ÁRAMLÁSBA HELYEZETT FŰTÖTT RÚD FELÜLETI HŐMÉRSÉKLETELOSZLÁSÁNAK KÍSÉRLETI MEGHATÁROZÁSA

Bencs Péter¹, Farkas András², Szabó Szilárd³

¹tanársegéd, e-mail: <u>arambp@uni-miskolc.hu</u>, ²tanszéki mérnök, e-mail: <u>aramfa@uni-miskolc.hu</u>, ³egyetemi tanár, e-mail: <u>aram2xsz@uni-miskolc.hu</u> Miskolci-Egyetem, Energetikai és Vegyipari Gépészeti Intézet, Áramlás- és Hőtechnikai Gépek Intézeti Tanszék, 3515 Miskolc, Miskolc-Egyetemváros,

Összefoglalás

A henger körüli áramlás vizsgálata különböző szempontok szerint ma is a kutatások középpontjában van. Esetünkben $\mathcal{O}d=10 \text{ mm}$ átmérőjű elektromosan fűtött henger körüli kissebességű (döntően a lamináris tartományba eső) áramlás vizsgálatáról van szó. A szakirodalomban számos helyen szerepel az ilyen áramlások jellemzésekor a T_w falhőmérséklet. Ezt általában konstansnak tekintik, mert a kísérleti vizsgálatoknál döntően kisátmérőjű (max. ~2 mm) elektromosan fűtött rudat alkalmaznak [1,2]. Mivel esetünkben a rúdátmérő ennek többszöröse, felmerült a kérdés, hogy a hengerpalást felületén az áramlás irányához mért szög függvényében változik-e és milyen mértékben és eloszlásban a hőmérséklet. Áramlásba keresztben elhelyezett fűtött rúd felületi hőmérsékletét nagyfelbontású termokamerával mértük. Az így kapott – egy adott keresztmetszethez tartozó - felületi hőmérsékleteloszlást különböző légsebességek és különböző erősségű fűtés esetén vizsgáltuk.

Kulcsszavak: fűtött rúd, felületi hőmérséklet eloszlás, termo kamera.

Abstract

The experiment of the flow around rod has been searched by many researchers. The object of this study to analyze the flow around a Ød=10 mm diameter electrical heated rod that was placed in low speed flow (mainly laminar flow). The wall temperature T_w widely found in the literature, is generally considered to be constant, because experimental measurements are carried out using mostly small diameter (max. ~2 mm) electrically heated rods [1,2]. In our case the diameter of the rod is Ød=10 mm, raising the question to whether the temperature distribution of the cylindrical surface depends on the flow direction at the angle measured. The surface temperature of a horizontally placed heated cylinder in an airflow was measured by thermo-graphic camera. The cross surface temperature was examined at different air speeds and different intensity of cylinder heating.

Keywords: heated cylinder, surface temperature distribution, thermographic camera.

1. Bevezetés

A fűtött hengerek vizsgálatakor is, mint minden más alapkutatás jellegű elemzésnél dimenziótlan mennyiségekkel és hasonlósági számokkal próbálják a jellegzetességeket rögzíteni. Mivel a vizsgálatok fűtetlen rudakkal kezdődtek, ahol a henger és a környezeti levegő (esetenként víz) hőmérséklete döntően a környezeti hőmérséklet volt, nem okozott gondot a hőmérsékletfüggő anyagjellemzők kezelése. Más a helyzet fűtött rúd esetén, különösen akkor, ha a rúd hőmérséklete jelentősen eltér a környezeti levegő hőmérsékletétől. Ekkor a hasonlósági számokban szereplő (pl. A Reynolds számban megjelenő kinematikai viszkozitás, vagy a Nusselt számban megjelenő hővezetési tényező) anyagjellemzők tekintetében felmerül a kérdés, hogy azokat mekkora hőmérséklettel kell számolni. Alapesetben a zavarás nélküli T_{∞} környezeti hőmérséklet [4,5]:

$$T_{f} = \frac{1}{2} \cdot (T_{\infty} + T_{w}) = T_{\infty} + 0.5 \cdot (T_{w} - T_{\infty}).$$
(1)

Az (1) összefüggésben szereplő hőmérséklet mennyiségek mindegyikét konstansnak tekintik. Későbbi vizsgálatok azt találták, hogy különböző esetekben az (1) kifejezéshez hasonló összefüggések alkalmasak lehetnek a hasonlósági számok számára, azzal a különbséggel, hogy a 0,5-ös szorzó helyett egy attól eltérő értékű *C* tényezőt alkalmaznak. Így alakultak ki például a következő számok és a hozzájuk tartozó hőmérsékleti definíciók. Effektív hőmérsékletet definiáltak:

$$T_{eff} = T_{\infty} + C_{eff} \cdot \left(T_{w} - T_{\infty}\right), \tag{2}$$

ahol lamináris áramlásra végül a $C_{eff}=0,28$ érték vált általánosan elfogadottá. Ezt az összefüggést alkalmazzák a St(Re) hasonlósági összefüggések esetén [pl. 8].

