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Abstract 

This research proposed integration between the GSS method and the interval inversion for regularizing 

the prediction algorithm of borehole logging data. The proposed algorithm has been tested using 

synthetic borehole logging data set contaminated with 5 % Gaussian noise. The GSS-based inversion 

scheme showed a smoother data distance convergence. The GSS-based inversion could decrease the 

conditional number of the sensitivity matrix. Furthermore, the algorithm has been applied to real data 

of a tight sand reservoir. The results from the Damped Least Square (DLSQ) scheme have been 

compared to those of the GSS-based scheme. The data distance of the DLSQ showed a rough 

convergence data distance line, while it showed a smooth convergence of the data distance line in the 

case of the GSS-based inversion. The convergence of the data distance of both schemes has been 

stabilized at 9.5%. 

Keywords: Golden Section Search method, interval inversion, MATLAB, Borehole geophysics. 

1. Introduction 

The main objective of the well-logging data evaluation is to calculate the petrophysical parameters 

within each layer-thickness. Nowadays, the joint inversion process can be considered the most common 

technique for petrophysical parameters calculation. The joint inversion technique is better than the 

normal inversion because it could optimize the different petrophysical parameters at the same depth 

using well-logging data of the same depth. The inversion process depends on solving the linear equation 

at depth point, which is called point by point inversion or local inversion. This type of inversion process 

can be an overdetermined inverse problem as in the case of the borehole logging inversion, also, it can 

be an underdetermined inverse problem as in the case of potential data inversion, and finally, the inverse 

problem can be mixed determined as in case of seismic inversion (Menke, 1984). The maximum 

overdetermined ratio of the borehole logging inversion can be more or less 1.5, depending on the 
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available logging data at this depth point (Dobróka et al., 2016). The use of the local inversion has a 

significant advantage which is fast convergence, but it is highly dependent on the initial model. Besides 

that, the point-by-point inversion has limited parameters optimization availability due to the 

overdetermined ratio. Therefore, (Szabó and Dobróka, 2020) and (Dobróka and Szabó, 2005) have 

proposed an improved inversion scheme that can optimize the petrophysical parameters of an interval 

of points. This concept is based on the optimization of the series expansions coefficients of the 

polynomial which represent the change of the parameter within a layer thickness. The interval inversion 

method increased the overdetermined ratio significantly and gave the availability to optimize more 

parameters within the inversion process. Therefore, the interval inversion could solve the problem of 

the limited overdetermined ratio but as the number of the predicted parameters increase or in case of the 

heterogeneous reservoirs ill posed sensitivity matrix problem can appear. To overcome the ill-posed 

problem the global inversion has been proposed, where in the global inversion there is no need for 

deriving the derivatives and too many priori information (Liu et al., 2018). But the drawback of the 

global inversion is, that it takes a very long time to find the global optima. Therefore, to use the 

advantage of the global inversion and the fast convergence of the linearized inversion, a hybrid inversion 

has been introduced by (Dobróka and Szabó, 2005) and (Szabó, 2018a). The hybrid algorithm has been 

introduced as two main loops where the outer one is the global optimization which can optimize the 

thickness of the layers, while the inner one is the linearized inversion for predicting the petrophysical 

parameters regarding each derived layer thickness. 

One of the most important parameters in any optimization technique is the hyper parameters. These 

kinds of parameters are used to control the optimization problem. One of these hyper parameters is the 

damping factor, which is used to overcome the ill-posed problem. The physical meaning of the ill-posed 

problem can be explained as a set of equations with a high-condition number. The high condition number 

means that any small changes in the sensitivity matrix can cause a huge change in the predicted 

parameters. Such problems can lead to an unstable inversion procedure (Prabhu, 2018) and (Van Rijn 

and Hutter, 2018). This research proposed integration between the GSS optimization method with the 

interval inversion technique for providing a suitable damping scheme for improving the stability of the 

inversion procedure. 

In any inversion procedure, there are two groups of parameters. The first group is the petrophysical 

parameters which can be considered the targeted parameters. These parameters change with depth so we 

can call them depth-dependent parameters (e.g., porosity, fluid content, and matrix volume). The other 

group of parameters so-called the zone parameters, such parameters can be considered as fixed 

parameters within a certain layer, but vary from one to another layer (e.g., cementation exponent, water 

resistivity, and shale resistivity). 

