
Multidiszciplináris tudományok, 12. kötet. (2022) 3 sz. pp. 256-263 https://doi.org/10.35925/j.multi.2022.3.23

256

AN INVESTIGATION ON IMPLEMENTING A SCENARIO ON

DIFFERENT CLOUD SIMULATORS

Hasanein Rjeib
PhD student, University of Miskolc, Institute of Information Technology

3515 Miskolc, Miskolc-Egyetemváros, e-mail: rjeib@iit.uni-miskolc.hu

Gábor Kecskeméti
associate professor, University of Miskolc, Institute of Information Technology

3515 Miskolc, Miskolc-Egyetemváros, e-mail: kecskemeti@iit.uni-miskolc.hu

Abstract

Recently, many algorithms have been introduced to provide solutions for Virtual Machine Consolidation

in Cloud Data Center. Such Algorithms are usually implemented using many Cloud Simulators, which

may have different representation and behavior of cloud infrastructure entities like Data Centers,

Physical Machines(PMs), and Virtual Machines(VMs). In this paper, we investigated the impact of using

a simulator on the implementation of Cloud infrastructure that is necessary for the Consolidation

process, we chose Cloudsim and DISSECTCF simulators in particular since they both support Cloud

infrastructure entities. Our aim is to find common entities for cloud simulators that are necessary to

build the same infrastructure with particular interest on monitoring the CPU utilization and energy

consumption. We report our experience with the implementation on the two Simulators, in addition to

the limitation and differences we found during the reproducing process.

Keywords: Cloud Simulators, Cloud Infrastructure, Physical Machine, Virtual Machine, Energy

Consumption

1. Introduction

Recent research has shown the importance of energy efficient resource utilization of Cloud Data Center,

in which Virtual Machines (VMs) can be consolidated into fewer Physical Machines(PMs) to save

energy (Khan et al., 2018). This is done by using the virtualization technology, where single PM can

host several VMs, providing better utilization of the available resources. In addition, VM live migration

helps data center operators to comply with the changes in the workload, where VMs can be consolidated

to a fewer PMs in case of the low load, whereas PMs can be turned on so that they can host new VMs

and thus improving quality of service (QoS) in time of high load.

Cloud Simulators allow implementation and evaluation of several models in Cloud Computing

infrastructure. They provide relatively easy setup for experimentation of many scenarios using several

types of PMs and VMs that represent the Core entities of the cloud infrastructure. Every Cloud Simulator

has different way of modeling PMs and VMs behavior despite having the same resources (CPU,

Memory, Bandwidth, etc.), and also different way of handling power consumption models. Thus,

implementing a specific VM consolidation scenario on two different simulators -having same

specifications for PMs and VMs with different behavior- might not lead to same results in terms of

energy consumption and resource utilization.

https://doi.org/10.35925/j.multi.2022.3.23
mailto:rjeib@iit.uni-miskolc.hu
mailto:kecskemeti@iit.uni-miskolc.hu
https://orcid.org/0000-0002-2094-1823
https://orcid.org/0000-0001-5716-8857

Rjeib, H., Kecskeméti, G. An investigation on implementing a scenario on different Cloud Simulators

257

The aim of this research is to reproduce the same infrastructure for VM consolidation algorithm on

different Simulators trying to answer the following questions: (1) How to ensure that we have a same

exact PMs and VMs on two different simulators? (2) Are there any differences in the evaluation results

(in particular, Energy consumption and resource utilization) using different cloud simulators?

To answer these questions, we started to reproduce the infrastructure related work done in (Wang

and Tianfield, 2018) as they claimed that their Dynamic VM Consolidation plan have the best

performance among other works. They chose Cloudsim simulator (Calheiros et al., 2011) - which is the

most widely used Cloud Simulator- as their evaluation toolkit.

For our re-implementation, We selected DISSECT-CF simulator (Kecskeméti, 2015) which provide

similar cloud infrastructure entities like PMs and VMs with very accurate results regarding the energy

consumption. In addition, DISSECT-CF provides more efficiency and better scalability of simulation

time compared to Cloudsim. The rest of this work is organized as follows. Section 2 discuss previous

work. In section 3, we discuss our experimentation and re-implementation process regarding PM and

VM creation including the changes we made in order to get identical result between the two simulators.

In section 4, we present our evaluation process and the result we got regarding energy consumption and

the host utilization. Finally, section 5 concludes the paper.

2. Related work

A number of research papers have been re-implementing works on different simulators trying to

investigate the effect of a simulator on implementation process.

