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Abstract 

It is evident that tyre pressure has an important impact on driving safety, fuel consumption and driving 

dynamics. Both direct and indirect tyre pressure monitoring systems have evolved recently, but the direct 

systems are far more expensive. The most advanced version of the indirect system is based on the 

eigenfrequency analysis of the angular velocity of the wheels, therefore the understanding of the tyre 

vibration is an important issue. In this paper we develop a simulation methodology to study the pressure-

dependent tyre vibration behaviour. The aim is to better understand the tyre-rim-axle vibration system, 

with particular emphasis on the torsional vibration modes of the wheel. The focus is on the pressure-

dependent correlation between the natural frequency and amplitude of the wheel vibration and the 

angular velocity and the longitudinal acceleration of the rim. Thus, we describe the oscillatory 

behaviour relevant for indirect tyre pressure monitoring systems on a theoretical level. 

Keywords: indirect tyre pressure monitoring systems, tyre models, torsional vibrations of the tyre, 

vehicle dynamics 

1. Introduction 

Several previous studies have shown that tyre pressure is a critical factor for vehicle safety, performance 

and fuel consumption. It has been estimated that compliance with recommended tyre pressures can re-

duce CO2 emissions and fuel consumption by an average of about 2.5% (Kubba and Jiang, 2014), and 

that the introduction of Tyre Pressure Monitoring Systems (TPMS) in the EU Member States alone 

could reduce CO2 emissions by 9.6 million tonnes per year. Moreover, maintaining adequate tyre 

pressure is essential to ensure optimal driving conditions and reduce the risk of accidents (Reiter and 

Wagner, 2010). Under-inflated tyres can result in reduced grip and handling, increased braking distances 

and increased tyre wear. Overinflated tyres can lead to harsher driving, reduced traction and increased 

tyre wear in the centre of the tread. It is therefore essential that drivers regularly check tyre pressures 

and keep them at the recommended level for their vehicle. Most drivers neglect to check tyre pressure 

regularly, therefore the TPMS is necessary, which send a warning signal when necessary. 

In general, tyre monitoring systems focus on the measurement of the inflation pressure. Tyre inflation 

pressure can be monitored either conventionally using air pressure sensors, this is the direct TPMS, or 

by non-traditional methods using other parameters, this is the indirect TPMS, such as individual 

measurement of tyre angular velocity and comparison them. Direct TPMS can be battery-powered, an 
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active system, which is typical of the vast majority of TPMS products on the market, or remote-

controlled, a passive system, where the system receives the required power wirelessly, for example by 

means of an electromagnetic field. A wide range of different direct TPMS types is described by Kubba 

and Jiang (Kubba and Jiang, 2014). In spite of the fact that many technical issues related to direct TPMS 

have been solved recently (such as the problems of interference and power supply), these systems have 

a significant installation disadvantage, as they require a complex wiring network for both power supply 

and readout, therefore these systems are expensive, complex, and require regular maintenance. 

Indirect tyre pressure monitoring systems are an alternative to direct TPMS, which measure the tyre 

pressure indirectly, but at the cost of accuracy and detection time. The accuracy of the indirect TPMS 

methods are discussed widely in the literature, see e.g. (Adnan, 2019). A compromise solution can be a 

hybrid TPMS, i.e. a combination of direct and indirect TPMS using fewer tyre pressure sensors. In the 

latter, only two diagonally spaced tyres are fitted with both direct and indirect TPMS (Formentin et al., 

2021). However, the best price solution is a pure indirect TPMS system, because it uses the speed signals 

from the anti-lock braking system (ABS) for the estimation of the tyre pressure, therefore there is no 

additional hardware requirements. Furthermore, indirect TPMS is a low-maintenance, and easy-to-

implement system that estimates the tyre pressure using various parameters that are related to the tyre 

pressure. 

The two most important phenomena that depend on wheel pressure during pressure loss are the 

change in rolling radius and the natural frequency of angular velocity vibrations. During pressure loss 

in the wheel, the rolling radius of a tyre will change along with its pressure, which will further result in 

changes in the angular velocity of the wheel. Thus, the low tyre pressure can be monitored by measuring 

and comparing the angular velocity of the wheels. This method works effectively except when all of the 

tyres of a car are deflated to the same pressure, which means the sizes of tyres are almost equal and the 

difference between tyre radiuses cannot be observed. 