2. Theoretical overview 

2.1. The inversion problem 

The concept of the inversion procedure relies on the relationship between the data and the estimated 

parameters. This relationship is called the response function. These response functions can be used to 

calculate the well-logging data from the petrophysical model. The process of data calculation from the 

petrophysical data is the so-called forward modeling phase. The initial model parameters vector can be 

shown as follow: 

m = [∅, 𝑉𝑠ℎ , 𝑉𝑉𝑠𝑑 , 𝑆𝑤 , 𝑆𝑥0]𝑇 , (1) 
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where ∅ is the percentage of the pore spaces of the formation, 𝑉𝑠ℎ and 𝑉𝑉𝑠𝑑 are the volumes of shale and 

sand within the formation, respectively, 𝑆𝑤 and 𝑆𝑥0 are the water saturation of the uninvaded and 

invaded zones respectively. The well logging data calculated from the petrophysical model parameters 

can be arranged in a column vector called the data vector as follow: 

𝑑(0) = [𝐺𝑅, ∅𝑁 , 𝜌𝑏 , 𝑅𝑠,𝑅𝑑 , 𝑃𝑒]𝑇 , (2) 

where GR is the Gamma Ray, ∅𝑁 is neutron porosity, 𝜌𝑏 is gamma-gamma, 𝑅𝑠 and 𝑅𝑑 are the shallow 

and deep resistivities respectively, and 𝑃𝑒 is the photo-electric log. The T symbol denotes matrix 

transpose. The relationship between the model parameters and the calculated data can be shown as 

follows: 

𝑑(𝑐) = 𝑔(𝑚), (3) 

where g is the response function used for calculating the well-logging data. The initial forward model 

can be constructed using the following equations (Alberty and Hashmy, 1984): 

GR =  𝜌𝑏
−1 (𝑉𝑠ℎ 𝐺𝑅𝑠ℎ𝜌𝑠ℎ + ∑ 𝑉𝑚𝑎,𝑖𝐺𝑅𝑚𝑎,𝑖 𝜌𝑚𝑎,𝑖 

𝑁

𝑖=1

), (4) 

𝜌𝑏 = ∅[𝜌𝑚𝑓 − 1.07(1 − 𝑆𝑥𝑜)(𝛼0𝜌𝑚𝑓 − 1.24𝜌ℎ)] + 𝑉𝑠ℎ𝜌𝑠ℎ + ∑ 𝑉𝑚𝑎,𝑖 𝜌𝑚𝑎,𝑖 ,

𝑁

𝑖=1

 (5) 

∅𝑁 = ∅ {

∅𝑁.𝑚𝑓 − (1 − 𝑆𝑥0)𝐶𝑐𝑜𝑟

−2∅(1 − 𝑆𝑥0) − 𝑆ℎ𝑓(1 − 2.2𝜌ℎ)

. [1 − (1 − 𝑆𝑥0)(1 − 2.2𝜌ℎ)]

} + 𝑉𝑠ℎ𝜌𝑠ℎ + ∑ 𝑉𝑚𝑎,𝑖 ∅𝑚𝑎,𝑖 ,

𝑁

𝑖=1

 (6) 

𝑃𝑒 =
1.07

𝜌𝑏 + 0.19
[∅𝑆𝑥0𝑈𝑚𝑓 + ∅(1 − 𝑆𝑥0)𝑈ℎ + 𝑉𝑠ℎ𝑈𝑠ℎ + ∑ 𝑉𝑚𝑎,𝑖  𝑈𝑚𝑎,𝑖 ],

𝑁

𝑖=1

 (7) 

1

√𝑅𝑑

= [
𝑉𝑠ℎ

(1−0.5𝑉𝑠ℎ)

√𝑅𝑠ℎ

+
√∅

𝑚

√𝑎𝑅𝑤

] √𝑆𝑤

𝑛
, (8) 

1

√𝑅𝑠

= [
𝑉𝑠ℎ

(1−0.5𝑉𝑠ℎ)

√𝑅𝑠ℎ

+
√∅

𝑚

√𝑎𝑅𝑚𝑓

] √𝑆𝑥0

𝑛
, (9) 

∅ + 𝑉𝑠ℎ + ∑ 𝑉𝑚𝑎,𝑖 = 1.