Megint más definíciót használ Wang and Trávniček [9] effektív hőmérséklettel számolt Nusselt szám és az úgynevezett reprezentatív hőmérséklettel számolt Reynolds szám $Nu_f(Re_{rep}^{0.5})$ összefüggésére:

$$T_{rep} = T_{\infty} + C_{rep} \left(T_{w} - T_{\infty} \right), \tag{3}$$

ahol C_{rep} =0,36. Minden felsorolt esetben az anyag-jellemzők számításakor egyetlen mért hengerhőmérsékletet használtak. A valóságban nagyobb hengerátmérők esetén viszont kérdésként merül fel, vajon a henger felületi hőmérséklete állandó-e. Befolyásolja-e a felületi hőmérsékleteloszlást az azt körülvevő áramlásból adódó kényszerkonvekció? Mekkora a henger integrált felületi átlaghőmérséklete? Alkalmazható-e ez a vékony huzaloknál alkalmazott egyetlen felületi hőmérsékletként? E kérdésekre keressük a választ. A válaszadáshoz vezető út lépéseiről számolunk be. Sikerült kidolgozni a felületi hőmérsékletmérés módszerét, a vizsgálatok száma és komplexitása alapján sikerült választ találnunk a felmerült kérdésekre. Bizonyítást nyert továbbá a henger áramlási irányhoz viszonyított β állásszög melletti $T_w(\beta)$ hőmérséklet-eloszlásának jellege és mértéke. Az ebből adódó hatások és elemzések későbbi munkánk főbb eredményeit képezik majd.

2. A kísérleti berendezés

Vizsgálatainkhoz szükség volt arra, hogy a termokamerával minden irányból készíthessünk a fűtött hengerről termoképet. Ezért a hengert egy 400x400 *mm* keresztmetszetű szélcsatorna kilépő keresztmetszete utáni szabadsugárban helyeztük el, úgy ahogy azt az 1. és a 2. ábrák mutatják. A nyitott szélcsatorna vége után 505 *mm*-re fix állványra rögzítettük a fűtött rudat, s azzal azonos tengelyű forgatható keretrendszert alakítottunk ki, amelynek felső keresztrúdján rögzítettük a termokamerát (1. ábra).

1. ábra. A mérési összeállítás fényképe

A termokamerás mérések előtt a szabadsugárban a henger síkjában kialakuló sebességeloszlás egyenletességét és konkrét értékét kétkomponenses Constant Temperature Anemometry (CTA) mérőszondával ellenőriztük, illetve határoztuk meg.

2. ábra. A kamera elhelyezése a hengerhez képest

A henger felületi hőmérsékletét mérő termokamera optikai tengelyét az állványrendszer segítségével az áramlási irányhoz képest β =25° - 335° szöghatárok között tudtuk beállítani. A 2. ábra mutatja az alkalmazott jelöléseket. A kamera a henger tengelyétől $L\approx700 \text{ mm}$ távolságra volt elhelyezve.

A keret oldalrúdjához rögzített szögskála értékmutatása alapján változtattuk a kamera állásszögét. A kamera objektívének a hengertől való távolságát (*L*) a lehető legkisebbre választottuk azért, hogy a rúd keresztmetszetére a lehető legtöbb pixel jusson. A felvételek irányszögeit úgy határoztuk meg, hogy egy-egy hengerpontra lehetőség szerint több irányból készült hőfelvétel jusson. Ezzel biztosítva a képek összefűzését, illetve ellenőrizve a mérés megbízhatóságát. A mérésekhez nagy felbontású termokamerát választottunk éppen az előbb említettek miatt. A kiemelendő a kamera a jelentős geometriai felbontása (640x480 *pixel*) és a finom hőmérsékleti felbontása: <50 *mK* (30 °C- on). Az alkalmazott legmagasabb hőmérsékleti tartományon (~300 °C) a körülbelül 2 °C -os mérési pontosság is jónak mondható és mindenképpen megfelel a kitűzött feladat megvalósításához.