The most easily exploited phenomenon is the shift in the natural frequency of the angular velocity of 

the wheels. The angular velocity signal provides information about tyre torsional vibration. The 

vibrations of the tyre are generally excited by road irregularities, brake torque fluctuations, axle height 

oscillations, and tyre non-uniformities. The natural frequency of tyre torsional vibration depends on tyre 

pressure. Currently, the most accurate methods use the Fourier transform and the pressure-dependent 

natural frequency is obtained using the center of gravity or other methods. 

These pressure-dependent properties of tyres mentioned above are not only influenced by the tyre 

pressure. In particular, the natural frequency of tyres can be influenced by the tyre structure, tyre 

composition, axle elastic kinematics, etc. Recently, in the development of the indirect TPMS, these 

influencing factors are determined by various tests and therefore vehicle testing plays an important role 

in the implementation of the indirect TPMS. In order to reduce testing efforts and to predict the 

performance of the TPMS, different simulation methods can be used to replace vehicle testing and to 

investigate influencing factors early in the whole vehicle development process. If vehicle testing can be 

replaced by simulation or rig testing, the costs of developing the indirect TPMS can be significantly 

reduced. Moreover, simulation and rig testing can be performed at an early stage of the development 

process when the available prototype vehicles are limited.  

For the virtual development of indirect TPMS, before running virtual tests, it is necessary to clarify 

which tyre model is suitable for virtual tests and what factors influence the vibration behaviour of the 

tyre. All the model used can be categorized in three main types. 

1. The first category consists of models that describe the behavior of a tyre without a physical basis. 

Examples include all versions of Magic Formula, TMeasy, TameTyre, MF-Swift, etc. (Hirschberg 



Gurin, P., Varga, Sz.  Wheel Vibration Analysis for indirect TPMS Systems 

156 

et al., 2007; Durand-Gasselin et al., 2010; Pacejka, 2012). These models provide an empirical or 

mathematical description of the observed properties of tyres, some of which may contain physical 

relationships to certain properties, for instance, their dependence on temperature. (The TameTyre 

model lies between category 1 and 2 as it presents a significant amount of physical modeling in 

the low frequency range.) 

2. The next category comprises models that model the tyre based on physical relationships, although 

these models commonly contain many simplifying assumptions. Examples include first of all the 

rigid ring tyre model (Zegelaar, 1998; Sivaramakrishnan et al., 2015), then Ftyre (Gipser, 2016; 

Pacejka, 2012), various versions of CDTyre (Gallrein et al., 2013), and various versions of 

RMOD-K (Oertel and Wei, 2012). These models use simplification, idealization and 

discretization, but are still physically consistent models based on the mechanical, thermodynamic 

and tribological properties of a real tyre. 

3. Finally, there is the class of nonlinear finite element models of elasticity. These models are similar 

to those in the previous category, but are distinguished by four critical features: a lower level of 

simplification and idealisation of the mechanical structure, longer computation times, the use of 

multi-purpose FE software, and parameterisation based on initial design and material data rather 

than tyre tests. 

When using simplified models, the small number of parameters in the equations of motion is an 

obvious advantage over other complex models. This can improve the understanding of tyre vibration 

behaviour and the investigation of how vibration behaviour is related to certain tyre design parameters. 

However, a complex model, such as a multi-body model, obviously cannot be fully substituted by a 

simplified model. A complex model can better describe certain dynamic properties, such as dynamic 

stiffness and nonlinearity of the elastic elements. Parameterization and validation are two important and 

non-trivial parts of a reliable model. For this reason, simulation results must be compared with data from 

the test rig and vehicle tests. 