𝑁

𝑖=1

 (10) 

The fractional volume of i-th matrix constituent is represented by Vma, i (v/v). ∅𝑁𝑠 is the reading of 

the neutron log against a thick pure sandstone rock. The physical properties of the mud filtrate and the 

mud correction are expressed as mf and Ccor respectively. Parameters m, n, and a are the Archie constants 

(cementation exponent, saturation exponent, and tortuosity factor). The zone parameters are considered 
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constant within the forward modelling phase. Special and conventional core analyses, drilling 

parameters and reports, and processing techniques can be used for deriving the zone parameters. The 

invaded and uninvaded zones' resistivities were calculated using the Indonesian formulae. The following 

table shows the zone parameters used for calculating the well-logging data in the forward modelling 

phase. 

Table 1. Zone parameters are used for the traditional processing of borehole geophysics (Szabó and 

Dobróka, 2020). 

Well log Zone Parameter Symbol Value Dimensional 

unit 

Natural gamma-ray Sand GRsd 10 API 

Shale GRsh 154 API 

Gamma-gamma (density) Sand ρsd 2.65 g/cc 

Shale ρsh 2.54 g/cc 

Mud filtrate ρmf 1.02 g/cc 

Hydrocarbon(gas) ρh 0.2 g/cc 

Neutron porosity Sand ФN,sd -0.04 v/v 

Shale ФN,sh 0.31 v/v 

Mud filtrate ФN,mf 0.95 v/v 

mf correction coefficients Ccor 0.69 - 

Residual hydrocarbon Shrf 1.2 - 

Deep resistivity Shale Rsh 1 Ohm.m 

Pore water Rw 0.5 Ohm.m 

Mud filtrate Rmf 0.28 Ohm.m 

Cementation exponent m 1.5 - 

Saturation exponent n 1.8 - 

Tortuosity factor a 1 - 

Photo-electric Index Sand Usd 4.8 Barn/cm3 

Shale Ush 9 Barn/cm3 

Mud filtrate Umf 0 Barn/cm3 

Hydrocarbon(gas) Uh 0 Barn/cm3 

 

Finally, the relative data distance between the calculated data from the forward modeling phase and 

the measured or actual data is as follows: 

𝐷𝑑 = √[
1

𝑁
∑ (

𝑑𝑘
(𝑜𝑏𝑠)

− 𝑑𝑘
(𝑐𝑎𝑙)

𝑑𝑘
(𝑜𝑏𝑠)

)

2𝑁

𝑘=1

] ∗ 100 (%), (11) 

where the measured data expressed as 𝑑𝑘
(𝑜𝑏𝑠)

, and the calculated data expressed as  𝑑𝑘
(𝑐𝑎𝑙)

 , while the 

symbol N is the number of inverted data. In the case of synthetic data, the model distance can be 

calculated as follows: 
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𝐷𝑚 = √[
1

𝑀
∑ (

𝑚𝑘
(𝑜𝑏𝑠)

− 𝑚𝑘
(𝑐𝑎𝑙)

𝑚𝑘
(𝑜𝑏𝑠)

)

2𝑀

𝑘=1

] ∗ 100 (%), (12) 

where the 𝑚𝑘
(𝑜𝑏𝑠)

 and 𝑚𝑘
(𝑐𝑎𝑙)

 are the actual synthetic model parameters and predicted or estimated model 

parameters respectively. 

2.2. Interval inversion problem 

The previous section shows that the overdetermined ratio is limited in the point-by-point inversion 

problem, which results in a noise-sensitive inversion procedure as well as a limited number of the 

optimized parameters (Szabó and Dobróka, 2020) and (Szabó and Dobróka, 2018). The interval 

inversion concept aims to increase the number of inverted data by representing the petrophysical 

parameters within a depth interval as a continuous function (Dobróka, 1993). Regarding this concept, 

the interval inversion problem counts on the discretized series expansion of petrophysical parameters. 

