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Abstract 

The aim of this presentation is to show a generalization of the well-known Rimán's Extension Theorem 

and the main steps of the way leading to it. 
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1. Introduction 

In this presentation restricted Pexider additive functional equations are investigated. If X = X(+),  

Y = Y (+) are algebraic structures, F : X → Y is a function such that 

F (x+ y) = F (x) + F (y)          (x, y ∈ X), 

then function F is said to be additive. If X = X(+), Y = Y (+) are algebraic structures,  
D ⊆ X2 := X ×X is a set, 

Dx:={u ∈ X | ∃(v ∈ X):(u, v) ∈ D} ,  

Dy := {v ∈ X | ∃(u ∈ X) : (u, v) ∈ D} ,  

Dx+y := {z ∈ X | ∃((u, v) ∈ D) : z = x+ y} , 

F : Dx+y → Y , G : Dx → Y , H : Dy → Y are unknown functions such that 

F (x+ y) = G(x) +H(y)          (x, y) ∈ D) 

then this equation is said to be restricted Pexider additive functional equation. 

The main purpose of this presentation is to give the general solution of the restricted Pexider-additive 

functional equation in the case that X(+,≤) is an Archimedean ordered Abelian group, D is an open 

subset of X2, Y (+) is an Abelian group. This result is a generalisation of the well-known Rimán’s 

Extension Theorem (Aczél,1966). 

Knowledge of the sums and products of intervals is required for our extension and uniqueness 

theorems. 

This presentation is structured as follows: 

In section 2, as a preliminary knowledge of our main results, the sums an products of open intervals 
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in ordered semi-groups is investigated. A fact on number theory is also mentioned in this section. This 

section is based on the paper (Glavosits and Karácsony, 2021b). 

In section 3, as the most important preliminary knowledge for our main results, the sums and products 

of intervals of Archimedean ordered groups and fields is summarized. This section is based on the paper 

(Glavosits and Karácsony 2021a). 

In section 4 the local version of the Extension Theorem for additive functions is shown. This section 

is based on the paper (Glavosits and Karácsony, 2021a). 

Finally, in section 5, our main result, the generalization of the Rimán’s Theorem can be found. This 

is the ’global’ version of the Theorems can be found in section 4. This section is based on the paper 

(Glavosits, in preparation). 

Table 1.  

 

2. Sum of intervals in ordered semi-group 

2.1. A sufficient condition for additivity and homogeneity properties of interval 

Definition 2.1. Let S = S(+,≤) be a partially ordered Abelian semigroup. Consider the following 

properties: 

1. S = S(+) is cancellative in the sense that x+ z = y + z implies x = y for all x, y, z ∈ S. 

2. If x < y then there exists an element z ∈ S such that y = x+ z for all x, y, z ∈ S. 

3. x ≠ x+ y for all x, y ∈ S. 

4. The strict order < is co-directed in the sense that for all x, y ∈ S there exists an element z ∈ S 

such that z < x and z < y. 

Theorem 2.2. Let S = S(+,≤) be an ordered semi-group with properties of Definitions 2.1. Let  α, β, γ 

∈S such that α < β. Then 

γ + ]α, β[ = ]γ + α, γ + β[     and     γ + ]α, β] = ]γ + α, γ + β] 

where ]x, y] := {z ∈ S|x < z and z ≤ y} for all x, y ∈ S. 

Theorem 2.3. Let S = S(+,≤) be an ordered semi-group with properties of Definition 2.1. Let a, b, c, d 

∈ S such that a < b and c < d. Then 

]a, b[+]c, d[=]a+ c, b+ d[. 

2.2. On an application with number theory background 

It is well-known that the sum of nonempty open interval of the ring of all integers is also an interval. 

It is also well-known that the product of nonempty open interval of the ordered ring Z is not always 

an open interval. Define the set Ix ⊆ Z+ by 

Ix := {1, 2, . . . , x}          (x ∈ Z+). 
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The set Ix is an open interval of Z, but Ix∙Ix is not always, for example I3∙I3 = {1, 2, 3, 4, ∗, 6, ∗, ∗, 9}. 

Define the function g : Z+ → Z+ by  

g(x) := max {y ∈ Z+ | Iy ⊆ Ix · Ix}          (x ∈ Z+). 