Mann (Mann, 2018) described their experience with porting a VM placement algorithm and its

evaluation setup from one cloud simulator to another. they proposed a layer of abstraction for

implementing VM allocation algorithm using Planetlab workload. However, they didn’t consider having

the same power model of PMs in both simulators. The authors in (Bahwaireth et al., 2016) compared

several simulation tools capabilities by applying different scenarios, however, they didn’t consider

implementing the exact setup among the simulators. Most of the research done didn’t consider having

identical Cloud infrastructure between simulators.

A comparative analysis of many tools for cloud environments have been presented by (Bambrik,

2020). They compared the most used simulators in terms of the supported model, architecture, and high-

level features. However, they didn’t consider the internal behavior of cloud entities between simulators.

The authors in (Mansouri et al., 2020) provided a detailed survey about the existing Cloud simulators,

discussing the features and software architecture of several simulators. However, they didn’t discuss the

effect of different behavior of the simulators on algorithms implementation.

The authors in (Di and Cappello, 2015) tried to reproduce Google cloud environment with real

experimental system setting and real-world large scale production trace. They have shown that

simulation system could effectively reproduce the real checkpointing/restart events based on Google

trace by leveraging Berkeley Lab Checkpoint/Restart tool (Hargrove and Duell, 2006). Nevertheless,

they didn’t compare their result with different simulator.

Some of the bin packing solutions to address VM placement problems have been implemented by

Chowdhury et.al. (Chowdhury et al., 2015). In order to do so, they have followed exact similar

procedures for VM allocation to detect both underloaded and overloaded hosts and VM selections tools

for selecting VMs which are needed to be migrated from those hosts as discussed in (Beloglazov et al.,

2012). However, they haven’t try different simulation tools and sticked to the cloudsim for their re-

implementation.

Rjeib, H., Kecskeméti, G. An investigation on implementing a scenario on different Cloud Simulators

258

For our study, we investigated the differences of requirements needed to re-implement an identical

infrastructure from one cloud simulator (Cloudsim) to another (DISSECT-CF). This includes cloud

infrastructure entities such as PMs, VMs, and the Tasks/clouldlets, in addition to the power models and

the running time for the cloud entities.

3. Experimentation

Our plan is to reproduce a cloud infrastructure (PMs and VMs) on both simulators with same

specifications (CPU cores, Memory,and Bandwidth). In order to ensure that PMs are identical, we expect

to have the same energy consumed by running identical task on VM. This VM consumes similar

percentage of the PM resources on both simulators for specific period of time. We implemented a PM

with same specification as the Hp ProLiant Ml 110 G4 which has two CPU cores, each with 1860 MIPS,

4 GB RAM, and 1 GB bandwidth. For the workload data, we have implemented new mechanism in

DISSECT-CF simulator so that it can load the same PlanetLab (Beloglazov et al., 2012) (more details

can be found in section 3.3) workload data in Cloudsim. Eventually, we expected to have the same

amount of energy consumed for the PM considering we have launched identical task to run inside VM

with same resource utilization percentage.

3.1. PM Creation

Many differences have been observed during the implementation of PMs on both simulators. In order

to implement a Physical Machine in Cloudsim (called Host) while getting results regarding energy and

utilization, we have used Cloudsim power package. We first created a Data center (PowerDataCenter

class) object in which we could add PM (PowerHostUtilizationHistory) to it. For Host creation, we

needed to specify the ID, RAM, Network bandwidth, storage, number of CPU, and power model.

Fortunately, Cloudsim has power model called PowerModelSpecPowerHpProLiantMl110G4Xeon3040

which reflects the energy consumption of the Server according to the CPU Utilization percentage. For

DISSECT-CF, creating PM (PhysicalMachine) was more complicated than Cloudsim (DISSECT-CF

tries to imitate real life Cloud infrastructure in more detail) as we needed to create a Repository object

which represents the Disk, connected to network, and defining a power model for the power

characteristics descriptions. Also, DISSECT-CF defines three consumption models (CPU, Memory, and

network) inside the power model of a PM.

To reflect the same behavior of the PowerModelSpecPowerHpProLiantMl110G4Xeon3040 model

defined in Cloudsim, we have created a separate consumption models for each of the CPU, Memory,

and network while making sure that the total amount of energy consumed on the server is identical to

the HP Proliant server power model in Cloudsim where the power model is calculated with respect to

the overall utilization of the Host. DISSECT-CF doesn’t allow querying energy directly from the PM

(Cloudsim does), instead, we have created a dedicated PhysicalMachineEnergyMeter and linked it to

PM so we could have a reading of the PM’s energy consumption. This meter can be started once the PM

is turned ON and it could be stopped once a certain job finishes.

