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Abstract 

This article gives a construction of a weighted mean which has good robust properties (qualitative 

robustness, bounded influence function, high breakdown points). The construction is based on M-

functionals with smooth defining functions which are used to control weighting. This method can be 

applied some other statistical problems but it is used for estimation of the parameters of Weibull-family. 
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1. Introduction 

Under certain regularity conditions on the underlying probability distribution, it has been shown that 

maximum likelihood and other best asymptotically normal sequences of estimators are asymptotically 

„optimal" in that they are consistent, asymptotically unbiased and asymptotically efficient. Any of the 

best asymptotically normal estimators therefore is a satisfactory solution to the estimation problem 

provided that  

− these criteria of optimality are acceptable, 

− sufficiently large samples are available, 

− the regularity conditions are met.  

Typical regularity conditions for the case of a single unknown parameter are given by Cramer (David 

and Johnson, 1948) or for the robust case it is discussed by Huber (Hampel et al., 1986). 

There are many probability distributions for which the conditions are not satisfied. Included among 

these are several common distributions, notably the uniform, two-parameter exponential, three-

parameter Gamma and Weibull distributions. The latter is of particular concern in the present study. It 

is the location (or shift) parameter which is the source of the difficulty. Furthermore we know that in 

many cases the classical optimal estimators are not "good" if the set of data points contains öutliers" 

(bad points). Accordingly, the robust methods have been created to modify the classical schemes so that 

the outliers have much less influence on the final estimates. One of the most satisfying robust procedures 

is that given by a modification of the principle of maximum likelihood. It should be mentioned that a 

book (Huber, 1981) by Huber provides an excellent summary the mathematical aspects of robustness. 

One of the simplest statistical problems is the location-scale problem on the real line. Given a data 

set  

{𝑥1, 𝑥2, … , 𝑥𝑛}, 

we are required to specify to numbers 𝑇 and 𝑆, together with upper and lower bounds, which describe 

the location and the scale, respectively, of the data. In spite of its apparent simplicity, the problem has 

as yet no satisfactory solution. Most approaches including robust ones are based on a central model 𝐹0 
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which is assumed to be true or to contain the truth within some small metric ball. Data rarely come 

accompanied by a central model and when analyzing large numbers of data sets in an automatic manner, 

such an approach is unwarranted. The estimation of the parameters is a well discussed problem. Mostly, 

the location parameter 𝜇 and the scale parameter 𝜎 are estimated by the maximum likelihood (ML) 

estimators 𝜇 and 𝜎, respectively. However, there exists other estimators, which are rather efficient or 

even unbiased, as linear estimators of order statistics. There are many good results and monographs 

available in this area; only a few subjectively chosen papers are (Hampel et al., 1986; Huber, 1981; 

Rieder, 1994). 

Our statistical approach is based on a central model 𝐺0 which is assumed to be true or to contain the 

truth within some small metric ball of distribution functions. Two distribution functions 𝐹 and 𝐺 are 

said to be of the same type if  

𝐹(𝑥) = 𝐺(𝜎𝑥 + 𝜇) 

where 𝜎 > 0. We shall refer to 𝜇 as a location (centering) parameter, to 𝜎 as a scale parameter. This 

is an equivalence relation on the set F of probability distribution functions. This relation classifies F. 

In this paper we discuss some new estimators for the parameters of Weibull distribution. In section 

2 we summarize a general robust statistical method for location-scale problem. This the so called 

probability integral transformation (PIT) method (David and Johnson, 1948). In section 3 we propose 

an algorithm for estimating the location and the scale simultaneously. In section 4 we describe these 

robust estimators for the parameters of Weibull distribution. The PIT method is used for the Weibull 

parameters. In section 5 the method is applied for a special mechanical problem with real data. 

2. Probability integral transformation estimators 

Our location and scale problem is the following:  

Let us assume that 𝜉 = 𝜎𝜂 + 𝜇, where the distribution of the random variable 𝜂 is 𝐺0(𝑥). Given 

the sample 𝜉1, 𝜉2, … , 𝜉𝑛 and the type of distribution 𝐺0, the distribution of the random variable 𝜉𝑖 is 

𝐺0 (
𝑥 − 𝜇

𝜎
) 

estimate the location (𝜇 ∈ 𝑹) and scale (𝜎 > 0) parameters from the sample. 

