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István PÁCZELT, University of Miskolc, Hungary,
istvan.paczelt@uni-miskolc.hu
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Abstract. This work deals with the thermoelastic problem of a functionally graded cylin-
drically anisotropic rotating disk with arbitrary thickness profile subjected to combined
axisymmetric thermal and mechanical loads. The material properties are arbitrary func-
tions of the radial coordinate and temperature. A coupled system of ordinary differential
equations is derived and the boundary value problem is transformed to an initial value prob-
lem, the unknown functions are the stress function and the components of the displacement
field. This method uses a state vector formalism to present an effective way to calculate the
stress field within monoclinic, orthotropic or isotropic radially graded disks in plane stress
state. An analytical solution is presented for the case when the orthotropic material param-
eters and the thickness profile are specific power-law functions of the radial coordinate and
the temperature field is arbitrary. The developed numerical method is applied to simpler
steady-state thermoelastic problems of functionally graded spherical pressure vessels, where
the material properties are arbitrary functions of the temperature field and of the radial
coordinate. The developed methods are compared and results obtained from finite element
simulations.

Mathematical Subject Classification: 74S99, 74E05
Keywords: Anisotropic disk, thermomechanical analysis, thermal stresses

1. Introduction

Functionally graded materials (FGM) are advanced materials in which the composi-
tion gradually changes, resulting in a corresponding change in the material properties
according to the function of the structural component, usually in one direction. The
gradient interface between the constituent materials produces a smooth transition
from one material to the next, which provides great favourable mechanical behaviour
and thermal protection. Due to its excellent material properties, the concept of FGM
has become more popular in recent years.

Many studies deal with the mechanics of functionally graded materials from var-
ious aspects. Numerous books give solutions to linearly elastic problems for non-
homogeneous bodies such as [1–3]. Several papers presented analytical, semi-analytical
and numerical solutions for thermomechanical problems of hollow spheres, cylinders,
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beams and disks. Noda et. al. [4, 5] studied one-dimensional steady-state thermal
stress problems for isotropic functionally graded hollow circular cylinders and spheres
using the perturbation method, multilayered approach and Green functions. Chen
and Lin [6] carried out an elastic analysis for thick cylinders and spherical pressure
vessels made of functionally graded materials when the material parameters vary ex-
ponentially along the radial coordinate. Nayak et al. [7] and Bayat et al. [8] developed
analytical solutions to obtain the radial, tangential and effective stresses within thick
spherical pressure vessels made of FGMs subjected to axisymmetric mechanical and
thermal loading. The material properties of the vessel depended on the radial coordi-
nate as a power-law function but the Poisson’s ratio had constant value. In a paper
by Pen and Li [9] a steady-state thermoelastic problem of isotropic radially graded
disks with arbitrary radial non-homogeneity was considered. The numerical solution
was reduced to a solution of a Fredholm integral equation. A work by Stampouloglou
and Theotokoglou [10] gave the exact solutions for a radially non-homogeneous hollow
circular cylinder and disk with exponential and power-law based shear modulus and
constant Poisson’s ratio. The method used the nonhomogeneous compatibility equa-
tions of strain and the equilibrium equations of the thermoelastic problem in order to
determine the reduced displacement and stresses in a functionally graded component.
Jabbary et al. [11] and [12] dealt with the thermoelastic analysis of a functionally
graded rotating thick shell with variable thickness subjected to thermo-mechanical
loading by using higher-order shear deformation theory. The mechanical properties,
except for the Poisson’s ratio, are assumed to vary arbitrarily along the investigated
spatial coordinate.

Paper [13] presented the displacement and stress fields in a radially graded hollow
circular disk subjected to constant angular acceleration, Poisson’s ratio and thermal
loading. Here a semi-analytical approach was utilized. Boğa and Yildirim [14] solved
these problems with the method of complementary functions and investigated para-
bolic thickness profiles. For isotropic functionally graded hollow circular disks with
arbitrary material properties along the radial direction, Gönczi and Ecsedi [15] pre-
sented a numerical method to solve the steady-state thermoelastic problem. Similarly
to these papers, there are a number of works dealing with isotropic, radially graded
structural components, such as [16–19]. Studies [20, 21] by Zheng et al. determined
the displacement and stress fields in a radially graded isotropic and fibre-reinforced
rotating disks. The governing equations for displacement and normal stresses are
solved using the finite difference method. A work by Eraslan et al. [22] presented an-
alytical solutions of an orthotropic disk with a power-law function based profile. The
basic equations are transformed into a standard hypergeometric differential equation
by means of a suitable transformation, then an analytical solution is obtained in terms
of hypergeometric functions.

A work by Tarn [23] derived exact solutions for the temperature field and ther-
moelastic stresses for inhomogeneous hollow and solid cylinders when some of the
material parameters followed a power law distribution; furthermore, the cylinder was
subjected to axial force. Sladek et. al. [24] presented a meshless method based on
the local Petrov–Galerkin approach which was developed for the stress analysis of
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two-dimensional, anisotropic, linearly elastic and viscoelastic solids with continuously
varying material properties. The analysed domain was divided into small circular
subdomains. In paper [25] the nonlinear steady-state heat conduction equation is
solved using an iterative power-series method to obtain the temperature field, then
the three-dimensional thermoelasticity equations are solved by a power-series solution
procedure to determine the displacements and stresses in anisotropic radially graded
hollow cylinders. A method is presented where the cylinder is divided into multiple
sub-cylinders and the Taylor series is utilized. Chen et. al. [26] dealt with the ax-
isymmetric problems of transversely isotropic elastic materials based on displacement
functions, which were the functions of the thickness coordinate.

In Chang et al. [27] the basic equations of thermoelasticity were formulated into a
state equation and a state space formalism for generalized anisotropic thermoelasticity
accounting for thermomechanical coupling and thermal relaxation was developed. To
obtain the solution for weak thermomechanical coupling the method of perturbation
with multiple scales was used and the propagation of plane harmonic thermoelastic
waves in an anisotropic medium was studied.

Ceniga [28] dealt with an analytical model of thermal stresses originating during the
cooling process of an anisotropic solid continuum with uniaxial or triaxial anisotropy.
The investigated continuum consisted of anisotropic spherical particles periodically
distributed in an anisotropic infinite matrix. Beom [29] presented a formalism for the
general solutions of in-plane thermoelastic fields that satisfy the equilibrium equa-
tion. An orthotropy rescaling technique is developed to determine the dependence of
thermoelastic fields on the dimensionless orthotropy parameter. The complete ther-
moelastic fields for the original problem can be evaluated from the solutions of the
transformed problem by linear transformation with orthotropy rescaling. Yildirim
[30] presents a complementary function method to deal with the thermomechanical
problem of orthotropic disks. Allam et. al. [31] presents semi-analytical methods to
tackle special material distributions. Papers [32, 33] used discretized domains and a
variational approach to tackle the problems of orthotropic disks. Besides disks and
spherical bodies, functionally graded beams are often used in various engineering ap-
plications; papers such as [34, 35] tackle the mechanical analysis and buckling of such
beams.

This paper deals with the steady-state thermoelastic problem of a radially graded
anisotropic rotating disk and radially graded pressure vessels subjected to axisym-
metric thermal and mechanical loads. As we have seen in the presented literature,
the models of the axisymmetric disk and sphere problems contain some kinds of re-
strictions when it comes to — for example – the functions of the material properties,
the thickness of the disk, or neglecting the temperature dependency. Our aim is to
formulate a more general approach where all of the material properties are arbitrary
functions of the radial coordinate r and temperature T , and a further aim is to present
an effective way to calculate the stress field. The considered cylindrically anisotropic
disk can be seen in Figure 1, where the material of the disk is a radially graded
monoclinic material, while Figure 2 shows a sketch of the isotropic hollow spherical
body.
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Figure 1. Sketch of a segment of the considered disk with the me-
chanical and thermal loads

Figure 2. Sketch of a segment of the considered sphere with the me-
chanical and thermal loads

The thickness of the disk is denoted by h(r), and it is an arbitrary function of the
radial coordinate r, where R1 ⩽ r ⩽ R2, ω is the constant angular velocity. The
thermal loading is an arbitrary temperature field T (r) obtained from the solution
of the steady-state heat conduction equation. The uniformly distributed mechanical
loading exerted on the inner boundary surface is denoted by p1, while p2 is the pressure
acting on the outer curved boundary surface. For these problems the thermoelastic
equations of plane-stress state will be used. A new numerical approach is presented
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which is based on a coupled system of first-order ordinary differential equations, where
the unknown functions are the radial displacement and the stress function.

Anisotropy refers to the directional dependence of material properties. Due to the
symmetry, the stiffness tensor C contains 21 independent elastic constants.

σ = Cε+ βT (1a)
σ1

σ2

σ3

τ13
τ23
τ12

 =


C̄11 C̄12 C̄13 C̄14 C̄15 C̄16

C̄22 C̄23 C̄24 C̄25 C̄26

C̄33 C̄34 C̄35 C̄36

C̄44 C̄45 C̄46

sym. C̄55 C̄56

C̄66




ε1
ε2
ε3
γ23
γ13
γ12

+


β̄1

β̄2

β̄3

β̄4

β̄5

β̄6

T (1b)

where β = −S · α, S is the material compliance tensor, αi (i = 1...6) are the co-
efficients of linear thermal expansion, and σ and ε denote the stress strain vectors,
respectively. The different types of material anisotropy are determined by the exis-
tence of symmetries in the internal structure of the material. This reduces the number
of independent stiffness coefficients (monoclinic materials have 13, orthotropic mate-
rials have 9, transversely isotropic materials have 5 and isotropic materials have 2
independent parameters) and thermal parameters βi. In the investigated problems
monoclinic materials will be considered. This means that there is one material sym-
metry plane and for example Ci4 = C4i = 0, Ci5 = C5i = 0, Cj6 = C6j = 0, (i = 1, 2, 3
and j = 4, 5)

2. Numerical method for disks

We consider a rotating radially graded cylindrically anisotropic disk as shown in Fig-
ure 1, and a cylindrical coordinate system Orφz will be used. The strain-displacement
relations for disks are [1]:

εr(r) =
du(r)

dr
, εφ(r) =

u(r)

r
, γrφ(r) =

dv(r)

dr
− v(r)

r
, (2)

where u = u(r) is the radial displacement, v(r) is the tangential displacement, γrφ(r)
denotes the shear strain and εr(r), εφ(r) are the normal strains in the radial and
circumferential directions, respectively. In the case of a plane-stress state the stress-
strain relationships can be expressed with the following reduced material constants
of monoclinic materials:

C11 = C̄11 − C̄13

C̄33
C̄13; C12 = C̄12 − C̄23

C̄33
C̄13; C16 = C̄16 − C̄36

C̄33
C̄13; β1 = β̄1 − β̄3

C̄33
C̄13;

C21 = C̄21 − C̄31

C̄33
C̄23; C22 = C̄22 − C̄23

C̄33
C̄23; C26 = C̄26 − C̄36

C̄33
C̄23; β2 = β̄2 − β̄3

C̄33
C̄23;

C61 = C̄61 − C̄31

C̄33
C̄63; C62 = C̄62 − C̄32

C̄33
C̄63; C66 = C̄66 − C̄36

C̄33
C̄63; β6 = β̄6 − β̄3

C̄33
C̄63.

(3)
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as

σr(r) = C11(T, r)εr(r) + C12(T, r)εφ(r) + C16(T, r)γrφ(r) + β1(T, r)T (r), (4)

σφ(r) = C21(T, r)εr(r) + C22(T, r)εφ(r) + C26(T, r)γrφ(r) + β2(T, r)T (r), (5)

τrφ(r) = C61(T, r)εr(r) + C62(T, r)εφ(r) + C66(T, r)γrφ(r) + β6(T, r)T (r) (6)

where σr and σφ τrφ are normal stresses, τrφ is shearing stress, T (r) = Ta(r) − T0

is the temperature difference function, Ta(r) is the absolute temperature, T0 is the
reference temperature, and Cij (i, j = 1, 2, 6) are stiffness coefficients. The time-
independence of the functions involved separates the analysis of the temperature
field from that of the elastic field, which means that the problem becomes uncoupled.
Therefore the temperature field can be calculated separately from the heat conduction
equations, and becomes an input function for this part of the model, which means that
Cij(T (r), r) = Cij(r) = Cji(r) and βi(T (r), r) = βi(r). Furthermore, the shearing
stress τrφ is zero due to the axisymmetry, boundary conditions and

d

dr
(rhτrφ) + h τrφ = 0, → hτrφ =

F

r2
,→ F = τrφ = 0. (7)

The equilibrium equation in the radial direction has the following form:

d

dr
[rσr(r)h(r)]− h(r)σφ(r) + h(r)ρω2r2 = 0 , (8)

where h(r) is the thickness of the disk and ρ denotes the density, which depends on
the radial coordinate and the temperature field. The general solution in terms of the
stress function V = V (r) is

σr(r) =
1

r

V (r)

h(r)
, (9)

σφ(r) =
dV (r)

dr

1

h(r)
+ ρ(r)ω2r2. (10)

After lengthy manipulations of equations (4)-(10) the following system of ordinary
differential equations can be derived for the displacement field and the stress function
in cylindrically anisotropic radially graded disks:

d

dr


u

V

v

 =


Lf
11 Lf

12 0

Lf
21 Lf

22 0

Lf
31 Lf

32 Lf
33




u

V

v

+


LT
11

LT
12

LT
13

T +


0

−ω2hρr2

0

 , (11)

d

dr
f = Lf f + LTT + Lω, (12)
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where the following notations were introduced:

L01 =
C12C66 − C16C62

C11C66 − C2
16

, Lf
11(r) = −L01

1

r
, Lf

12(r) =
C66

C11C66 − C2
16

1

hr
,

Lf
21(r) =

[
C22 − C21L01 + C26

(
C16

C66
L01 −

C26

C66

)]
h

r
, Lf

22(r) = L01
1

r
,

Lf
31(r) =

(
C16

C66
L01 −

C26

C66

)
1

r
, Lf

32(r) =

(
−C16

C11C66 − C2
16

)
1

hr
, Lf

33(r) =
1

r
,

LT
11(r) = −C66β1 − C16β6

C11C66 − C2
16

, LT
13(r) =

−C16L
T
11

C66
− β6

C66
,

LT
12(r) =

(
β2 + C21L

T
11 + C26L

T
13

)
h,

Cij(r, T (r)), βi(r, T (r)), ρ(r, T (r)); i = 1, 2, 6.