The data column vector can be expressed as a depth-dependent calculated data as follows: 

𝑑𝑗
(𝑐)(𝑧) = 𝑔𝑗(𝑚1(𝑧), 𝑚2(𝑧), . . . 𝑚𝑀(𝑧)), (13) 

where M is the number of the predicted parameters at z depth, 𝑑𝑗
(𝑐)

 is the j-th calculated data. Therefore, 

the discretization of the petrophysical parameters can be expressed as: 

𝑚𝑖(𝑧) =  ∑ 𝐵𝑞
(𝑖)

Ψ𝑞(𝑧)

𝑄𝑖

𝑞=1

, (14) 

where 𝑚𝑖 represents the i-th model parameter, 𝐵𝑞
(𝑖)

 is the q-th expansion coefficient, and Ψq(z) is the 

basis function. Regarding the interval inversion concept, the term of the basis function can be considered 

as a known. By substituting the equation 14 in equation 3 the interval inversion problem can be 

expressed as: 

𝑑𝑘
𝑐 (𝑧𝑘) = ∑ ∑ 𝐺𝑘𝑖𝐵𝑞

(𝑖)
Ψ𝑞(𝑧𝑘)

𝑄(𝑖)

𝑞=1

𝑃

𝑖=1

, (15) 

To formalize the interval inversion in the layer-wise homogeneous layers sequence model can be 

represented using the step function or the Heaviside function. The Heaviside function divides the model 

into homogeneous segments (Szabó, 2018b; Szűcs et al., 2021), and (Dobróka et al., 2009). The layer-

wise interval inversion can be expressed as: 

Ψ𝑞(𝑧) = 𝑢(𝑧 − 𝑍𝑞−1) − 𝑢(𝑧 − 𝑍𝑞+1). (16) 

After understanding the interval concept the model vector can be expressed in the light of the series 

expansion concept as follow: 

𝒎 = [𝐵1
(1)

, . . . 𝐵𝑄
(1)

, . . . , 𝐵1
(𝑀)

, . . . , 𝐵𝑄
(𝑀)

, 𝑍1, . . . . , 𝑍𝑄−1]𝑇 . (17) 
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According to (Szabó et al., 2021; Liu et al., 2018; Szabó and Dobróka, 2020), and (Dobróka et al., 

2016), in the interval inversion procedure, the objective function that must be reduced is a weighted 

function based on the least-squares criteria. 

𝐸(𝒎) = ∑ ∑ (
𝑑𝑝𝑗

𝑚 − 𝑑𝑝𝑗
𝑐

𝑑𝑝𝑗
𝑚 )

2

= 𝑚𝑖𝑛.

𝑁

𝑗=1

𝑃

𝑝=1

 (18) 

The interval inversion workflow can be seen in the following figure. 

 

Figure 1. Interval inversion Workflow. 

DLSQ also can be called Levenberg-Marquardt (LM) which is a linear inversion method, in which 

the initial model is refined within an iterative algorithm. The criteria for stopping the algorithm could 

be a threshold value of the data distance or a certain number of the iteration. The model update equation 

in case of a point-by-point inverse problem is: 

(𝑮(𝒎𝒊)𝑇𝑮(𝒎𝒊) + 𝜆𝐼)𝛿𝒎 = −𝑮(𝒎𝒊)𝑇𝛿𝒅, (19) 

while in the case of interval inversion the model update equation can be as follow: 

(𝑮(𝜷𝒊)𝑇𝑮(𝜷𝒊) + 𝜆𝐼)𝛿𝜷 = −𝑮(𝜷𝒊)𝑇𝛿𝒅, (20) 

where 𝜆 is the damping factor. 

2.3. Damping factor meaning  

The physical meaning of the damping factor is introduced by (Levenberg, 1944), where the damping 

factor is used to conserve the stability of the inversion process. The instability comes from insufficient 

extracted information from the data or the noise sensitivity. (Menke and Eilon, 2015) mentioned that the 
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damping factor can be defined as prior information, which is implemented from the previous expectation 

of the solution behaviour. According to (Menke and Eilon, 2015) the stability of the inversion process 

can be obtained using two ideas. The first one is using a certain constraint. But by this way, we increase 

our influence on the solution by using a priori information. The second idea is to use the covariance 

matrix to assess the correlation of the different model parameters. 

Usually, the damping factor is used as a positive and relatively high number which is decreased by 

the iterations until a value close to zero. The instability of the inversion problem can be called an ill-

posed problem. The ill-posed problem can be represented mathematically using the conditional number 

as follow: 

k =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
, (21) 

where 𝜆𝑚𝑎𝑥and 𝜆𝑚𝑖𝑛are the maximum and minimum eigenvalue of the sensitivity matrix. The ill-posed 

problem refers to a high condition number while the well-posed indicates a small condition number of 

the set of solving equations. In the case of a high condition number, any small change in the sensitivity 

matrix cause a bigger change in the estimated parameters. Therefore, choosing the proper damping factor 

can avoid instability and improve the condition number.(Abdelrahman et al., 2021) and (Heriyanto and 

Srigutomo, 2017) shows the feasibility of extracting the damping factor from the decomposition of the 

sensitivity matrix, in which the damping factor is a function of the eigenvalues of the decomposed 

sensitivity factor. 