It is easy to see that for example g(3) = 4. Now we give a table which contains the value of x and 

g(x) for some small integer x. The above table suggests the following Theorem.  

Theorem 2.4. The function g has the following properties:  

1. the function g is increasing;  

2. g(x− 1) < g(x) if and only if x is prime;  

3. g(pn) = pn+1 − 1 where p1, p2, . . . is the increasing sequence of all prime numbers. 

The proof of the above Theorem is based on the the Bertrand’s postulate which states that there exists 

a prime number in the interval [n, 2n] for all n ∈ Z+. This postulate was proved for the first time by P. 

L. Chebishev in 1850 and simplified later by P. Erdős in 1932 (Erdős, 1932) due to M. El Bachraoui (El 

Bachraoui, 2006). 

2.3. Additional examples and open problems 

Example 2.5. Define the set K1 by 

K1 :={a+ b√2 | a ∈ Q+, b ∈ Q+}. 

Then K1 = K1(+,≤) and K1 = K1(·,≤) are ordered semi-groups where +, · and ≤ are the usual addition, 

multiplication and order in the real line. 

K1 has very interesting properties. Let a, b, c, d ∈ K1 such that a < b and c < d. 

• ]a, b[ + ]c, d[ = ]a+ c, b+ d[, but c + ]a, b[ ≠ ]c+ a, c+ b[, in the sense, that the equality does not 

always satisfied. 

• ]a, b[ · ]c, d[ = ]ac, bd[, but c · ]a, b[ ≠ ]ca, cb[, in the sense, that the equality does not always 

satisfied. 

Definition 2.6. An ordered semi-group X(≤) is said to be dense if for all x, y ∈ X with x < y there exists 

an z ∈ X such that x < z < y.  

Conjecture 2.7. If S = S(+,≤) is a dense ordered semi-group, then 

]a, b[ + ]c, d[ = ]a+ c, b+ d[ 

for all a, b, c, d ∈ S such that a < b, c < d . 

Definition 2.8. An ordered monoid S(+,≤) (with identity element 0) is said to be Archimedean ordered, 

if for all 0 < x and 0 < y there exists a positive integer n such that 

x < ny := y + · · ·+ y. 

3. Sums and products in ordered groups and fields 

The foundations of the so-called interval arithmetic were laid by E. Moore, the first appearance of this 

topic was in 1959 (Moore, 1959), see also (Moore, 1962; Moore, 1966) and (Cloud et al., 2009). Now, 

we shall show the Moore’s formulas 



Glavosits, T., Karácsony, Zs. Existence and uniqueness theorems for Pexider additive equations 

295 

[𝑎, 𝑎] + [𝑏, 𝑏] = [𝑎 + 𝑏, 𝑎 + 𝑏] 

[𝑎, 𝑎] − [𝑏, 𝑏] = [𝑎 − 𝑏, 𝑎 − 𝑏] 

[𝑎, 𝑎] ∙ [𝑏, 𝑏] = [min(𝑎𝑏, 𝑎𝑏, 𝑎𝑏, 𝑎𝑏) ,max⁡(𝑎𝑏, 𝑎𝑏, 𝑎𝑏, 𝑎𝑏)⁡] 

[𝑎, 𝑎]

[𝑏, 𝑏]
= [𝑎, 𝑎] ∙ [

1

𝑏
,
1

𝑏
] ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ∉ ⁡ [𝑏, 𝑏] 

for all 𝑎, 𝑎, 𝑏, 𝑏∈ R with 𝑎 ≤ ⁡𝑎 and 𝑏 ≤ ⁡𝑏. 

Due to (Jaulin et al., 2001) the results of Moore was extended to open ended unbounded intervals by 

R. J. Hanson (1968) (Hanson, 1968), W. Kahan (Kahan, 1968), E. Davis (Davis, 1987). 

The famous Kohan-Novoa-Ratz arithmetic concerning to the division by an interval containing zero 

can be found in (Kearfott, 1996). 

3.1. The sums of open ended bounded intervals in ordered groups 

To obtained results will be used to extend additive functions (Glavosits, Karácsony, it will appear 

soon). 