The system of equations for the parameters 𝜇 and 𝜎, using Huber’s (Huber, 1981) notations, is  

∑𝜓

𝑛

𝑖=1

(
𝜉𝑖 − 𝜇

𝜎
) = 0, 

∑𝜒

𝑛

𝑖=1

(
𝜉𝑖 − 𝜇

𝜎
) = 0, 

where 𝜓(𝑥) = 𝐺0(𝑥) − 0.5, 𝜒(𝑥) = 𝜓
2(𝑥) −

1

12
.  

Therefore, 

∑(𝐺0 (
𝜉𝑖 − 𝑇𝑛
𝑠𝑛

) −
1

2
)

𝑛

𝑖=1

= 0,  ∑((𝐺0 (
𝜉𝑖 − 𝑇𝑛
𝑠𝑛

) −
1

2
)
2

−
1

12
)

𝑛

𝑖=1

= 0. (2.1) 

If the solutions 𝑇𝑛 and 𝑠𝑛 of this system of equations exist, 𝑇𝑛 and 𝑠𝑛 are called the probability 
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integral transformation (PIT)-estimators of the location and the scale parameters, respectively. 

Assume that 𝐺0 is differentiable, strictly monotone increasing and 𝐺0(0) = 0.5, then 𝑇𝑛 and 𝑠𝑛 

are well defined, that is, (2.1) has a unique solution with 𝑠𝑛 > 0.  

The main steps of the proof: We follow (Huber, 1981). The Jacobian of the map  

(𝑡, 𝑠) ⟶ (∫𝜓(
𝑥 − 𝑡

𝑠
)𝐹(𝑑𝑥),∫𝜒 (

𝑥 − 𝑡

𝑠
)𝐹(𝑑𝑥)) 

is  

−
1

𝑠
(
∫𝜓′ (𝑦)𝑑𝐹 ∫𝑦𝜓′(𝑦)𝑑𝐹

∫𝜒′ (𝑦)𝑑𝐹 ∫𝑦𝜒′(𝑦)𝑑𝐹
) 

with 𝑦 =
𝑥−𝑡

𝑠
. 𝐹 is indifferently either the true or the empirical distribution.  

We define a new probability measure 𝐹⋆ by  

𝐹⋆(𝑑𝑦) =
𝜓′(𝑦)

𝐸𝐹(𝜓′(𝑦))
𝐹(𝑑𝑥); 

then The Jacobian can be written as  

−
1

𝑠
𝐸𝐹(𝜓

′(𝑦)) (

1 𝐸𝐹⋆(𝑦)

𝐸𝐹⋆ (
𝜒′

𝜓′
) 𝐸𝐹⋆ (𝑦

𝜒′

𝜓′
)
) 

Its determinant  

[
𝐸𝐹(𝜓

′(𝑦))

𝑠
]

2

cov𝐹⋆ (𝑦,
𝜒′

𝜓′
) 

is strictly positive. The existence of a solution now follows from the observation that for each fixed 𝑠, 
the first component of the map has a unique zero at some 𝑡 = 𝑡(𝑠) that depends continuously on 𝑠. We 

now conclude from the intermediate value theorem for continuous functions that the solution exists 

uniquely. The joint asymptotic distribution of (𝑇𝑛, 𝑠𝑛) can be derived from a general result of Boos and 

Serfling (Boos and Serfling, 1980). 

The joint distribution of (𝑇𝑛, 𝑠𝑛) converges to the normal one 

√𝑛((𝑇𝑛, 𝑠𝑛) − (𝜇, 𝜎)) → 𝑑𝑁(0, Σ), 

where the covariance matrix Σ is given by Σ = 𝐶−1𝑆[𝐶−1]𝑇.  

The matrix  

𝐶 =

(

  
 
𝐸 (

𝜕

𝜕𝜇
𝜓 (
𝜉 − 𝜇

𝜎
)) 𝐸 (

𝜕

𝜕𝜎
𝜓 (
𝜉 − 𝜇

𝜎
))

𝐸 (
𝜕

𝜕𝜇
𝜒 (
𝜉 − 𝜇

𝜎
)) 𝐸 (

𝜕

𝜕𝜎
𝜒 (
𝜉 − 𝜇

𝜎
))
)

  
 
, 

and  
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𝑆 = (
𝐸(𝜓2(𝜂)) 𝐸(𝜓(𝜂)𝜒(𝜂))

𝐸(𝜓(𝜂)𝜒(𝜂)) 𝐸(𝜒2(𝜂))
) = (

1

12
0

0
1

180

) 

if 𝐺0 is symmetric for zero. 

