in this paper, allow substan-
tial extension of the breadth and depth of the scope of classical engineering handbooks
and design manuals.

Smart applications, also called ‘simulation apps’, are expert-designed in such a way
that those applications can be used by engineers whose expertise is not in numerical
simulation. The preservation and maintenance of institutional knowledge are among
the important objectives of standardization. Economic benefits are realized through
improved productivity and improved reliability. The challenging aspects of standard-
ization are that (a) the input parameters have to be suitably restricted so that the
assumptions incorporated in the models are not violated and (b) the model form
and the discretization errors have to be controlled such that the users’ expectation
of accuracy, stated in terms of the quantities of interest, is satisfied. The hierar-
chic formulation outlined in this paper provides the algorithmic foundation for smart
applications.

The hierarchical beam models can be advantageously used to solve strength prob-
lems through a model containing far fewer unknowns than fully 3D models. The
complexities in implementation are compensated for by substantially shortened exe-
cution times and increased reliability.
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39. Páczelt, I., Baksa, A., and Szabó, T. “Formulation of the p-extension finite
lements for the solution of normal contact probems.” Journal of Computational
and Applied Mechanics, 15, (2020), pp. 135–172. doi: 10.32973/jcam.2020.
009.
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Appendix A. The Pascal Triangle

The Pascal triangle is the set of monomial functions shown below:

1

x y h1

x2 xy y2 h2

x3 x2y xy2 y3 h3

x4 x3y x2y2 xy3 y4 h4

x5 x4y x3y2 x2y3 xy4 y5 h5

x6 x5y x4y2 x3y3 x2y4 xy5 y6 h6

x7 x6y x5y2 x4y3 x3y4 x2y5 xy6 y7 h7

x8 x7y x6y2 x5y3 x4y4 x3y5 x2y6 xy7 y8 h8

Appendix B. Mathematical transformations

In the present Appendix we detail the calculations for the terms in equation (16).

qG,T
I =

[
u0X u0Y u0Z χX χY χZ

]
, I → J, qT =

[
qG
I qG

J

]T
(B.1)

interpreted in the local system:

u0
L,T =

[
u01 u02 u03

]
, χL,T =

[
χ1 χ2 χ3

]
(B.2)

formally, the center line displacement, angular rotation and their derivatives with respect to
s are approximated in the form:[

u0

χ

]L

= Guχ q+Φuχ,p auχ,p,

[
u′
0

χ′

]L

= G′
uχ q+Φ′

uχ,p auχ,p (B.3)

where Guχ is the matrix [54] linearly approximating rigid-body and elastic displacements,
Φuχ,p is the matrix containing polynomials depending on the degree p, and is the vector of
additional constants. The vector in equation (10), taking into account equation (B.3), can
be written as

ψ̃0 = G0 q+Φ0
p a0p , G0 =

[
Guχ

G′
uχ

]
, Φ0

p =

[
Φuχ,p

Φ′
uχ,p

]
. (B.4)

By substituting equation (B.4) into equation (24), the stiffness matrix of the finite element

formulation is produced [1, 37].

In some detail

Φuχ,p =

[
Φ0p 0
0 Φ0p

]
=

[
Φup

Φχp

]
, Φ′

uχ,p =

[
Φ′

0p 0
0 Φ′

0p

]
=

[
Φ′

up

Φ′
χp

]
(B.5)

Letting s̄ = s/L, where L is the length of the center line of the element, the derivative with
respect to s can be calculated based on

(.)′ =
d(.)

ds
=

1

L

d(.)

ds̄
.
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We have

Φ0p
(3,3×np)

=

 s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄ 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄ 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄

 ,
(B.6a)

Φ′
0p

(3,3×np)

=
1

L

 2s̄− 1 · · · ps̄p−1 − 1 0 · · · 0 0 · · · 0
0 · · · 0 2s̄− 1 · · · ps̄p−1 − 1 0 · · · 0
0 · · · 0 0 · · · 0 2s̄− 1 · · · ps̄p−1 − 1


(B.6b)

and

a0p,T

(1,6np)
=

[
ap,T
u ap,T

χ

]
(B.7)

in which

ap,T
u

(1,3×np)

=
[
ap=2
u1 ap=3

u1 , ..., apu1 a
p=2
u2 ap=3

u2 , ..., apu2 a
p=2
u3 ap=3

u3 , ..., apu3
]
,

ap,T
χ

(1,3×np)

=
[
ap=2
χ1 ap=3

χ1 , ..., apχ1 a
p=2
χ2 ap=3

χ2 , ..., apχ2 a
p=2
χ3 ap=3

χ3 , ..., apχ3

]
.