2.4. Golden Section Search method (GSS) 

The GSS is one of the unimodal optimization algorithms. Besides that, it can be called optimization with 

interval reduction. Therefore, the unimodal function is a continuous function over an interval [a,b] if 

there is one minimum point that is included in the same [a,b] interval (Noroozi et al., 2022). The intuition 

behind the integration between the interval inversion algorithm and the GSS is that the constructed 

algorithm is a hybrid algorithm. In other words, the MATLAB program is based on two loops, the first 

one is the outer loop which contains the GSS that will optimize the damping factor. The second loop is 

the inner loop which applies the chosen damped factor from GSS and applies the interval inversion 

procedure. Furthermore, the acceptance criterion is based on the data distance calculated based on the 

optimized damped factor (Chakraborty and Panda, 2016) and (Tsai et al., 2010). 

Regarding the GSS, there are two goals, the first one is finding the optimal damped factor for the 

interval, while the second one is finding the optimal value with a minimum number of function calls. 

The theoretical background of the interval reduction optimization problems such as the bisection method 

or equal interval method can be explained mathematically as follows: 

 Choose a mid-point between a and b, m= (a+b)/2 in case of bisection method and a small d > 0 

 Let X1=(m-d)/2 and X2=(m-d)/2. 

 If f(X1) < f (X2) then reduce the interval into [a,X1] 

 Else the reduced interval will be [X2,b] 
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Figure 2. Equal interval method intuition (Chang, 2015). 

The weak point of the equal interval method is it will take a long time to find the optimum point. 

Therefore, the GSS is recommended in the case of hybrid algorithms. The Golden Section choose three 

points Xl, X1 and Xu (XL < X1 < Xu) along the x-axis with corresponding values of the function f (XL), 

f (X1), and f (Xu), respectively. Since f (X1) > f (XL) and f (X1) > f (Xu) (Yazıcı et al., 2021). The 

maximum must lie between Xl and Xu. Now a fourth point denoted by x2 is chosen to be between the 

larger of the two intervals of [ Xl, X1] and [ X1, Xu]. The intermediate points X1 and X2 are chosen such 

that, the ratio of the distance from these points to the boundaries of the search region is equal to the 

golden ratio (Pejic and Arsic, 2019). 

 
 

Figure 3. (Right) Determining the first intermediate point, (left) Determining the second intermediate 

point. 

The algorithm of the GSS can be concluded as follow: 

 Initialize the known boundaries [XL, Xu] 

 Determine two intermediate points X1 and X2 using the golden ratio d where 𝑑 =
√5−1

2
(𝑥𝑢 − 𝑥𝐿) 

 Then evaluate the inversion loop and extract the data distance of the lower, upper, and 

intermediate points. 

 Finally, if Xu – XL <threshold value then the damped factor can be chosen as (Xu+XL)/2 stop the 

outer loop and accept the model of the optimal damping factor. 
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3. Results 

The proposed algorithm was carried out on synthetic and real data. The synthetic data was built based 

on a sand-shale model with water and hydrocarbon fluids filling the pore spaces, while the real data 

represents a heterogeneous reservoir of hydrocarbon field. The workflow of the proposed algorithm can 

be shown in figure (4). 

3.1. Synthetic data 

The GSS-based interval inversion was carried out on synthetic data contaminated with 5 % Gaussian 

noise. The synthetic model consists of a sandstone formation filled with a hydrocarbon that overlies a 

shale layer which overlies another sandstone layer filled with water. A 20-degree Legendre polynomial 

was used to fit the suggested synthetic model. The forward well-logging data vector calculated using 

equations 3 to 8 consists of gamma-ray, density, neutron, compressional sonic, shallow, and deep 

resistivities, and photoelectric logs. The Oil-Water Contact (OWC) suggested being located at 6 m. 