(13)

For isotropic radially graded disks the following expressions are used:

Lf
11(r) =

−ν(r, T )

r
, Lf

12(r) =
1− [ν(r, T )]

2

E(r, T )hr
,

Lf
21(r) = E(r, T )

h

r
, Lf

22(r) = −Lf
11(r),

Lf
31(r) = Lf

32(r) = Lf
33(r) = LT

13(r) = v(r) = 0,

LT
11(r) = α(r, T ) [1 + ν(r, T )] , LT

12(r) = −E(r, T )α(r, T )h,

(14)

where E(r, T (r)) = E(r) is the Young’s modulus, α(r, T (r)) = α(r) is the coefficient
of linear thermal expansion and v(r, T (r)) = v(r) denotes the Poisson ratio. The next
phase is the determination of the initial values for the system of differential equations
(11). The stress boundary conditions of the rotating disk can be expressed in terms
of the stress function as

σr(R1) = −p1, σr(R2) = −p2, (15)

V (R1) = −p1R1h1, V (R2) = −p2R2h2, (16)

where h1 and h2 are the thickness values at the inner and outer cylindrical boundary
surfacesQ. Our aim is to formulate an initial value problem for the coupled system of
differential equations (11). Two numerical solutions [uI(r);VI(r)] and [uII(r), VII(r)]
are needed to determine the initial values of the considered two-point boundary value
problem. The system of equations is reduced to:

d

dr
u = Lf

11u+ Lf
12V + LT

11T,
d

dr
V = Lf

21u+ Lf
22V + LT

21T − ω2hρr2. (17)

For the calculations, the fourth-fifth order Runge-Kutta-Fehlberg method will be used
in our numerical examples. The input values for the system of differential equations
(17) are shown in Table 1. The initial values for the displacements are different
arbitrary values, for the stress functions the stress boundary condition — equation
(16) – is used.
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Table 1. Numerical solution of the thermoelastic problems

Calculations of Input values Input values
the initial values for u(r) for V (r)

Calc. I Eqns. (17) uI(R1) = u1 u1 (arbitrary) VI(R1) = −p1R1h1

Calc. II Eqns. (17) uII(R1) = u2 u2 ̸= u1 VII(R1) = −p1R1h1

Final
Eqns. (11) u3

Calculated
VI(R1) = −p1R1h1Problem with equation (18)

Using the solutions of calculations I and II, the initial value for the displacement
field of the original problem can be computed as

u(R1) = u3 = u1 +
(u2 − u1) [−p2R2h2 − VI(R2)]

VII(R2)− VI(R2)
. (18)

The validity of this statement follows from the linearity of the considered thermoelastic
boundary value problem. With the displacement field and the stress function, the
normal stresses and displacement field can be determined with equation (9) and

σφ(r) =
(
Lf
21u+ Lf

22V + LT
21T

)
h−1. (19)

3. Numerical method for spherical pressure vessels

A one-dimensional steady-state thermoelastic problem of an isotropic functionally
graded spherical hollow body is considered. The spherical pressure vessel is subjected
to arbitrary radial coordinate dependent thermal loading T (r) and constant pressures
p1 and p2 at the curved boundary surfaces, as we can see in Figure 2. The material
properties are arbitrary functions of the radial coordinate and temperature. For
this spherically symmetric problem a spherical coordinate system Orφϑis used. The
strain-displacement and stress-strain relations can be expressed as [1]

εr(r) =
du(r)

dr
, εφ(r) = εϑ(r) =

u(r)

r
, (20)

σr(r) =
E(r, T )

[1 + ν(r, T )] [1− 2ν(r, T )]

{
[1− ν(r, T )] εrr) + 2ν(r, T )εφ(r)−

− α(r, T ) [1 + ν(r, T )]T (r)
}
, (21)

σφ(r) = σϑ(r) =
E(r, T )

[1 + ν(r, T )] [1− 2ν(r, T )]

{
ν(r, T )εr(r) + εφ(r)−

− α(r, T ) [1 + ν(r, T )]T (r)
}
. (22)

The equilibrium equation in the radial direction can be written as

dσr

dr
+

2(σr − σφ)

r
= 0, (23)
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therefore the general solution of equation (23) in terms of stress function V (r) assumes
the forms of

σr =
V

r2
, σφ =

1

2r

dV

dr
. (24)

The system of ordinary differential equations can be expressed as

d

dr

 u

V

 =

 − 2ν
(1−ν)

1
r

(1−2ν)(1+ν)
(1−ν)E

1
r2

2E
1−ν

2ν
1−ν

1
r

 u

V

+

 1+ν
1−ν

2E
1−ν r

αT. (25)

We need three initial value calculations to solve this problem, similarly to our previ-
ously presented method. The steps of the solution and the input values can be seen
in Table 2.

u3 = u1 +
u2 − u1

VII(R2)− VI(R2)
(−p2R

2
2 − VI(R2)). (26)

Table 2. Numerical solution of the thermoelastic problems

Calculations of Input values Input values
the initial values for u(r) for V (r)

Calc. I Eq. (25) uI(R1) = u1 u1 (arbitrary) VI(R1) = −p1R
2
1 = V1

Calc. II Eqns. (25) uII(R1) = u2 u2 ̸= u1 VII(R1) = −V1

Final
Eqns. (25) u3

Calculated
V (R1) = V1Problem with equation (26)

After the third calculation, the radial normal stress can be calculated according to
(24) and the tangential normal stress takes the form of

σφ = (1− ν)
−1

[
E
u

r
+ ν

V

r2
+ EαT

]
. (27)

4. Analytical solution for orthotropic disks

An analytical solution will be derived for the case when the material properties of the
cylindrically orthotropic, radially graded rotating disk follow the following power-law
based distribution:

ρ(r) = ρ00

(
r

R1

)m

= ρ0r
m, βi(r) = β0

i0

(
r

R1

)m

= βi0r
m,

Cij(r) = C0
ij0

(
r

R1

)m

= Cij0r
m;

i, j = 1, 2, 6. (28)

The thickness profile of the disk is described as h(r) = h0r
w, the temperature-

dependency of the material properties is neglected in this case, but thermal loading
comes from an arbitrary temperature field T (r). The combination of the basic equa-
tions of thermoelasticity results in the following differential equations for the radial
displacement field u(r):

K1
d2u

dr2
+K2

du

dr
+K3

u

r2
+K4

T

r
+ β10

dT

dr
+K5r = 0, (29)
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where we have introduced the constants

K1 = C110, K2 = C110(m+ w + 1), K3 = C120(m+ w)− C220,

K4 = β10(m+ w + 1)− β20, K5 = ρ0ω
2.

(30)

The solution of (29) is

u(r) = C1r
g1 + C2r

g2 − rg1

g3

∫
IT1(r) dr+

rg2

g3

∫
IT2(r) dr, (31)

where C1 and C2 are integration constants, moreover

IT1(r) = K4r
−g1T (r) +K5r

g4 + β10r
g5
dT (r)

dr
,

IT2(r) = K4r
−g2T (r) +K5r

g5 + β10r
g7
dT (r)

dr
,

(32)

g1,2 =
K1 −K2 ± g3

2K1
, g3 =

√
(K2 −K1)

2 − 4K3K1 ,

g6,4 =
3K1 +K2 ± g3

2K1
, g7,5 =

K1 +K2 ± g3
2K1

.

(33)

Substituting these results into equations (2), (4)-(6) we obtain the functions of the
radial normal stress σr and tangential normal – or hoop – stress σφ:

σr(r) = C1Sr;1(r) + C2Sr;2(r) + Sr;3(r) + Sr;4(r), (34)

σφ(r) = C1Sφ;1(r) + C2Sφ;2(r) + Sφ;3(r) + Sφ;4(r). (35)

The following notations are used in equations (34) and (35):

Sr;1(r) = rm+g1−1(g1C110 + C120),

Sr;2(r) = rm+g2−1(g2C110 + C120),

Sr;3(r) = rm
[
(g2C110 + C120)

rg2−1

g3

∫
IT2(r) dr−

− (g1C110 + C120)
rg1−1

g3

∫
IT1(r) dr

]
,

Sr;4(r) = rm
[
C110

(
rg2

g3
IT2(r)−

rg1

g3
IT1(r)

)
+ β10T (r)

]
,

(36)

and
Sφ;1(r) = rm+g1−1(g1C120 + C220),

Sφ;2(r) = rm+g2−1(g2C120 + C220),

Sφ;3(r) = rm
[
(g2C120 + C220)

rg2−1

g3

∫
IT2(r) dr−

− (g1C120 + C220)
rg1−1

g3

∫
IT1(r) dr

]
,

Sφ;4(r) = rm
[
C120

(
rg2

g3
IT2(r)−

rg1

g3
IT1(r)

)
+ β20T (r)

]
.

(37)



Thermoelastic analysis of anisotropic rotating disks and spherical vessels 95

The constants of integrations can be calculated from the stress boundary conditions
(15) as

C1=
Sr;2(R1) [p2+Sr;3(R2)+Sr;4(R2)]−Sr;2(R2) [p1 + Sr;3(R1)+Sr;4(R1)]

Sr;2(R2)Sr;1(R1)−Sr;2(R1)Sr;1(R2)
, (38)

C2=
Sr;1(R2) [p1+Sr;3(R1)+Sr;4(R1)]−Sr;1(R1) [p2+Sr;3(R2)+Sr;4(R2)]

Sr;2(R2)Sr;1(R1)−Sr;2(R1)Sr;1(R2)
. (39)

In this case the circumferential displacement is zero v(r) = 0

Temperature field. For the determination of the temperature field we will consider
the case when there are no internal heat sources, the constant temperature values of
the cylindrical boundary surfaces t1 and t2 are given, moreover there are symmetric,
radial coordinate dependent thermal boundary conditions of the third kind on the
lower and upper boundary surfaces. This convective heat exchange is given by the
temperature of the surrounding medium tenv(r) and the heat exchange coefficient
ϑ(r). According to Fourier’s law of heat conduction, the heat flow can be expressed
as

qr = −λ11
∂T

∂r
− λ12

1

r

∂T

∂φ
, qφ = −λ12

∂T

∂r
− λ22

1

r

∂T

∂φ
, (40)

where λ11, λ12 and λ22 are the coefficients of thermal conductance of the anisotropic
material. In this axisymmetric case the temperature field T (r) is the function of the
radial coordinate. A multilayered approach will be used to determine the temperature
field of the radially graded anisotropic disk with radial coordinate-dependent thermal
conductivity. The concentric layers or subdomains have constant but different thick-
nesses and thermal conductivities λ11 = λ, the number of the layers is n, for the i-th
layer the heat conduction equation takes the forms of [36]:

∇ (tq) + hT (r) = 0,
d2Ti

dr2
+

1

r

dTi

dr
− pi

2(Ti(r)− tenv, i) = 0, (41)

where we have introduced the notation pi as

Rmi =
Ri +Ri+1

2
, λi = λ(Rmi), hi = h(Rmi), ϑi = ϑ(Rmi), etc. (42)

The temperature values t1 and tn + 1 are given at the inner and outer radii of the
disk, and the solution of the differential equation is

Ti(r) =
(ti − tenvi)K0(piRi+1)− (ti+1 − tenvi)K0(piRi)

K0(piRi+1)I0(piRi)−K0(piRi)I0(piRi+1)
I0(pir)+

+
(−ti − tenvi)I0(piRi+1) + (ti+1 − tenvi)I0(piRi)

K0(piRi+1)I0(piRi)−K0(piRi)I0(piRi+1)
K0(pir) + tenv(r), (43)
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where I0(x) and K0(x) are the modified Bessel functions of the first and second kind
and of order zero. The surface temperatures of the adjacent layers are equal, the heat
flow of the i-th layer qi is constant, therefore we get the following equations for the
disk:

ti+1 = Ti(Ri+1) = Ti+1(Ri+1), hiqi(Ri+1) = hi+1qi+1(Ri+1) i = 1, ..., n−1, (44)

qi(r) = −λipi
(ti − tenvi)K0(piRi+1)− (ti+1 − tenvi)K0(piRi)

K0(piRi+1)I0(piRi)−K0(piRi)I0(piRi+1)
I1(pir)−

− λipi
(−ti − tenvi)I0(piRi+1) + (ti+1 − tenvi)I0(piRi)

K0(piRi+1)I0(piRi)−K0(piRi)I0(piRi+1)
K1(pir)

i = 1, ..., n− 1 (45)

The unknown ti temperature values can be calculated from (45). When there is
no heat exchange on the upper and lower boundary surfaces and the temperature
dependency is negligible, then the temperature distribution is:

T (r) = t1 +
t2 − t1

R2∫
R1

1

ρλ(ρ)
dρ

r∫
R1

1

ρλ(ρ)
dρ. (46)

Similarly, when there are no internal heat sources and the temperature dependency
of λ(r) is negligible, the temperature field within spherical bodies can be expressed
as:

T (r) = t1 +
t2 − t1

R2∫
R1

1

ρ2λ(ρ)
dρ

r∫
R1

1

ρ2λ(ρ)
dρ. (47)

5. Numerical examples

There are multiple ways to calculate the effective material properties in temperature-
dependent FGMs. For the numerical examples the following parameters will be used
to describe the temperature dependency [37, 38]:

Ep(T ) = P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3), (48)

where Ep denotes a material property, Pi (i = −1...3) are material dependent coeffi-
cients of temperature (usually T [K]), furthermore for radially graded two-component
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disks and spheres the following expressions of effective material properties will be
utilized:

Epf (r, T ) = [Ep1(T )− Ep2(T )] [Z(r)]
m
+ Ep2(T ),

Z(r) =
r −R1

R2 −R1
, or Z(r) =

r

R1
,

(49)

where m is the volume fraction of the FGM and indices 1 and 2 denote the constituent
materials in classic FGMs, steel, and ceramic materials.

