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Abstract 

Assigning observations to highly separable although relatively homogeneous groups is still a 

challenging task despite the abundance of well-elaborated theories and effective, practical algorithms. 

Not just the aim of clustering then the underlying data itself influences the choice of method and the way 

of assessing the results. Outliers and non-normal data distribution can lead to surprising, unstable and 

many times undesirable clustering results especially in higher dimensions. This implies the importance 

of some human supervision in case of such unsupervised algorithms as well. In this paper a robust 

clustering alternative is presented based on the Most Frequent Value Method for crisp-type clustering 

in case of real-life data. The proposed approach is compared with the k-Medians algorithm. A 

favourable attribute of the applied procedure is its ease of application on multidimensional data sets 

where critical judgment of formed groups is particularly troublesome. 

Keywords: Most Frequent Value, k-MFVs, outlier map, robust clustering, anomaly detection 

1. Introduction 

Data mining corresponds to the information extraction process from data that might be previously 

unknown and non-trivial. The applied methods are mostly descriptive or predictive in nature. Clustering, 

the unsupervised ordering of unlabelled data into separable, homogeneous groups belongs to the latter 

one, which is often used in itself or as an intermediate step of pre-procession (Pardeshi et al., 2010).  

A major goal of clustering is to split big data sets into smaller, uniform segments based on similarity 
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features that can be further investigated in smaller scale (Rousseeuw et al., 2011). Thereby the hidden 

information can be broken down into smaller units that is easier to interpret (Kirshners et al., 2012; 

Thommassey et al., 2006). 
Outliers, noises and non-sharp cluster borders may however pose challenges to many clustering 

algorithms. Therefore, robustification of algorithms when working with real-life data is of particular 

importance in order to be able to stabilize efficiency and predictive power (Dorabiala et al., 2021). 

Nonetheless, robustness and stability depend not just on the underlying data then on the clusters 

themselves. Outliers often form heterogeneous groups with the bulk of the data, therefore clustering can 

theoretically isolate them (Syarif et al., 2012; Jiang et al., 2016; Chitrakar et al., 2012). However, it is 

not necessarily worth to seek outliers this way, since noisy observations can lead to “chaining effects” 

via ”bridging points” that can result the density-based interconnection of different data groups and low 

breakdown points (The percentage amount of outlier points that leads to an unacceptable classification 

of the data points.) of clustering algorithms (e.g.: k-means) (García-Escudero et al., 2010). 

In the course of clustering, outliers and separate groups can be identified without any prior knowledge 

about the data. Oftentimes different approaches are combined in literature (e.g.: partition based-, 

hierarchical-, density based-, grid based or model-based techniques) to reach higher efficiency but there 

are limitations of validity depending on size- and nature of data, number of dimensions, distributions 

etc. (Chitrakar et al., 2012). Thereby, the selection of appropriate algorithm shall be done accordingly 

and by no means automatically (Arbin et al., 2015). 

Authors of related works often build upon robust approaches like k-Medoids / k-Medians that enjoys 

widespread popularity (Syarif et al., 2012; Soni et al., 2017; Shamsuddin et al., 2019; Velmurugan et 

al., 2015; Madhulatha, 2011; Aryuni et al., 2018; Widiyaningtyas et al., 2019; Dharmarajan et al., 2016; 

Drias et al., 2016). In general, it shows higher accuracy than the well-known k-Means, but its run-time 

increases fast with sample size that makes it unfavourable in case of bigger problems (Arbin et al., 2015; 

Olukanmi et al., 2020). On the other hand robust statistical methods are gaining more attention, which 

instead of only focusing on robust location parameters try to rely on the “bulk” of the data by performing 

adequate trimming or suppressing of “far-lying” observations (Dorabiala et al., 2021; García-Escudero 

et al., 1999, 2003 and 2010). A great advantage of the latter approach is that it enables higher-

dimensional investigations as well and can be extended to PCA or multivariate outlier detection 

(Rousseeuw et al., 1990 and 2018; Hubert et al., 2008). Due to these attractive aspects the present 

study would like to further contribute to robust statistical investigations of the wide field of cluster 

analysis with the application of the Most Frequent Value Method (MFV) developed by (Steiner et. al. 

