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Abstract

This paper deals with an approximate solution of Saint-Venant torsion problem of orthotropic bar
with solid cross section. The boundary collocation is used to get the approximate analytical solution of
the torsion problem. Examples illustrate the applications of the presented numerical solution.
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1. Introduction

The boundary collocation method is a method for the numerical solution of ordinary differential equa-
tions and partial differential equations. The concept is to choose a finite dimensional space of the can-
didate solutions which satisfy the differential equations but they do not satisfy the prescribed boundary
conditions. The linear combination of the candidate solutions satisfies the boundary conditions only on
the selected points of the boundary curve or boundary surface. These selected points are the colloca-
tion points.

This paper deals with two-dimensional problem which can be described by an elliptical partial dif-
ferential equation. The linearly independent solutions of the differential equation are generated by
source points which are outside of the considered simply connected domain in our case. In this study
the number of source points and number of collocation boundary points are the same.

The general method of boundary collocation is formulated in book by Kotodziey and Zielinski
(Kotodziej and Zielinski, 2009) and book by Li et al. (Li et al., 2008). Yuanhan (Yuanhan, 1990) used
the boundary collocation method to obtain the torsional rigidity of a thick-walled cylinder with an
extremal radial crack. Paper by Mierzwiczak and Kotodziej (Mierzwiczak and Kotodziej, 2012) pre-
sents a comparison of different methods of choosing collocation points for boundary collocation
method. The goal is to find the optimal positions for the source points (Mierzwiczak and Kotodziej,
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2012). A torsion of isotropic homogeneous triangular bar with circular hole cross section is investigat-
ed that how the position and number of source points affect the accuracy of the solution (Mierzwiczak
and Kotodziej, 2012). Paper by Kotodziej and Fraska gives the solution of torsional problem of regular
polygonal cross section by means of boundary collocation method. The result obtained is useful in the
design of torsional members (Kotodziej and Fraska, 2005). The numerical experiments related with
the shape of the source contour in application of the boundary collocation method to the elastic torsion
of prismatic bars are considered in paper by Gorzelanczyk and Kotodziej (Gorzelanczyk and
Kotodziej, 2008). The Saint-Venant torsion for five different cross sections is solved: L-section, [-
section, +-section, I -section and I-section by means of the method of boundary collocation in (Gor-
zelanczyk and Kotodziej, 2008).

In this paper the Saint-Venant torsion problem of Cartesian orthotropic homogeneous bar with sol-
id cross section is considered. The cross section of the bar is shown in Fig. 1. A denotes the cross sec-
tion, OA is the boundary curve of the cross section. The shear moduli of the elastic orthotropic materi-

al of the bar are G, =G,, and G, =G,, and the applied torque is T and the rate of twist is 4. The
torsional rigidity S of the cross section is defined as (Lekhnitskii, 1981; Lekhnitskii, 1971)

S= (1)

2. Governing equations

2.1. Formulation of torsion problem by torsion function

The torsion function of orthotropic elastic bar is denoted by w=a(x,y). It is known that the torsion

function is the solution of the following boundary value problem (Lekhnitskii, 1981; Lekhnitskii,
1971; Sokolnikoff, 1956)

2 2
GlzT?+ngy_?=01 (le)EA! (2)
ow ow
nXGl(&— ijrnyG2 [E+X)=0, (x,y) € 6A. 3)
y
T L//fj o Oi(ai,by)
i=j=N
A
/ ()
0
e
—¥

s n = (n,,ny)

Figure 1. Cross section of the orthotropic bar
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In equation (3) n,, n, are the components of unit normal vector of the boundary curve oA (Fig.
1).

The shearing stresses z,, and =
Sokolnikoff, 1956)

y2 €an be computed as (Lekhnitskii, 1981; Lekhnitskii, 1971,

ow ow
7, =9G, (g — yj, T, = 9G, (E + X]. (@)

The expression of the torsional rigidity S in term of @w=w(X,y) is as follows

S=I{G{%+xjx—6{2—f—y)y}dA. (5)

From equation (5) it follows that

ow ow
S=G,I,+G]I, + {GZ——Gl—}dA, (6)
y { ay X
where
1= [y?dA 1, =[x*dA Y
A A
Application of Gauss’s theorem in equation (6) gives
J‘{Gz oxe) _ G, oyo) }dA = [ @[ n,G,x-nGyy |ds. (8)
A ay aX oA

In equation (8) s is an arclength coordinate defined on the boundary curve 6A (Fig. 1). The combi-
nation of equation (6) with equations (7) and (8) yields to the result

$=Gl,+G,l, + [ @[ n,G,x-nGy]ds. 9)
OA

It is very easy to check that the function

G o G ,
F(xy)=In Ggz(x—ai )+G Oz(y—bi) , (10)

1 2C

where G, =,/G,G, and c is a constant with unit [length] satisfies the partial differential equation (2)

for arbitrary value of c. The approximate solution of the boundary-value problem formulated in equa-
tions (2) and (3) is looked for as a linear combination of the fundamental solutions