Theorem 3.1. If G = G(+,≤) is an ordered dense Abelian group, 𝑎, 𝑎, 𝑏, 𝑏∈ G with 𝑎 ≤ ⁡𝑎 and 𝑏 ≤ ⁡𝑏, 

then 

[𝑎, 𝑎] + [𝑏, 𝑏] = [𝑎 + 𝑏, 𝑎 + 𝑏]. 

Theorem 3.2. If G = G(+, ·,≤) is an Archimedean ordered group, then the following assertions are 

equivalent: 

1. G is dense 

2. [𝑎, 𝑎] + [𝑏, 𝑏] = [𝑎 + 𝑏, 𝑎 + 𝑏] for all 𝑎, 𝑎, 𝑏, 𝑏∈ G with 𝑎 ≤ ⁡𝑎 and 𝑏 ≤ ⁡𝑏. 

3. G(+,≤) is not isomorphic to the ordered group Z = Z(+,≤) (which is the group of all integers). 

3.2. The products of interval in ordered fields 

In this subsection we investigate the products of open ended bounded intervals in ordered fields  

F =F(+, ·,≤). Let 𝑎, 𝑎, 𝑏, 𝑏∈ F with 𝑎 ≤ ⁡𝑎 and 𝑏 ≤ ⁡𝑏. Define the intervals a and b by 

a := ]⁡𝑎, 𝑎 [     and     b :=]⁡𝑏, 𝑏 [. 

As a temporary device, use the notation for any open ended bounded interval x that 

0 < x, if 0 < x for all x ∈ x, 

x < 0, if x < 0 for all x ∈ x. 

Theorem 3.3. If F = F(+, ·,≤) is an ordered field, 𝑎, 𝑎, 𝑏, 𝑏∈ F with 𝑎 ≤ ⁡𝑎 and 𝑏 ≤ ⁡𝑏, 0 < a and 0 < b, 

then a · b =]𝑎𝑏, 𝑎𝑏 [. 

First, we investigate the case, when the point 0 is an interior point neither of the interval a nor of the 

interval b. 
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Theorem 3.4. If F = F(+, ·,≤) is an ordered field, then 

1. If 0 < a and 0 < b, then a · b =]𝑎𝑏, 𝑎𝑏[. 

2. If a < 0 and b < 0, then a · b =]𝑎𝑏, 𝑎𝑏[. 

3. If a < 0 and 0 < b, then a · b =]𝑎𝑏, 𝑎𝑏[. 

4. If b < 0 and 0 < a, then a · b =]⁡𝑎𝑏,𝑎 𝑏[. 

Now we investigate the case, when the point 0 is an interior point either of the interval a or of the b. 

Theorem 3.5. If F = F(+, ·,≤) is an ordered field, then 

1. If 0 ∈ a and 0 < b, then a · b =]𝑎𝑏, 𝑎𝑏[. 

2. If 0 ∈ a and b < 0, then a · b =]⁡𝑎𝑏, 𝑎𝑏[. 

3. If 0 ∈ b and 0 < a, then a · b =]𝑎𝑏, 𝑎𝑏[. 

4. If 0 ∈ b and a < 0, then a · b =]𝑎𝑏,𝑎 𝑏[. 

Finally, we investigate the case, when the point 0 is an interior point both of ]⁡𝑎, 𝑎 [ and ]⁡𝑏, 𝑏 [. 

Theorem 3.6. If F = F(+, ·,≤) is an ordered field, then If 0 ∈ a∩b, then  

a·b =]min{𝑎𝑏, 𝑎𝑏},max{𝑎𝑏, 𝑎𝑏}[. 

4. Existence and uniqueness theorems (local version) 

The restricted additive functional equations have been previously studied by many researchers. In the 

book (Graham et al., 2013) Part IV. Geometry, Section Extension of Functional Equations p. 447–460 

the authors cite numerous papers that investigate the cases when there exists an additive function  

F:R → R such that the function F extends the function f . An incomplete list of such papers is given 

bellow: 

In the paper (Aczél and Erdős, 1965) D = (D+ ∪ {0})2. 