Example 1. For the first numerical example, a thick radially graded steel–silicon
nitride spherical pressure vessel with the following parameters is considered:

Table 3. Material parameters for the metal-ceramic FGM

Material Metal (stainless steel)

property (Ep) Pm0 Pm1(10
−3) Pm2(10

−7) Pm3(10
−10)

λ(W/mK) 15.39 −1.264 20.92 −7.223

α(1/k) 12.33 · 106 0.8086 0.0 0.0

E(Pa) 2.01 · 1010 0.3079 −6.534 0.0

V (−) 0.3262 −0.1 3.797 0.0

Material Ceramic (silicon nitride)

property (Ep) Pc0 Pc1(10
−3) Pc2(10

−7) Pc3(10
−10)

λ(W/mK) 12.723 −1.032 5.466 −7.876

α(1/k) 3.873 · 106 0.9095 0.0 0.0

E(Pa) 3.484 · 1010 −0.307 2.16 −8.946

V (−) 0.24 0.0 0.0 0.0

R1 = 0.5 m, R2 = 0.59 m, tinner = 250 K

touter = 20 K, p1 = 200 MPa, p2 = 10 MPa, m = {0.2, 1, 4}
Three cases are investigated with three different volume fractions m. The temper-

ature field in this case can be approximated as[39]:

T (r,m = 0.2) = 1.479 · 105r2 − 3.27 · 105r + 2.701 · 105 − 99427r−1 + 13879.7r−2 [K] ,

T (r,m = 1) = 94650.7r2 − 2.15321r + 183778− 70336.8r−1 + 10285.8r−2 [K] ,

T (r,m = 4) = 58516r2 − 1.1778 · 105r + 88658− 30213.3r−1 + 4069.9r−2 [K] .

The calculations were checked by results obtained by finite element simulations with
Abaqus. The 3D model was built from 32 homogeneous layers, and coupled temperature-
displacement elements were used. They were in good agreement, although the FE
solution oscillated significantly at the inner and outer radii of the sphere, which led
to greater error. Figure 3 shows the radial displacements and Figure 4 contains the
diagrams of the radial normal stresses (lower half between −200 and 10 MPa) and
the tangential normal stresses, illustrated with thicker lines.
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Figure 3. The radial displacements u(r) of the spherical bodies

r, 

Pa

Figure 4. The radial and tangential normal stresses within the spher-
ical pressure vessels

Example 2. In the second numerical example a functionally graded orthotropic
disk is considered and the results of the analytical solution and the numerical method
are compared to each other. The following numerical data were used:

C0
110 = 0.44GPa, C0

120 = 0.32GPa, C0
220 = 16.266GPa,

ρ00 = 4000
kg

m3
, β0

10 = −12476
N

m2K
, β0

20 = −32500
N

m2K
,

a = 0.02m, b = 0.1m, h(r) = 10−3r−0.2 [m] ,
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p1 = 40MPa, p2 = 5MPa, ω= 100
1

s
, t1 = 120 K, t2 = 20K

λ(r) =
20

a0.2
r0.2

[
W

mK

]
, ϑ(r) =

70

a0.2
r0.2

[
W

m2K

]
, tenv(r) = 95− 3000r1.8 [K] , n = 12.

The results can be seen in Figures 5 and 6. The numerical and analytical results
are in good agreement. The average relative error is around 0.01 percent with the
Runge-Kutta-Fehlberg method.

Figure 5. Results of the numerical and analytical methods for the
radial displacement fields

r, 

Pa

Figure 6. Results of the numerical and analytical methods for the
normal stresses

Example 3. For the last example a monoclinic material is considered where the
material properties are specific functions of the radial coordinate and the temperature.
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Figure 7. Curves of the radial and tangential displacements

r, 

Pa

Figure 8. Curves of the radial and tangential normal stresses

The material parameters, geometry and loading are:

Z(r, T ) =

(
1 +

0.22T

100

)(
r

R1

)m

, C11 = 26.43Z(r, T )GPa,

C12 = 13, 57Z(r, T ), GPa, C22 = 35.7Z(r, T )GPa
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C16 = 2.495Z(r, T )GPa, C26 = 3.163Z(r, T )GPa

C66 = 8.49Z(r, T )GPa, ρ = 4000Z(r, T )
kg

m3
,

β1 = −8.03 · 105Z(r, T )
N

m2K
, β2 = −5.234 · 105Z(r, T )

N

m2K
,

β6 = −3.026 · 105Z(r, T )
N

m2K
,

R1 = 0.1m, R2 = 0.4m, p1 = 80MPa, p2 = 0MPa

ω = 100
1

s
, T (r) = −99− 130 ln(r), m = 2,

h1(r) = −0.266r + 0.01266, h2(r) = 0.0115− 0.0033e2r, h3(r) = 0.033r−0.4.

Three different profiles are investigated with the same volume. The displacement
coordinates u, v and the normal stresses are illustrated in Figures 7 and 8. The calcu-
lations were checked by results obtained by Abaqus. The disk was modeled with 3D
coupled temperature-displacement elements and the body was built from 32 homo-
geneous temperature-dependent bonded layers. The results are in good agreement,
although the tangential normal stresses from the FE method oscillated at the ends of
the disk due to the multilayered approach.

With the developed method, the optimal profile for a specific load set can be
calculated effectively when used in conjunction with optimization codes.

6. Conclusions

A numerical method was presented to obtain the solution of steady-state thermoelastic
problems for radially graded spherical pressure vessels and rotating cylindrically mon-
oclinic disks. A new numerical approach was presented which is based on a coupled
system of first-order ordinary differential equations with the displacement and the
stress function as unknowns. The original axisymmetric two-point boundary value
problem was transformed to an initial value problem based on the basic equations
of thermoelasticity and plane-stress state in order to calculate the displacement and
stress field. The material properties of spherical bodies and anisotropic disks are arbi-
trary functions of the radial coordinate and the temperature. The developed methods
were checked by an analytical solution of an orthotropic disk where the material dis-
tribution follows a power-law function. The results were compared to each other and
to results obtained by finite element simulations and they are in good agreement.
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29. Ceniga, L. “Thermoelastic in-plane fields in a linear anisotropic solid.” Inter-
national Journal of Engineering Science, 69, (2013), pp. 43–60. doi: 10.1016/
j.ijengsci.2013.03.012.

30. Yildirim, V. “The complementary functions method (CFM) solution to the
elastic analysis of polar orthotropic rotating discs.” Journal of Applied and Com-
putational Mechanics, 4(3), (2018), pp. 216–230. doi: 10.22055/JACM.2017.
23188.1150.

31. Allam, M. N. M., Tantawy, R., and Zenkour, A. M. “Thermoelastic
stresses in functionally graded rotating annular disks with variable thickness.”
Journal of Theoretical and Applied Mechanics, 56(4), (2019), pp. 1029–1041.
doi: 10.15632/jtam-pl.56.4.1029.

32. Sondhi, L., Thawait, A. K., Sanyal, S., and Bhowmick, S. “Stress and
deformation analysis of variable thickness clamped rotating disk of function-
ally graded orthotropic material.” Materials Today: Proceedings, 18(7), (2019),
pp. 4431–4440. doi: 10.1016/j.matpr.2019.07.412.

33. Nayak, P., Bhowmick, P., Saha, K. N., and Bhowmick, S. “Elasto-plastic
analysis of thermo-mechanically loaded functionally graded disks by an itera-
tive variational method.” Engineering Science and Technology, an International
Journal, 23(1), (2019), pp. 42–64. doi: 10.1016/j.jestch.2019.04.007.

34. Kiss, L. P. “Nonlinear stability analysis of FGM shallow arches under an arbi-
trary concentrated radial force.” International Journal of Mechanics and Mate-
rials in Design, 16(1), (2020), pp. 901–108. doi: 10.1007/s10999-019-09460-
2.

35. Alimoradzadeh M., Saledi, M., and Esfarjani, S. M. “Nonlinear vibra-
tion analysis of axially functionally graded microbeams based on nonlinear elastic
foundation using modified couple stress theory.” Periodica Polytechnica Mechan-
ical Engineering, 64(2), (2020), pp. 97–108. doi: 10.3311/PPme.11684.

36. Carslaw, H. S. and Jaeger, I. C. Conduction of Heat in Solids. Clarendon
Press, Oxford, 1959.

37. Shen, H. S. Functionally Graded Materials: Nonlinear Analysis of Plates and
Shells. CRC Press, London, UK, 2009. doi: 10.1201/9781420092578.

38. Touloukian, Y. S., Gerritsen, J. K., and Moore, N. Y. Thermophysical
Properties Research Literature Retrieval Guide. New York, Plenum Press, 1967.
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Abstract. The main objective of the present paper is to clarify the effect of the axial
load on the eigenfrequencies of axially loaded and pinned-pinned stepped beams made of
heterogeneous material. To this end, we shall consider how the Green functions of the cor-
responding coupled boundary value problems can be determined. After finding these Green
Functions, the vibration problems of the unloaded and loaded stepped beams are reduced
to eigenvalue problems governed by homogeneous Fredholm integral equations. These are
solved numerically.
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1. Introduction

Beams can be found in many machines or structures as their vital elements. For
that reason their mechanical behavior has been the subject of studies for a long time
[1–3].

One of the major topics of interest is their vibrations [4–6]. When it comes to
stepped beams, the continuous-mass transfer matrix method is extended in [7] to
incorporate further effects such as rotatory inertia. The beams can have multiple
steps and can carry an arbitrary number of lumped mass elements. De Rosa et al.
[8] consider stepped beams assuming the Euler-Bernoulli hypothesis. The beams rest
on an elastic foundation, whose stiffness can change at the steps. The frequency
equation is solved numerically. Stepped beams with lumped masses made of axially
functionally graded material are investigated in [9] using the lumped mass transfer
matrix method. In article [10], the applied method is Adomian Decomposition, which
proves to be effective for this kind of issue.

The Green function was first used in 1828 [11] for electrostatic issues. Since then,
it has gained ground [12, 13]. Several three-point boundary value issues defined by
third-order nonlinear differential equations are discussed in [14] with Green functions.
The findings of [15] were extended for degenerated ordinary differential equation sys-
tems in [16, 17] for beam vibrations. The topic of stepped beam vibrations with a

©2024 Miskolc University Press
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Green function technique is addressed in [18], although for fixed-fixed support con-
ditions. Paper [18] is devoted to coupled eigenvalue problems for which it presents
a definition of the Green function determined for fixed-fixed stepped beams with the
aim of clarifying their vibration problems, including the issue of what happens if the
beam is subjected to axial forces.

The paper is organized into six sections. Sections 2 and 3 present the definition
of the coupled boundary value problems and the definition of the Green functions
that belong to them. The properties of these Green functions are detailed in Section
4. The definition plays an important role in the determination of the Green func-
tions since it is constructive and allows calculation of the Green functions. Section 5
considers what form the coupled eigenvalue problems take. The issue of the stepped
beams is tackled in Sections 6 and 7, which together with Section 8 constitute the
main part of the present paper. They contain the calculation of the Green functions
for the unloaded stepped beams and the axially loaded stepped beams as well. As
regards their vibration problems, the corresponding eigenvalue problems are reduced
to Fredholm integral equations that are solved numerically. Section 8 presents the
numerical solutions for the vibration problem when the beam is axially loaded. The
last section contains the concluding remarks.

2. Coupled boundary value problems

We shall consider a pair of inhomogeneous ordinary differential equations (ODEs)

Li[yi(x)] = ri(x), i = 1, 2 (1a)

where the differential operators Li[yi(x)] of order 2κ are defined by the relations

Li[yi(x)] =

2κ∑
n=0

pni(x) y
(n)
i (x),

dn(. . .)

dxn
= (. . .)(n), i = 1, 2. (1b)

Note that the order of these ODEs are the same.

Let b be an inner point in the interval x ∈ [0, ℓ = 1] for which it holds that 0 < b < ℓ,
b = ℓ1, ℓ− b = ℓ2 and ℓ1 + ℓ2 = ℓ = 1. It is assumed that κ ≥ 1 is a natural number.
The functions (pn1(x) and r1(x)) {rn2(x) and r2(x)} are continuous if (x ∈ [0, b))
{x ∈ (b, ℓ = 1]} and p2κi(x) ̸= 0.