1997) that enables the usage of robust location- and scale parameters without discarding any – 

possibly valuable – data. 

The rest of the paper is structured as follows: In Sec. II the overall concept of MFV-robustified 

clustering is outlined, then in Sec. III the investigated data sets and concept of outlier identification is 

presented. The gained comparative results based on various metrics of evaluation are then synthesized 

in Sec. IV and finally, an outlook is given for further improvement possibilities with the main 

conclusions in Sec. V. 

2. Theoretical background 

In various walks of life (e.g.: biology, economy etc.) outliers cannot be regarded simply as measurement 

errors, anomalies or as members of different populations, since little is known about the mechanics of 

the unknown model in the background. In many practical fields data points are often too valuable just 
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to be removed from the original population. Furthermore, it is typically required to be able to 

unambiguously attach labels to observations and describe general cluster attributes (crisp clustering). 

The hereby outlined MFV-robustified clustering approach relies on the well-known Lloyd’s 

algorithm (Arthur et al., 2007) by calculating a robust location parameter (MFV or Most Frequent Value 

[Not identical with the mode of a data distribution that corresponds to the location of local maxima and 

therefore might not be unique.]) as cluster centroid simultaneously with a robust scale parameter (called 

dihesion) of the formed clusters in each iteration step (see Algorithm 1). Unlike trimming procedures 

all observations are taken into consideration but with different weights corresponding their location 

within the data distribution of each group. 

 

Algorithm 1: (Pseudocode of k-MFVs clustering) 

Data: 

𝑘: number of clusters   

𝐷: a set of objects of cardinality 𝑛  

1. Initialization of centroids (𝑐1, 𝑐2, . . . , 𝑐𝑘) in 𝐷  

while no changes in cluster centroids    

2.1. for each data point 𝑥𝑖 calculate distance from centroid in each cluster   

2.2. assign objects to cluster with nearest centroid (swapping step)   

2.3. for each cluster 𝑗 = 1. . 𝑘 recalculate centroids as MFV value of each actual cluster  

end 

return Centroids, cluster labels, dihesion values 
 

The MFV value (Eq. 1.) and dihesion (Interpreted as the reciprocal of data-cohesion, which 

characterizes the spread of the data.) (Eq. 2.) of a 1D data distribution 𝑥𝑖, 𝑖 ∈ [1, 𝑛) can be calculated 

according to the following joint iterative procedure: 

𝑀𝑘,𝑥 =

∑ (𝑘𝜖)2

(𝑘𝜖)2 + (𝑥𝑖 − 𝑀𝑘,𝑥)2 ⋅ 𝑥𝑖
𝑛
𝑖=1

∑ (𝑘𝜖)2

(𝑘𝜖)2 + (𝑥𝑖 − 𝑀𝑘,𝑥)2
𝑛
𝑖=1

 

(1) 

𝜖2 =

3 ⋅ ∑
(𝑥𝑖 − 𝑀𝑘,𝑥)2

(𝜖2 + (𝑥𝑖 − 𝑀𝑘,𝑥)2)2
𝑛
𝑖=1

∑ 1
(𝜖2 + (𝑥𝑖 − 𝑀𝑘,𝑥)2)2

𝑛
𝑖=1

 

(2) 

For the initialization of the iteration usually the median is used as the starting value of the MFV, 

while the MAD (Median Absolute Deviation.) for the dihesion. The above constituting equations can 

also be derived based on the minimization of the Kullback–Leibler information divergence and provide 

the 𝑀𝑘,𝑥 location parameter as a weighted average. The weights calculated from a Cauchy distribution 

increases outlier resistance by down-weighting the far-lying observations measured from the location of 

data concentration. In order to enhance and tune statistical efficiency without prior knowledge of the 

data distribution type at hand a simple constant is introduced by Steiner et. al., which is advised to be 
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𝑘 = 2 for a wide range of distributions occurring in practice (based on extensive Monte Carlo 

simulations) (Steiner et al., 1997). By adjusting the 𝑘 constant the amount of data taken into consideration 

with higher weight can be tuned and selected according to the specific data distributions. In case of 

increasing the tuning parameter more data points will be ordered to the “bulk” of the data and to the close-

lying outliers higher weights will be assigned when calculating the MFV and dihesion values. 