In Model-1 the matrix of strains is:

ε =


ε1
ε2
ε3
γ12
γ13
γ23

 =
[
Γ1(0) Γ1(1)

] [ ψ̃0

ψ̃
h(1)

]
= Γ1ψ̃1 (B.8)

Using equations (10) and (11), the 16 functions are approximated as

ψ̃1 =

[
ψ̃0

ψ̃
h(1)1

]
=

 ψ̃0

hh(1)1

hh(1)1′

 =

 G0 0

0 Gh(1)1

0 Gh(1)1′

[
q

qh(1)1

]
+

+

 Φ0
p 0

0 Φh(1)1

p

0 Φh(1)1′
p

[
a0p

ah(1)1p

]
= Gtotal

1 q1 +Φtotal
1p a1p (B.9)

where

Gh(1)1

=

[
1− s̄ 0 s̄ 0
0 1− s̄ 0 s̄

]
, Gh(1)1′ =

1

L

[
−1 0 1 0
0 −1 0 1

]
, (B.10)

Φh(1)1

p
(2,2×np)

=

[
s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄ 0 0 · · · 0

0 0 · · · 0 s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄

]
, (B.11a)

Φh(1)1′
p

(2,2×np)

=

[
2s̄− 1 3s̄2 − 1 · · · ps̄p−1 − 1 0 0 · · · 0

0 0 · · · 0 2s̄− 1 3s̄2 − 1 · · · ps̄p−1 − 1

]
, (B.11b)

q1T =
[
qT
I ,q

T
J , q

h(1)1T
I ,qh(1)1T

J

]
, qh(1)1T

I
= [u1x u2y]I

I → J

ah(1)1pT =
[
ap=2
1x , ap=3

1x , ..., ap1x ; a
p=2
2y , ap=3

2y , ..., ap2y
]
.

(B.12)

Based on the previous equations, it is seen that the strain vector for the hm-th model is:
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ε =


ε1
ε2
ε3
γ12
γ13
γ23

 = [Γ1 Γh(2) ... Γh(m−1) Γh(m) ]



ψ̃1

ψ̃
h(2)

· · ·

ψ̃
h(m−1)

ψ̃
h(m)

 =

= Γm

[
ψ̃m−1

ψ̃
h(m)

]
= Γmψ̃m = Gtotal

m qm +Φtotal
mp amp, (B.13)

where

ψ̃
h(m)

=

[
h(m)

h(m)′

]
=

[
Gh(m)

Gh(m)′

]
qh(m)

+

[
Φph

(m)

Φph
(m)′

]
ah(m)p, (B.14)

ψ̃m =

[
ψ̃m−1

ψ̃
h(m)

]
=

 Gtotal
m−1 0

0 Gh(m)

0 Gh(m)′

[
qm−1

qh(m)

]
+

+

 Φtotal
mp 0

0 Φh(m)

p

0 Φh(m)′
p

[
am−1,p

ah(m),p

]
= Gtotal

m qm +Φtotal
mp amp, (B.15)

Gh(m)

=

 Gh(m)1 0 0 Gh(m)2 0 0
0 Gh(m)1 0 0 Gh(m)2 0
0 0 Gh(m)1 0 0 Gh(m)2

 ,
Gh(m)′

=

 G′
h(m)1 0 0 G′

h(m)2 0 0
0 G′

h(m)1 0 0 G′
h(m)2 0

0 0 G′
h(m)1 0 0 G′

h(m)2

 ,
(B.16)