3. A mérés kiértékelésének módszere

A termokamera által készített képek minden egyes pixeléhez a kamera feldolgozó szoftvere hozzárendel egy-egy hőmérséklet értéket, amelyeket táblázatos formában szolgáltat a felhasználó számára. Az egyes pixelekhez tartozó hőmérséklet értékek a henger felületén különböző szögértékekhez tartoznak. E szögértékek meghatározásához tekintsük az 3. ábra.

3. ábra. A termokamerás felvételeknél alkalmazott jelölések

A termokamera képéből a fűtött henger tengelyére merőleges irányban a hengerre eső pixelek száma N. Feltételezzük, hogy páros, egész számú pixel esik rá. Így a henger d átmérőjére eső pixeleknek a henger tengelyére merőleges hossza $\Delta x=d/N$, s az előző feltételezés szerint az optikai tengely két pixel határa esik. A termokamera távolsága a hengertől: L. (Amikor e távolság $L\approx700 \text{ mm}$, ekkor a pixelek száma $N\approx30$).

Legyen β_i az áramlási irányhoz képest a kamera optikai tengelyének beállított állásszöge. *M* különböző irányt állítunk be, így az irányok: *i*=1÷*M*.

Legyen az $\alpha_{i,j}$ -edik kamera irányhoz tartozó felvételen a *j*-edik pixelhez tartozó szög a henger felületén az áramlás irányához képest, $j=1 \div M$. Az $\alpha_{i,j}$ szögek egyszerű trigonometriai összefüggésekkel számíthatók β_i és az *N* ismeretében [3-7].

Az 3. ábra az is jól követhető, hogy a kamera egy pixeléhez a henger görbülete miatt az optikai tengelytől távolodva egyre nagyobb s_k ívhossz tartozik. Ehhez társul az is, hogy így a kamera egyre kevésbé "szemből" látja a hengert. Így itt jelentős mérési hibák adódhatnak. Vizsgáljuk meg ezért, hogy az optikai tengelytől távolodva hogyan változik az egy pixelhez tartozó s_k ívhossz. Az optikai tengelytől mérve a k-adik pixelhez tartozó s_k ívhossz ($k=1\div N/2$) a geometriai adatokból szintén számítható [3]. Vizsgáljunk meg egy példát, amikor N=30 pixel esik a hengerátmérőre. Ekkor az optikai tengelytől mért távolság függvényében a 4. ábra ábrázoljuk N=30 esetben az egyes pixelekhez tartozó ívhosszat. Az ábra alapján megállapítható, hogy az adott esetben az optikai tengelyhez legközelebbi maximum $\pm 8\div 10$ pixel esetén közel azonos a pixelhez tartozó ívhossz, ennél nagyobb érték esetén az ívhossz és így a mérési bizonytalanság jelentős mértékben nő. Ezért az e tartományon kívül eső területekre kapott hőmérsékletértékeket nem tekinthetjük megbízhatónak. E mérési értékeket így vizsgálataink során nem vettük figyelembe.

4. ábra. A pixelekhez tartozó ívhosszak

A méréseink során M=32 különböző β_i kameraállást alkalmaztunk, ezek rendre: 25°, 35°, 45°, 55°, 65°, 75°, 85°, 95°, 105°, 115°, 125°, 135°, 145°, 155°, 165°, 175°, 185°, 195°, 205°, 215°, 225°, 235°, 245°, 255°, 265°, 275°, 285°, 295°, 305°, 315°, 325° és 335°.

A felvételek a henger $\sim 20 \cdot d$ hosszúságú szakaszáról készültek. Ebből választottunk ki $\sim 3 \cdot d = 100 \text{ pixel}$ hosszúságú szakaszt, úgy ahogy azt példaként az 5. ábra mutatja (az ábrán N=36 pixeles eset látható). A henger hossza mentén gyakorlatilag változatlan hossz- és keresztirányú sebességeloszlást tapasztaltunk, egyezően a 2D áramlás tulajdonságaival.

Ennek ellenére a kiválasztott 100 pixel hosszú szakaszon vettük mindig a 100 pixelben mért hőmérsékletek átlagértékét és így kaptunk az átmérő mentén egyetlen hőmérsékleteloszlás görbét (5. ábra jobb oldali diagram), amiket összesítve megkaptuk a henger felületi hőmérséklet-eloszlását.