It can be proven that the previous equation system is equivalent with the minimization of Eq. 3. (also 

called as P-norm): 

𝐺(𝜖, 𝑀𝑘,𝑥) = ∑ 𝑙𝑛[(𝑀𝑘,𝑥 − 𝑥𝑖)2 + (𝑘𝜖)2]

𝑛

𝑖=1

 

(3) 

This provides an opportunity for further statistical procedures also for multivariate cases that are 

more robust and outlier resistant than those based on the minimization of the L2- or even L1-norm for 

a wide range of distributions “far from” the Gaussian (Steiner et al., 1991 and 1997). 

Robustificating Lloyd’s algorithm by using Most Frequent Values as cluster centroids is made in 

order to construct an alternative to the numerous unsupervised methodologies that perform the breaking-

down of data into smaller parts. With this approach it can be achieved not to discard any data point prior 

to the clustering, since every data point may represent valuable information and without a proper model 

(e.g.: economic processes) on the background processes or knowledge about the various error types, 

dropping data is less recommended. Therefore, our present focus is on crisp-like clustering approaches 

with no data exclusion. 

Since only the selection of centroids is modified, we expect to have somewhat similar clustering 

results as provided by well-known k-Means and k-Medians algorithms. However, due to the iterative 

depiction of the MFV values an increased time consumption is expected. Moreover, the MFV-

robustified alternative (k-MFVs) will also predict spherical-shaped clusters in the multivariate space 

that instantaneously offers future development directions towards considering elliptical-shaped clusters. 

3. Experimental setup 

The alteration of centroid calculation shall lead to different classification of the data and new centroid 

coordinates as well. Thereby, the accuracy and interpretation of the grouping could be different 

compared to k-Means and k-Medians. In order to look into this, we investigate the k-Means and 

k-Medians algorithms alongside with the outlined k-MFVs in case of 4 real-life data sets accessible at 

the UCI database (Dua et al., 2017). Data sets with known classification and relatively small cluster 

sizes have been selected with different sample sizes and feature numbers for investigation in other 

literature sources as well (Pérez-Ortega et al., 2017). The main characteristics of the investigated data 

sets are listed in Table 1. 

The Long Jump data set contains the results of two long jump trials from the 1988 Olympic Games 

of men decathlon and women heptathlon. Being a set of one-dimensional observations, it is adequate 

for visual comparison of different clustering methods. On Fig. 1 besides the original data the results of 

k-Means, k-Medians, trimmed k-Means at 𝛼 = 0.05/02 levels and the proposed k-MFVs (𝑘 = 2) are 

presented in case of the presence of a single outlier that represents a disqualified jump (therefore with 

zero value) (García-Escudero et al., 1999). 
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Table 1. Dataset information 

Dataset name Sample size No. of features No. of clusters 
Distribution  

per cluster 

Long Jump 58 1 2 33-25 

Iris 150 4 3 50-50-50 

Wine 178 13 3 71-59-48 

Ecoli 336 7 4 143-116-52-25 

Breast Cancer 569 30 2 357-212 

 

Figure 1. Comparison of clustering algorithms in case of the “Long Jump” data in the presence  

of a single outlier 

The original data show some overlap among men’s and women’s outcomes and the group mean of 

that containing the single outlier is highly biased towards it. This overlap of the two groups cannot be 

differentiated by any of the investigated algorithms. Moreover, the presence of the disqualified data 

resulted the k-Means and the trimmed k-Means (𝛼 = 0.05) to break down. At the same time, k-Medians 

and k-MFVs (𝑘 = 2) and trimmed k-means (𝛼 = 0.2) proved to be resistant enough and the trimmed k-

Means served with additional information on the identified outliers. 

