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Abstract 

The present review paper intends to briefly summarize a broad range of research on various stability 

problems of compressed beams. It is noted that multiple analysis approaches have been used, many are 

closed-form analytical, while others are classified as semi-analytical or simply numerical methods. This 

study overviews some of the most important theories and solutions for beam buckling from the 18th 

century up to date, bringing together the findings from several scientific perspectives. The emphasis is 

put on the recent novel results. 
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1. Introduction 

One of the most essential features of engineering structures is buckling, which is the point where failure 

can occur. Buckling must be avoided when designing engineering structures. In many engineering 

systems, beams are common structural elements. A bunch of beam problems have been investigated 

recently – see, e.g, (Ecsedi and Gönczi, 2015; Ecsedi et al., 2021; Gurumoorthy and Rao, 2019; Ecsedi 

and Baksa, 2021). When a straight beam is loaded with an axially compressive force, it exhibits minor 

deformations until it reaches a critical condition known as buckling at the critical load value. In the 

literature, the term critical buckling load is typically used to refer to the lowest buckling load. In the 

domains of mechanical, structural, and aeronautical engineering, buckling of beams subjected to 

compressive load is a frequent issue. For compressed members that are the subject of numerous 

investigations, including static, dynamic, and stability tests, the computation of critical buckling load 

plays a significant role. Buckling first takes place about the axis having a minimum radius of gyration 

or least moment of inertia. So far, a lot of relevant research results have been achieved. This article 

intends to give a brief review to gather a bunch of major findings together. 

Since beam buckling can be a prevalent cause of failure in engineering applications, it has been in 

the focus of research for a long time. The Swiss mathematician Leonhard Euler was a pioneer in this 

subject, publishing his well-known formula for the critical (buckling) load of straight bars under 

compression in 1759 (Euler, 1759). He also showed that there is another criterion for column strength 

that is unrelated to the material’s crushing or yielding. Beam buckling is the loss of stability that is 

generally unrelated to material strength and this loss of stability usually happens within the material’s 

elastic range. Since the stress in the column remains in elastic state, Euler’s theory of column buckling 

is utilized to calculate the critical buckling load. When a column is about to buckle, the critical buckling 
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load is the greatest load it can sustain. A simple formula for determining the critical buckling load for a 

homogeneous and perfectly straight column with no lateral pressure was developed by Euler and the 

following equation depicts Euler’s famous buckling formula: Pcrit = πIE/(kL)2. Here Pcrit is the critical 

(or buckling) load, L denotes column length, k denotes the effective length factor, and EI denotes the 

cross-sectional flexural stiffness. The fact that the material’s compressive strength has no influence in 

calculating the critical buckling load is an intriguing observation that can be drawn from this calculation. 

Since then, the Euler buckling calculation has been important in physics and engineering for the stability 

and mechanical properties of slender structures ranging from nano to macrostructures (Timoshenko and 

Gere, 1961; Niklas, 1992). Certain assumptions about the point of axial load application, column 

material, cross-section, stress limits, and column failure underpin Euler’s theory. 

2. Major scientific findings of the previous century 

Buckling research has become increasingly significant in engineering structures during the previous 

century. There is a long list of articles on buckling of beams. In paper (Shu, 1998) for beams with twin 

delaminations, a precise buckling analysis was done. After some threshold values of either the depth or 

the length of the delamination, the buckling load’s sensitivity to either the depth or the length of the 

delamina- tion grew fast. The author checked the results of the critical loads obtained in his research 

with those published by Simitses et al (Simitses et al., 1985), and Lim and Parsons (Lim and Parsons, 

1993) using either finite element method (FEM) or a new energy approach to validate the correctness of 

the model used in his work. Using two distinct algorithms based on the Rayleigh-Ritz method in the 

paper (Lee and Ng, 1994), the critical buckling loads of simply supported beams with a step in the 

middle have been reported. The second algorithm produced smaller critical buckling loads for beams 

with large variations in thickness across a step (d2/d1 = 0.1...0.5 or 2.0...10.0). 

 

 

Figure 1. A simply supported beam with a step (Lee and Ng, 1994) 

  

Khdeir & Reddy (Khdeir and Redd, 1997) studied the buckling behavior of cross-ply rectangular beams 

with arbitrary boundary conditions using analytical solutions of revised classical beam theories. The 

relationship between critical buckling loads and geometrical parameters as well as support conditions 

has been studied and they supposed that, as in the material principal axes, all layers were considered to 

have the same thickness and orthotropic material properties. Their numerical results show that the 

classical beam theory (CBT) overpredicts buckling loads when compared to shear deformation theories, 

and this discrepancy diminished as the length-to-thickness ratio increased. For multiple boundary 

conditions, Eisenberg (Eisenberger, 1991) developed an accurate solution for the buckling loads of 

variable cross-section columns loaded by variable axial force. The buckling load, according to his study, 

is defined as the force that makes the determinant of the stiffness matrix equal to zero. To show the 
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accuracy and flexibility of his technique, several examples from the literature were offered and 

compared to his published results. 

