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Abstract 

The paper presents the results of the factor analysis of multi-electrode geoelectric data measured in the 

area of the Surány aquifer. The 9-variable dataset measured on the first profile was examined by factor 

analysis using 2, 3, 4 and 5 factors. The calculations show that the Factor profile 1 carries the effects 

of IP (Induced Polarization), while the Factor profile 2 shows the effect of apparent resistivity (Rho) 

with the greatest weight. In the Factor profile 3, the factor weight of the current (In) is the largest. Based 

on all this, it can be concluded that in multi-electrode geoelectric measurements, the first factor depends 

on the IP effect explaining the most of the variance of the observed data, the second factor on the 

apparent resistivity, and the third factor on the current. The obtained results confirm that the factor 

analysis is suitable for the correction and replenishment of noisy and erroneous data of multi-electrode 

measurements. 

Keywords: multi-electrode measurements, geoelectric data, factor analysis, factor profiles, data 

replenishment 

1. Introduction 

Multi-electrode measurements have been widely used in both geological exploration and environmental 

studies (Loke, 2000). This measurement technique significantly increases the efficiency of geoelectric 

measurements (Kearey et al., 2002) and reduces the time of measurements. Measurement control 

programs and scripts can be entered in the memory of computer-controlled multi-electrode instruments. 

In the case of geoelectric measurements, the electric current is introduced into the ground between two 

current electrodes (A, B) and the potential difference between the two potential electrodes (M, N) and 

the parameters of the induced polarization (IP) are measured. The mutual spatial position of the four 

electrodes (A, B, M, N) determines the reference point (penetration depth) of the measurement. If many 

electrodes are sunk into the ground along a straight line (section), all electrodes can be used for current 

input and potential difference measurement as well. The measurement control scripts contain the 

addresses of the current electrodes (A, B) and the potential difference measuring electrodes (M, N) 

sequentially. Thus, up to hundreds of measurements can be programmed using different electrode 
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arrangements (Schlumberger, Wenner, pole-pole, pole-dipole, dipole-pole and dipole-dipole). The 

spatial distribution of the measured parameters (ρa - apparent resistivity, M - apparent chargeability, SP 

- spontaneous potential) can be determined in a vertical plane fitting the spreading profile (2D 

measurement) or in a subsurface volume if the electrodes are connected along several parallel profiles 

(3D measurement). From the spatial distribution of measured parameters, geophysical images (models) 

describing the geological structure of the earth can be generated by inversion methods (Dobróka et al., 

2014). Thus, we can map the subsurface without trial pits or drilling. However, a significant difficulty 

with multi-electrode measurements is that we only see the measured file for analysis at the end of the 

entire measurement cycle (which can be up to several hours depending on the size of the control script). 

The quality of the measured data can be determined only at the end of the measurement. In several cases, 

our measurement results may contain incorrect data. These erroneous data are usually removed from the 

measured file by filtering, but in this way we cannot generate a model detail by inversion at the spatial 

reference point of the filtered data. Thus, the geological information (geological image) that can be 

obtained from the multi-electrode measurement will be truncated or distorted. This problem can be 

corrected by replenishment and correcting the filtered data afterwards. In this paper, we investigated the 

possibility of this replenishment using factor analysis on a real field multi-electrode dataset. Factor 

analysis is an effective mathematical method for exploring hidden relationships in multivariate datasets. 

In applied geophysics, this method has already been successfully applied in well log inversion for data 

replenishment and section repairment (Szabó, 2018; Szabó et al., 2021; Abordán and Szabó, 2020). 

2. The measured dataset 

The multi-electrode geoelectric dataset No. 1 (Turai and Nádasi, 2020) measured in the area of the 

Surány aquifer was chosen for the study. The columns of the dataset contain the values of the 

measurement control and the measured parameters, and the rows contain the values of the spatial 

measurement points determined by the current (AB) current and (MN) potential electrodes, in the 

chronological order of the measurement. During the field measurement, the parameters were determined 

and recorded at 744 reference points. The SYSCAL Pro 72-channel instrument from IRIS was used for 

the measurement. From the dataset, we selected the parameters measured for the ground, the apparent 

specific electrical resistivity (Rho, in ohmm), the average apparent chargeability (M, in mV / V), the 

apparent chargeability for 80 ms (M1, in mV / V), apparent chargeability for 160 ms (M2, in mV / V), 

apparent chargeability for 320 ms (M3, in mV / V), measurement standard deviation (Dev, %), 

spontaneous potential between MN electrodes before excitation (Sp, in mV), the potential between MN 

electrodes during excitation (Vp, mV) and the current between AB electrodes during excitation (In, 

mA). The data matrix of the factor analysis D was formed from the 9 parameters thus selected. 