Since our aim is to cluster the data in the presence of outliers without discarding them the robust 

Mahalanobis distances are used to specify outliers in the formed groups. The empirical- and robust 

within-group Mahalanobis distances can be compared to the critical value of √𝜒1,0975
2  suggested by 

(Hubert et al., 2008) in Fig. 2 shows the calculated distances for the two resulted groups in case of 

k-MFV (𝑘 = 2) clustering. The points above the critical values can be considered as group-wise 

outliers and their further investigation can be done subsequently. A main advantage is that no data 

had to be suspended, thus the centroids did not get biased because of that. The applied methodology 

is easy to interpret and can further be extended for higher dimensional investigations. This possibility 

holds for the 4 UCI datasets; however the detailed investigation of outliers is beyond the scope of the 

present study. 
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Figure 2. Empirical- and robustified Mahalanobis distances for the “Long Jump” data extended  

with a single outlier in case of the k-MFVs (k = 2) partitioning into two separate groups as a function 

of ordered element indices 

Throughout the experimental investigation all of the multidimensional data were used in their “raw” 

form without dimensional reduction or standardisation. Since initialization is crucial, k-Means++ and 

DBSCAN were implemented and tested in order to avoid randomness in the resulted clusters. The k-

Means++ proved to be improper for our purposes, because the aim of the robustification with the Most 

Frequent Value is to cluster the “bulk” of the data and place centroids around high density locations, but 

k-Means++ initialization typically led the algorithms to stuck in isolated outlying groups. Therefore, 

DBSCAN has been selected and by proper parameter sweeping the desired number of initial centroids 

were defined for each dataset in a reproducible way. 

4. Experimental results and validation 

The gained results of the “k-MFVs” algorithm in case of the five selected data sets are outlined in Table 

2. together with the k-Means’ and k-Medians’ for comparative purposes. As important metrics for the 

judgement of the algorithms the number of “swap-s” (number of iteration until no more changes in 

centroids – and point assignments – is achieved) and computational time for convergence have been 

recorded besides five clustering validity indices. The table contains the results only for the optimal 

cluster numbers known in advance from the labelled datasets (see Table 1). 

From Table 2 it can be seen that the computational time for the k-MFVs algorithm is much higher, 

however it cannot be directly compared, since it highly depends on the implementation of the applied 

built-in functions. Therefore, the relative increase of the time required has been inspected as a function 

of dataset size and cluster numbers. According to the results it is not straightforward to expect a time 

increment with increasing sample size, rather the number of elements in each cluster plays an essential 

role. For the Ecoli, which was the second largest investigated dataset we gained an order of magnitude 

smaller computational times as in case of the Breast Cancer, while the k-Means and k-Medians 

performed in the same order of magnitude, albeit these required somewhat better run times as well. The 

latter data had only two relatively large clusters, while the former four clusters out of which three was 
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relatively small in cardinality. Therefore, k-MFVs is expected to serve more cost-efficient result in case 

of large data sets with more clusters. 

The calculation of the MFV values according to Eq. 1 and Eq. 2 are rather time consuming. 

Throughout our investigations the implementation was done in Python 3.7.13 within an Anaconda 

framework (Anaconda 2-2.4.0., 2016), where the exit criterion from the iterative procedure was 

established in Δ𝜖𝑚𝑎𝑥 < 10−5 for the dihesion values in two subsequent iterations. This is relatively 

strict and its necessity might be data dependent, therefore could be loosen up in order to gain significant 

time reduction for the k-MFVs algorithm at the same clustering accuracy. For different convergence 

trajectories of the MFV iterative algorithm in case of the Long Jump data set see Fig. 3. 

The number of centroid swap-s and data reassignments to the groups (𝑁𝑠𝑤𝑎𝑝) did not showed 

significant variance in case of the algorithms. In case of the Wine dataset the k-Medians required more 

swaps than the others, however in general the k-MFVs resulted in swap numbers between the swap 

numbers of the k-Means and k-Medians. The k-Medians and k-MFVs needed approximately the same 

number of swaps for higher cluster numbers (𝑛 = 5, 6, 7), nonetheless k-Medians performed 

outstandingly in this aspect for the Ecoli at these cluster number choices. For instance, for 𝑛 = 7 (that 

is far from the optimal clustering setting) the k-Medians required only 5 swap-s, while the k-MFVs 28 

and the k-Means 30. 