The (PIT)-estimators are B-robust, V-robust, qualitatively robust and their breakdown points (for 

definitions see (Fegyverneki, 1999; Hampel et al., 1986))  

𝜀∗(𝑇𝑛) =
𝛿

1 + 𝛿
= 0.5,  where 𝛿 = min {−

𝜓(−∞)

𝜓(+∞)
,−
𝜓(+∞)

𝜓(−∞)
}, 

and 

𝜀∗(𝑠𝑛) =
−𝜒(0)

𝜒(−∞) − 𝜒(0)
=
1

3
, 

(see (Fegyverneki, 2004)). 

3. Numerical algorithm to PIT estimators 

We propose an algorithm to estimate the location and the scale simultaneously. 

Step 1: Pre estimation of location and scale by median (𝑚𝑒𝑑) and median absolute deviation 

(𝑀𝐴𝐷), i.e.,  

𝑇𝑛
(0) = 𝑚𝑒𝑑{𝜉𝑖} and 𝑠𝑛

(0) = 𝑀𝐴𝐷{𝜉𝑖} 

Step 2: Estimation of location by  

𝑇𝑛
(𝑚+1) = 𝑇𝑛

(𝑚) +

𝑠𝑛
(𝑚)∑ 𝜓𝑛

𝑖=1 (
𝜉𝑖 − 𝑇𝑛

(𝑚)

𝑠𝑛
(𝑚) )

𝑛
. 

Step 3: Estimation of scale by  

[𝑠𝑛
(𝑚+1)]2 =

12

(𝑛 − 1)
∑𝜓2
𝑛

𝑖=1

(
𝜉𝑖 − 𝑇𝑛

(𝑚+1)

𝑠𝑛
(𝑚)

)[𝑠𝑛
(𝑚)]2. 

Step 4: Stop or goto step 2.  

This method can be applied for the system of equations (2.1). 

Since the function 𝐺0 is differentiable and strictly monotone increasing the convergence of this 

iterative method follows from by Huber’s result (Huber, 1981) [Section 7.8]. 

4. Estimators of Weibull parameters 

We consider now the random variable 𝜂  having the three-parameter Weibull distribution. The 

distribution function of 𝜂 is given by  

𝐹(𝑥; 𝑎, 𝑏, 𝑐) = 𝑃(𝜂 < 𝑥) = {
1 − exp (− (

𝑥 − 𝑎

𝑏
)
𝑐

) ,  if 𝑥 ≥ 𝑎

0,  if 𝑥 < 𝑎,
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where the parameters 𝑎, 𝑏 and 𝑐 are the location, the scale and the shape, respectively. 

If 𝑎 = 0  and 𝜉 = ln 𝜂 , then 𝜉  is an "extreme-value" variable (smallest element) having 

distribution function  

𝐹(𝑥; 𝜗, 𝜎) = 𝑃(𝜉 < 𝑥) = {
1 − exp [−exp (

𝑥 − 𝜗

𝜎
)] ,  if 𝑥 ≥ 0

0,  if 𝑥 < 0
 

with location parameter 𝜗 = ln 𝑏  and scale parameter 𝜎 =
1

𝑐
.  The distribution is called Gumbel-

distribution. 

This means that the parameters can be estimated if the shape 𝑐 or the location 𝑎 is known. Because 

we can apply the mentioned robust algorithm immediately or after a log transformation. 

For three-parameter case we propose the minimization of Cramer-von Mises statistic  

𝜔𝑛
2 =

1

12𝑛
+∑(𝐹(𝜉𝑘

⋆) −
𝑘 − 0.5

𝑛
)
2𝑛

𝑘=1

, (4.1) 

where 𝜉𝑘
⋆
 is the 𝑘th element of the ordered sample. 

The statistic (4.1) is in its limiting form not generally distribution free. But in the important special 

cases where the estimated parameter is a location, scale or exponential parameter, the limiting 

distribution is independent of the particular value of the parameter obtaining, which makes the statistic 

usable for Weibull distributions.  

Let  

𝐺0 (
𝑥 − 𝜗

𝜎
) = 1 − exp [−𝑒𝑥𝑝 (

𝑥 − 𝜗

𝜎
)] 

The joint asymptotic distribution of (𝑇𝑛, 𝑠𝑛) can be derived from a general result of (Boos and 

Serfling, 1980). 