It is assumed that ODEs (1) are associated with the following boundary and con-
tinuity conditions:

U0r[y1] =

2κ∑
n=1

αnr1 y
(n−1)
1 (0) = 0 , r = 1, 2, . . . , κ (2a)

Ubr[y1, y2] = Ubr1[y1]− Ubr2[y2] =

=

2κ∑
n=1

(
βnr1 y

(n−1)
1 (b)− βnr2 y

(n−1)
2 (b)

)
= 0 , r = 1, 2, . . . , 2κ (2b)

U1r[y2] =

2κ∑
n=1

γnr2 y
(n−1)
2 (ℓ) = 0 , r = 1, 2, . . . , κ (2c)
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where αnrI , βnrI , βnrII , and γnrII are real constants.

ODEs (1) with boundary and continuity conditions (2) determine a coupled bound-
ary value problem, since the solutions y1(x), y2(x) should satisfy continuity conditions
(2b).

Let us denote the linearly independent particular solutions of ODEs (1b) by ymi(x)
(m = 1, 2, . . . , 2κ). With ymi(x), the general solutions yi(x) are of the form

y1(x) =

2κ∑
m=1

Am1ym1(x), if x ∈ [0, b]; (3a)

y2(x) =

2κ∑
ℓ=1

Am2ym2(x), if x ∈ [b, ℓ = 1]; (3b)

where Am1 and Am2 are undetermined integration constants.

The integration constants Aℓ1 and Aℓ2 can be obtained from the boundary and
continuity conditions:

2κ∑
m=1

Am1U0r[ym1] = 0, r = 1, 2, . . . , κ (4a)

2κ∑
m=1

(Am1Ubr1[ym1]−Am2Ubr2[ym2]) = 0, r = 1, 2, . . . , 2κ (4b)

2κ∑
ℓ=1

Am2U1r[ym2] = 0, r = 1, 2, . . . , κ . (4c)

If we know the Green function G(x, ξ) that belongs to the coupled boundary value
problem (1), (2), then we seek the solution in the following form:

y(x) =

∫ ℓ=1

ξ=0

G(x, ξ) r(ξ) dξ , (5a)

where

y(x) =

{
y1(x) if x ∈ [0, b)

y2(x) if x ∈ (b, ℓ = 1]
and r(ξ) =

{
r1(ξ) if ξ ∈ [0, b) ,

r2(ξ) if ξ ∈ (b, ℓ = 1] .
(5b)

3. Green’s functions of coupled boundary value problems

Let G(x, ξ) be the Green function that belongs to the coupled boundary value problem
(1), (2). It is defined by the following formula and properties [18].
Formula:

G(x, ξ) =


G11(x, ξ) if x, ξ ∈ [0, b],
G21(x, ξ) if x ∈ [b, ℓ] and ξ ∈ [0, b],
G12(x, ξ) if x ∈ [0, b] and ξ ∈ [b, ℓ],
G22(x, ξ) if x, ξ ∈ [b, ℓ],

(6)
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Properties:
1. Let ξ be an arbitrarily fixed coordinate in [0, b]
(i) The function G11(x, ξ) is a continuous function of x and ξ in the triangles 0 ≤ x ≤
ξ ≤ b and 0 ≤ ξ ≤ x ≤ b – see Figure 1. In addition it is 2κ times differentiable with
respect to x and the derivatives

∂nG11(x, ξ)

∂xn
= G

(n)
11 (x, ξ) , n = 1, 2, . . . , 2κ (7a)

are also continuous functions of x and ξ in the triangles 0 ≤ x ≤ ξ ≤ b and
0 ≤ ξ ≤ x ≤ b.

y

b

b



x

x  

x  

y
x  

x  

x  

  1

  1

Figure 1. Triangular domains

The function G11(x, ξ) and its derivatives

G
(n)
11 (x, ξ) =

∂nG11(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ− 2 (7b)

should be continuous for x = ξ:

lim
ε→0

[
G

(n)
11 (ξ + ε, ξ)−G

(n)
11 (ξ − ε, ξ)

]
=

=
[
G

(n)
11 (ξ + 0, ξ)−G

(n)
11 (ξ − 0, ξ)

]
= 0 n = 0, 1, 2, . . . 2κ− 2 (7c)

the derivative G
(2κ−1)
1I (x, ξ) should, however, have a jump if x = ξ:

lim
ε→0

[
G

(2κ−1)
1I (ξ + ε, ξ)−G

(2κ−1)
1I (ξ − ε, ξ)

]
=

=
[
G

(2κ−1)
1I (ξ + 0, ξ)−G

(2κ−1)
1I (ξ − 0, ξ)

]
=

1

p2κ1(ξ)
. (7d)

(ii) In contrast, the function G21(x, ξ) and its derivatives

G
(n)
21 (x, ξ) =

∂nG21(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ (7e)

are all continuous functions for any x in [b, ℓ]
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2. Let ξ be fixed in [b, ℓ].
(i) The function G12(x, ξ) and its derivatives

G
(n)
12 (x, ξ) =

∂nG12(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ (8a)

are all continuous functions for any x in [0, b].
(ii) The function G22(x, ξ) is a continuous function of x and ξ in the triangles b ≤ x ≤
ξ ≤ ℓ and b ≤ ξ ≤ x ≤ ℓ – see again Figure 1. In addition it is 2κ times differentiable
with respect to x and the derivatives

∂nG22(x, ξ)

∂xn
= G

(n)
22 (x, ξ) , n = 1, 2, . . . , 2κ (8b)

are also continuous functions of x and ξ in the triangles b ≤ x ≤ ξ ≤ ℓ and b ≤ ξ ≤
x ≤ ℓ.

The function G22(x, ξ) and its derivatives

G
(n)
22 (x, ξ) =

∂nG22(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ− 2 (8c)

are also continuous for any x = ξ in [b, ℓ]:

lim
ε→0

[
G

(n)
22 (ξ + ε, ξ)−G

(n)
22 (ξ − ε, ξ)

]
=

=
[
G

(n)
22 (ξ + 0, ξ)−G

(n)
22 (ξ − 0, ξ)

]
= 0 , n = 0, 1, 2, . . . 2κ− 2; (8d)

the derivative G
(2κ−1)
22 (x, ξ) should, however, have a jump if x = ξ:

lim
ε→0

[
G

(2κ−1)
22 (ξ + ε, ξ)−G

(2κ−1)
22 (ξ − ε, ξ)

]
=

=
[
G

(2κ−1)
22 (ξ + 0, ξ)−G

(2κ−1)
22 (ξ − 0, ξ)

]
=

1

p2κ2(ξ)
. (8e)

3. Let α be an arbitrary but finite non-zero constant. For a fixed ξ ∈ [0, ℓ] the
product G(x, ξ)α as a function of x (x ̸= ξ) should satisfy the homogeneous differential
equations

L1 [G(x, ξ)α] = 0, if x ∈ [0, b];

L2 [G(x, ξ)α] = 0, if x ∈ [b, ℓ].
(9)

4. The product G(x, ξ)α as a function of x should satisfy the boundary conditions
and the continuity conditions

2κ∑
n=1

αnr1 G
(n−1)(0) = 0 , r = 1, . . . , κ

2κ∑
n=1

(
βnr1 G

(n−1)(b− 0)− βnr2 G
(n−1)(b+ 0)

)
= 0 , r = 1, . . . , 2κ

2κ∑
n=1

γnr2 G
(n−1)(ℓ) = 0 . r = 1, . . . , κ

(10)
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The above boundary and continuity conditions should be satisfied by the functions
pairs

{G11(x, ξ), G21(x, ξ)} ,
{G12(x, ξ), G22(x, ξ)} ,

as well.

Remark 1. It can be proved by following the line of thought of a similar proof pre-
sented in [17] that the Green function defined above satisfies not only differential
equation (1) but boundary and continuity conditions (2) as well.

Remark 2. The definition of the Green function is a constructive one since it makes
possible to calculate the elements of the Green function.

Remark 3. Consider the inhomogeneous coupled boundary value problem defined by
differential equations (1) with the boundary and continuity conditions (2). Let us
assume that we know the corresponding Green function. Then the solution is given
by the integral (5).

4. Properties of the Green function

4.1. Self-Adjointness. Assume that the functions

u(x) =

{
u1(x) if x ∈ [0, b]
u2(x) if x ∈ [b, ℓ]

(11a)

and

v(x) =

{
v1(x) if x ∈ [0, b]
v2(x) if x ∈ [b, ℓ]

. (11b)

satisfy the boundary and continuity conditions (2) and are continuously differentiable
2κ times. Then they are called comparison functions. It is obvious that the solu-
tions y1(x) and y2(x) of the coupled boundary value problem (1) and (2) are also
comparative functions. Formula

(u, v)L =

∫ b

0

u1(x)L1[v1(x)] dx+

∫ ℓ

b

u2(x)L2[v2(x)] dx (12)

taken on the set of the comparison functions u(x), v(x) is a product defined on the
differential operators L1 and L2.

The coupled boundary value problem (1) and (2) is said to be self-adjoint if the
product (12) is commutative, i.e., it holds that

(u, v)L = (v, u)L . (13)

Condition (13) is called the condition of self-adjointness.

It can be proved (see [18]) that the Green function of coupled and self-adjoint
boundary value problems is a symmetric function of ξ and x:

G(x, ξ) = G(ξ, x) . (14)
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5. Coupled eigenvalue problems

Consider differential equations

Ki [yi] = λMi [yi] , i = 1, 2 (15a)

where y1(x), x ∈ [0, b] and y2(x), x ∈ [b, ℓ]; (0 < b < ℓ = 1) are again the unknown
functions while λ is an unknown parameter (the eigenvalue sought). Differential
operators Ki [yi] and Mi [yi] are defined by the equations

Ki [yi] =

κ∑
n=0

(−1)n
[
fni(x)y

(n)
i (x)

](n)
,

dn(. . .)

dxn
= (. . .)(n) ;

Mi [yi] =

µ∑
n=0

(−1)n
[
gni(x)y

(n)
i (x)

](n)
, κ > µ ≥ 1

(15b)

in which the real function (fni(x)) [gni(x)] is assumed to be differentiable continuously
(κ) [µ] times and

fκi(x) ̸= 0 if x ∈ [0, b] (15c)

gµi(x) ̸= 0 if x ∈ [b, ℓ] . (15d)

The order of the differential operator on the left side of (15a) – this is 2κ – is greater
than 2µ: the latter is the order of the differential operator on the right side.

We shall assume that ODEs (15) are associated with the homogeneous boundary
and continuity conditions given by equations (2).

Let u(x) and v(x) x ∈ [0, ℓ] be two comparative functions for the eigenvalue problem
(15), (2) – see (11). If we perform successive partial integration we get the following
formulae for the products (u, v)K and (u, v)M :

(u, v)K =

[ κ∑
n=0

n−1∑
r=0

(−1)(n+r)u
(r)
1 (x)

[
fn1(x) v

(n)
1 (x)

](n−1−r)
]b−0

0

+

+

[ κ∑
n=0

n−1∑
r=0

(−1)(n+r)u
(r)
2 (x)

[
fn2(x) v

(n)
2 (x)

](n−1−r)
]ℓ
b+0

+

+

κ∑
n=0

∫ b

0

u
(n)
1 (x)fn(x)v

(n)
1 (x) dx+

κ∑
n=0

∫ ℓ

b

u
(n)
2 (x)fn(x)v

(n)
2 (x) dx =

= K0(u, v) +

κ∑
n=0

∫ b

0

u
(n)
1 (x)fn(x)v

(n)
1 (x) dx+

κ∑
n=0

∫ ℓ

b

u
(n)
2 (x)fn(x)v

(n)
2 (x) dx ,

(16a)

and

(u, v)M =

[ µ∑
n=0

n−1∑
r=0

(−1)(n+r)u
(r)
1 (x)

[
gn1(x) v

(n)
1 (x)

](n−1−r)
]b−0

0

+

+

[ µ∑
n=0

n−1∑
r=0

(−1)(n+r)u
(r)
2 (x)

[
gn2(x) v

(n)
2 (x)

](n−1−r)
]ℓ
b+0

+
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+

µ∑
n=0

∫ b

0

u
(n)
1 (x)gn1(x)v

(n)
1 (x) dx+

µ∑
n=0

∫ ℓ

b

u
(n)
2 (x)gn2(x)v

(n)
2 (x) dx =

= M0(u, v) +

µ∑
n=0

∫ b

0

u
(n)
1 (x)gn1(x)v

(n)
1 (x) dx+

µ∑
n=0

∫ ℓ

b

u
(n)
2 (x)gn2(x)v

(n)
2 (x) dx.

(16b)

The expressions K0(u, v) and M0(u, v) are defined by the right sides of equations (16).
They are referred to as boundary and continuity expressions. If

K0(u, v) = K0(v, u) and M0(u, v) = M0(v, u) (17)

then the coupled eigenvalue problem determined by equations (15), (2) is obviously
self-adjoint. The coupled eigenvalue problem is called simple if

M1[y] = g01(x)y1(x) and M2[y] = g02(x)y2(x). (18)

Assume that the eigenvalue problem considered is simple. Assume further that the
Green function that belongs to the coupled differential equations

Ki [yi(x)] = ri(x), i = 1, 2 (19)

associated with boundary condition and continuity conditions (2) is known. Then it
holds that

y(x) = λ

∫ ℓ

0

G(x, ξ)g0(ξ)y(ξ) dξ , (20)

where

y(x) =

{
y1(x) if ξ ∈ [0, b) ,
y2(x) if ξ ∈ (b, ℓ]

and g0(x) =

{
g01(x) if ξ ∈ [0, b) ,
g02(x) if ξ ∈ (b, ℓ]

is the eigenfunction y(x) that belong to the eigenvalue λ while the structure of G(x, ξ)
is given by (6). In this way the coupled eigenvalue problem is reduced to an eigenvalue
problem governed by a homogeneous Fredholm integral equation. Assume that the
original eigenvalue problem is self-adjoint and positive definite, i.e. it holds, among
others, that g0(ξ) > 0 (ξ ∈ [0, ℓ]). Under these conditions the previous Fredholm
integral equation can be rewritten into the form

Y(x) = λ

∫ ℓ

0

K(x, ξ)Y(ξ) dξ , (21)

where
Y(x) =

√
g0(x)y(x), K(x, ξ) =

√
g0(x)G(x, ξ)

√
g0(ξ) (22)

in which Y(x) is a new unknown function and the kernel K(x, ξ) is symmetric.