3.2. VM Creation

VM in Cloudsim has the following specifications: ID, Million Instructions Per Second (MIPS), Image

size, bandwidth, number of cores, and task scheduler. Creating a VM in DISSECT-CF can be done by

Rjeib, H., Kecskeméti, G. An investigation on implementing a scenario on different Cloud Simulators

259

invoking requestVM in the PhysicalMachine object. requestVM requires a VirtualAppliance

representing the functional virtual machine images in the system, as well as a resource constraints

representing the amount of resources the VM use compared to the hosting PM.

Cloudsim has separate classes for VM and the task to be run. To launch a task in the VM, one can

create 2 separate objects for the VM (Vm) and for the task (Cloudlet) and then it is the responsibility for

Broker to submit task to VM. In contrast, launching a task in DISSECT-CF can be done by calling the

newComputeTask method in which it specifys the task length, processing limit, and

ConsumptionEventAdapter providing basic functions to determine if a resource consumption has already

been completed. Once a task is assigned to VM, it’s not possible for the VM to change its utilization, to

have a VM with varying utilization, we needed to make sure that the task finishes in specific period of

time so we can launch another task with different utilization. This is done easily in Cloudsim as it can

instruct the VM to change its utilization.

In order to have the same behavior for the VM in DISSECT-CF, we have created a VM and control

the total number of instructions to be executed considering the processing capability (for instance, a task

with 5 Million Instructions would take 5 seconds to finish if it is run on a VM with 1 Million instruction/

second power) so that VM can run for specific period of time with identical utilization percentage as if

it was running in Cloudsim simulator.

The next step was to run several PMs and VMs to check the overall energy consumed by the

simulation. In order to do that, we have implemented the same workload trace -existed in Cloudsim- in

DISSECT-CF simulator so that PMs and VMs have the same power model and the same data for

running. Section 3.3 discusses the procedure of the workload trace loading mechanism in DISSECT-

CF.

3.3. Loading the workload trace

One of the advantages of Cloudsim that attracts many researcher is that it has a builtin workload traces

(PlanetLab workload) (Park and Pai, 2006). It contains information from 10 days about CPU usage for

around 1000 VMs, these information can be found in examples/workload/planetlab folder in Cloudsim.

The CPU load data are stored as simple text files in which each file contains 288 values reflecting the

CPU utilization of one VM for a day. Thus, each value in a file representing a CPU utilization taken

every 5 minutes.

Beloglazov et al. (Beloglazov and Buyya, 2012) have made some arrangements so they could

evaluate their algorithm with realistic data for testing. They have implemented

UtilizationModelPlanetLabInMemory class for the cloudlet utilization model which reads the utilization

values from a file. For their experimentation setup such as data center creation, cloudlet creation from

file based utilization model, and setting the VM consolidation algorithm, and starting the simulation,

They have made the PlanetLabRunner class with some helper classes (PlanetLabHelper and

PlanetLabConstants) to provide parameters for their experiment. These parameters include the name of

the folder corresponding to a specific date of the PlanetLab data in which the folder consists of many

files contain the CPU values for a VM. Finally, they have created helper class to set up PMs and VMs

based on the data in the constants class.

In order to use the PlanetLab data provided by Cloudsim in the DISSECT-CF simulator, we have

created 2 new classes, PlanetLabFolderReader class in which it is responsible for choosing the

experiment date (PlanetLab contains data from 10 days, the data of each day is saved in a folder). And

then it is the responsibility of the class PlanetLabFileReader to open the files inside the folder and create

a job for every value in the files. This class implements the CreateJobFromLine method in the

Rjeib, H., Kecskeméti, G. An investigation on implementing a scenario on different Cloud Simulators

260

DISSECT-CF simulator. Figure 1 shows a brief description of the Trace loading mechanism. The Job

(this class is responsible for creating the jobs/tasks from workload trace in DISSECT-CF) contains the

following infromation:

● Start time of the job: Since we have many files, each with 288 values representing the cpu load

for one VM for every 5 minutes for a complete day (24 hours), we have given each job different

starting time with a 300 second (5 minutes) gab between any two succissive jobs (for example, if

the first job start time is at the first second, the second job starts at 301 second, the next is 601

sec. and so on) so that each job can run on the same VM once the previous job finishes.

