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Abstract 

This paper deals with the uniform torsion of thin-walled elliptical tube. The material of the tube is non-

homogeneous and it depends on one of the curvilinear coordinates which defines the cross section of 

thin-walled bar with closed profile. The approximate solution for the stresses, torsion function and tor-

sional rigidity are obtained by the application of two extreme value theorems of linearized elasticity. 
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1. Introduction 

The Saint-Venant torsion of elastic thin-walled bar of closed section is an important topic of textbooks 

of elasticity (Saada, 1974; Timoshenko and Goodier, 1970; Wang, 1953; Vlasov, 1961; Sun, 2006; 

Oden, 1967; Renton, 1999; Shama, 2011). The approximate solution of torsion of thin-walled bar with 

closed profile was given by Bredt (Bredt, 1896). In this paper the approximate solution for thin-walled 

tube is derived from the Prandtl’s formulation for shearing stresses and torsional rigidity. This ap-

proach gives a lower bound for the exact value of the torsional rigidity. The torsion function is ob-

tained from the Saint-Venant’s theory of uniform torsion. The torsion function formulation yields an 

upper bound for the torsional rigidity of nonhomogeneous tube. The formulation of the governing 

equations is provided in orthogonal curvilinear coordinates   and  . Figure 1 shows the cross sec-

tion of nonhomogeneous elastic thin-walled tube. 

The description of the boundary contours of cross section shown in Figure 1 is given in curvilinear 

coordinates   and   which are defined by the following equations (Figure 1) 

 1 2cosh cos , 0 , 0 2 ,x c              (1) 

 1 2sinh sin , 0 , 0 2 .y c              (2) 

https://orcid.org/0000-0001-7444-5801
mailto:mechecs@uni-miskolc.hu
https://orcid.org/0000-0002-0885-388X
mailto:mechlen@uni-miskolc.hu
https://orcid.org/0000-0003-2727-2498
mailto:mechab@uni-miskolc.hu
https://orcid.org/0000-0003-4624-7589
mailto:mechgoda@uni-miskolc.hu
https://doi.org/10.35925/j.multi.2022.3.7


Ecsedi, I., Lengyel, Á. J., Baksa, A., Gönczi, D. Torsion of thin-walled nonhomgeneous elliptical tube 

70 

The coordinate lines of the elliptical coordinate system O  are ellipses and hyperbolas as shown 

in Figure 2. 

 

Figure 1. Thin-walled elliptical closed section 

 

 

Figure 2. Coordinate lines of the elliptical coordinate system O  

The unit vectors of constant   and constant  coordinate lines are (Saada, 1974; Lurie, 1970; 

Renton, 1999) 

  
1

cosh sin sinh cos ,x y
h

      e e e  (3) 

  
1

sinh cos cosh sin ,x y
h

     e e e  (4) 

where 

 2 2 2cosh cos .h     (5) 
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The expression of the area element dA  in terms of curvilinear coordinates   and   is 

 2 2d d d d d .A x y c h     (6) 

The two-dimensional del operator can be represented as 

 
1

.x y
x y ch

 
 

    
     

    
e e e e  (7) 

2. Approximate solution for the Prandtl’s stress function 

Denote ( , )U U    the Prandtl’s stress function of the thin-walled nonhomogeneous tube. According 

to the Timoshenko variational formulation of Saint-Venant’s torsion problem it is known that the 

Prandtl’s stress function is the solution of the following variational problem (Timoshenko and Goodi-

er, 1970; Lurie, 1970; Lebejzon, 1943; Wang, 1953; Slivker, 2007) 

  
( , )

( , ) max ( , ) ,c c
U

U U
 

        
 (8) 

where 

 

2

1 1( , ) 4 d 4 d .
( )

c

A A

U
U U A C A A

G
 




         (9) 

Here ( , )U U    is a statically admissible stress function which satisfies the boundary condition  

  2 1, 0, ( , ) constant, 0 2 .U U C           (10) 

In equation (9) ( )G G   is the shear modulus of the tube which may depend on the curvilinear 

coordinate   and 1A  is the area enclosed by the inner boundary ellipse  1  . The approximate 

solution of the considered Saint-Venant torsion problem bases on the following assumption: the 

Prandtl’s stress function does not depend on the curvilinear coordinate  , that is 

 
1 2( , ) ( ), , 0 2 .U U             (11) 

Substitution of expression of ( , )U U    given by equation (11) provides 

 

   
2

1

2

1

2
2 2 2

0

22
2

1 1

0

( ) 4 ( ) cosh cos d d

1
2 sinh 2 ( ) d d .