(X, y) = Zqi F (X, y)- (11)

The unknown constants g; (i =1,2...,N) are computed from the boundary condition (3)
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ow ow
anGl(&jx_xj +n,G, [EJ =Nn,Y;G —n;Xx;G, =0. (12)
Y=Y y=Yj

Simple computation shows that

oF 2n,G,G, (X—a
nG Fi_ M6GH-a) (13)
X  G,(x—g) +G(y—b)
] 2n,G,G,(y-b.
nyeziz y 122(y |) - (14)
X Gy(x—a) +Gy(y—b)
Let A, be defined as
2n. GG, (X. —a 2n. G,G,(y. —b
= Jx 122( j |) 2+ iy 122(y] |) = (i,j=1,2,...,N). (15)
G, (x; —a)" +Gy(y; —b)"  Gy(x; —&)" +Gy(y; —b)
We introduce the vector f i

From equation (12) we obtain a system of linear equations for the unknown coefficients
g (i=12,..,N)

iAijqi —-b; =0, (j=12,..,N). (17)

2.2. Formulation of torsional problem by Prandtl’s stress function

It is known (Lekhnitskii, 1981; Lekhnitskii, 1971; Sokolnikoff, 1956) the Prandtl’s stress function
formulation of the torsion problem of orthotropic bar leads to the following Dirichlet type boundary-
value problem

10U 106U

e, S 03 A 18

G, o +Gl Y (x,y) e (18)
Uxy)=0, (x,y)edA (19)

The shearing stresses z,, and z,, in terms of U =U(x,y) can be expressed as
=9—, 7,=-9—. (20)

The torsional rigidity of the orthotropic bar is (Lekhnitskii, 1981; Lekhnitskii, 1971; Sokolnikoff,
1956)
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U ou
s=2[udA= —y——x—jdA. (21)
=[5 %

The Prandtl’s stress function U =U (X, y) can be represented as

G,x* +G,y?

U(xy)=V(xy)- 5 (22)
It is evident that V =V (X, y) is the solution of the following boundary value problem
oV oV
Gl?"'GZW:O’ (x,y)eA (23)
G,x* +G,y?
V(x,y) == (x,y) € 0A. (24)

The approximate solution of the boundary-value problem defined by equations (23), (24) is
searched by the application of boundary collocation method as

V() =3 R () (25)
where the unknown constants p; (i=1,2,...,N) are obtained from the boundary condition (24) that is
3 50y - 2O 25)
i=1
A detailed form of equation (26) is
ﬁl“Aﬁ p-b, =0, (j=12..,N). (27)
Here,
A = In{%(x,— ~a)’+ Gfgz 7 —bi)z}, (28)
b; =w (,j=12,..,N). (29)
Approximate formulae of shearing stresses are as follows
e ‘g{z P 6,x —Zf)(iéb()y -b))? _Gly}’ 0
Ty = 3{—% o 2%la) sz} (31)
iz G (x-a) +G(y-Db)
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Approximate formula for the torsional rigidity is obtained from equation (21)

N 2 ) 2 _
§=G,J,+G,,—2) p, [ X X&) TGV -y -

T % G (x-a)’+G/(y-h)’
3. Example

3.1. Solid circular cross section

The radius of the boundary circle of cross section is R and the distance of source points from the
boundary circle is r (Fig. 2). Exact solution of the orthotropic solid circular cross section is known

Figure 2. Solid circular cross section whose boundary curve a circle with radius R

Gl_ 2
X,y)=——5Xy, 33
(X, y) G+, y (33)
Ty = _‘9% Yy, (34)

G, +G,
7, =9 2202 (35)

G +G,

GIGZ 2 2 2
U((x,y)= R* —x* — , 36
(x.Y) Gl+GZ( y’) (36)
G,G G,x? +G,y?
V(X,y)=—22 (R?—x?—y? |+ 222 "1 37
(x.y) Gl+Gz( y?) . (37)
5=_CC: pig (38)
G +G,

The number of collocational points and source points are N =6. The coordinates of the colloca-
tional points are (Fig. 2)
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X =Rcos(j—1)2W7z, yjstin(j—l)ZW”, (j=12,...,6). (39)
The coordinates of the source points are (Fig. 2)
a; =(R+r)cos(i—1)2W”, b, =(R+r)sin(i—1)2W7r, (i=12,..,N). (40)

The expression of matrix A; and vector b; are as follows

A = 5SS (i,j=12,..,N) (41)
J Dlj DIJ 1 1 d gy 1
. 2 . 2 . 2
B, = 2G,G, cos(j —1)W[Rcos(1 _1)W —(r +R)cos(i _1)W} (42)
.. 27 .. 27 .. 2
C; =2G,G,sin(j —1)—N |:RSII’1(] _1)W —(r+R)sin(i _1)W} (43)