5. ábra. Hőkép felvétel egy kamera szögállásból, kiválasztva a henger 100 pixel hosszúságú szakaszát (U=0,3 m/s, T_{w névleges}=295 °C)

4. A mérés kiértékelésének módszere

Az 1. táblázat a méréseink során vizsgált különböző eseteket mutatja be. Állandó 5 sebességérték mellett 3-3 hengerhőmérséklet (100, 200, és 300 ^{o}C) esetén végeztük a méréseinket. A különböző hőmérsékletek beállításakor az U megfúvási sebesség is kismértékben változott, a táblázat az átlagértékeket mutatja. A hőmérséklet közelítő beállítása pontbeli henger felületi hőmérsékletméréssel történt. A táblázat, már a termovíziós felvételek kiértékelése után adódó

$$T_{w \, \acute{atlag}} = \frac{1}{360} \int_{0}^{360} T_w(\beta) d\beta \tag{4}$$

felületi átlagértéket mutatja.

1. táblázat. A vizsgált variációk

Megfúvási sebességek, U [m/s]	$T_{w \acute{a}tlag} \left[{}^oC ight]$		
0,28	95,85	193,96	288,09
0,71	96,18	191,97	289,41
1,72	99,44	196,08	291,34
3,59	100,43	197,13	293,02
6,64	100,62	198,48	293,39

A következő ábrákon különböző megfúvási sebességek és hengerfűtések mellett készült vizsgálatokat mutatunk be. A 6-8. ábrák kördiagramjain a henger felületén mérhető legkisebb hőmérséklethez képesti eltérést a kék görbék, míg az átlagos eltérést a piros

görbék mutatják. A 6. és a 7. ábrákon a legkisebb és a legnagyobb általunk mért megfúvási sebességek mellett a három hőmérsékletszinthez tartozó felületi hőmérsékleteloszlást mutatják. A legkisebb sebesség esetén a jelen levő szabadkonvekció felfelé irányuló hatása összemérhető a légsebesség okozta kényszerkonvekcióéval. Ezért a hőmérsékleteloszlások torzulása és asszimetriája figyelhető meg (6. ábra). A legnagyobb sebesség esetén a kényszerkonvekció domináns, a hőmérsékleteloszlások ennek megfelelően sokkal szimmetrikusabbak a megfúvás irányára.

6. ábra. Fűtött rúd felületi hőmérséklet eloszlása (U=0,28 m/s és $T_{w \text{ átlag}}$ =95,85; 193,96 és 288,09 °C)

7. ábra. Fűtött rúd felületi hőmérséklet eloszlása (U=6,64 m/s és $T_{w \text{ átlag}} = 100,62$; 198,48 és 293,39 °C)

A 8. ábrán a legnagyobb hengerhőmérséklet (közel 300 ^{o}C) esetén mutatjuk be, hogyan változik a henger felületi hőmérsékleteloszlása a megfúvási sebesség növelésével. A következő hatásokat figyeltük meg:

• Kis sebesség esetén a szabadkonvekció hatása erős, ezért a henger felső részén magasabb a felületi hőmérséklet, mint alul.

• Ez a hatás a sebesség, s így a kényszerkonvekció növelésével fokozatosan gyengül, s az általunk alkalmazott legnagyobb sebesség (U=6,64 m/s) esetén már a kényszerkonvekció a domináns, a sebességprofil közel szimmetrikus a megfúvás irányára.

• A sebesség növelésével a minimális hőmérséklet helye az alsó hengerfélről ($\beta < 0$) indulva fokozatosan az orrponthoz közelít, végül az alkalmazott legnagyobb hőmérséklet esetén el is éri azt.

• Ezzel párhuzamosan a minimális sebességtől való átlagos eltérések egyre nőnek (az ábrákon a piros körök jelzik), végül a legnagyobb vizsgált sebességnél 18,4 °*C* értéket ér el. Ezen értékek egyben az átlagos hengerhőmérséklettől való legnagyobb eltérések is.

• A felületen mért maximális és minimális hőmérsékletek közti különbség is nő a sebességgel, esetünkben egészen 30,8 °C értékig.