( )

U U c

U
c U

G









     

    
 

   

 
   

 

 

 

 (12) 

Here, it was used that 

 
2

1 1sinh 2 .
2

c
A    (13) 
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According to the stationary condition of Timoshenko functional (9) we obtain that ( )U U   is the 

solution of the boundary-value problem formulated by the following equations 

 2
1 2

d 1 d
cosh2 0, ,

d ( ) d

U
c

G
   

  

 
    

 
 (14) 

 2( ) 0,U    (15) 

 

1

2
1

1

1 d
sinh 0,

( ) d

U
c

G  


  

 
  

 
 (16) 

 1( ) constant.U C    (17) 

The solution of the system of equations (14–17) are as follows 

 
22

( ) ( )sinh 2 d ,
2





    
c

U G  (18) 

 
2

1

2

1( ) ( )sinh2 d .
2

c
C U G





       (19) 

The approximate value of the torsional rigidity of the thin-walled elliptical tube is obtained from 

equation (20) 

 
2

1 1

1
4 d 4 ( ) d .

( )
A A

S U A AU U A
G




      (20) 

A detailed computation leads to the next expression 

  
2 2 2

1 1

2
4 2 2

1cosh cos ( )sinh 2 d d d sinh 2 ( )sinh 2 d .
4

c
S c G G

  

  

           
 

   
  
    (21) 

For given applied torque T  the rate of twist   is obtained as 

 .
T

S
   (22) 

The expression of the shearing stress vector zτ  in terms of ( )U U   is as follows (Figure 1) 

 
2 2

sinh cosh
( ) .

cosh cos
z z z

c
U G 

 
   

 
    


τ e e  (23) 

3. Approximate solution for the torsion function 

It is known the expression of the displacement components of the displacement vector 

 x y zu v z  u e e e  (24) 
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can be represented as (Saada, 1974; Timoshenko and Goodier, 1970; Lurie, 1970; Lebejzon, 1943; 

Wang, 1953) 

 , , ( , ).u yz v xz w x y      (25) 

Here ( , )x y   denotes the torsion function (Saada, 1974; Wang, 1953; Renton, 1999). The dis-

placement vector can be described in orthogonal curvilinear coordinate system O z  as 

 ( , ) ,zu u        u e e e  (26) 

where 

 2

2 2

sin 2
,

cosh cos
u c z




 



 (27) 

 2

2 2

sinh2
.

cosh cos
u c z




 



 (28) 

Application of the strain-displacement of linearized theory of elasticity gives the expressions of 

shearing strains z  and z  

 
2 2

1
sin 2 ,

cosh cos
z c

c


 
 

 

 
   

 (29) 

 
2 2

1
sinh 2 .

cosh cos
z c

c


 
 

 

 
  

 
 (30) 

Lagrange’s type variational formulation of Saint-Venant’s torsion results the following variational 

problem (Saada, 1974; Lurie, 1970; Slivker, 2007) 

  
 

 
,

, min , ,L L
  

               (31) 

where 

   2 2, ( ) d .L z z

A

G A               (32) 

In equation (32)  ,     is an arbitrary kinematically admissible torsion function (Saada, 

1974; Lurie, 1970; Slivker, 2007), z  and z  are obtained from formulae (29) and (30). By the use 

of kinematically admissible function 

 ( , ) sinh2 sin2K      (33) 

we get  

   2
0 1 2( , ) ( ) ,L L K k k K k K        (34) 
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that is 

 

22 2 2
2 1 1 1 1

2 1 0 2 02
2 2 22

( ) .
4 2 44

L

k k k k
K k K k K k k K k

k k kk

   
            

  
 (35) 

Here, 

  
2

1

2
4 2 2

0

0

( ) sinh 2 sin 2 d d ,k c G





        (36) 

  
2

1

2
2 2 2

1

0

2 ( ) sin 2 cosh2 sinh 2 cos2 d d ,k c G





          (37) 

  
2

1

2
2 2 2 2

2

0

4 ( ) cosh 2 sin 2 sinh 2 cos 2 d d .k G





          (38) 

From equation (35) it follows that the sharpest upper bound in this case 

 
2
1 1

0

2 2

, .
4 2

U

k k
S k K

k k
     (39) 

4. Bredt’s type approximate solution 

Bredt’s formulation neglects the dependence of shearing stresses z  on  . From this assumption it 

follows that 

 
0

( ) ,
2 ( )

z

T

A t
 


  (40) 

where t  is the thickness of thin-walled tube 

 1 2( ) ( ) ( ), 0 2 ,t t t         (41) 

    
22

0 0( ) cos cosh cosh sinh sinh , ( 1,2),i i it c i          (42) 

  
2

0 1 2 0 0

1
, sinh 2 .