  Jensen (Jensen, 2000) performed a non-linear buckling study of an elastic beam under an axial static 

force and high-frequency axial excitation. To generate a set of autonomous model equations regulating 

the slow averaged behavior, a Galerkin beam discretization was utilized, and the approach of direct 

partition of motion was adopted. With more high-frequency excitation, the buckling stress rised, 

according to his research. Authors of (Abramovich et al., 1996) studied the buckling behavior of 

nonsymmetric laminated composite beams using a first-order shear deformation theory. The exact 

element method was successfully applied to calculate buckling loads. A parametric study was performed 

to investigate the influence of boundary conditions, materials, number of layers, on the buckling loads 

of rectangular, cross-ply laminated composite beams. Eisenberger et al. (Eisenberger et al., 1986) used 

elastic and geometric stiffness matrices for beams on an elastic foundation to find the buckling loads 

and mode shapes. The critical loads calculated using their methodology are slightly better than the 

precise ones obtained using the geometric stiffness approach. They advised at that time to include their 

approach into typical beam stability computer systems, which would increase their capabilities while 

also lowering data preparation time. 

3. On research progress from recent decades 

Due to the fact that non-uniform and inhomogeneous beams may give an efficient option to bear the 

applied greater compressive stresses in engineering structures, there has been a lot of written works on 

investigating their stability up till now. With ten various combinations of end conditions, the transfer 

matrix method was used to investigate the buckling of multi-step nonuniform beams (Figure 2) with 

elastically restrained boundary conditions subjected to several concentrated axial forces in (Li, 2001). 

The author proved that a beam on an elastic foundation can be treated as a beam with translational spring 

supports at intermediate points. The critical load findings obtained using a transfer matrix method were 

compared to those obtained using the finite element method and they were in good agreement. Aydogdu 

(Aydogdu, 2006) investigated the buckling of cross-ply laminated beams under various boundary 

circumstances. The critical buckling loads were calculated using the Ritz method, which involved 

expressing the three kinematic unknown components as a set of simple algebraic polynomials. He 

concluded that, for the identical length-to-thickness ratios, the non-dimensional critical buckling load of 

beams subjected to clamped supported boundary conditions took the maximum values, whereas those 

subjected to clamped-free took the minimum values. 

 

 

Figure 2. A multi-stepped beam in compression (Li, 2001) 

  The crtical forces and mode-shape functions of Euler-Bernoulli beams with an arbitrary number of 

non-breathing fractures subjected to a constant axial force were reported in (Aydin, 2008) by Aydin. 
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According to his results, the presence of a crack significantly reduced the axial load level needed to 

initiate buckling. A simple beam with a crack depth 50% of its height, for example, would buckle on 

only 63% of the Euler load. The critical load level was further reduced when the crack depth or the 

number of cracks increased. Stojanovic et al. (Stojanovic et al., 2011) investigated the buckling of an 

elastically coupled simply supported double beam under compressive axial loading using the Euler-

Bernoulli beam theory (see Figure 3). They demonstrated that the critical buckling load reduced as the 

axial load ratio of the lower beam and the upper beam grew, but it increased when the stiffness modulus 

K of the Winkler elastic foundation layer increased. The buckling instability of a system of three simply 

supported elastic Timoshenko beams, connected together by Winkler elastic layers, and each beam 

subjected to the identical compressive axial force, was investigated in paper (Stojanovic et al., 2012) – 

see Figure 4. Authors observed that when the stiffness modulus increased, the critical buckling load 

increased, but it reduced as the vibration mode increased. 

 

Figure 3. Double-beam complex system (Stojanovic et al., 2011) 

  

The buckling of nanocomposite beams reinforced by single-walled carbon nanotubes resting on an elastic 

foundation were investigated in (Yas and Samadi, 2012) using the Timoshenko beam theory. The 

Hamilton’s principle was used by the author to determine the equations of motion. The critical buckling 

load of carbon nanotube reinforced composite beams were calculated using the generalized differential 

quadrature method for various boundary conditions. Clamped-clamped beams had the highest critical 

buckling loads, followed by clamped-hinged, hinged-hinged, and finally, clamped-free supports, 

according to the results of the inquiry into the effect of boundary conditions. Rychlewska (Rychlewska, 

2014) demonstrated a method for calculating the critical buckling load of axially functionally graded 

beams subjected to a distributed axial load for clamped-clamped, pinned-pinned and clamped-pinned 

beams. She hypothesized that changes in the flexural stiffness (I(x)E(x) = D exp(2βπ/L)) as well as in the 

axial load (P(x) = P exp(2βπ/L) on the beam follow an exponential distribution. It was observed that for 

clamped-pinned beams an increase in the real number β causes a decrease in the critical buckling load. 