THEOREM 1. The joint distribution of (𝑇𝑛, 𝑠𝑛) converges to a normal one:  

√𝑛((𝑇𝑛, 𝑠𝑛) − (𝜇, 𝜎)) → 𝑑𝑁(0, Σ) 

where the covariance matrix Σ is given by 

Σ = 𝜎2 (
1.1704 −0.1918
−0.1918 0.8110

). 

The main steps of the proof: We use the general result of (Boos and Serfling, 1980) on the central 

limit theorem for (𝑇𝑛, 𝑠𝑛) for proving this theorem. 𝑇𝑛 and 𝑠𝑛 are the solutions of  

∑𝜓

𝑛

𝑖=1

(
𝜉𝑖 − 𝜇

𝜎
) = 0,   ∑𝜒

𝑛

𝑖=1

(
𝜉𝑖 − 𝜇

𝜎
) = 0, 

where 𝜓(𝑥) = 𝐺0(𝑥) − 0.5  and 𝜒(𝑥) = 𝜓2(𝑥) −
1

12
.  The assumptions are true for the Gumbel 

distribution, since 𝜓 is monotone increasing and bounded and 𝜒 is bounded and negative at 0. 

Thus it remains to derive the asymptotic covariance matrix Σ = 𝐶−1𝑆[𝐶−1]𝑇. Here  
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𝐶 =

(

  
 
𝐸 (

𝜕

𝜕𝜇
𝜓 (
𝜉 − 𝜇

𝜎
)) 𝐸 (

𝜕

𝜕𝜎
𝜓 (
𝜉 − 𝜇

𝜎
))

𝐸 (
𝜕

𝜕𝜇
𝜒 (
𝜉 − 𝜇

𝜎
)) 𝐸 (

𝜕

𝜕𝜎
𝜒 (
𝜉 − 𝜇

𝜎
))
)

  
 

 

and with random variable 𝜂, it has probability distribution 𝐺0, where 𝜇 = 0 and 𝜎 = 1,  

𝑆 = (
𝐸(𝜓2(𝜂)) 𝐸(𝜓(𝜂)𝜒(𝜂))

𝐸(𝜓(𝜂)𝜒(𝜂)) 𝐸(𝜒2(𝜂))
). 

These terms can be evaluated by partial integration. The approximations made by program package 

Maple 16.  

𝐶 = −
1

𝜎
(

1

4
−.067590711365369542506

1

36
. 082593278316773246828

) 

and  

𝑆 = (

1

12
0

0
1

180

). 

By comparing the asymptotic variances of the PIT estimators 𝑇𝑛 and 𝑠𝑛 with the ML estimators 𝜇 

and 𝜎, respectively, we derive the asymptotic relative efficiencies (ARE). It is known that the ML 

estimators are asymptotically efficient, having also an asymptotic normal distribution, with covariance 

matrix denoted by Σ̂. We give the asymptotic relative eficiencies for MD and ML estimators (see 

Dietrich and Hüssler (Dietrich and Hüsler, 1996)), too.  

We get  

𝐴𝑅𝐸(𝑇𝑛, 𝜇) ≈ 0.9473  𝐴𝑅𝐸(𝜇∗, 𝜇) ≈ 0.9395 

and  

𝐴𝑅𝐸(𝑠𝑛, 𝜎) ≈ 0.7496  𝐴𝑅𝐸(𝜎∗, 𝜎) ≈ 0.7644. 

The joint asymptotic relative efficiency  

𝐴𝑅𝐸(𝑃𝐼𝑇𝐸,𝑀𝐿𝐸) ≈ 0.6663  𝐴𝑅𝐸(𝑀𝐷𝐸,𝑀𝐿𝐸) ≈ 0.6698. 

For the robustness, we easily derive the breakdown point 𝜀∗(𝑇𝑛) of the location estimator. We find 

that  

𝜀∗(𝑇𝑛) = 0.5 = 𝜀
∗(𝜇∗). 

We see that these properties are similar.  

Because the function 𝜒 is not symmetric we cannot use directly the result of Huber (Rieder, 1994) 

on the breakdown point 𝜀∗(𝑠𝑛). However, using his approach with the gross error model we find in the 

same way that  

𝜀∗(𝑠𝑛) =
−𝜒(0)

𝜒(−∞) − 𝜒(0)
≈ 0.2833. 
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The breakdown point 𝜀∗(𝜎∗) ≈ 0.2026.  