6. Stepped beams

6.1. Governing equations for heterogeneous stepped beam problems. Figure
2 shows a pinned-pinned heterogeneous stepped beam (PPStp beam). The axial force
N (N > 0) is compressive in this figure. The transverse coordinates are ŷ, ẑ, while

the longitudinal is x̂ = ξ̂. The coordinate plane x̂ẑ is a symmetry plane of the beam.
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z

L2

A
1

, Iey1

A
2

, Iey2

x

L1  b

L1  L2  L

ŵ1 ŵ2

N

Figure 2. Heterogeneous stepped beam

The cross-sectional areas Ai, (i = 1, 2) are constants. The beam is assumed to
have heterogeneous cross sections, which means that the modulus of elasticity E
satisfies the condition E(ŷ, ẑ) = E(−ŷ, ẑ). In this case we speak about cross-sectional
heterogeneity. The length of the beam is L, the discontinuity in the cross sections

is at b̂. We should mention that the E-weighted first moment [19] Qŷ is zero in this
coordinate system:

Qŷ =

∫
A

ẑE(ŷ, ẑ)dA = 0 . (23)

The E-weighted moments of inertia [19] are defined by the equations

Iey1
=

∫
A1

E(ŷ, ẑ)z2 dA, Iey2
=

∫
A2

E(ŷ, ẑ)z2 dA. (24)

The beam is subjected to distributed forces f̂y1(x̂), x̂ ∈ [0, L1), f̂y2(x̂), x̂ ∈ [(L1, L]
acting on the center line x̂. The vertical displacements on the center line are denoted
by ŵ1, x̂ ∈ [0, L1) and ŵ2, x̂ ∈ [0, L1).

In what follows we shall introduce the following dimensionless quantities:

x = x̂/L, ξ = ξ̂/L, wi = ŵi L (i = 1, 2),

b = b̂/L , ℓ =
x

L

∣∣∣
x=L

= 1 .,
(25)

(a) Equilibrium problems of PPStp beams with cross-sectional heterogeneity are gov-
erned by the following differential equations [19]:

Ki(wi(x)) = Ieyiw
(4)
i = fzi(x) , fzi = L3f̂zi, x ∈

{
[0, b) if i = 1
(b, ℓ) if i = 2

dkwi

dxk
= w

(k)
i , (k = 1, . . . , 4)

(26)

ODEs (26)1 are associated with the following boundary and continuity conditions:

w1(0) = 0 , w
(1)
2 (0) = 0 ; w2(ℓ) = 0 , w

(2)
2 (ℓ) = 0 . (27a)

w1(b− 0) = w2(b+ 0) w
(1)
1 (b− 0) = w

(1)
2 (b+ 0) (27b)

Iey1
w

(2)
1 (b− 0) = Iey2

w
(2)
2 (b+ 0) Iey1

w
(3)
1 (b− 0) = Iey2

w
(3)
2 (b+ 0) (27c)
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ODEs (26)1 with boundary and continuity conditions (27) constitute a coupled bound-
ary value problem.

With the Green function that belongs to the coupled boundary value problem
(26)1, (27) solution for the dimensionless deflection w(x) (w(x) = w1(x) if x ∈ [0, b];
w(x) = w2(x) if x ∈ [b, ℓ]) is given by the following equation:

w(x) =

∫ ℓ

0

G(x, ξ)f(ξ)dξ, f(ξ) =

{
fz1(ξ) if ξ ∈ [0, b],
fz2(ξ) if ξ ∈ [b, ℓ].

(28)

(b) Vibration problems of PPStp beams. As regards the free vibrations of PPStp
beams it holds that

f(ξ) =

{
ρa1A1L

4ω2w1(x) if ξ ∈ [0, b],
ρa2A2L

4ω2w2(x) if ξ ∈ [b, ℓ].
= ρa1A1L

4ω2︸ ︷︷ ︸
λ

w(ξ)

 1 if ξ ∈ [0, b],
ρa2A2

ρa1A1
if ξ ∈ [b, ℓ].

(29)
in which wi(x) is the dimensionless amplitude, ρai is the average density on Ai,
while ω stands for the circular frequency of the vibrations. With these notations the
differential equations

K1(w1(x)) = Iey1w
(4)
i = ρa1A1L

4ω2︸ ︷︷ ︸
λ

w1(x) ,

K2(w1(x)) = Iey2
w

(4)
2 = λ

ρa2A2

ρa1A1
w2(x)

(30)

are satisfied by wi(x). Differential equations (30) with the boundary and continuity
conditions (27) determine a coupled eigenvalue problem for which λ is the eigenvalue.
Recalling (28), we may conclude that this eigenvalue problem is governed by the
homogeneous Fredholm integral equation

w(x) = λ

∫ ℓ

0

G(x, ξ)w(ξ)

 1 if ξ ∈ [0, b],
ρa2A2

ρa1A1
if ξ ∈ [b, ℓ].

dξ. (31)

6.2. Calculation of the Green function.

6.2.1. Particular solutions. The linearly independent particular solutions of the dif-
ferential equation Ki(wi(x)) = 0 are very simple functions:

w11 = w12 = 1 , w21 = w22 = x , w31 = w32 = x2 , w41 = w42 = x3 . (32)

6.2.2. Calculations of the Green function if ξ ∈ (0, b). We shall assume that

G11(x, ξ) =

4∑
m=1

(amI(ξ) + bmI(ξ))w1m(x), x < ξ;

G11(x, ξ) =

4∑
m=1

(amI(ξ)− bmI(ξ))w1m(x), x > ξ;

x ∈ [0, b] (33a)
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G21(x, ξ) =

4∑
m=1

cmI(ξ)w2m(x), x ∈ [b, ℓ] (33b)

where the coefficients am1(ξ), bm1(ξ) and cm1(ξ) are unknown functions. This selec-
tion ensures the fulfillment of the following properties of the definition: 1. (ii) and 3.
Fulfillment of Property 1. (i) leads to the following equation system:

1 ξ ξ2 ξ3

0 1 2ξ 3ξ2

0 0 2 6ξ
0 0 0 6




b11
b21
b31
b41

 =


0
0
0

− 1
2Iey1

 (34)

from where 
b11
b21
b31
b41

 =
1

12Iey1


ξ3

−3ξ2

3ξ
−1

 . (35)

Property 4 of the definition requires that the boundary and continuity conditions
should all be satisfied. Therefore equations (27) yield the following equation system:
Boundary conditions at x = 0:

4∑
m=1

am1wm1(0) = −
4∑

m=1

bm1wm1(0) , (36a)

4∑
m=1

am1w
(2)
m1(0) = −

4∑
m=1

bm1w
(2)
m1(0) . (36b)

Continuity conditions at x = b:

4∑
m=1

am1wm1(b)−
4∑

m=1

cmiwm2(b) =

4∑
m=1

bm1wm1(b) , (36c)

4∑
m=1

am1w
(1)
m1(b)−

4∑
m=1

cmiw
(1)
m2(b) =

4∑
m=1

bm1w
(1)
m1(b) , (36d)

4∑
m=1

am1w
(2)
m1(b)−

Iey2

Iey1︸︷︷︸
α

4∑
m=1

cmiw
(2)
m2(b) =

4∑
m=1

bmiw
(2)
m1(b) , (36e)

4∑
m=1

am1w
(3)
m1(b)−

Iey2

Iey1︸︷︷︸
α

4∑
m=1

cmiw
(3)
m2(b) =

4∑
m=1

bmiw
(3)
m1(b) . (36f)

Boundary conditions at x = ℓ:

4∑
m=1

cm1wm2(0) = 0 , (36g)
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4∑
m=1

cm1w
(2)
m2(0) = 0 . (36h)

After substituting wm1, wm2, and bm1, equation system (36) assumes the following
matrix form:

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 b 0 b3 −1 −b −b2 −b3

0 1 0 3b2 0 −1 −2b −3b2

0 0 0 6b 0 0 −2α −6αb
0 0 0 6 0 0 0 −6α
0 0 0 0 1 ℓ ℓ2 ℓ3

0 0 0 0 0 1 2ℓ 3ℓ2





a11
a21
a31
a41
c11
c21
c31
c41


=

1

12Iey1



−ξ3

−3ξ
2ξ3 − 3ξ2b+ 6ξb2 − b3

−3ξ2 + 12ξb− 3b2

12ξ − 6b
−6
0
0


(37)

Making use of the closed form solutions for am1, bm1 and cm1 (m = 1, . . . , 4), we get
G11(x, ξ) and G21(x, ξ) from equations (33):

G11(x, ξ) =
1

12Iey1

{
(−ξ3 ± ξ3)+

+

[
ξ

αℓ2

(
4 (ℓ− b)

3
+ α

(
12ℓb (ℓ− b) + 2ξ2ℓ+ 4b3 − 3ξℓ2

))
±
(
−3ξ2

)]
x+

+ (−3ξ ± 3ξ)x2 +

(
−1

ℓ
(ℓ− 2ξ)± (−1)

)
x3

}
, (38a)

G21(x, ξ) =
2ξ (ℓ− x)

12Iey1
αℓ2

(
2xℓ2 − 3ℓb2 − x2ℓ+ 2b3 + α

(
3ℓb2 − ξ2ℓ− 2b3

))
. (38b)

6.2.3. Calculation of the Green function if ξ ∈ (b, ℓ): In this case it is assumed that

G12(x, ξ) =

4∑
m=1

cm2(ξ)wm1(x), x ∈ [0, b]; (39a)

G22(x, ξ) =

4∑
m=1

(am2(ξ) + bm2(ξ))wm2(x), x ≤ ξ

G22(x, ξ) =

4∑
m=1

(am2(ξ)− bm2(ξ))wm2(x), x ≥ ξ

x ∈ [b, ℓ]; (39b)

in which the coefficients am2(ξ), bm2(ξ), and cm2(ξ) are again the unknowns.
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Recalling the calculation steps that resulted in solution (35), we obtain that
b12
b22
b32
b42

 =
1

12Iey2


ξ3

−3ξ2

3ξ
−1

 . (40)

The boundary conditions at x = 0, x = ℓ and the continuity conditions at x = b –
the calculations are based on equations (36) but the details are omitted – lead to the
following equation system:

1 b b2 b3 0 −b 0 −b3

0 1 2b 3b2 0 −1 0 −3b2

0 0 2α 6αb 0 0 0 −6b
0 0 0 α 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 ℓ ℓ2 ℓ3 0 0 0 0
0 0 2 6ℓ 0 0 0 0





a12
a22
a32
a42
c12
c22
c32
c42


=

1

12Iey2



−ξ3 + 3bξ2 − 3b2ξ + b3

3ξ2 − 6bξ + 3b2

α (6b− 6ξ)
α
0
0

ξ3 − 3ℓξ2 + 3ℓ2ξ − ℓ3

6ξ − 6ℓ


(41)

Utilizing the closed form solutions for am1, bm1, and cm1, the following formulae are
obtained for G11(x, ξ) and G21(x, ξ) from equations (39):

G12(x, ξ) =
2x (ℓ− ξ)

12Iey2ℓ
2

(
2ξℓ2 − 3ℓb2 − ξ2ℓ+ 2b3 + α

(
3ℓb2 − 2b3 − x2ℓ

))
, (42a)

G22(x, ξ) =
1

12Iey2
ℓ

(
4b3ξ − ℓξ3 − 4ℓb3 + 4αb3 (ℓ− ξ)

)
± ξ3

12Iey2

+

+

(
1

12Iey2
ℓ2
(
4ℓ3ξ + 2ℓξ3 − 3ℓ2ξ2 − 4b3ξ + 4ℓb3 + 4b3αξ − 4ℓb3α

)
± −3ξ2

12Iey2

)
x+

+

(
−3ξ

12Iey2

± 3ξ

12Iey2

)
x2 +

(
− 1

12Iey2
ℓ
(ℓ− 2ξ)± −1

12Iey2

)
x3 (42b)

Remark 4. Recalling and applying then formula (16) to differential equations (26), we
may conclude that K0(u, v) = 0 in (16). This means that the coupled boundary value
problem defined by (16) and (27) is self-adjoint. Consequently the Green function
should be symmetric, i.e., it holds that

G(x, ξ) = G(ξ, x).

It is clear from a comparison of (38b) and (42a) that G12(x, ξ) = G21(ξ, x). It
can also be checked by paper-and-pencil calculations that G11(x, ξ) = G11(ξ, x) and
G22(x, ξ) = G22(ξ, x).

Remark 5. The unit of the Green function is 1/Nmm2.
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Remark 6. Let us introduce the dimensionless distributed load

fzi =
fzi
Ieyi

=
L3f̂zi
Ieyi

(43)

and multiply equations (26)1 by 1/Ieyi
. The result is

w
(4)
i = fzi(x) . (44)

Note that differential equations (44) with the boundary and continuity conditions
(27) determine now a three-point boundary value problem – therefore the coupling
has been removed. The dimensionless Green function for this three-point boundary
value problem is given by the equation

G(x, ξ) =


G11(x, ξ) = Iey1

G11(x, ξ) if x, ξ ∈ [0, b],
G21(x, ξ) = Iey1

G21(x, ξ) if x ∈ [b, ℓ] and ξ ∈ [0, b],
G12(x, ξ) = Iey2

G12(x, ξ) if x ∈ [0, b] and ξ ∈ [b, ℓ],
G22(x, ξ) = Iey2G22(x, ξ) if x, ξ ∈ [b, ℓ].