In higher dimensions data are hard to visualise and cluster validity indexes can be used to rely on in 

order to control the resistance and robustness of the applied procedure in case of specific data. By the 

investigation of these indexes different methods can be compared and/or optimal cluster numbers can 

be sought. 

Nevertheless, literature draws attention to the possible dependence of such metrics on the selected 

clustering algorithms, since noises and outliers might influence them even in cases when their presence 

does not result significantly different groups (Wu et al., 2009). As a non-sensitive validity index to 

clustering algorithms the 𝑆𝑑𝑏𝑤 metric has been selected that has to be minimized in order to gain an 

optimal grouping (Liu et al., 2010; Halkidi et al., 2001). 

Whereas the labelling information was also given for all the datasets, Silhouette (SC)-, Davis-

Bouldin-indices (DBI) were also calculated besides Adjusted Mutual Information (AMI) (Drias et al., 

2016; Pérez-Ortega et al., 2017) and Rand indices (R) (Olukanmi et al., 2020; Pérez-Ortega et al., 2017; 

Pratap et al., 2011; Cerioli et al., 2018) to compare the resulted groups with the known labels. The SC- 

(Shamsuddin et al., 2019), AMI- and R indices had to be maximized while the 𝑆𝑑𝑏𝑤- and DBI (Aryuni 

et al., 2018) metrics had to be minimized in the function of cluster numbers (see Table 2). Nevertheless, 

k-Medians and k-MFVs performed slightly better in all of the investigated cases at most of the parameter 

settings, k-Means was able to serve with better results in case of Ecoli and Breast Cancer datasets in 

terms of DBI or SC, however the differences could only be measured in the third digit. 
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Figure 3. Typical trajectories of the “Most Frequent Value” and  

“dihesion” towards convergent state in arbitrary cases. 
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Table 2. Validity indices, main performance metrics and resulted cluster distributions  

for different location parameter choices and tuning parameter setting (noteworthy results  

per row indicated by bold) 

 Mean Median 
MFV  

(k = 1) 

MFV  

(k = 2) 

MFV  

(k = 3) 

MFV  

(k = 4) 

 “Long Jump” dataset (𝑛𝑐𝑙𝑢𝑠𝑡 = 2) 

𝑁𝑠𝑤𝑎𝑝  4 4 4 4 4 4 

t(s)  0.0010 0.0020 0.0479 0.0568 0.0479 0.0409 

R  0.6225 0.6225 0.6225 0.6225 0.6225 0.6225 

𝑆𝑑𝑏𝑤  0.6511 0.6511 0.6511 0.6511 0.6511 0.6511 

AMI  0.5087 0.5087 0.5087 0.5087 0.5087 0.5087 

SC  0.6645 0.6645 0.6645 0.6644 0.6644 0.6644 

DBI  0.4754 0.4754 0.4754 0.4754 0.4754 0.4754 

Clusters  33-25 33-25 33-25 33-25 33-25 33-25 

 “Iris” dataset (𝑛𝑐𝑙𝑢𝑠𝑡 = 3) 

𝑁𝑠𝑤𝑎𝑝  6 6 6 6 6 6 

t(s)  0.0030 0.0040 0.6207 0.5513 0.6477 0.5505 

R  0.7302 0.7439 0.7437 0.7304 0.7302 0.7302 

𝑆𝑑𝑏𝑤  0.3356 0.3373 0.3373 0.3356 0.3356 0.3356 

AMI  0.7551 0.7631 0.7631 0.7551 0.7551 0.7551 

SC  0.5526 0.5509 0.5509 0.5526 0.5551 0.5526 

DBI  0.6623 0.6662 0.6662 0.6623 0.6623 0.6623 

Clusters  50-62-38 50-61-39 50-61-39 50-62-38 50-62-38 50-62-38 

 “Wine” dataset (𝑛𝑐𝑙𝑢𝑠𝑡 = 3) 