3. Mathematical basis of factor analysis  

The birth of factor analysis is linked to the paper of Charles Spearman (1904), who used Karl Pearson's 

(1901) work on correlation calculations. Since then, numerous books and technical articles related to 

factor analysis have been published, among which the book written by Cudeck and MacCallum (2007) 

stands out, which summarizes the most important applications of factor analysis up to that point and its 

future perspectives. Let us generate the data matrix for the multi-electrode measurement 

𝐷 = {𝑑𝑛,𝑘}, 𝑛 = 1, 2, … , 𝑁, 𝑘 = 1, 2, … , 𝐾,                                      (1) 
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where N - the number of measured data points, 

 K - number of variables (different measured parameters), 

 dn,k - the value of the k-th measured data (parameter) at the n-th data point, in the time order 

  of the measurement. 

Write the data matrix D with a factor model (Szabó and Kormos, 2012) 

D = FLT + E, (2) 

where F - N x M size matrix of factor sections (factors), 

 M - number of factors, 

 L - a K × M matrix of factor weights, 

 E - the N × K error matrix (deviation matrix). 

The aim of factor analysis is the above decomposition, and the estimation of factor loadings and 

factor scores to the same points where measurements were made. The reduction of the input data matrix 

allows to analyse the dataset in a simpler way as well as to explore hidden information in the dataset.   

4. Factor analysis of the multi-electrode dataset 

Prior to the calculation, the 9-variable dataset presented in Chapter 2 was standardized. For factor 

analysis, we used a computer code for Matlab system using a maximum likelihood method based 

function called factoran. For the rotation of factors the varimax algorithm was used (Kaiser, 1958). After 

reading in the dataset, the self-developed program displays the values of the covariance matrix on the 

screen, calculates the factor model and factor weights of the dataset. It also prints the matrix of the factor 

model and the matrix of factor weights to a Matlab file and a text file (txt). By setting the value of an 

input variable, the number of factors must be determined. Preliminary calculations were performed for 

all possible factor models. For the 9-variable dataset this was possible for 1-factor, 2-factor, 3-factor, 4-

factor, and 5-factor models. The vectors of the factor weights are shown in the following five tables 

below for analysis. Table 1 shows the results of the 1-factor, Table 2 the 2-factor, Table 3 the 3-factor, 

Table 4 the 4-factor, and Table 5 the results of the 5-factor evaluation. It can be seen from the previous 

tables that the weight of factor 1 is highest for the M2 variable (IP apparent chargeability) in all 

evaluations. Among these, the maximum occurs in the 5-factor case (0.96). Based on this, it can be 

concluded that the effect of the variable M2 appears the most in factor 1. It can also be stated that in the 

factor weight vectors 1, the weights of the variables M, M1 and M3 are also high, above 0.8. Based on 

all this, it is clear that Factor 1 carries the effects of IP (Induced Polarization). In factor section 2, based 

on the 5-factor analysis, the effect of resistivity (Rho) appears with the highest weight (0.98). In addition, 

the factor weight of the variable Vp is relatively high, and in the 3-factor model the weight of this 

variable is over 0.95 (0.96). Thus, the factor section 2 seems to be sensitive to resistivity, since the 

voltage Vp also varies as a function of the resistivity of the medium. In factor section 3 the factor weight 

of the current (In) stands out, in the 4-factor model it is 0.98, and in case of the 5-factor model it is above 

0.9. In factor sections 4 and 5 the weight of each variable is less than 0.4, suggesting that none of these 

variables have a prominent effect on these factors. In the following, the relationship between the 

standardized normalized variables and the individual factor profiles is shown in the 5-factor case. 
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Table 1. Analysis with 1 factor. 

Variable Factor weight 

Rho -0.2561 

M 0.9034 

M1 0.8578 

M2 0.9788 

M3 0.9637 

Dev 0.1512 

Sp 0.0350 

Vp -0.3683 

In -0.1397 

 

Table 2. Analysis with 2 factors. 