● Type of the job: the PlanetLabFileReader class will insure that all the 288 jobs to be created have

the same executable (this parameter is part of the Job class in the DISSECT-CF simulator) value

so that they could all run on a specific VM later (DISSECT-CF have VMSetPerKind map in

which it bond a VM type to certain type of jobs).

● Other information: we have given every job a 300 second for execution time, and we assumed

that all the data is running by a single user, and all the jobs are homogeneous (take the same

amount of RAM, number of processors, etc.)

Figure 1. Trace loading mechanism

4. Evaluation

Time is measured in seconds in CLoudsim, while it is measured in Ticks in DISSECT-CF. We set up

our simulations so that one Tick equals to 1 millisecond (users have free interpretation of the Tick). For

the Simulation, we created DataCenter in Cloudsim having one Host with the same specification as HP

Proliant G4 server (2 cores, 1860 MIPS, 4 GB memory). We have created a single VM consuming (50%

and 100% respectively) of the whole resources of PM in two different scenarios, and we ran a task on

the VM for 1, 10, and 30 minutes respectively. The scheduling interval was set to 300 ms. During the

Simulation, we saved the result in terms of energy consumed by the PM in accordance with the resource

utilization for later comparison with the DISSECT-CF. Next step was to re-implement the same setup

on DISSECT-CF in order to compare the result gained. We have created the PhysicalMachine with exact

specification of the CPU, Disk, network bandwidth, assigning the same power model as we discussed

earlier in section 3.1.

Rjeib, H., Kecskeméti, G. An investigation on implementing a scenario on different Cloud Simulators

261

For energy metering in Cloudsim, the power consumption can be queried by the Host object itself as

it has a builtin method that provides the energy consumed (in real life, it is not possible to ask a physical

machine how much energy did it consume!). While in DISSECT-CF, we have instructed the simulator

to start a separate energy meter to record the consumption on the PM once it has its VM running (in real

life, it is similar to attach a power meter to a physical machine’s power supply). Thus, we can avoid the

energy and time consumed for Switching PMs and VMs On/Off due to the fact that DISSECT-CF tries

to imitate the real life behavior.

Also, we instructed the simulator to stop at a certain time specified for the simulation comparison (1,

10, and 30 minutes), this is done by using the Tick method in Timed class. The results obtained were

identical on both simulator in terms of the energy consumption and resource utilization which proves

that our implementation were identical on both Simulators. Table 1 shows the energy consumed by

running a VM consuming 50% of the PM resources on both simulators, while Table 2 provide the energy

consumption by running VM on 100% of PM resources.

Finally, we tested our new loading mechanism by running the experiment several times in order to

insure that the jobs-to-VM mapping is done the same way as it is done in Cloudsim. We have observed

VM’s logs during simulation to check that all the data in each file of the PlanetLab workload goes to the

same VM as it does in Cloudsim.

Table 1. Energy consumed by running a PM at 50% utilization

Execution (real)

Time

Energy Consumption Simulation Time (ms)

Cloudsim DISSECT-CF Cloudsim DISSECT-CF

1 minute 6.09 e6 6.09 e6 58 50

10 minutes 6.12 e7 6.12 e7 145 132

30 minutes 2.09 e8 2.09 e8 361 287

Table 2. Energy consumed by running a PM at 100% utilization

Execution (real)

Time

Energy Consumption Simulation Time (ms)

Cloudsim DISSECT-CF Cloudsim DISSECT-CF

1 minute 8.05 e6 8.05 e6 67 60

10 minutes 8.10 e7 8.10 e7 164 148

30 minutes 2.43 e8 2.43 e8 478 403

5. Conclusion

In this work, we described our experience with reproducing the same infrastructure in two cloud

simulators. We highlighted the differences between two simulators in terms of infrastructure and the

Rjeib, H., Kecskeméti, G. An investigation on implementing a scenario on different Cloud Simulators

262

behavior of cloud entities. And we have disscussed the changes to be made that are necessary to have

the same exact setup regarding infrastructure considering the different behavior of cloud entities

between cloud simulators. Finally, we have compared the performance of cloud systems in both

simulators with regard to energy consumption and resource utilization. We will continue investigating

the complete re-implementation on the whole VM Consolidation Scenario trying to find what’s needed

to be done to have identical results in both simulators. We will also extend our work done by

implementing new VM placement and VM selection algorithms for a scalable cloud infrastructure.