Gh(m)1 = (1− s̄)E(m+1,m+1), Gh(m)2 = s̄E(m+1,m+1),

G′
h(m)1 = − 1

L
E(m+1,m+1), G′

h(m)2 =
1

L
E(m+1,m+1),

(B.17)

in which E(m+1,m+1) is the unit matrix of size (m + 1,m + 1), s̄ = s/L, 0 ≤ s̄ ≤ 1.
Furthermore

Φh(m)

p
(3×(m+1),np×(m+1))

=

Φh(m)p

0 Φh(m)p

0 0 Φh(m)p

 , m = 2, 3, 4, 5, 6 (B.18)

Φh(m)′
p

(3×(m+1),np×(m+1))

=

Φ′
h(m)p

0 Φ′
h(m)p

0 0 Φ′
h(m)p

 , m = 2, 3, 4, 5, 6 (B.19)

Φh(m)p
(m+1,np×(m+1))

=
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=



s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄ 0 0 · · · 0 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0 s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄ 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0 0 0 · · · 0 s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄





1
· · ·
· · ·
i
· · ·
· · ·
m+1


For the sake of brevity, we provide the additional unknowns of the finite element for the h2
model only:

q2T =
[
q1T
I ,q1T

J , qh(2)T
I , qh(2)T

J

]
(B.20)

qh(2)T
I =

[[
u1x2 u2xy u3y2

]
I

[
u2x2 u2xy u2y2

]
I

[
u3x2 u3xy u3y2

]
I

]
, I → J

ah(2)pT =
[
ah(2)pT
1 ,ah(2)pT

2 ,ah(2)pT
3

]
,

ah(2)pT
i =

[
ap=2

ix2 , a
p=3

ix2 , ..., a
p

ix2 ; a
p=2
ixy , a

p=3
ixy , ..., a

p
ixy; a

p=2

iy2 , a
p=3

iy2 , ..., a
p

iy2

]
, i = 1, 2, 3

(B.21)

Continuing the construction of the models based on (B.15), for the h6 model we get:

ε =


ε1
ε2
ε3
γ12
γ13
γ23

 = [Γ1 Γh(2) Γh(3) Γh(4) Γh(5) Γh(6) ]



ψ̃1

ψ̃
h(2)

ψ̃
h(3)

ψ̃
h(4)

ψ̃
h(5)

ψ̃
h(6)


= Γ6ψ̃6 (B.22)

Furthermore

Gtotal
6 =



G1 0 0 0 0 0

0 Gh(2)

0 0 0 0

0 Gh(2)′
0 0 0 0

0 0 Gh(3)

0 0 0

0 0 Gh(3)′
0 0 0

0 0 0 Gh(4)

0 0

0 0 0 Gh(4)′
0 0

0 0 0 0 Gh(5)

0

0 0 0 0 Gh(5)′
0

0 0 0 0 0 Gh(6)

0 0 0 0 0 Gh(6)′



(B.23a)
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and

Φtotal
6 =



Φ1 0 0 0 0 0

0 Φh(2)

0 0 0 0

0 Φh(2)′
0 0 0 0

0 0 Φh(3)

0 0 0

0 0 Φh(3)′
0 0 0

0 0 0 Φh(4)

0 0

0 0 0 Φh(4)′
0 0

0 0 0 0 Φh(5)

0

0 0 0 0 Φh(5)′
0

0 0 0 0 0 Φh(6)

0 0 0 0 0 Φh(6)′



(B.23b)

Table 3. Main characteristics of hm models

Hierarch. NDOF in Number of Number of AD=Additional NDOF
model one nodal inner nodes for one (inner) deegre for one

point nodal points element element

h1 6 6 8 6(p− 1) 12 +AD
h2 15 15 17 15(p− 1) 30 +AD
h3 27 27 29 27(p− 1) 54 +AD
h4 42 42 44 42(p− 1) 84 +AD
h5 60 60 62 60(p− 1) 120 +AD
h6 81 81 83 81(p− 1) 162 +AD
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Abstract. The goal of the paper is to present a supplementary step called post-
extrapolation. When applied to the well-known method of characteristics (MOC), this
assures the continuous use of the specified time steps or regular numerical grid without
interpolations during computations of transients in 1D 2-phase flow in straight elastic pipes.
The new method consists of two steps, the first being a typical MOC step, where the C− and
C+ characteristics start from regular nodal points, allowing for the point of intersection to
differ from a regular one. After defining the variables there the method transforms it corre-
sponding to the near regular grid point, using the first derivatives contained in the original,
nonlinear, governing equations, as evaluated numerically from the variables got earlier in the
neighboring nodes. The procedure needs no interpolations; it deals with grid-point values
only. Instead of the Courant-type stability conditions, shock-wave catching and smoothing
techniques help to assure numerical stability between broad limits of parameters like the
closing time of a valve and the initial gas content of the fluid. Comparison by runs with
traditional codes under itemized boundary conditions and measurements on a simple TPV
(tank-pipe-valve) setup show acceptable scatter.