8. ábra. Fűtött rúd felületi hőmérséklet eloszlása

Ugyanezen hatásokat figyeltük meg kisebb hengerhőmérsékletek esetén is, csak a változások mértéke egyre kisebb a hőmérséklet csökkenésével, mint azt a következő diagramok kapcsán bemutatjuk). A 10. ábrán követhetjük, hogy hogyan mozdul el a minimális hőmérsékletű felületi pont a kerület mentén. A jellegzetességek egyértelműek. Egyrészt a sebesség növelésével, azaz a kényszer és a szabadkonvekcióhoz tartozó sebességviszony növelésével a henger alsó tartományából ($\beta < 0$) a minimális hőmérséklet növelésével az eltolódás mértéke egyre nagyobb, de a különbség a sebesség növekedésével exponenciálisan csökken, végül a szimmetriapontban találkoznak. A 11. ábra szerint a maximális hőfok szöghelyzete a henger hátsó felén a sebesség növelésével csökken és β =150-160° körül stabilizálódik, legalább is a mért

hőmérséklettartományon. Megjegyezzük, hogy e szöghelyzet környezetében a hőmérséklet alig változik, így e hely inkább tartomány jellegű, mint pontbeli érték.

11. ábra. A maximális és a minimális felületi kerület menti hőmérséklet-különbsége

A 11. ábrán a henger kerülete mentén mért maximális és minimális hőfokok különbségét tüntettük fel a megfúvási sebesség függvényében. A jellegzetességek most is jól követhetők, vagyis egyrészt alacsony sebességnél a különbség a sebességtől alig függ és 5 ^{o}C körüli érték, másrészt a henger átlagos hőmérsékletének növelésével a sebességgel egyre meredekebben nő. A legnagyobb érték a már említett 30,8 ^{o}C érték. Az elért maximális különbség értékek az átlagos érték ~10%-át érik el ^{o}C -ban. A 12. ábra mutatja, hogy a sebesség növelésével növekvő kényszerkonvekció hengert hűtő hatását hogyan kellett a villamos teljesítmény növelésével ellensúlyozni. A villamos fűtés hatásfokát elhanyagolva ezen értékek a légsebesség hűtő hatásához tartozó hőárammal egyeznek meg.

5. Összefoglalás

A vizsgálataink alapján bizonyítást nyert, hogy különösen nagyobb légsebességek és magasabb hengerhőmérsékletek esetén a henger felületi hőmérsékletének kerület menti változása nem elhanyagolható. Kimutattuk a kerület menti hőmérsékleteloszlás néhány fő jellegzetességét. A vizsgálatunk eredménye felveti különösen nagyobb hengerátmérők, magasabb hőmérsékletek és légsebességek esetén azt a kérdést, hogy van-e és, ha igen, akkor hogyan definiálható a hasonlósági számok számára egy átlagos falhőmérséklet.

6. Köszönetnyilvánítás

A kutató munka a Miskolci Egyetem stratégiai kutatási területén működő Innovációs Gépészeti Tervezés és Technológiák Kiválósági Központban a TÁMOP-4.2.2.B-10/1-2010-0008 jelű projekt részeként – az Új Magyarország Fejlesztési Terv keretében – az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg.

7. Irodalom

- Wang, A.-B., Trávníček, Z., and Chia, K.-C., 2000, "On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder", *Physics of Fluids* 12 (6), pp.1401–1410.
- [2] Lecordier, J. C., Hamma, L., and Paranthoën, P., 1991, "The control of vortex shedding behind heated circular cylinders at low Reynolds number", *Experiments in Fluids* 10, pp. 224–229.
- [3] Bencs, P., Szabó, Sz., and Farkas, A., 2012, "Improvement of Thermovision Measurement Method for Analysis of Surface Temperature Distribution of a Body in Flow", Proc. of Micro CAD International Computer Science Conference, No. D, Miskolc, Hungary, pp. 1-6.
- [4] Özisik, M. N., 1985, *Heat Transfer*, McGraw Hill, New York.
- [5] Bejan, A., 1993, *Heat Transfer*, John Wiley & Sons, New York.
- [6] Norberg, C., 2001, "Flow around a circular cylinder: Aspects of fluctuating lift", *Journal of Fluids and Structures*, 15, pp. 459-469.
- [7] Wang, A.-B., Trávniček, Z., and Chia, K.C., 2000, "On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder", *Physics of Fluids*, 12(6), pp. 1401-1410.
- [8] Wu, M.-H., and Wang, A.-B., 2007, "On the transitional wake behind a heated circular cylinder", *Physics of Fluids*, 19 (8) 084102-1–084102-9.
- [9] Wang, A.-B. and Trávniček, Z., 2001, "On the linear heat transfer correlation of heated circular cylinder in laminar crossflow using new representative temperature concept", *International Journal of Heat and Mass Transfer*, 44 pp. 4635-4647.