Finally, we will provide a complete study on the whole VM consolidation scenario implementation on

different cloud simulators.

References
[1] Khan, M. A., Paplinski, A., Khan, A. M., Murshed, M., & Buyya, R. (2018). Dynamic virtual

machine consolidation algorithms for energy-efficient cloud resource management: a review.

Sustainable cloud and energy services, 135–165. https://doi.org/10.1007/978-3-319-62238-5_6

[2] Wang, H., & Tianfield, H. (2018). Energy-aware dynamic virtual machine consolidation for cloud

datacenters. IEEE Access, 6, 15259–15273. https://doi.org/10.1109/ACCESS.2018.2813541

[3] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). CloudSim: a

toolkit for modeling and simulation of cloud computing environments and evaluation of resource

provisioning algorithms. Software: Practice and experience, 41(1), 23–50.

https://doi.org/10.1002/spe.995
[4] Kecskemeti, G. (2015). DISSECT-CF: a simulator to foster energy-aware scheduling in

infrastructure clouds. Simulation Modelling Practice and Theory, 58, 188–218.

https://doi.org/10.1016/j.simpat.2015.05.009
[5] Mann, Z. Á. (2018). Cloud simulators in the implementation and evaluation of virtual machine

placement algorithms. Software: Practice and Experience, 48(7), 1368–1389.

https://doi.org/10.1002/spe.2579
[6] Bahwaireth, K., Tawalbeh, L. A., Benkhelifa, E., Jararweh, Y., & Tawalbeh, M. A. (2016).

Experimental comparison of simulation tools for efficient cloud and mobile cloud computing

applications. EURASIP Journal on Information Security, 2016(1), 1–14.

https://doi.org/10.1186/s13635-016-0039-y
[7] Bambrik, I. (2020). A survey on cloud computing simulation and modeling. SN Computer

Science, 1(5), 1–34. https://doi.org/10.1007/s42979-020-00273-1

[8] Mansouri, N., Ghafari, R., & Zade, B. M. H. (2020). Cloud computing simulators: A

comprehensive review. Simulation Modelling Practice and Theory, 104, 102144.

https://doi.org/10.1016/j.simpat.2020.102144
[9] Di, S., & Cappello, F. (2015). GloudSim: Google trace based cloud simulator with virtual

machines. Software: Practice and Experience, 45(11), 1571–1590.

https://doi.org/10.1002/spe.2303
[10] Chowdhury, M. R., Mahmud, M. R., & Rahman, R. M.: Study and performance analysis of

various VM placement strategies, 2015 IEEE/ACIS 16th International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (pp.

1-6). IEEE. https://doi.org/10.1109/SNPD.2015.7176234

[11] Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics

for efficient management of data centers for cloud computing. Future generation computer

systems, 28(5), 755–768. https://doi.org/10.1016/j.future.2011.04.017

https://doi.org/10.1007/978-3-319-62238-5_6
https://doi.org/10.1109/ACCESS.2018.2813541
https://doi.org/10.1002/spe.995
https://doi.org/10.1016/j.simpat.2015.05.009
https://doi.org/10.1002/spe.2579
https://doi.org/10.1186/s13635-016-0039-y
https://doi.org/10.1007/s42979-020-00273-1
https://doi.org/10.1016/j.simpat.2020.102144
https://doi.org/10.1002/spe.2303
https://doi.org/10.1109/SNPD.2015.7176234
https://doi.org/10.1016/j.future.2011.04.017

Rjeib, H., Kecskeméti, G. An investigation on implementing a scenario on different Cloud Simulators

263

[12] Park, K., & Pai, V. S. (2006). CoMon: a mostly-scalable monitoring system for PlanetLab. ACM

SIGOPS Operating Systems Review, 40(1), 65–74. https://doi.org/10.1145/1113361.1113374

[13] Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive

heuristics for energy and performance efficient dynamic consolidation of virtual machines in

cloud data centers. Concurrency and Computation: Practice and Experience, 24(13), 1397–1420.

https://doi.org/10.1002/cpe.1867
[14] Hargrove, P. H., & Duell, J. C. (2006). Berkeley lab checkpoint/restart (blcr) for linux clusters.

Journal of Physics: Conference Series, 46(1), p. 067. IOP Publishing.

https://doi.org/10.1088/1742-6596/46/1/067

https://doi.org/10.1145/1113361.1113374
https://doi.org/10.1002/cpe.1867
https://doi.org/10.1088/1742-6596/46/1/067