(45)

It is worthy of mention that G(x, ξ) depends on Iey1
and Iey2

via α only, The presence
of this parameter reflects the fact that the beam considered is stepped. The solution
for the equilibrium problem is then

w(x) =

∫ ℓ

0

G(x, ξ)f(ξ)dξ, f(ξ) =

{
fz1(ξ) if ξ ∈ [0, b],
fz2(ξ) if ξ ∈ [b, ℓ].

Though the three-point boundary value problem (44), (27) is not self-adjoint, the
following symmetry conditions are obviously satisfied:


G11(x, ξ) = G11(ξ, x) if x, ξ ∈ [0, b],
G21(x,ξ)

Iey1
= G12(ξ,x)

Iey2
if x ∈ [b, ℓ] and ξ ∈ [0, b],

G22(x, ξ) = G22(ξ, x) if x, ξ ∈ [b, ℓ].

(46)

If we write b̂, L, x̂ and ξ̂ for b, ℓ, x and ξ in formulate (45) we obtain the Green
function for the case when we use a selected length unit. Then the unit of the Green
function is the cube of the length unit selected.

For the purpose of displaying the behavior of the Green function, Figure 3 depicts

then graph when L = 100 mm, b̂ = 50 mm, ξ̂ = 75 mm and α = 0.52200625.
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Figure 3. The Green function of a PPStp beam

Remark 7. With (45) the eigenvalue problem (31) for λ can be rewritten into the
following form

w(x) = χ

∫ ℓ

0

G(x, ξ)w(ξ)
{

1 if ξ ∈ [0, b],
κ if ξ ∈ [b, ℓ].

}
dξ , (47)

where

χ =
λ

Iey1

=
ρa1A1L

4

Iey1

ω2, and κ =
ρa2A2Iey1

ρa1A1Iey2

(48)

is the new eigenvalue.

6.3. Example 1. Consider the stepped beam shown in Figure 4. We shall assume

that ν = 0.95, 0.90, 0.85, 0.80, 0.75 if x̂ ∈ (b̂, L]. It is also assumed that D1 = 50mm,

while E1 = E2 = Esteel = 2.0 × 105 N/mm
2
. The length L of the beam is 800mm,

the location of the middle support is given by the parameter b̂. The surface densities
have the following values: ρ1 = ρ2 = ρsteel = 7850 kg/109mm3. Under the previ-
ous conditions Table 1 shows the characteristic data for the various cross sections.
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b

L

x

ŷ

z

a

D1 D2  D1

Figure 4. Stepped beam with circular cross section

Table 1. Data for the cross sections

ν
ρa = ρ1 = ρ2 Iey1 × 10−13 Iey2 × 10−13

α κ
kg/mm3 kgmm3/s2

0.95 4.997747756 0.81450625 1.052631579
0.90 4.025779180 0.65610000 1.234586718
0.85 7.850× 10−6 6.135923152 3.202990235 0.52200625 1.384099617
0.80 2.513274123 0.40960000 1.562500000
0.75 1.473235149 0.31640625 1.777777778

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
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b

Figure 5. The first eigenvalue as a function of b; α and κ are parameters

The eigenvalue problem (47)–(48) is solved numerically by using a solution algo-
rithm based on the boundary element method and published in [17].
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Figure 5 shows the computational results for
√
χ1/4.73004

2 as a function of the
dimensionless parameter b. Each curve in Figure 5 corresponds to a different value of
the parameter α.

Assume that b = 0.5. If ν = 0.8 we have α = 0.4096 and κ = 1.562 5. It follows
from equation (48) that

ω1 =
1

L2

√
Iey1

ρa1A1
χ1 =

1

8002
×

(√
6.135 923 152× 1013

7.850× 10−6 × 252 × π

)
× 8.420 160 122 =

= 830.100 277 1 r/sec. (49)

If there is no step in the beam
√
χ1 = π2 × 1.0 = 9.869 604 4019.

and

ω1 =
1

8002
×

(√
6.135 923 152× 1013

7.850× 10−6 × 252 × π

)
× 9.869 604 4019 = 972.993 533 4 r/sec.

These results are compared with finite element calculations using Ansys. For mesh
generation, a total of 360 uniform hexahedral elements (SOLID185) were used to
discretize the geometry. A good agreement has been found:

Table 2. Comparison to FEM results

Eigenfrequency Our Ansys Relative
(Hz) solution solution error

Stepped beam 830.100 277 1
2π = 132.115 131.18 0.707%

Unifrom beam 972. 993 53
2π = 154. 865 154.15 0.462%

When calculating the relative error our solution was the denominator.

7. Axially loaded stepped beams

7.1. Governing equations. We shall consider three different problems for axially
loaded heterogeneous beams.
(a) Equilibrium problems. If a PPStp beam with cross-sectional heterogeneity is
axially loaded, equilibrium problems are governed by the ODEs

K1a(w1(x)) = Iey1
w

(4)
1 ±N1L

2w
(2)
1 = fz1(x), x ∈ [0, b];

K2a(w2(x)) = Iey2
w

(4)
2 ±N2L

2w
(2)
2 = fz2(x̂), x ∈ [b, l],

(50)

where N1 and N2 (N1 > 0, N2 > 0) are the axial forces acting on the beam. Their
signs are (positive) [negative] if the considered axial force is (compressive) [tensile].
ODEs (50) are associated with boundary and continuity conditions (27). Note that
boundary value problem (50), (27) is again a coupled boundary value problem.

In the sequel we shall assume that N1 = N2 = N .
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If we know the Green functions G = Gc(x, ξ) (N is compressive) and G = Gt(x, ξ) (N
is tensile) solution for the dimensionless deflection w(x) (w(x) = w1(x) if x ∈ [0, b];
w(x) = w2(x) if x ∈ [b, ℓ]) is given by integral (28) in which (G(x, ξ) = Gc(x, ξ) if the
axial force is compressive) [G(x, ξ) = Gt(x, ξ) if the axial force is tensile].

Remark 8. It can be checked with ease that the coupled boundary value problem
(50), (27) is self-adjoint.

(b) Stability problems. If fz1(x) = fz2(x) = 0, N1 = N2 = N and the sign of N is
positive we get

K1as(w1(x)) = w
(4)
1 +N1w

(2)
1 = 0, N1 =

NL2

Iey1

, x ∈ [0, b];

K2as(w2(x)) = w
(4)
2 +N2w

(2)
2 = 0, N2 =

NL2

Iey2

, x ∈ [b, l].

(51)

ODEs (51) with boundary and continuity conditions (27) constitute a coupled eigen-
value problem for which N is the eigenvalue sought. This problem is solved in Ap-
pendix A.

(c) Vibration problems. If the axially loaded beams vibrate, the amplitudes should
fulfill ODEs

K1av(w1(x)) = w
(4)
1 ±N1w

(2)
1 = χw1, χ =

λ

Iey1

=
ρa1A1L

4ω2

Iey1

, x ∈ [0, b];

K2av(w2(x)) = w
(4)
2 ±N2w

(2)
2 = χκw2, χκ =

ρa2A2L
4ω2

Iey2

, x ∈ [b, l],

(52)

which are associated with boundary and continuity conditions (27). ODEs (52) with
boundary and continuity conditions (27) constitute a coupled eigenvalue problem with
χ as the eigenvalue.

7.2. Calculation of the Green function for compressive axial force. Let us
introduce the quantities

p1 =
√
N1, p2 =

√
N2 = p1

√
α. (53)

With (53), solutions to the dimensionless displacements in equations (50) – the signs

of N1L
2w

(2)
1 and N2L

2w
(2)
2 are positive – are given by

w1 =

4∑
ℓ=1

aℓ1wℓ1(x) = a11 + a21x+ a31 cos p1x+ a41 sin p1x, p1 =
√
N1; (54a)

w2 =

4∑
ℓ=1

aℓ2wℓ2(x) = a12 + a22x+ a32 cos p2x+ a42 sin p2x, p2 =
√
N2. (54b)
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The structure of the Green function is presented by equation (6).
If ξ ∈ (0, b) we shall assume that

Gc11(x, ξ) =

4∑
m=1

(am1(ξ) + bm1(ξ))w1m(x), x < ξ

Gc11(x, ξ) =

4∑
m=1

(am1(ξ)− bm1(ξ))w1m(x), x > ξ

x ∈ [0, b] (55a)

Gc21(x, ξ) =

4∑
m=1

cm1(ξ)w2m(x). x ∈ [b, ℓ] (55b)

Here, the coefficients am1(ξ), bm1(ξ), and cm1(ξ) are the unknown functions. If we
follow the calculation steps detailed in Subsection 6.2.2 we get the equation systems:

1 ξ cos p1ξ sin p1ξ
0 1 −p1 sin p1ξ p1 cos p1ξ
0 0 −p21 cos p1ξ −p21 sin p1ξ
0 0 p31 sin p1ξ −p31 cos p1ξ



b1
b2
b3
b4

=


0
0
0
−1

2Iey1

,

b1
b2
b3
b4

= 1

2Iey1


ξ
p2
1

− 1
p2
1

− sin p1ξ
p3
1

cos p1ξ
p3
1

 (56)

and

1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
1 b cos p1b sin p1b −1 −b − cos p2b − sin p2b
0 1 −p1 sin p1b p1 cos p1b 0 −1 p2 sin p2b −p2 cos p2b
0 0 −p21 cos p1b −p21 sin p1b 0 0 αp22 cos p2b αp22 sin p2b
0 0 p31 sin p1b −p31 cos p1b 0 0 −αp32 sin p2b αp32 cos p2b
0 0 0 0 1 ℓ cos p2ℓ sin p2ℓ
0 0 0 0 0 0 cos p2ℓ sin p2ℓ





a1I
a2I
a3I
a4I
c1I
c2I
c3I
c4I


=

=
1

2Iey1
p31



−p1ξ + sin p1ξ
sin p1ξ

p1ξ − p1b+ sin p1 (b− ξ)
−p1 + p1 cos p1 (b− ξ)

−p21 sin p1 (b− ξ)
−p31 cos p1 (ξ − b)

0
0


(57)

If ξ ∈ (b, ℓ) it is assumed that

Gc22(x, ξ) =

4∑
m=1

(am2(ξ) + bm2(ξ))w2m(x), x < ξ

Gc22(x, ξ) =

4∑
m=1

(am2(ξ)− bm2I(ξ))w2m(x), x > ξ

x ∈ [b, ℓ] (58a)

Gc12(x, ξ) =

4∑
m=1

cm2(ξ)w1m(x), x ∈ [0, b] (58b)
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where the coefficients am2(ξ), bm2(ξ) and cm2(ξ) are the unknowns. By repeating the
calculation steps presented in Subsection 6.2.3 the following equation system can be
obtained for these unknown coefficients:


1 ξ cos p2ξ sin p2ξ
0 1 −p2 sin p2ξ p2 cos p2ξ
0 0 −p22 cos p2ξ −p22 sin p2ξ
0 0 p32 sin p2ξ −p32 cos p2ξ



b1
b2
b3
b4

=


0
0
0
−1

2Iey1

,

b1II
b2II
b3II
b4II

= 1

2Iey1


ξ
p2
2

− 1
p2
2

− sin p2ξ
p3
2

cos p2ξ
p3
2

 (59)

and



1 b cos p2b sin p2b 0 −b 0 − sin p1b
0 1 −p2 sin p2b p2 cos p2b 0 −1 0 −p1 cos p1b
0 0 −αp22 cos p2b −αp22 sin p2b 0 0 0 p21 sin p1b
0 0 αp32 sin p2b −αp32 cos p2b 0 0 0 p31 cos p1b
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 ℓ cos p2ℓ sin p2ℓ 0 0 0 0
0 0 − cos p2ℓ − sin p2ℓ 0 0 0 0





a1II
a2II
a3II
a4II
c1II
c2II
c3II
c4II


=

= − 1

2Iey2
p32



p2ξ − p2b+ sin p2 (b− ξ)
p2 cos p2 (b− ξ)− p2
−αp22 sin p2 (b− ξ)
−αp32 cos p2 (b− ξ)

0
0

−p2ξ + p2ℓ− sin p2 (ℓ− ξ)
sin p2 (ℓ− ξ)


(60)

The closed form solutions for a11(ξ), . . . , c42(ξ) obtained by solving equations (57)
and (60) are very long formulae and for this reason they are not presented here.

Remark 9. The Green function Gc(xξ) is symmetric, i.e., it holds that Gc(x, ξ) =
Gc(ξ, ξ). Fulfillment of the symmetry condition is checked by numerical computations
since the paper-and-pencil calculations for checking the symmetry condition are very
time consuming.

Remark 10. The dimensionless Green functions Gc(x, ξ) can be calculated by using
equation (45). Gc(x, ξ) fulfills symmetry conditions (46).