D, =G{Rcos(j—1)%—(r+R)cos(i—1)2W”} +Gl[Rsin(j—1)%[—(r+R)sin(i—1)2W”} , (44)

ij

b, =%Rsin(j —1)%’, (i.j=12,..6). (45)

Following numerical data are used in the numerical example: R=0.035m, r=0.08m, c=R,
G, =8x10" Pa, G,=6x10" Pa, $=2x10"° 1 G, =+/G,G,. Figure 3 shows the plot of function
m
of approximate solution
6 G G
a’a(XvY):zqi In|:G_gg(x_ai)2+G 02 (y_bi)2:| (46)

i1 | »C

and the plot of exact solution w=w(x,y) given by equation (33) for x=y 0<x< %. In Fig. 4 and

Fig. 5 the exact and approximate solution of shearing stresses z,,(0,y) and z,,(x,0) are given for

0<y<R and for 0<x<R. The approximate value of torsional rigidity obtained by boundary collo-
cation is

S, =164189.4053 Nm”?. (47)
The exact solution of torsional rigidity computed by formula (38) is

S =161634.942 Nm>. (48)
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2
o(x.y) [m’]
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Figure 3. Plots of the torsion function
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Figure 4. The graphs of shearing stresses z, (0, y)

3.2. Determination of the Prandtl’s stress function and torsional rigidity of bar with
isosceles triangle cross section

The boundary curve of the considered bar is bounded with three straight lines as shown in Fig. 6,
whose equations are as follows

e:y+mx=0, e:y—-mx=0, e:x=H. (49)

The number of collocation points and source points are N =6. The position of collocation points
and source points is given by the formulae according to Fig. 6: x,=H, y,=0; x,=H, y,=mH,;
H H H H
3= Ya= M X =0, ¥, =00 X =—r, Yg=——7m; X =H, yo=-mH; a =H+k, b=0;
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a, =H +kcose, b,=Hm-+ksing; a3=%—ksina, bzz%m+kc05a; a,=-k, b,=0;

ag =%—ksina, by =—%m—kc05a; ag=H +kcosa, by=—Hm-ksina. Exact analytical solu-

tion for the present case exists only if (Lekhnitskii, 1981; Lekhnitskii, 1971)

rd
‘rw(x. 0) [Pa]] -
G //
2,x10 P
/
6 7~
1,5%x10 7 P
7
7~
1,x10" 7] e
7~
//
5,x1077] Ve
//
0 x [m]
0 0,01 0,02 0,03
‘—appmximale— 'exac1|

Figure 5. The graphs of shearing stresses z,, (x,0)

)
P /
y % Pji(xj.y;)
o’ Oi(a;, by)
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3
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0Os Fe
\Qﬁ
H

Figure 6. Orthotropic isosceles triangle cross section

m=tana= | 2. (50)
3G,

It is assumed that m is given by formula (50). In this case the exact solution for the Prandtl’s stress
function u=u(x,y) and torsional rigidity S are as follows
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u(x, y):%(yz—mzxz)(x—H), (51)
N
R COLK (52)

In the numerical examples the following data are used G,=8x10" Pa, G, =6x10" Pa,
H=006m, m=05 G,=,/GG,, c=H, k=0.58. According to formula (25) the function
V =V (x,y) can be represented as

V() = B Y). (53)
Here,
_ Gy Gy i
Fi(x,y)_ln{GlC (x-a)? +GZ S(y— b)} (i=1,2,...,.N). (54)

The unknown constant p, (i=12,...,N) obtained from a system of linear equations

N
where
G G
c=In| =2 (x; —a)?+—2(y. -h)? |, 56
Ay il -+ 20,07 | )
G, x> +G,y?
j:%ely,’ (i,i=12...N). (57)

The approximate expression of Prandtl’s stress function U =U(X,y) is

U y) =32 +Gly Zp,{ln{Glo (x-a,)’ +G° (y—by) D (58)
2

The plots of U =U(x,y) and u=u(x,y) are shown in Fig. 7 for y=0, 0<x<H . The exact val-
ue of torsional rigidity

S =34560 Nm? (59)
and the approximate value of torsional rigidity obtained from formula (21)
=— J' J' [x—+ y—Udedx 35501.798 Nm?. (60)
x=0 y=—mx ay
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U(x,0), u(x,0
18 x 107 O PN

1,6 x 10" -
1,4 %107 7 7 \
L2x10"
1,x10" 7/
8,x10°7 /
6,x10°1 1
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0

x [m]
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Figure 7. The plots of functions U =U(x,0) and u=u(x,0) for 0<x<H

u(x,0) = = U(x.,0)|

4. Conclusions

Paper presents an approximate analytical solution for the Saint-Venant torsion of orthotropic bar with
solid cross section. The boundary collocation is used to solve the considered Saint-Venant torsion
problem. In the applied method the partial differential equations of torsion deformation are satisfied
but the boundary conditions for the torsion function and Prandtl’s stress function are satisfied only
some selected points of the boundary curve of cross section. The formulated method is illustrated by
two numerical examples.
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