2 2

c
A        (43) 

The mean value of shear modulus in thickness direction is 

 
2

1
2 1

1
( )d .mG G





 
 


   (44) 

Bredt proved that approximate value of torsional rigidity of thin-walled beam with closed profile is  
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2
04

.
d

( )

B m

A
S G

s

t s





 (45) 

In the present problem this formula yields the result 

 
4 2

0

2 22
0

0

sinh 2
.

cosh cos
d

( )

B m

c
S G

c

t



 

 









 (46) 

From the formula (23) it follows that 

  
2 2

sinh cosh
, ( ) .

2 cosh cos

T c
G

S


 
   

 




 (47) 

Comparison of equation (40) with (47) gives 

 0 0 0

22 2
00

( ) sinh cosh 1
.

2 sinh 2 ( )cosh cos

G

S c t

  

   




 (48) 

In equation (48) an average value of the thickness is used instead of 

 
2

2 2 2 2
00 0

( ) 1 ( )
d .

2cosh cos cosh cos

t t


 


   


 
  (49) 

Introducing this approximation into formula (48) gives a new formula to the torsional rigidity 

  
23

2
0 0

2 2
0 0

( )
sinh 2 d .

4 cosh cos
B

c t
S G




  
 




  (50) 

5. Numerical example 

In the numerical example the following data are applied 10 m,c   1 0.48,   2 0.5,   10 kNm,T   

8
0 2 10 Pa,G    0.1,   0( ) exp( ).G G   The explicit form of the Prandtl’s stress function is as 

follows 

  20
2 1 2( , ) cosh2 cosh2 exp( ), , 0 2 .

4

G
U c                (51) 

Figure 3 shows the dependence of stress function from the material parameter  . Let 

  
240

2( , ) cosh2 cosh2 2sinh2 exp( )
8

G
r c            (52) 

be. The torsional rigidity can be expressed as 

 
2

1

( ) ( , )d .S r





      (53) 
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Figure 3. Plots of Prandtl’s stress function for different value of   

The dependence of torsional rigidity on the geometrical parameter 2 1/p    is shown in Figure 4 

for 1.02 1.1p  . Figure 5 shows the graphs of shearing stress ( , )z    for five different values of 

0, , , , .
6 4 3 2

   
 
 

 
 

 The comparison of shearing stresses obtained from equation (23) and Bredt’s 

formula (40) is shown in Figure 6. Bredt’s formula (40) gives 

 
0 2

0

( ) ,
sinh(2 ) ( )

T

c t
 

  
  (54) 

and application of equation (23) for  0 1 20.5       yields the result 

    0 0 0
2 2

0

, sinh 2 .
2 cosh cos

Tc
G

S
    

 



 (55) 

 

Figure 4. The variation of the torsional rigidity as a function of 2 1/p    for 0.1   
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Figure 5. The graphs of the shearing stresses z  for the five different values of ( 0.1)    

It should be noted that in the developed numerical example the graphs of 0 ( )   and  0 ,    are 

practically the same (Figure 6). In the present problem the following values obtained for the torsional 

rigidity S : 

a) Equation (21) gives a lower bound for S  which is 

 10 28.647981022 10 Nm .LS    (56) 

b) From equation (39) an upper bound can be derived for S  

 11 21.01548926 10 Nm .US    (57) 

c) Application of Bredt’s formula (46) yields 

 10 25.012122612 10 Nm .BS    (58) 

d) Bredt’s type formula (50) provides the result 

 10 28.644820555 10 Nm .BS    (59) 

 

 

Figure 6. Comparison of the shearing stresses obtained from Prandtl’s solution and Bredt’s formula 
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Based on the above results it is advisable to use formulae (21) and (50) from which come closed re-

sults to each other to calculate the torsional rigidity. Note that in this numerical example the numerical 

value US  suits that the Prandtl’s formulation indeed gives a lower bound on the torsional stiffness. 

6. Conclusions 

In this paper Saint-Venant’s torsion of thin-walled elastic tube is considered. The formulation of the 

problem in a curvilinear coordinate system is given. Paper presents approximate expressions for 

Prandtl’s stress function, shearing stresses and torsional rigidity. The derived results based on Saint-

Venant’s theory of uniform torsion are compared with the results obtained by the application of 

Bredt’s theory. 
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