Remark 11. Assume that b = 0.5, ξ = 0.75 and α = 0.52200625. Then the critical
value of the dimensionless compressive force p2 is equal to 3.55896485 – see Figure 8.
Under these conditions, Figure 6 depicts the Green function G(x, ξ).
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Figure 6. The Green function of a PPStp beam subjected to a com-
pressive force

7.3. Calculation of the Green function for tensile axial force. Recalling equa-

tions (50), solutions to the dimensionless displacements – the signs of N1L
2w

(2)
1 and

N2L
2w

(2)
2 is negative – are given by

w1 =

4∑
ℓ=1

aℓ1wℓ1(x) = a11 + a21x+ a31 cosh p1x+ a41 sinh p1x, (61a)

w2 =

4∑
ℓ=1

aℓ2wℓ2(x) = a12 + a22x+ a32 cosh p2x+ a42 sinh p2x. (61b)

The structure of the Green function is the same as earlier - see equations (6).
If ξ ∈ (0, b) it is assumed that

Gt11(x, ξ) =

4∑
m=1

(am1(ξ) + bm1(ξ))w1m(x), x < ξ

Gt11(x, ξ) =

4∑
m=1

(am1(ξ)− bm1(ξ))w1m(x), x > ξ

x ∈ [0, b]; (62a)

Gt21(x, ξ) =

4∑
m=1

cm1(ξ)w2m(x), x ∈ [b, ℓ] (62b)
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where the coefficients am1(ξ), bm1(ξ) and cm1(ξ) are again the unknown functions.
Application of the calculation steps detailed in Subsection 6.2.2 yields

1 ξ cosh p1ξ sinh p1ξ
0 1 p1 sinh p1ξ p1 cosh p1ξ
0 0 p21 cosh p1ξ p21 sinh p1ξ
0 0 p31 sinh p1ξ p31 cosh p1ξ



b1
b2
b3
b4

=


0
0
0
− 1

2

,

b1
b2
b3
b4

= 1

2Iey1


− ξ

p2
1

1
p2
1

sinh p1ξ
p3
1

− cosh p1ξ
p3
1

 (63)

and

1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
1 b cosh p1b sinh p1b −1 −b − cosh p2b − sinh p2b
0 1 p1 sinh p1b p1 cosh p1b 0 −1 −p2 sinh p2b −p2 cosh p2b
0 0 p21 cosh p1b p21 cosh p1b 0 0 −αp22 cosh p2b −αp22 sinh p2b
0 0 p31 sinh p1b p31 cosh p1b 0 0 −αp32 sinh p2b −αp32 cosh p2b
0 0 0 0 1 ℓ cosh p2ℓ sinh p2ℓ
0 0 0 0 0 0 cosh p2ℓ sinh p2ℓ





a1I
a2I
a3I
a4I
c1I
c2I
c3I
c4I


=

=
1

2Iey1p
3
1



p1ξ − sinh p1ξ
− sinh p1ξ

−p1ξ + p1b− sinh p1 (b− ξ)
p1 − p1 cosh p1 (b− ξ)
−p21 sinh p1 (b− ξ)
−p31 cosh p1 (b− ξ)

0
0


(64)

If ξ ∈ (b, ℓ) we shall assume that:

Gt22(x, ξ) =

4∑
m=1

(am2(ξ) + bm2(ξ))w2m(x), x < ξ

Gt22(x, ξ) =

4∑
m=1

(am2(ξ)− bm2I(ξ))w2m(x), x > ξ

x ∈ [b, ℓ] (65a)

Gt12(x, ξ) =

4∑
m=1

cm2(ξ)w1m(x). x ∈ [0, b] (65b)

Recalling the the calculation steps presented in Subsection 6.2.3 we obtain the fol-
lowing equation systems

1 ξ cosh p2ξ sinh p2ξ
0 1 p2 sinh p2ξ p2 cosh p2ξ
0 0 p22 cosh p2ξ p22 sinh p2ξ
0 0 p32 sinh p2ξ p32 cosh p2ξ



b1
b2
b3
b4

=


0
0
0

− 1
2Iey2

,

b1II
b2II
b3II
b4II

= 1

2Iey2


− ξ

p2
2

1
p2
2

sinh p2ξ
p3
2

− cosh p2ξ
p3
2


(66)

and
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1 b cosh p2b sinh p2b 0 −b 0 − sinh p1b
0 1 p2 sinh p2b p2 cosh p2b 0 −1 0 −p1 cosh p1b
0 0 αp22 cosh p2b αp22 sinh p2b 0 0 0 −p21 sinh p1b
0 0 αp32 sinh p2b −αp32 cosh p2b 0 0 0 −p31 cosh p1b
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 ℓ cosh p2ℓ sinh p2ℓ 0 0 0 0
0 0 cosh p2ℓ sinh p2ℓ 0 0 0 0





a1II
a2II
a3II
a4II
c1II
c2II
c3II
c4II


=

=
1

2p32



p2ξ − p2b+ sinh p2 (b− ξ)
p2 cosh p2 (b− ξ)− p2
αp22 sinh p2 (b− ξ)
αp32 cosh p2 (b− ξ)

0
0

−p2ξ + p2ℓ− sinh p2 (ℓ− ξ)
− sinh p2 (ℓ− ξ)


(67)

The closed form solutions for the unknown functions a11(ξ), . . . , c42(ξ) obtained by
solving equations (64) and (67) are again very long formulae and for this reason they
are not presented here.

Remark 12. The Green function Gt(xξ) is symmetric, i.e., it satisfies the symmetry
condition Gt(x, ξ) = Gt(ξ, ξ). Fulfillment of the symmetry condition was verified by
numerical computations.
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Figure 7. The Green function of a PPStp beam subjected to a tensile force
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Remark 13. The dimensionless Green functions Gt(x, ξ) can be calculated by utilizing
equation (45). Gt(x, ξ) fulfills the symmetry conditions (46).

Figure 7 shows the dimensionless Green function Gt(x, ξ) utilizing the data given in
Remark 11.

Remark 14. It is clear from [Figure 6] {Figure 7} that the deflections are [greater]
{smaller} if p2 is [greater] {greater}. The fulfillment of these relationships is a natural
requirement for the Green functions considered.

8. Axial load and eigenfrequencies of stepped beams

8.1. Governing equations for the eigenvalue problem. In this section it is our
main objective to clarify the effect of the axial load on the eigenfrequencies of PPStp
beams. Making use of the dimensionless Green functions the eigenvalue problems to
be solved are governed by the homogeneous Fredholm integral equations for the case
of a compressive force

w(x) = χ

∫ ℓ

0

Gc(x, ξ)w(ξ)

{
1 if ξ ∈ [0, b],
κ if ξ ∈ [b, ℓ].

}
dξ , (68)

and for the case of a tensile force

w(x) = χ

∫ ℓ

0

Gt(x, ξ)w(ξ)

{
1 if ξ ∈ [0, b],
κ if ξ ∈ [b, ℓ].

}
dξ . (69)

Here χ, i.e., the eigenvalue sought, and κ are given by equation (48). In the sequel
we shall seek numerical solutions for the above problems utilizing the data related to
the stepped beams that are considered in Subsection 6.3.

In the following, we shall need the value of the smallest critical force for the men-
tioned stepped beams. The solution to the corresponding eigenvalue problem is given
in Appendix A – see Figure 8.

8.2. Example 2. Two problems are solved numerically. For the first problem it is
assumed that ν = 0.90; then α = 0.65610000, and κ = 1.234586718. For the second
problem ν = 0.80, α = 0.40960000, and κ = 1.562500000. These data are taken from
Table 1. The first eigenfrequency and the critical force can be calculated by utilizing
the data presented in Tables 3 and 4 – see Figures 5 and 8 for a comparison. Tables
3 and 4 contain some further data that are also utilized in the computations.

Table 3. Values of χ1√
χ1(b)/π

2

ν b = 0.2 b = 0.4 b = 0.5 b = 0.6 b = 0.8

0.9 0.90273411 0.92130879 0.93858272 0.95892739 0.99240078
0.8 0.80179239 0.82483041 0.85314059 0.89300215 0.97673594
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Table 4. Critical force√
N2 crit(b)

ν b = 0.2 b = 0.4 b = 0.5 b = 0.6 b = 0.8

0.9 3.16728280 3.30994880 3.43419178 3.58174237 3.82743853
0.8 3.18497550 3.43128449 3.66658411 3.98927283 4.72167938

Let us denote the first eigenfrequency for [compression] {tension} by [ω1c] {ω1t}.
The first eigenfrequency of the unloaded beam is ω1.

Tables 5–9 contain the computed results for Problem 1, 10–14 for Problem 2. In
both cases the values of b are 0.2, 0.4, 0.5, 0.6, and 0.8. The first column in each
table is a list of the values the quotient N2/N2crit has, the second and fourth columns
contain those values of ω1c and ω1t which belong to N2/N2crit. The third and fifth
columns show the differences between two consecutive values of ω1c and ω1t. If these
differences are constants then the functions ω1c(N2/N2crit) and ω1t(N2/N2crit) are
in principle linear functions.

Each table is followed by two equations. The first is a quadratic approximation of
the function ω1c(N2/N2crit), the second is a quadratic approximation of the function
ω1c(N2/N2crit). See equations (70)–(79) for details. The quadratic approximations
fit to the values of these functions an accuracy of four to five digits.

8.2.1. Solutions to Problem 1.

Table 5. Computational results for ν = 0.9 and b = 0.2

N/Ncrit = ω2
1c/ω

2
1 no load Differences ω2

1t/ω
2
1 no load Differences

N2/N2crit

0.000 0.99985049 1.00014949
0.100 0.90001388 0.09983661 1.09998352 0.09983402

0.200 0.80002506 0.09998882 1.19996457 0.09998105
0.300 0.70003341 0.09999164 1.29994325 0.09997868
0.400 0.60003881 0.09999461 1.39991964 0.09997640

0.500 0.50004109 0.09999771 1.49989385 0.09997421
0.600 0.40004012 0.10000098 1.59986595 0.09997210

0.700 0.30003571 0.10000441 1.69983602 0.09997007
0.800 0.20002769 0.10000802 1.79980415 0.09996812

0.900 0.10001586 0.10001183 1.89977039 0.09996624

1.000 0.00000000 0.10001586 1.99973481 0.09996443

The quadratic approximations fit to the data presented in Table 5 with four-digit
accuracy.

ω2
1c

ω2
1 no load

= −3.331 337 633× 10−4 N 2
2

N 2
2crit

− 0.999 625 6857
N2

N2crit
+ 0.999 945 6098,

(70a)
ω2
1t

ω2
1 no load

= 6.307 884 335×10−5 N 2
2

N 2
2crit

+0.999 631 7373
N2

N2crit
+1.000 053 866. (70b)
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Table 6. Computational results for ν = 0.9 and b = 0.4

N/Ncrit = ω2
1c/ω

2
1 no load Differences ω2

1t/ω
2
1 no load Differences

N2/N2crit

0.000 0.99986338 1.00013660

0.100 0.90020466 0.09965872 1.09975821 0.09962161
0.200 0.80037027 0.09983439 1.19948114 0.09972293

0.300 0.70049473 0.09987554 1.29917048 0.09968934

0.400 0.60057578 0.09991895 1.39882781 0.09965733
0.500 0.50061099 0.09996479 1.49845461 0.09962680

0.600 0.40059775 0.10001324 1.59805228 0.09959767
0.700 0.30053323 0.10006452 1.69762213 0.09956984

0.800 0.20041436 0.10011887 1.79716537 0.09954324
0.900 0.10023782 0.10017654 1.89668315 0.09951779
1.000 0.00000000 0.10023782 1.99617657 0.09949342

ω2
1c

ω2
1 no load

= −2.596 816 904× 10−3 N 2
2

N 2
2crit

− 0.997 328 4065
N2

N2crit
+ 0.999 932 6019,

(71a)
ω2
1t

ω2
1 no load

= −1.310 482 273× 10−3 N 2
2

N 2
2crit

+ 0.997 432 2238
N2

N2crit
+ 1.000 058 716.

(71b)

Table 7. Computational results for ν = 0.9 and b = 0.5

N/Ncrit = ω2
1c/ω

2
1 no load Differences ω2

1t/ω
2
1 no load Differences

N2/N2crit

0.000 0.99987327 1.00012673
0.100 0.90032899 0.09954428 1.09961298 0.09948625

0.200 0.80059649 0.09973249 1.19917114 0.09955816
0.300 0.70079878 0.09979771 1.29867743 0.09950629
0.400 0.60093180 0.09986698 1.39813462 0.09945719
0.500 0.50099116 0.09994064 1.49754526 0.09941064
0.600 0.40097208 0.10001908 1.59691174 0.09936648

0.700 0.30086936 0.10010271 1.69623628 0.09932454
0.800 0.20067734 0.10019202 1.79552097 0.09928468
0.900 0.10038982 0.10028753 1.89476772 0.09924676

1.000 0.00000000 0.10038982 1.99397837 0.09921065

ω2
1c

ω2
1 no load

= −4.104 840 441× 10−3 N 2
2

N 2
2crit

− 0.995 790 1871
N2

N2crit
+ 0.999 920 6831,

(72a)
ω2
1t

ω2
1 no load

= −2.080 081 369×10−3 N 2
2

N 2
2crit

+0.9959923923
N2

N2crit
+1.000 062431. (72b)
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Table 8. Computational results for ν = 0.9 and b = 0.6

N/Ncrit = ω2
1c/ω

2
1 no load Differences ω2

1t/ω
2
1 no load Differences

N2/N2crit

0.000 0.99988350 1.00011651

0.100 0.90032837 0.09955513 1.09961538 0.09949887

0.200 0.80059672 0.09973165 1.19917793 0.09956255
0.300 0.70080097 0.09979575 1.29869081 0.09951288

0.400 0.60093665 0.09986431 1.39815694 0.09946613
0.500 0.50099889 0.09993777 1.49757901 0.09942207

0.600 0.40098229 0.10001659 1.59695951 0.09938050

0.700 0.30088097 0.10010132 1.69630074 0.09934123
0.800 0.20068841 0.10019256 1.79560483 0.09930409

0.900 0.10039741 0.10029100 1.89487377 0.09926894

1.000 0.00000000 0.10039741 1.99410940 0.09923563

ω2
1c

ω2
1 no load

= −4.123 396 713×10−3 N 2
2

N 2
2crit

−0.995 764 61
N2

N2crit
+0.999 919 997 9, (73a)

ω2
1t

ω2
1 no load

= −1.964 394 841× 10−3 N 2
2

N 2
2crit

+ 0.996 009 0117
N2

N2crit
+ 1.000 059 584.