Keywords: MOC, gas release, post-extrapolation, shock catching, transients

1. Introduction

In this paper we would like to introduce a new method, or rather a supplementary
step called post-extrapolation. It is applied to the well-known method of characteristic
(MOC), which assures the continuous use of a regular grid (∆x,∆t) defined by

∆x = a0∆t (1)
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where a0 = constant, ∆t = constant being a specific time step. Since grid point-
values of the variables are used, no interpolations are necessary. This is in contrast to
the traditional case, where the Courant-type numerical stability criteria need inter-
polation, especially in two-phase fluid where the changes in gas content cause steep
variations in the pressure wave celerity a. These problems will be treated in the next
sections. First the basic equations are introduced.

For 1D two-phase pipe-flow the momentum equation used reads:

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
− λ

2D
u |u| − g sinα . (2)

The density of the fluid ρ can be expressed by the void fraction V ; by the density of
the liquid ρw and by the density of the gas or air contained in the fluid ρg as

ρ = (1− V ) ρw + V ρg . (3)

This helps to introduce the dimensionless density ratio

Ro =
ρw
ρ

=
1

1−
(
1− ρg

ρw

)
V

. (4)

With the pressure head defined by

P = ρwgH

and with volume flow rate Q = uA the momentum equation can be transformed

∂Q

∂t
+

Q

A

∂Q

∂x
+RoAg

∂H

∂x
+

λ

2DA
Q |Q|+ gA sinα = 0. (5)

The continuity equation
∂ρ

∂t
+

∂

∂x
(ρu) = 0 (6)

can be transformed by introducing the celerity a of the pressure waves:

1

a2
=

∂ρ

∂p
(7)

to
∂p

∂t
+ u

∂p

∂x
+ a2ρ

∂u

∂x
= 0 , (8)

Ro
∂H

∂t
+

Q

A
Ro

∂H

∂x
+

a2

Ag

∂Q

∂x
= 0 . (9)

2. Equations of characteristics

Since the first part of the new method requires the method of characteristics, the
usual procedure (see e.g. Wylie & Streeter [1]) with governing equations (5) and (9)
leads to the following equations for the characteristics C∓:

dQ

dt
∓Ro

ga

A

dH

dt
+ gA sinα+

λ

2DA
Q |Q| = 0 , (10)

dx

dt
=

Q

A
∓ a, (11)

where the negative sign refers to the C− characteristic.
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Figure 1. Notations of key nodal points in post-extrapolation

Figure 1 shows the point of intersection 3, the characteristic started in point (i−1, j)
and (i+ 1, j), respectively. Its coordinates (x4, D1) can be taken from the equations

for C+ (
dx

dt

)
=

Q(i+ 1)

A
+ a(i) =

x4

D1
, (12)

for C− (
dx

dt

)
=

U (i+ 1)

A
− a(i) =

x4 − 2∆x

D1
(13)

by introducing the following quantities

N3 =
Q (i− 1)− U (i+ 1)

A
+ 2a(i) , (14)

D1 = 2
∆x

N3
, (15)

x4 = D1
Q (i− 1)

A
+ a(i) , (16)

where U (i+ 1) = Q (i+ 1) if H (i+ 1) > Hv, else see equations later. The values
of the variables Q and H at point 3 in Figure 1, or U and H can be computed as
usual by integrating equation (10) from t to t+D1. From the integral along C+ after
transformations we obtain

H3 = C1 −B1Q3 (17)

with

C1 = H (i+ 1)−BQ (i− 1)− a (i)
D1

Ro
sinα , (18)