𝑁𝑠𝑤𝑎𝑝  13 19 12 11 11 12 

t(s)  0.0070 0.0119 6.0123 4.4153 4.0440 4.5023 

R  0.3518 0.3715 0.3389 0.3415 0.3415 0.3415 

𝑆𝑑𝑏𝑤  0.4092 0.3746 0.4134 0.4139 0.4139 0.4139 

AMI  0.4168 0.4131 0.4068 0.4093 0.4093 0.4093 

SC  0.5596 0.5708 0.5479 0.5447 0.5447 0.5447 

DBI  0.5496 0.5317 0.5531 0.5541 0.5447 0.5541 

Clusters  49-27-102 62-48-68 48-30-100 47-31-100 47-31-100 47-31-100 

 “Ecoli” dataset (𝑛𝑐𝑙𝑢𝑠𝑡 = 4) 

𝑁𝑠𝑤𝑎𝑝  7 7 7 8 6 6 

t(s)  0.0049 0.0070 1.7726 1.9345 1.4765 1.4944 

R  0.6847 0.6861 0.7541 0.6764 0.7619 0.7619 

𝑆𝑑𝑏𝑤  0.6607 0.6607 0.6608 0.6608 0.6607 0.6606 

AMI  0.6416 0.6483 0.6765 0.6353 0.6836 0.6836 

SC  0.4221 0.4210 0.4210 0.4210 0.4206 0.4226 

DBI  0.9403 0.9428 0.9423 0.9423 0.9403 0.9403 

Clusters  149-104-

75-8 
149-103-

76-8 
148-104-

76-8 
148-104-

76-8 
149-104-

75-8 
149-104-

75-8 

 



Tolner, F., Fegyverneki, S., Barta, B., Eigner, Gy. Robust clustering based on the most frequent value method 

150 

 Mean Median 
MFV  

(k = 1) 

MFV  

(k = 2) 

MFV  

(k = 3) 

MFV  

(k = 4) 

 ”Breast Cancer” dataset (𝑛𝑐𝑙𝑢𝑠𝑡 = 2) 

𝑁𝑠𝑤𝑎𝑝  10 6 6 8 8 7 

t(s)  0.0076 0.0050 16.6334 20.1386 20.2572 17.2017 

R  0.4914 0.5338 0.5286 0.5338 0.5124 0.5019 

𝑆𝑑𝑏𝑤  0.7912 0.7857 0.7854 0.7857 0.7881 0.7895 

AMI  0.4640 0.4973 0.4839 0.4973 0.4805 0.4722 

SC  0.6973 0.6921 0.6911 0.6921 0.6952 0.6965 

DBI  0.5044 0.5139 0.5154 0.5139 0.5087 0.5064 

Clusters  438-131 430-139 429-140 430-139 434-135 436-133 

 

The calculated validity indices showed a rather uniform layout for the different cases. This might 

indicate that the chosen data are not perfectly suitable for spherical partitioning approaches. The 

emerged cluster sample sizes further support this statement. For the previously known optimal cluster 

numbers the sample size distribution resulted to be approximately the same for the Long Jump, Iris and 

Ecoli datasets. In case of Wine data k-Medians led to a more similar cluster distribution to the known 

one in alignment with the better validity indices. For the Breast Cancer data k-Medians and k-MFVs 

with 𝑘 = 2 selection provided the same accuracy. 

5. Conclusions, future work 

In the present study a clustering algorithm based on Lloyd’s algorithm has been investigated in case of 

real-life data. As cluster centroids the Most Frequent Value was selected that is a robust and outlier 

resistant location parameter of a data distribution. Albeit the current results showed a significant increase 

in run-time requirement compared to k-Means and k-Medians the gained accuracy measured by various 

metrics can be considered as encouraging. 

The motivation for the robustified crisp-type algorithm creation was to further enrich the selection 

of robust clustering methods with an alternative that do not expel any data point by judging it an outlier. 

This is of paramount importance with regard of our future research where economic data is to be 

investigated by breaking it down into smaller chunks via clustering. In such cases every data point 

represents valuable information and by neglecting them the variability of the data would be distorted 

and the derived results biased. 

As a future work we would like to decrease the runtime of the algorithm and perform further 

comparative studies on artificial- and real-life data where multidimensional data distributions with high 

skewness are present and – according to our expectations – the k-MFVs might score better. Similarly to 

the outlined comparative study with the k-Medians algorithm we would like to use the resulted dihesion 

values for calculating robust group-wise Mahalanobis distances and consider ellipsoid-shaped clusters. 
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