Variable 1st factor weight 2nd factor weight 

Rho -0.0720 0.6895 

M 0.8380 -0.3455 

M1 0.8673 -0.0920 

M2 0.9631 -0.2143 

M3 0.9074 -0.3220 

Dev 0.0747 -0.2795 

Sp 0.0208 -0.0524 

Vp -0.1532 0.8219 

In -0.0928 0.1825 

 

Table 3. Analysis with 3 factors. 

Variable 1st factor weight 2nd factor weight 3rd factor weight 

Rho -0.0903 0.5231 -0.3013 

M 0.8486 -0.2901 0.1399 

M1 0.8879 -0.1511 -0.1258 

M2 0.9512 -0.1838 0.1222 

M3 0.9106 -0.2107 0.3173 

Dev 0.0632 -0.1025 0.3841 

Sp 0.0259 -0.0590 -0.0204 

Vp -0.1235 0.9563 -0.2555 

In -0.0838 0.2123 -0.0708 
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Table 4. Analysis with 4 factors. 

Variable 1st factor weight 2nd factor weight 3rd factor weight 4th factor weight 

Rho -0.1053 0.6703 -0.1337 -0.2438 

M 0.8597 -0.2807 -0.0618 0.1022 

M1 0.8886 -0.0992 -0.0714 -0.1382 

M2 0.9588 -0.1445 -0.0460 0.0971 

M3 0.9260 -0.1774 -0.0218 0.3014 

Dev 0.0664 -0.1241 -0.0985 0.3840 

Sp 0.0266 -0.0617 -0.0326 -0.0251 

Vp -0.1910 0.7815 0.1267 -0.2521 

In -0.0568 0.0632 0.9752 -0.1916 

 Table 5. Analysis with 5 factors. 

Variable 
1st factor 

weight 

2nd factor 

weight 
3rd factor 

weight 
4th factor 

weight 
5th factor 

weight 

Rho -0.1037 0.9799 -0.0789 -0.1327 0.0151 

M 0.8620 -0.2051 -0.0408 0.0881 0.3091 

M1 0.8905 -0.0472 -0.0670 -0.1107 0.0274 

M2 0.9656 -0.1123 -0.0492 0.1029 0.0328 

M3 0.9232 -0.1557 -0.0248 0.3010 0.0763 

Dev 0.0686 -0.1743 -0.1325 0.3767 -0.0776 

Sp 0.0233 -0.0134 -0.0189 -0.0166 0.1399 

Vp -0.2291 0.5598 0.1534 -0.2421 -0.2543 

In -0.0616 0.0085 0.9039 -0.1745 -0.1272 

Table 6. Change in factor loadings between 2 and 5 factor models. 

Variable  

Factor 1 

loading in 

the 2-factor 

model 

Factor 2 

loading in 

the 2-factor 

model 

Factor 1 

loading in 

the 5-factor 

model 

Factor 2 

loading in 

the 5-factor 

model 

Change in 

loading of 

factor 1 

Change in 

the loading 

of factor 2 

Displacement 

vector 

magnitude 

Rho -0.0720 0.6895 -0.1037 0.9799 0.0317 -0.2903 0.2921 

M 0.8380 -0.3455 0.8620 -0.2050 -0.0240 -0.1404 0.1425 

M1 0.8673 -0.0920 0.8905 -0.0472 -0.0232 -0.0448 0.0505 

M2 0.9631 -0.2143 0.9656 -0.1123 -0.0025 -0.1020 0.1021 

M3 0.9074 -0.3220 0.9232 -0.1557 -0.0158 -0.1663 0.1670 

Dev 0.0747 -0.2795 0.0686 -0.1743 0.0060 -0.1052 0.1054 

Sp 0.0208 -0.0524 0.0233 -0.0134 -0.0025 -0.0390 0.0391 

Vp -0.1532 0.8219 -0.2291 0.5598 0.0759 0.2620 0.2728 

In -0.0928 0.1825 -0.0616 0.0085 -0.0313 0.1740 0.1768 



Turai-Vurom, B., Szabó, N. P. Factor analysis of multi-electrode geoelectric field data 

179 

 

The factor sections and the profiles of the dataset variables were compared by calculating mutual 

statistical indicators (variance, covariance and correlation). The mutual evolution of the factor section 1 

and the variable Rho is shown in Fig. 1, for variable M in Fig. 2, for variable M1 in Fig. 3, for variable 