B1 = B +R |Q(i− 1)| a(i)
∆x

D1 , (19)

where

B =
a(i)

RogA
, R =

λ∆x

2gRoDA2
. (20)
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Similarly, integrating along C− results in

H3 = C2 +B2Q3 , (21)

C2 = H(i+ 1)−BQ(I + 1) + a(i)
D1

Ro
sinα , (22)

B2 = B +R |Q(i+ 1)| a(i)
∆x

D1 . (23)

The difference of equations (17) and (21) yields

Q3 =
C1 − C2

B1 +B2
. (24)

It also holds that

H3 =
C1B2 + C2B1

B1 +B2
. (25)

Hence U3 = Q3.

If, however, H3 ≤ Hv then H3 = Hv, i.e, cavity should be be prescribed. Then

U3 =
C1 −Hv

B1
instead of Q3 and

Q3 =
C1 −Hv

B1
. (26)

Their difference furnishes the rate of change of void fraction. Consequently,

V =
(Q3 − U3)

a0A
. (27)

3. Post-extrapolation

The new element follows with the goal to transform the values of H3, Q3 or U3

obtained in point 3 into values H8 = H(i, j+1), Q8 = Q(i, j+1) and U8 = U(i, j+1)
in Figure 1. The transformation is based on the original nonlinear system of equations
(5) and (9), defined by

Kh = H8 −H3 = (D0 −D1)

[
∂H

∂t

]
3

+ (∆x− x4)

[
∂H

∂x

]
3

, (28)

Kq = Q8 −Q3 = (D0 −D1)

[
∂Q

∂t

]
3

+ (∆x− x4)

[
∂Q

∂x

]
3

. (29)

The derivatives in brackets are expressed from the original equations (5) and (9) by
the other partial derivatives, which in turn are computed as ratios of finite differences
taken from the variables computed in the former steps in grid points (i − 1, j + 1),
(i− 1, j), (i, j) and (i+ 1, j) in Figure 1. Consequently, equation (9) yields[

∂H

∂t

]
3

= − a2

RogA

∆Q

∆x
− Q

A

∆H

∆x
, (30)

[
∂Q

∂t

]
3

=
Roga

a2

(
−∆H

∆t
− Q

A

∆H

∆x

)
. (31)
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In a similar manner equation (5) leads to the result(
∂H

∂x

)
3

=
1

RogA

(
−∆Q

∆t
− λ

2DA
Q |Q| − Q

A

∆Q

∆x
− gA sinα

)
, (32)(

∂Q

∂t

)
3

= −RogA
∆H

∆x
− λ

2DA
Q |Q| − Q

A

∆Q

∆x
− gA sinα . (33)

The numerical derivatives are given by

∆H

∆x
=

(H (i+ 1, j)−H (i− 1, j))

2∆x
, (34)

∆Q

∆t
=

(Q(i− 1, j + 1)−Q(i− 1, j))

D0
. (35)

After the derivatives in brackets have been defined Kh and Kq can be computed and
the resulting variables

H8 = H(i, j + 1) = H3 +Kh , (36)

Q8 = Q(i, j + 1) = Q3 +Kq (37)

can be registered in the regular grid point (i, j + 1). As a last revision, only the
condition H8 ≤ Hv remains. If true, then the restriction (even if approximated by)
H(i, j + 1) = Hv must be made, since otherwise negative absolute pressure could
appear.

The treatment of boundary conditions in the first (MOC) step is identical with
the usual one. Since at the boundaries only one of the characteristics can be applied,
point 3 lies on the boundary higher or lower than the grid point (or coincides with it).
The derivatives in brackets with respect to x are thus equal to zero. The numerical
derivatives are somewhat different.

4. Numerical stability

Because of the nonlinearity of the governing equations and of the after-extrapolation
method, numerical instability and oscillation can appear during the computation, es-
pecially in the presence of cavities at vapor pressure or column separation caused by
gas or air release. Experience during the programming stage of simulation of the TPV
system showed that to attain numerical stability the application of a somewhat simpli-
fied version of Kranenburg’s “shock wave, nullifying cavitating flow region“ model [2]
and Vliegenthart’s smoothing procedure [3] were necessary; they are compiled here.
The jump through shock waves causes a decrease in the void fraction taken by the
momentum equations in the form published by Kranenburg [2].