In the book (Aczél, 1966) the first appearance of the concept of quasi extension can be found. An 

additive function a is said to be quasi extension of the function f if f is additive on a set D ⊆ R2 and there 

exists an additive function a:R→ R and exist constants c1, c2 ∈ R such that  

f(u) = a(u) + c1           (u ∈ Dx);  

f(v) = a(v) + c2           (v ∈ Dy); 

f(z) = a(z) + c1 + c2     (z ∈ Dx+y). 

In the paper (Daróczy and Lononczi, 1967) the cases D = R+
2 and D is an open interval of the real 

line containing the origin is investigated. In this paper the notations Dx, Dy, Dx+y has appeared first. 

In (Székelyhidi, 1972) the author generalizes the above result that D ⊆ R2 is an arbitrary open set,  
D0 = Dx ∪Dy ∪ Dx+y, f : D0 → R is a function such that  

f(x+ y) = f(x) + f(y)            (x, y) ∈ D. 

In (Rimán, 1976) a simple extension theorem can be found for Pexider additive functional equation 

where the additivity is fulfilled in a nonempty connected open set of R2. 

In the article (Aczél, 1983) D = H(I) where I is a nonempty open interval of the real line and the set 

H(I) is defined by  
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H(I) :={(x, y) ∈ R2 | x, y, x+ y ∈ I}. 

The set H(I) is a hexagon, sometimes a triangle or the emptyset. 

In the book (Kuczma, 1985) D ⊆ RN is a nonempty connected open set. The extension is brought 

back to the theory of the midkonvex functions, but in this book the author does not consider the restricted 

Pexider additive functional equations. 

In the article (Radó and Baker, 1987) an extension theorem can be found for restricted Pexider 

additive functional equations where D ⊆ RN is a nonempty connected open set. 

In the book (Aczél and Thombres, 1989) several functional equations are considered in more general 

abstract algebraic settings. 

4.1. The Euclidean division in Archimedean ordered groups 

Euclid’s Elements (Euclid and Fitzpatrick, 2007) is one of the most influential mathematical textbook 

written more than two thousand years ago. In this textbook (book X, proposition 3.) there is an algorithm 

using the so-called Euclidean or remainder division to give the greatest common measure of two given 

commensurable magnitudes. We use the modern version of this Theorem to give our Extension Theorem 

for restricted additive functional equations. 

Theorem 4.1. If G = G(+,≤) is an Archimedean ordered group, x, y ∈ G with y ≠ 0, then there uniquely 

exists an integer q and an element r ∈ G such that 

x = qy + r     where      0 ≤ r < |y|. 

4.2. Extension Theorem for additive functional equations 

Theorem 4.2. Let G(+,≤) be an Archimedean ordered dense Abelian group, Y (+) be a group, ε ∈ G+ 

and f : ]−2ε, 2ε[→ Y be a function such that 

f(x+ y) = f(x) + f(y)     (x, y ∈ ]−ε, ε[), 

then there exists an additive function a : G→ Y which extends the function f. 

5. Uniqueness Theorem for additive functional equations 

Theorem 5.1. Let G = G(+,≤) be an Archimedean ordered Abelian group, Y (+) be a group, and a : G→ 

Y be an additive function. If there exist constants α, β ∈ G with α < β and c ∈ Y such that 

a(x) = c          (x ∈ ]α, β[), 

then a(x) = 0 for all x ∈ G. 

Corollary 5.2. Let G = G(+,≤) be an Archimedean ordered Abelian group, Y (+) be a group, and  

a1, a2 : G → Y be additive functions. If there exists a nonempty open interval ]α, β[ ⊆ X and a constant 

c ∈ Y such that 

a1(x) = a2(x) + c          (x ∈ ]α, β[), 

then a1(x) = a2(x) = 0 for all x ∈ G. 

5.1. Extension Theorem for Pexider additive functional equation ’local version’ 
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If G(+,≤) is an ordered group, then the set B(x, ε) is defined by 

B(x, ε):= {
]x − ⁡ε, x + ⁡ε[⁡, if⁡x⁡ ∈ ⁡G;

𝑥1 ⁡− ⁡ε, 𝑥1 + ⁡ε[⁡×⁡]𝑥2 ⁡− ⁡ε, 𝑥2 + ⁡ε[⁡, if⁡x⁡ ∈ ⁡G2.
} 

which is the neighbourhood of a point x ∈ G or x := (x1, x2) ∈ G×G with radius ε ∈ G+. 