(73b)

Table 9. Computational results for ν = 0.9 and b = 0.8

N/Ncrit = ω2
1c/ω

2
1 no load Differences ω2

1t/ω
2
1 no load Differences

N2/N2crit

0.000 0.99989764 1.00010236

0.100 0.90003396 0.09986368 1.09996006 0.09985771
0.200 0.80006160 0.09997236 1.19991449 0.09995442

0.300 0.70008252 0.09997908 1.29986357 0.09994909

0.400 0.60009631 0.09998621 1.39980760 0.09994403
0.500 0.50010250 0.09999381 1.49974684 0.09993923

0.600 0.40010058 0.10000191 1.59968151 0.09993468
0.700 0.30009002 0.10001057 1.69961186 0.09993035
0.800 0.20007019 0.10001983 1.79953809 0.09992623

0.900 0.10004044 0.10002975 1.89946039 0.09992230
1.000 0.00000002 0.10004042 1.99937895 0.09991856

ω2
1c

ω2
1 no load

= −5.252 032 453× 10−4 N 2
2

N 2
2crit

− 0.999 440 542 7
N2

N2crit
+ 0.999 959 9196,

(74a)

ω2
1t

ω2
1 no load

= −1.137 211 210× 10−4 N 2
2

N 2
2crit

+ 0.999 462 7271
N2

N2crit
+ 1.000 038 224.

(74b)
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8.2.2. Solutions to Problem 2.

Table 10. Computational results for ν = 0.8 and b = 0.2

N/Ncrit = ω2
1c/ω

2
1 no load Differences ω2

1t/ω
2
1 no load Differences

N2/N2crit

0.000 0.99985219 1.00014779
0.100 0.90004447 0.09980773 1.09994714 0.09979935
0.200 0.80008021 0.09996426 1.19988624 0.09993910

0.300 0.70010685 0.09997336 1.29981761 0.09993137
0.400 0.60012397 0.09998288 1.39974153 0.09992392

0.500 0.50013114 0.09999283 1.49965827 0.09991675
0.600 0.40012789 0.10000325 1.59956811 0.09990983
0.700 0.30011372 0.10001417 1.69947127 0.09990316

0.800 0.20008809 0.10002564 1.79936799 0.09989672
0.900 0.10005039 0.10003770 1.89925848 0.09989049
1.000 0.00000000 0.10005039 1.99914295 0.09988447

ω2
1c

ω2
1 no load

= −6.912 436 031× 10−4 N 2
2

N 2
2crit

− 0.999 263 3476
N2

N2crit
+ 0.999 943 9839,

(75a)
ω2
1t

ω2
1 no load

= −1.802 051 770× 10−4 N 2
2

N 2
2crit

+ 0.999 281 1886
N2

N2crit
+ 1.000 054 509.

(75b)

Table 11. Computational results for ν = 0.8 and b = 0.4

N/Ncrit = ω2
1c/ω

2
1 no load Differences ω2

1t/ω
2
1 no load Differences

N2/N2crit

0.000 0.99987346 1.00012652
0.100 0.90062605 0.09924741 1.09925682 0.09913030

0.200 0.80112977 0.09949628 1.19840145 0.09914463
0.300 0.70150559 0.09962418 1.29743850 0.09903705
0.400 0.60174757 0.09975802 1.39637232 0.09893382
0.500 0.50184936 0.09989821 1.49520701 0.09883468

0.600 0.40180417 0.10004519 1.59394643 0.09873942
0.700 0.30160473 0.10019944 1.69259424 0.09864781
0.800 0.20124325 0.10036148 1.79115389 0.09855966

0.900 0.10071134 0.10053191 1.88962866 0.09847477
1.000 0.00000000 0.10071134 1.98802165 0.09839298

ω2
1c

ω2
1 no load

= −7.537 051 383× 10−3 N 2
2

N 2
2crit

− 0.992 328 968 6
N2

N2crit
+ 0.999 906 4673,

(76a)
ω2
1t

ω2
1 no load

= −4.640 413 266× 10−3 N 2
2

N 2
2crit

+ 0.992 575 2561
N2

N2crit
+ 1.000 072 981.

(76b)
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Table 12. Computational results for ν = 0.8 and b = 0.5

N/Ncrit = ω2
1c/ω

2
1 no load Differences ω2

1t/ω
2
1 no load Differences

N2/N2crit

0.000 0.99988983 1.00011019

0.100 0.90114665 0.09874319 1.09864583 0.09853564

0.200 0.80207470 0.09907195 1.19709441 0.09844858
0.300 0.70277232 0.09930238 1.29535536 0.09826095

0.400 0.60322679 0.09954553 1.39343768 0.09808232
0.500 0.50342440 0.09980239 1.49134978 0.09791211

0.600 0.40335040 0.10007400 1.58909957 0.09774979

0.700 0.30298888 0.10036152 1.68669445 0.09759488
0.800 0.20232264 0.10066624 1.78414136 0.09744691

0.900 0.10133306 0.10098957 1.88144685 0.09730549

1.000 0.00000000 0.10133306 1.97861707 0.09717021

ω2
1c

ω2
1 no load

= −1.381 407 376× 10−2 N 2
2

N 2
2crit

− 0.985 936 3720
N2

N2crit
+ 0.999 855 375 9,

(77a)
ω2
1t

ω2
1 no load

= −8.037 238 551× 10−3 N 2
2

N 2
2crit

+ 0.986 515 837 5
N2

N2crit
+ 1.000 096 317.

(77b)

Table 13. Computational results for ν = 0.8 and b = 0.6

N/Ncrit = ω2
1c/ω

2
1 no load Differences ω2

1t/ω
2
1 no load Differences

N2/N2crit

0.000 0.99990727 1.00009273

0.100 0.90148845 0.09841882 1.09825700 0.09816427
0.200 0.80270523 0.09878321 1.19627516 0.09801816

0.300 0.70363169 0.09907354 1.29406894 0.09779378

0.400 0.60424744 0.09938425 1.39165166 0.09758272
0.500 0.50453016 0.09971728 1.48903562 0.09738396

0.600 0.40445537 0.10007479 1.58623218 0.09719656
0.700 0.30399619 0.10045919 1.68325185 0.09701967
0.800 0.20312300 0.10087319 1.78010438 0.09685253

0.900 0.10180313 0.10131987 1.87679882 0.09669444
1.000 0.00000046 0.10180267 1.97334357 0.09654475

ω2
1c

ω2
1 no load

= −1.820 778 680× 10−2 N 2
2

N 2
2crit

− 0.981 395 528 8
N2

N2crit
+ 0.999 791 5525,

(78a)
ω2
1t

ω2
1 no load

= −9. 344 847 633× 10−3 N 2
2

N 2
2crit

+ 0.982 506 6770
N2

N2crit
+ 1.000 115 576.

(78b)
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Table 14. Computational results for ν = 0.8 and b = 0.8

N/Ncrit = ω2
1c/ω

2
1 no load Differences ω2

1t/ω
2
1 no load Differences

N2/N2crit

0.000 0.99993292 1.00006707

0.100 0.90028412 0.09964880 1.09966903 0.09960196

0.200 0.80051788 0.09976624 1.19929442 0.09962540
0.300 0.70069738 0.09982051 1.29887909 0.09958467

0.400 0.60081828 0.09987910 1.39842568 0.09954659
0.500 0.50087577 0.09994251 1.49793660 0.09951093

0.600 0.40086450 0.10001127 1.59741409 0.09947748

0.700 0.30077846 0.10008604 1.69686015 0.09944607
0.800 0.20061092 0.10016754 1.79627667 0.09941652

0.900 0.10035429 0.10025663 1.89566536 0.09938869

1.000 0.00000000 0.10035429 1.99502779 0.09936244

ω2
1c

ω2
1 no load

= −3. 574 398 585× 10−3 N 2
2

N 2
2crit

− 0.996 325 2147
N2

N2crit
+ 0.999 937 4502,

(79a)

ω2
1t

ω2
1 no load

= −1.613 827 513× 10−3 N 2
2

N 2
2crit

+ 0.996 593 5135
N2

N2crit
+ 1.000 040 048.

(79b)

Remark 15. The differences listed in the tables vary very little as a function of
N/Ncrit: they can be considered practically constant. It is also worth noting that the
largest change in value (which is still a very small change in value) concerning the
differences is for the value b = 0.5, where the change in cross section is at the central
point of the beam.

9. Concluding remarks

Making use of the definition presented in [18] for the Green functions of coupled
boundary value problems, the paper has presented the Green functions of pinned-
pinned stepped beams with heterogeneous cross section provided that (a) no axial load
is exerted on the beam, (b) the beam is subjected to a compressive axial force, and (c)
a tensile axial force is exerted on the beam. The eigenvalue problem related to the free
vibrations of the pinned-pinned stepped beams is reduced to an eigenvalue problem
governed by a homogeneous Fredholm integral equation. The vibration problems of
the axially loaded stepped beams are also reduced to two Fredholm integral equations.
Then these eigenvalue problems are solved numerically and the computational results
are presented. It is a well known result that the equations

ω2
1c

ω2
1 no load

= 1.0− N
Ncrit

,
ω2
1t

ω2
1 no load

= 1.0 +
N

Ncrit
(80)

are the solutions to a similar problem for simply supported homogeneous and hetero-
geneous beams – in the second case cross sectional heterogeneity is assumed. Ac-
cording to our computational results, equations (80) provide very good solutions
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for both pinned-pinned and stepped beams – the maximum of the relative error in
ω2
1t/ω

2
1 no load for ν = 0.8, b = 0.5 and N/Ncrit = 1.0 is 1.069% (see Table 12).

Appendix A. Stability problem of pinned-pinned stepped beams

The stability problem of stepped beams is governed by ODEs (51) associated with
boundary and continuity conditions (27). Making use of the solutions given by equa-
tions (54), the eigenvalue problem (51), (27) with p2 =

√
N2 as the eigenvalue yields

the following homogeneous equation system for the unknown integration constants:

1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
1 b cos bp2γ sin bp2γ −1 −b − cos p2b − sin p2b
0 1 −p2γ sin bp2γ p2γ cos bp2γ 0 −1 p2 sin p2b −p2 cos p2b
0 0 − cos bp2γ − sin bp2γ 0 0 cos p2b sin p2b
0 0 γ sin bp2γ −γ cos bp2γ 0 0 − sin p2b cos p2b
0 0 0 0 1 ℓ cos p2ℓ sin p2ℓ
0 0 0 0 0 0 cos p2ℓ sin p2ℓ





a11

a21

a31

a41

a12

a22

a32

a42


=



0
0
0
0
0
0
0
0


(81)

γ =
√
α

The characteristic equation is the determinant of the coefficient matrix

D = −γℓ cos bγp2 sin p2 (ℓ− b)− ℓ sin bγp2 cos p2 (ℓ− b) = 0. (82)
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Figure 8. Critical force against b, α is a parameter
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Remark 16. Assume that α = b = ℓ = 1 and p2 = p. Then we get the characteristic
equation for a uniform fixed-fixed beam

D = sin p = 0 (83)

where p = π is the smallest root for p.

Equation (82) has been solved numerically. Figure 8 shows the critical force√
N2 crit(b) against b obtained from the numerical solution mentioned.
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Number of copies printed: 75
Put to the Press on February 18, 2025 ISSN 2732–0189 (Online)
Number of permission: TNI.2025-40.ME. ISSN 1586–2070 (Print)



A Short History of the Publications of the University of Miskolc

The University of Miskolc (Hungary) is an important center of research in Central Eu-
rope. Its parent university was founded by the Empress Maria Teresia in Selmecbánya
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Dávid GÖNCZI: Thermoelastic analysis of functionally graded anisotropic
rotating disks and radially graded spherical pressure vessels 85–104

Abderrazek MESSAOUDI: Green functions for coupled boundary value prob-
lems with applications to stepped beams made of heterogeneous ma-
terial 105–137


	JCAM-Gonczi-2024-Vol19-No2.pdf
	1. Introduction
	2. Numerical method for disks
	3. Numerical method for spherical pressure vessels
	4. Analytical solution for orthotropic disks
	5. Numerical examples
	6. Conclusions
	References

	JCAM-AbderrazekMessaoudi-2024-Vol19-No2.pdf
	1. Introduction
	2. Coupled boundary value problems
	3. Green's functions of coupled boundary value problems
	4. Properties of the Green function
	4.1. Self-Adjointness

	5. Coupled eigenvalue problems
	6. Stepped beams
	6.1. Governing equations for heterogeneous stepped beam problems
	6.2. Calculation of the Green function
	6.3. Example 1

	7. Axially loaded stepped beams
	7.1. Governing equations
	7.2. Calculation of the Green function for compressive axial force
	7.3. Calculation of the Green function for tensile axial force

	8. Axial load and eigenfrequencies of stepped beams
	8.1. Governing equations for the eigenvalue problem.
	8.2. Example 2

	9. Concluding remarks
	Appendix A. Stability problem of pinned-pinned stepped beams
	References