M2 in Fig. 4 and for variable M3 in Fig. 5. (In each figure, the blue curve is on top so that where the 

two curves have the same value, the red curve is obscured.) Comparing the Pearson’s correlation values 

shown in the figures and the factor weights obtained by factor analysis (Table 5), it can be concluded 

that the values, although not exactly identical in numerical value, follow each other well. The weak 

opposite correlation between the apparent resistivity (Rho) and the factor section 1 can be clearly seen 

in Fig. 1, because in some parts of the profile where the factor value is high, the Rho value is small and 

where the factor loading is small, the Rho value is high. The strongest correlation is found in Fig. 4 

between factor section 1 and M2 chargeability. Based on this figure, it can be concluded that the 

chargeability M2 can be almost completely replaced by factor 1. For the other IP parameters (M, M1, 

and M3), Figures 2, 3, and 5 also show a close relationship with factor 1. However, the other parameters 

(Dev, Sp, Vp and In) have a very weak relationship (practically none) with factor 1. 

 

Figure 1. Factor section 1 and Rho section. 
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Figure 2. Factor section 1 and M section. 

 

Figure 3. Factor section 1 and M1 section. 
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Figure 4. Factor section 1 and M2 section. 

 

Figure 5. Factor section 1 and M3 section. 
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For the factor section 2 Fig. 6 shows the strongest correlation relationship with the apparent resistivity 

Rho. Examining the figure, we can see that the apparent resistivity (Rho) in all parts of the section can 

be excellently replaced by the value of factor 2. Factor 2 still has a moderately strong relationship with 

the Vp potential profile. This relationship is shown in Fig. 7. 

 

Figure 6. Factor section 2 and Rho section. 

 

Figure 7. Factor section 2 and Vp section. 
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Figure 8. Factor section 3 and In section. 

The other variables (M, M1, M2, M3, Dev, Sp, and In) have no significant relationship to factor 2. 

Factor 3 alone has a close relationship with the measurement current (In), which relationship is 

illustrated in Fig. 8. The other variables (Rho, M, M1, M2, M3, Dev, Sp, and Vp) have no significant 

relationship to factor 3. Factor 4 and 5 have a very weak relationship with all variables. 

We also examined the difference in the factor loading of each variable if we used only a 2-factor 

model instead of the 5-factor model. The displacements of the factor loadings are shown in Fig. 9. Table 

6 below summarizes the factor loadings, the extent of their change, and the magnitude of the 

displacement vectors. It can be seen that the change in the values of factor 2 is significantly larger than 

the change in the values of factor 1. The magnitude of the displacement vector is the largest for the 

variable Rho and the smallest for the variable Sp. Based on all this, the use of the 5-factor model is 

justified. This is also confirmed by the study of the independence of factor section 1 and factor section 

2. The correlation coefficient between this two factor sections shown in Fig. 10 shows that there is 

practically no relationship between the two factor sections confirming the basic mathematical 

assumption that the factors must be uncorrelated. 
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Figure 9. The change in the first and second factor loadings of the 9-variable dataset. 

 

 

Figure 10. Relationship between factor section 1 and factor section 2. 

5. Conclusions 

Summarizing the results of the factor analysis, it can be concluded that factor 1 is closely related to the 

IP parameters (M, M1, M2 and M3) and factor 2 is mainly related to the apparent resistivity (Rho). The 
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section of the variable Rho can be replaced by the factor section 2 and the section of the variable M2 

can be replaced almost entirely by the section 1. Factor section 3 shows a very close relationship with 

the measuring current (In) section. Factors 4 and 5 are not closely related to any of the variables. Based 

on the examination of the change of the factor values and the independence of the factor 1 and 2 sections, 

it seems justified to use the 5-factor model in the evaluation. Regarding the practical applicability of the 

results, the use of factor analysis to correct and replenishment erroneous data from multi-electrode 

measurements is very promising. Factor 2 can be used to replenish and correct apparent resistivity data, 

while factor 1 can be used to replenish and correct IP data. Multi-electrode geophysical measurements 

are widely used in international practice in the fields of mineral exploration and environmental 

investigations. The correction of erroneous field multi-electrode data by factor analysis can therefore 

represent a very important and effective new way in both domestic and international applications. 
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