For the robustness, we easily derive the breakdown point 𝜀∗(𝑇𝑛) of the location estimator. We find 

that  

𝜀∗(𝑇𝑛) = 0.5. 

Because the function 𝜒 is not symmetric we cannot use directly the result of (Hampel et al., 1986) 

on the breakdown point 𝜀∗(𝑠𝑛). However, using his approach with the gross error model we find in the 

same way that  

𝜀∗(𝑠𝑛) =
−𝜒(0)

𝜒(−∞) − 𝜒(0)
≈ 0.2833. 

THEOREM 2. If we choose the distribution 𝐺0 with 𝜇 = ln ln ( 2) and 𝜎 = 1 for the functions 

𝜓 and 𝜒 then the breakdown point 𝜀∗(𝑠𝑛) =
1

3
 

This is the maximum for PIT estimators.  

The asymptotic results show that the PIT estimators are less efficient than the ML ones. But the 

efficiency for finite samples might be quite different. Therefore, we simulated finite samples of size 𝑛 

from the Gumbel distribution with 𝜇 = 0 and 𝜎 = 1. From these samples the different estimators were 

calculated. From 500 and 1000 simulations the mean and the standard deviation were derived for each 

estimator, which were used for the comparison of their finite sample behaviour. We calculated the 

correlations of the paired estimators and the mean square error (MSE), too. The following tables show 

that in pairwise comparison the behaviour of PIT amd ML estimators are rather similar in finite. This is 

also indicated by their correlations. 

Table 4.1 The number of simulations is 500. 

𝑛  mean(𝑇𝑛)  st.dev.(𝑇𝑛) MSE(𝑇𝑛) mean(𝜇)  st.dev(𝜇) MSE(𝜇) 𝑟(𝑇𝑛, 𝜇) 

10  -0.0478  0.3331  0.1130  -0.0439  0.3198  0.1040  0.9715  

20  -0.0264  0.2434  0.0598  -0.0254  0.2386  0.0575  0.9718  

30  0.0005  0.2008  0.0402  0.0016  0.1931  0.0372  0.9736  

40  0.0040  0.1729  0.0298  0.0027  0.1665  0.0276  0.9729  

50  -0.0123  0.1523  0.0233  -0.0108  0.1474  0.0218  0.9702  

100  -0.0001  0.1121  0.0125  0.0008  0.1102  0.0121  0.9723  

1000  -0.0014  0.0359  0.0012  -0.0009  0.0348  0.0012  0.9742  

 

𝑛  mean(𝑠𝑛)  st.dev.(𝑠𝑛) MSE(𝑠𝑛) mean(𝜎)  st.dev(𝜎) MSE(𝜎) 𝑟(𝑠𝑛, 𝜎) 
10  0.9394  0.2836  0.0839  0.9120  0.2494  0.0698  0.9060  

20  0.9744  0.1942  0.0383  0.9612  0.1666  0.0292  0.8893  

30  0.9705  0.1602  0.0264  0.9613  0.1405  0.0211  0.8724  

40  0.9808  0.1389  0.0196  0.9719  0.1207  0.0153  0.8719  

50  0.9885  0.1195  0.0144  0.9838  0.1052  0.0113  0.8464  

100  0.9912  0.0897  0.0081  0.9868  0.0763  0.0059  0.8714  

1000  0.9987  0.0297  0.0008  0.9981  0.0254  0.0006  0.8764  
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Table 4.2 The number of simulations is 1000. 

𝑛  mean(𝑇𝑛)  st.dev.(𝑇𝑛) MSE(𝑇𝑛) mean(𝜇)  st.dev(𝜇) MSE(𝜇) 𝑟(𝑇𝑛, 𝜇) 
10  -0.0374  0.3388  0.1161  -0.0318  0.3273  0.1080  0.9695  