The calculated data from the response functions were inverted using DLSQ and GSS-based interval 

inversion algorithms. Figure 5 shows the synthetic data and the initial model of the inversion procedure, 

while Figure 6 shows the actual model parameters with the initial model parameters used for the 

inversion procedure. The model parameters of the synthetic dataset were constructed based on 5 model 

parameters (porosity, volume of sand, volume of shale, water saturation of uninvaded zone, and water 

saturation of the invaded zone). So, by taking into consideration the number of the parameters and the 

degree of the polynomial, the number of the unknowns of the digitized model parameters is 5 *(20+1) 

=105 unknowns. At the same time, the number of the overdetermined ratio can be calculated from the 

number of the logging data at each depth NL multiplied by the number of the data points (depth points) 

N, 7*200=1400 data points, therefore, the overdetermined ratio is 1400/105≈13 in case of the suggested 

synthetic model. 

Figure (7) shows the fitting between the synthetic data and the predicted data using the GSS-based 

interval inversion, while figure (8) shows the predicted model parameters fitted to the actual model 

parameters of the synthetic model. 
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Figure 4. The GSS and interval inversion integration workflow. 

  

Figure 5. 5% Gaussian noise-contaminated synthetic data; the red dashed lines represent the initial 

model, while the solid black lines represent the synthetic data. 
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Figure 6. The model parameters of the synthetic data and the initial model parameters; the red 

dashed lines represent the initial model, while the solid black lines represent the synthetic data. 

 

Figure 7. Fitting between the synthetic data and the calculated data (iteration 40); the red dashed 

lines represent the initial model, while the solid black lines represent the synthetic data. 
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Figure 8. The synthetic and the predicted model parameters (iteration 40); the red dashed lines 

represent the initial model, while the solid black lines represent the synthetic data. 

The difference between the GSS-based interval inversion and the conventional interval inversion can 

be seen from the data distance convergence curve (figure 9). The data distance of the conventional 

interval inversion shows what we can call a plateau data distance, this plateau data distance causes no 

change in the optimization process and increase the number of the iteration. This research attributed the 

reason for this effect to the choice of the suitable damped factor, which directly affects the condition 

number of the sensitivity matrix and causes a higher damp effect. However, the GSS-based interval 

shows a rapid convergence of the data distance with a smooth behavior. The data distance in the case of 

the conventional interval of inversion shows a rough convergence behavior. In figure 9, the data distance 

of the noise free dataset and 5% Gaussian noise-contaminated datasets can be seen. Where the plateau 

effect can be significantly detected. There is a difference in the iteration of the convergence stability in 

the case of the conventional interval inversion noise free and the contaminated dataset, while the GSS 

one shows the same iteration of convergence stability. The data distance convergence of the 

conventional interval inversion started to stabilize at iteration 35 in the 5% Gaussian noise dataset and 

iteration 22 in the noise free dataset, while in the case of the GSS-based interval inversion the data 

distance convergence started to stabilize around iteration 10 in both cases. 
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a b 

  
c d 

Figure 9. Data distance of conventional and GSS-based interval inversion, (a) and (b) noise free 

dataset, (c) and (d) are the contaminated datasets. 

3.2. Field data 

After examination of the conventional and the GSS-based interval inversion using synthetic data, the 

proposed algorithm has been applied to the real data. The real well logging data was acquired from a 

hydrocarbon field located in the northeastern part of Egypt. According to the regional geology of the 

field, the target reservoir is a Jurassic reservoir. It is considered a tight sandstone layer with a highly 

heterogeneous degree because of the diagenesis process that is responsible for transforming the kaolinite 

into illite by reducing both the permeability and the porosity. The data vector of this well consists of 

gamma-ray, neutron, density, and shallow and deep resistivity logs. Figures (10) show the well-logging 

dataset and the initial model. 
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Figure 10. The well logging dataset (black curve) and the initial model (red dashed line). 

The initial model was constructed based on the porosity of 0.1, the volume of sand of 0.8, and water 

saturation of 0.2. To reduce the number of unknowns the balance equation was used to derive the volume 

of shale and the water saturation of the invaded zone can be calculated from the water saturation of the 

invaded zone. Therefore, the overdetermined ratio can be calculated as follow: 

𝑂 =
𝑁𝑝 ∗ (𝑁𝑔 + 1)

𝑁
=

3 ∗ (50 + 1)

1240
= 8.1, (22) 

where Np is the number of parameters, and Ng is the degree of the polynomials. Figure (11) shows the 

fitting between the predicted and the real datasets, while figure (12) shows the predicted model 

parameters. The inversion results show that the reservoir consisting mainly of sandstone layers underlies 

the thin shale layer. Furthermore, the inversion procedure shows that the sandstone layer filled with 

hydrocarbon starts from 5m to 27m with a thickness of 22m, where the contact between hydrocarbon 

and water lies at depth of 27. The results show also that there is a layer of shale with around 5 m 

thickness. The resulted parameters can successfully show the variation of the quality of the sand which 

is reflected in the amount of hydrocarbon saturation. 
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Figure 11. Fitting between the real and the predicted datasets (iteration 60); (black curve) and the 

initial model (red dashed line). 