Elishakoff (Elishakoff, 2012) investigated the buckling of axially functionally graded material columns. 

The goal of his research was to identify a polynomial variation of the modulus of elasticity E such that the 

buckling value exceeded in the case of a cantilever column with a constant cross-sectional area. 

  The buckling analysis of an edge cracked functionally graded cantilever Timoshenko beam under 

axial compressive loads was performed in the study (Akbas, 2015). It was assumed that the cracked 

beam was modeled as a connection between two sub-beams via a massless elastic rotational spring. It 

has been discovered that employing FGM can reduce the harmful impacts of buckling loads in the 

presence of cracks, i.e., the undesirable impacts of the crack can be reduced by selecting the appropriate 

ratio of material properties. 
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Figure 4. Three Timoshenko beams connected with Winkler layers (Stojanovic et al., 2012) 

  

Anghel (Anghel, 2018) demonstrated critical buckling load calculations for a variety of beam scenarios 

with various basic boundary conditions – see Figure 5. Green’s functions were used to convert the 

differential equations governing the deflection behavior of such beams into integral form. He calculated 

numerically the Green’s functions using a particular integral approach of strength of materials, taking 

into account that displacements in certain locations of a beam were caused by unit forces applied in 

other points. When he compared the numerical critical buckling loads with the analytical data acquired 

from the literature review, his work demonstrated good agreement from an engineering standpoint. 

 

Figure 5. Some investigated support arrangements in (Anghel, 2018) 

  

Messaoudi et al. (Kiss et al., 2022) presented a novel solution procedure to the stability problem of 

various heterogeneous beams with three supports. The end restraints are supplemented with an 

intermediate roller support in their investigations. Some setups are shown in Figure 6. They used a Green 

function technique of the three-point boundary value problem that describes the mechanical behavior of 

such beams to transform the linear stability problem into an eigenvalue problem governed by a 

homogeneous Fredholm integral equation. The eigenvalue problem was solved using the boundary 
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element method where the critical load was the sought parameter. The maximum critical load has been 

found when the roller support located in the middle. With the use of the exact transfer matrix, Yldrm 

(Yildirim, 2021) investigated the buckling of rectangular beams with ceramic liners at the top and bottom 

surfaces. For some boundary circumstances, the dimensionless buckling loads of these beams were 

numerically estimated. The impact of the thickness of the ceramic liner on buckling loads was also 

researched by the author, and it was discovered that a ceramic liner significantly improves buckling loads. 

  Authors of article (Huang and Luo, 2011) presented a new and simple approach to solve buckling of 

axially inhomogeneous beams with a continuous elastic restraint. They converted the governing 

equation with varying coefficients to linear algebraic equations for varied end boundary conditions and 

then a characteristic equations in critical buckling loads were obtained. They showed how the gradient 

parameter (which describes the change in volume fraction of both constituents involved) affected the 

critical buckling forces of an Al/ZrO2 composite beams under different end supports. They determined 

that when the gradient parameter increased, the critical buckling loads dropped, indicating that the 

gradient parameter is the most important factor in determining the buckling loads, despite the fact that 

two component phases remain unchanged. Critical buckling loads for stepped beams clamped at one 

end and elastically fixed at the other were determined in paper (Lellep and Kraav, 2016). The effect of 

a crack on the stability of a beam was described as a change in the local flexibility of the beam by 

combining the methods of elastic beam theory and linear elastic fracture mechanics. They discovered 

that fractures had a significant impact on the critical buckling load, particularly when large cracks were 

present. However, studies revealed that minor cracks that penetrate less than 10% of the thickness had 

little impact on the structure’s stability. 

 

Figure 6. Buckling of a straight beams with three supports (Kiss et al., 2022) 

4. Conclusions 

Some models and solutions for buckling of beams that are available in the literature were overviewed in 

this work. There were many types of beams studied, each with its own set of boundary conditions. In 

the literature, there is still a lot of interest in the buckling beams and their applications, as evidenced by 

review publications. Some aspects of the formulation of the nonlinear buckling issue were mentioned 

thus opening the way for more effective application of buckled beam theories. 
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