Q(i− 1)

A
+

P (i− 1)− Pv

ρwa(i− 1)
= B1 , (38)

Q(i+ 1)

A
+

P (i− 1)− Pv

ρwa(i+ 1)
= B2 . (39)

From the continuity

∆V =
Q (i− 1)−Q (i+ 1)

Aa0
. (40)
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The pressure drop in the cavities caused by the gas released,

(P (i− 1)− Pv)V A∆x = RvT∆m (41)

using the ideal gas law. The difference of momentum equations (38) and (39) yields
the continuity in the form

a0∆V = B1 −B2 −
P (i+ 1)− Pv

ρw

(
1

a (i+ 1)
+

1

a (i− 1)

)
. (42)

The expressions B1 and B2 can be taken as

B1 =
Q (i− 1)

A
+ g

H(i− 1)−Hv

a(i)
, (43)

B2 =
Q (i+ 1)

A
+ g

H(i+ 1)−Hv

a(i)
(44)

according to the steps in MOC. Finally, mean values of H and a

∆V =
Q(i− 1)−Q(i+ 1)

Aa0
− 2g

H(i)−Hv

a0a (i)
(45)

are used as correction to the void fraction at the end of every time step if the condition
V > 0 has been met. The corrected V (i + 1) = V (i) + ∆V value is restricted to
V (i+ 1) ≥ 0.

The smoothing trick consisted of evaluating

L (i) =
H(i+ 1) +H(i− 1)

2
−H(i) . (46)

If L(i) > 0 then

H(i) = H(i) +
L(i)

2
, else L(i) = 0 . (47)

5. Accuracy

The accuracy of the new method has been judged by comparison in two steps. First
it has been compared numerically with a traditional, “pre-interpolating” method,
programmed and run under itemized boundary conditions and an identical numerical
grid [4]. The arrangement computed is shown in Figure 2. It is prepared to measure
and record the pressure history during and after closing the exit valve in three points
of the TPV system. The asymptotic behavior of the system after closing the exit
valve is followed numerically by computing the time history of:

1. the temporary maxima and minima of the fluctuating pressure at the exit valve,
and

2. the time mean value of the fluctuating volume flow rate entering or leaving the
pipe at the tank (x = 0), using both pre-interpolating and post-extrapolating
methods.
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Figure 2. Experiment setup

The attenuation caused partly by the friction in the MOC method and partly by the
additional artificial viscosity-like procedures in our method (which we call the New M
method) appear in the asymptotic approximation of the limiting – static – value of the
pressure as determined by the system data and by the zero flow rate. Some numerical
runs with variable initial condition showed typical results after 104 time steps (nearly
30 times the duration of the closing time) of 0+3% or less of the limiting value as
pressure fluctuation, and -10-5 as the ratio of the time mean flow rate to the initial
flow rate; both values have been assumed as acceptable. Then as the second step the
computed results have been compared with measured ones. Some results are shown in
Figures 3 and 4 representing the middle and the endpoint, respectively. The agreement
between the pre-interpolation (Simulation MOC) and post-extrapolation (Simulation
New M) is remarkable. There are long time periods when the difference is less than
2% of the maximal pressure head measured. The deviations are greater near the sec-
ond and third peak. They may be explained by the effect of the smoothing procedure,
which should be improved, and possibly by the shock-wave capturing program, which
could be refined: these two items are contained in the NewMmethod and not in MOC.
The measured pressure heads show somewhat greater deviation from both of the sim-
ulations above [5]. This can be explained partly by the usual errors in measuring



92 Abdalla A. Estuti and E. Litvai

Figure 3. Pressure head history at midpoint of TPV system

Figure 4. Pressure head history at endpoint of TPV system
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equipment and methods (detailed in a special report [6]) and partly by the models of
wave celerity and of gas release. It is very difficult to separate these factors without
systematic modeling and measurements. Although a full description of the wave
celerity and gas release models is beyond the scope of the present paper, we outline
them below.