In the case of the conventional interval inversion, the data distance curve shows a rough convergence 

curve with significant peaks at iterations from 22 to 35, before reaching its stability at iteration 40. While 

data distance of the GSS-based interval inversion algorithm shows a smooth convergence behavior. The 

GSS-based inversion could overcome the problem of the presence of a sudden increase in the data 

distance and increase the stability of the inversion procedure. Furthermore, the convergence of the data 

distance started to be stable at the iteration of 20. The stable data distance of the conventional interval 

inversion and the GSS-based interval inversion is around 9.75%. Figure (13) shows the difference 

between the data distance behavior in the case of the conventional interval inversion and the GSS-based 

interval inversion. The stopping criterion of the algorithms is a threshold number of iterations, which 

have been chosen to be 60 iterations. 

To study the convergence behavior of the proposed algorithm, the conditional number was calculated 

for each iteration. Figure (14) shows the difference between the conditional number in the case of the 

conventional and the GSS inversion schemes. The calculated conditional number is scaled using the 

extent scaling to represent which iterations have a higher conditional number and which have a low. The 

red curve is related to the GSS-based interval inversion, while the blue one is related to the conventional 

interval inversion. The GSS-based interval inversion shows that using the GSS to optimize the damping 

factor successfully conserves the low conditional number (which avoids the ill-posed problem) during 

the initial model is far from the solution or in case of rapid increase of the data distance. A significant 

increase in the conditional number in the case of the GSS-based interval inversion at iteration 20 aid the 

inversion procedure to avoid the increase in the data distance that can be observed in the case of the 

conventional interval inversion. For understanding the distribution of the conditional number behavior 

between low and high, Gaussian fitting was performed on the conditional number of the conventional 

and the GSS interval inversion (figure 15). 
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Figure 12. The predicted parameter of the real data (iteration 60); (black curve) and the initial model 

(red dashed line). 

  
a b 

Figure 13. Data distance curves, (a) conventional interval inversion, (b) GSS- based interval 

inversion. 

The Gaussian fitting can show that the conventional interval inversion follows a gradual increase in 

the conditional number without taking into the consideration any change in the data distance behavior, 
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while the GSS-based interval inversion there is a half of Gaussian distribution to show the decrease in 

the early iterations and high in the late iterations. The GSS-based interval inversion shows a nonlinear 

decrease of the damping factor by optimal choosing of its value, while the conventional one just 

decreases the damping factor within a linear relationship. 

 

Figure 14. Scaled conditional number, (blue) is the conventional interval inversion, (red) is the GSS- 

interval inversion. 

  
a b 

Figure 15. Gaussian fitting of both inversion schemes, (a) conventional interval inversion, (b) GSS-

based interval inversion. 

4. Conclusion 

The conventional interval inversion and the GSS-based interval inversion can be used in the case of 

synthetic and heterogeneous real data. The damping factor reduces as a linear relationship in the case of 
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the conventional inversion, while the damping process follows a nonlinear relationship in the case of 

the GSS-based interval. the damping factor is the key to the stability of the inversion process. 

The conventional inversion can suffer from the proposed term ‘plateau data distance’, this effect can 

increase the number of the iterations. The heterogeneous dataset shows a rough convergence curve 

related to the linear relationship of the damping factor reducing process. The GSS could overcome the 

plateau effect in the case of synthetic data, which reduces the number of iterations needed for 

convergence stability. Besides that, the GSS can be used in the case of the heterogeneous real dataset of 

well logging. Also, it could guarantee the stability and smoothness of the convergence curve of the data 

distance. The GSS-based interval inversion shows a stable inversion process in the case of synthetic 

datasets with free noise and 5% Gaussian noise. 

The real data shows that the reservoir consists of sandstone varies in quality, which affects the 

hydrocarbon saturation and storage capacity. Both algorithms show a stable convergence of the data 

distance at 9.75%. 
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