Theorem 5.3. If G(+,≤) is an Archimedean ordered, dense, Abelian group, Y (+) is a group, x0, y0 ∈ G,  

ε ∈ G+, and f : B(x0 + y0, 2ε)→ Y , g : B(x0, ε)→ Y , h : B(y0, ε)→ Y are functions such that 

f(x+ y) = g(x) + h(y)                ((x, y) ∈ B((x0, y0), ε)), 

then there exists an additive function a : G→ Y and exist constants c, d ∈ Y such that 

f(u) = a(u) + c+ d     (u ∈ B(x0 + y0, 2ε)), 

g(v) = a(v) + c          (v ∈ B(x0, ε)), 

h(z) = a(z) + d          (z ∈ B(y0, ε). 

5.2.  Topology generated by the open intervals of an Archimedean ordered Abelian 

groups 

Let G = G(+,≤) be an ordered group, X ∈ {G,G2} and D ⊆ X. The set D is said to be open if, for every 

point x in D, there exists ε ∈ G+ such that B(x, ε) ⊆ D. A subset D ⊆ X is said to be well-chained, if for 

all  

x, y ∈ D, there exists a finite sequence Bi :=B(xi, εi) (i = 0, 1, . . . , n) such that 

1. Bi ⊆ D for all i = 0, 1, . . . , n. 

2. x ∈ B0, y ∈ Bn. 

3. Bi−1 ∩Bi ≠ ∅ for all i = 1, . . . , n. 

A subset C of a nonempty, open set D ⊆ X is a component of D if C is a maximal well-chained, open 

subset of D with respect the inclusion. 

A topological space X(T ) is said to be separable, if there exists a subset Y ⊆ X which is countable, 

infinite, and dense (in X). 

Theorem 5.4. If G = G(+,≤) is an ordered group, X ∈ {G,G2} and D ⊆ X is a nonempty, well-chained, 

open set, then 

1. D is a disjoint union of its components; 

2. If X is separable, then D has countable components. 

5.3.  Extension Theorem for Pexider additive functional equation ’global version’ 

Now we can easily give the generalisation of the well-known Rimán’s Extension Theorem. 

Theorem 5.5. Let G(+,≤) be an Archimedean ordered, dense, Abelian group, D ⊆ G2 be an open set 

with components {Di | i ∈ I}, and Y be an Abelian group. The functions f : Dx+y → Y , g : Dx → Y ,  

h : Dy → Y are solutions of the functional equation 

f(x+ y) = g(x) + h(y)          ((x, y) ∈ D) 
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if and only if there exists a family of additive functions ai : G→ Y (i ∈ I) and exist families of constants 

ci, di ∈ Y (i ∈ I) such that 

f(u) = ai(u) + ci + di          (u ∈ (Di)x+y), 

g(v) = ai(v) + ci                (v ∈ (Di)x), 

h(z) = ai(z) + di                (z ∈ (Di)y, ) 

with the properties: 

1. If (Di)x+y ∩ (Dj)x+y ≠ ∅, then ai = aj and ci + di = cj + dj. 

2. If (Di)x ∩ (Dj)x ≠ ∅, then ai = aj and ci = cj. 

3. If (Di)y ∩ (Dj)y ≠∅, then ai = aj and di = dj. 

for all i, j ∈ I i ≠j. 

Open Problem 5.6. Let S(+,≤) be an Archimedean ordered dense Abelian monoid, Y (+) be an Abelian 

semi-group, a, b, c, d ∈ S such that a < b and c < d, and  

R := ]a, b[× ]c, d[. 

If the functions f : Rx+y → Y , g : ]a, b[→ Y , h : ]c, d[→ Y , satisfy the equation 

f(x+ y) = g(x) + h(y)          ((x, y) ∈ R), 

then there exists an additive function a : S→ Y and exist constants α, β ∈ Y such that 

f(u) = a(u) + α+ β          (u ∈ Rx+y), 

g(v) = a(v) + α              (v ∈ ]a, b[), 

h(z) = a(z) + β               (z ∈ ]c, d[). 
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