20  -0.0289  0.2456  0.0611  -0.0262  0.2369  0.0567  0.9720  

30  -0.0228  0.1933  0.0378  -0.0210  0.1892  0.0362  0.9687  

40  0.0007  0.1672  0.0279  0.0012  0.1627  0.0264  0.9712  

50  -0.0117  0.1497  0.0225  -0.0114  0.1438  0.0207  0.9718  

100  -0.0073  0.1109  0.0123  -0.0047  0.1085  0.0117  0.9712  

1000  0.0003  0.0343  0.0011  0.0003  0.0333  0.0011  0.9737  
 

𝑛  mean(𝑠𝑛)  st.dev.(𝑠𝑛) MSE(𝑠𝑛) mean(𝜎)  st.dev(𝜎) MSE(𝜎) 𝑟(𝑠𝑛, 𝜎) 
10  0.9506  0.2749  0.0779  0.9279  0.2388  0.0621  0.8857  

20  0.9756  0.1936  0.0380  0.9623  0.1650  0.0286  0.8623  

30  0.9899  0.1742  0.0304  0.9831  0.1470  0.0218  0.8898  

40  0.9895  0.1437  0.0207  0.9834  0.1244  0.0157  0.8785  

50  0.9933  0.1277  0.0163  0.9878  0.1107  0.0123  0.8803  

100  0.9943  0.0921  0.0085  0.9955  0.0808  0.0065  0.8658  

1000  0.9994  0.0289  0.0008  0.9994  0.0253  0.0006  0.8736  
 

5. Application and numerical results 

We examined three samples (h37cn, k37cn, he420cn). The tables 5.1 and 5.2 contain the numerical 

results. Notations: maximal correlation coefficient method (MCCD), robust location-scale method with 

Cramer-von Mises statistic (RCM), Kolmogorov statistic (KS), 𝜒2 − statistic (𝜒2), 𝜔𝑛
2 statistic (𝜔𝑛

2) 

(Shapiro and Brain, 1984; Smith and Hoeppner, 1990). 

The samples contain the results of investigations of fatigue crack growth rate. At investigations we 

determine the crack length (𝛼) and the number of cycles (𝑁) for the crack of specimen at cyclic 

loading. After we calculate the values of fatigue crack growth rate (
𝑑𝛼

𝑑𝑁
) and stress intensity factor range 

(△ 𝐾). We approximate the given sequence of points by Paris-Erdogan law (Paris and Erdogan, 1963) 

which is often used in practice:  
𝑑𝛼

𝑑𝑁
= 𝐶 △ 𝐾𝑚, 

where 𝐶 and 𝑚 are constants. Furthermore, we calculate the values of the fatigue fracture toughness 

(△ 𝐾𝑓𝑐) to the instable crack growth by the measure of critical crack length. The samples are given 

from the values of 𝑚 and △𝐾𝑓𝑐 according to materials. The papers (Lukács and Lovas, 1990; Lukács, 

1992) contain these results. 
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Table 5.1 Numerical results for MCCD 

𝑆𝑎𝑚𝑝𝑙𝑒 n a b c 𝐾𝑆 𝜒2  𝜔𝑛
2 

h37cn  36  3.09  0.69  1.26  0.66  9.48  0.08  

k37cn  32  2.75  0.79  2.53  0.49  1.84  0.04  

he420cn 32  2.17  0.47  2.57  0.73  7.89  0.09  
 

Table 5.2 Numerical results for RCM 

𝑆𝑎𝑚𝑝𝑙𝑒 n a b c 𝐾𝑆 𝜒2  𝜔𝑛
2 

h37cn  36  3.09  0.69  1.12  0.56  2.21  0.04  

k37cn  32  2.86  0.65  2.03  0.37  2.72  0.02  

he420cn 32  2.21  0.40  2.62  0.55  2.36  0.04  
 

Table 5.3 Critical values for significance level 0.05 

𝑆𝑎𝑚𝑝𝑙𝑒 𝐾𝑆 𝜒2  𝜔𝑛
2 

h37cn  0.88  7.81  0.46  

k37cn  0.88  5.99  0.46  

he420cn 0.88  5.99  0.46  
 

6. Summary 

We defined robust estimators for the parameters of the extreme value distribution 𝐺0 based on the 

probability integral method. The proposed estimators have bounded influence functions and high 

breakdown points. These estimators are robust and consistent, but asymptotically less efficient than the 

maximum likelihood estimators which are not robust. A simulation study for finite sample size shows 

that under 𝐺0 the efficiency of these robust estimators is rather similar to the maximum likelihood ones. 

By the covariance matrix Σ is given by  

Σ = 𝜎2 (
1.1704 −0.1918
−0.1918 0.8110

) 

we can determine the asymptotic confidence interval with the Gauss-distribution. 
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