6. Celerity of pressure waves

The wave celerity a model used was based on results published by Wylie and
Streeter [1] – see pp. 140–142 – after transformations in the form

a

a0
=

H√
H2 +mC2

, (48)

where a0 is the wave celerity in the fluid in the pipe without free gas or vapor,

C2 =
RgTa

2
0

ρwg2
, (49)

where m is the mass of free gas or vapor divided by the volume of the fluid.

The computed version is

m = m1 = V ρv +m3 , (50)

where m3 [kg/m3] is the mass of the gas and/or air released and diffused in the
cavities or contained in the incoming fluid in the unit of volume of fluid.

7. Cavity and gas release model

The incoming fluid is assumed to carry Nb homogeneously distributed cavitation
nuclei in the unit of volume. Around the nuclei, there may be bubbles filled with gas
(air) [7] and vapor, depending on the ambient pressure and temperature. The void
fraction of the vapor is defined by equation (27) to be used in equation (50), on the
condition that the pressure head is equal to the vapor pressure head Hv.

The mass of gas in unit volume of the fluid m = m3 can be defined by

m = Nb
D3π

6

ρwgH

RgT
, (51)

or
m

D3H
= Nb

π

6

ρwg

RgT
= Sn , (52)

where D is the mean diameter of the bubbles and Sn is a known or guessed constant.
The rate of the mass of gas released from the liquid and diffused into the bubbles has
been calculated, following Kranenburg [2] by

∂m

∂t
= NbD

2πβ
∂c

∂r
, (53)

where
∂c

∂r
∼= ε

c0

D
√

β
UD

. (54)
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With the initial concentration C0 of the gas in liquid, according to Henry’s law

C0 = Sn
ρwgHat

RairT
. (55)

Finally with ε ≈ 1 ∂m

∂t
= FcD

3
2 , (56)

Fc = Nbc0π
√

βU , (57)

∂m

∂t
∼=

∆m3

D0
, (58)

D3

6
= V +

m3

ρg
. (59)

After each time step the diameter has been defined by equation (59), then ∆m3 from
(58) and (56) then m1 from equation (50) to continue with the new time step.

8. Conclusions

The introduction of the post-extrapolation, i.e. the use of the first partial deriva-
tives of the governing equations, to define the variables after a MOC-type step at the
regular grid points without pre-interpolation, proved to be successful in two-phase
fluid flow with gas release and variable wave celerity in 1D elastic pipe transient flow
computations. Instead of the Courant-type stability condition, simple shock-wave
capturing and oscillation-smoothing techniques help to assure the numerical stabil-
ity of the computations. The accuracy seems to correspond to traditional methods,
although it can be influenced by the requirements of numerical stability [6, 7]. Mea-
surements indicate the need for broader studies with respect to the appropriateness
of the models of wave celerity and gas release used.
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Nomenclature

a pressure wave celerity [m/s]
a0 pressure wave celerity of one-phase flow [m/s]
A pipe cross section area [m2]

C gas concentration in liquid [kg/m
3
]

C0 initial concentration [kg/m
3
]

C2 pressure wave celerity parameter
D diameter [m]
D0 time step [s]
D1 time ordinate in (3) [s]
Fc constant defined by equation (57)
g acceleration due to gravity [m/s2]
H absolute pressure head [m]

m gas or vapor mass/volume [kg/m
3
]

Nb number of nuclei in m3 [1/m3]
P absolute pressure [N/m2]
Q volume flow rate [m3/s]
Ro density ratio
Rg gas law constant [J/(kgK)]
Rv gas law constant [J/(kgK)]
S Henry’s constant [m3/m3]
Sn constant in equation (52)
t time [s]
T temperature [K]
∆t time step [s]
u velocity of fluid [m/s]
U volume flow rate (if cavity) [m3/s]
V void fraction [m3/m3]
x length [m]
∆x reach length [m]
x4 abscissa of point 3 see Fig. 1
α inclination angle of pipe
β diffusivity of gas [m2/s]
ρ density [kg/m3]
λ fraction factor
ε empirical constant
Subscripts
at atmospheric
w liquid
v vapor
g gas
3 at point 3
8 at point 8
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