Virtual development is usually divided into three levels: component level, subsystem level and full 

vehicle level. In this paper we neglect the third one, and focus on the first two level. We will refer to 

them as the “component” model and the “subsystem” model. In this frame, a simulation methodology 

is developed here to simulate the pressure-dependent tyre vibration behaviour. The aim is to better 

understand the wheel-tyre-axle vibration system, with a focus on the longitudinal torsional vibration 

modes of the wheel. Emphasis will be placed on the pressure-dependent relationship between the 

longitudinal force on the tyre and the angular velocity of the wheel, and on the interaction between the 

elastokinematics of the tyre and the elastokinematics of the wheel suspension. Thus the behaviour of 

vibrations relevant for indirect tyre pressure control systems is described at a theoretical level. Based on 

the findings in the literature from the test rig measurements and road tests, the first part of the paper 

(Section 2) deals with the modelling of the tyre as a component, and the modelling of the interaction of 

the tyre component with the elastokinematics of the wheel suspension. In the second part of the paper 

(Section 3), the parameterization of the models are presented. The third part presents or results related 

to the models. Firstly (Section 3) the characteristics of the models are discussed based on the magnitude 

and phase of their eigenvectors, respectively. In addition, the natural frequencies of the models are 

analysed as a function of tyre pressure. Then (Section 4) we present the calculation results of the wheel 

angular velocity as well as the longitudinal acceleration of the rim under a single obstacle excitation. 

Finally, the results are summarised, in line with the objective of defining a tyre evaluation methodology 

for the indirect tyre pressure monitoring systems. 
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2. Tyre models 

A component level model of the longitudinal torsional oscillations of the tyre must include the longitu-

dinal forces in addition to the rim rotation. Despite the fact that the tyre is a flexible body, it has been 

shown in the literature (Zegelaar, 1998; Sivaramakrishnan et al., 2015) that the appropriate behaviour 

can be realised with a model in which the tyre belt is represented as a rigid ring. This is the so-called 

rigid ring tyre model, which was proposed firstly in the late 1990s (Zegelaar, 1998) Despite the fact that 

it is a relatively old publication, it is still considered as a landmark work in the field, it is also the starting 

point for our work. The rigid ring tyre model is a simplified mathematical representation of the tyre 

which assumes that the tyre moves as a rigid body relative to the rim. In other words, the model includes 

only those modes of vibration in which the tyre itself remains rigid and circular. According to the lite-

rature, this approximation is suitable to describe vibration modes below 100 Hz (Zegelaar, 1998), which 

is the most important range for indirect TPMS systems. The tyre belt is connected to the rim by springs 

and dampers in radial and torsional directions. This is the simplest model that fall into category 2 ment-

ioned in the Introduction. In this work, we use a similar approach to develop the “component” model, 

whose structure is shown in Figure 1.  

The rim has only one rotational degree of freedom, r , with an associated moment of inertia r . 

Thus, the „component” model corresponds to the situation on the tyre test rig with the wheel 

kinematically fixed in the vertical direction. The tyre belt is modelled as a rigid ring and has a 

translational degree of freedom bx  as well as a rotational degree of freedom b . Accordingly, the belt 

as a rigid ring has a mass bm  and a moment of inertia b . In the longitudinal direction, the ring is 

coupled to the rim via a stiffness xk  and a damping xd , which symbolize the sidewall stiffness as well 

as the damping characteristics of the tyre in the longitudinal direction. Furthermore, the coupling to the 

rim in circumferential direction is done via a rotational stiffness k  and a damping d , which represent 

the torsional characteristic of the tyre sidewall. An advantage of the rigid ring model is that the sidewall 

flexibility is directly represented by the degrees of freedom of the tyre belt, bx  and b . With the model 

approach of a rigid ring, in principle only those tyre modes can be simulated, which can be 

approximately considered as rigid-body modes, i.e. without deformation of the ring itself. The 

simulation of higher-frequency tyre modes, in which the tyre belt itself deforms, is not possible with this 

model approach, since the belt must then be modelled as a flexible element.  
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Figure 1. The „component” model 
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As we discuss in detail in the next paragraph, the dynamic transmission behaviour between the tyre 

and the contact surface under transient slip and wheel load changes can be described by a longitudinal 

force 
s s xF k s , where the coupling constant 

sk is the slip stiffness, and 
xs is the slip, which is a degree 

of freedom to describe all kinematic information about the relative position of the tyre and the contact 

surface. Thus, the degrees of freedom of our partial model (that we call “component” model) consists 

of the rotation of the rim r , the translation bx  and the rotation b  of the belt, and finally the slip xs  

according to the contact model mentioned above. According to the Newton’s law for rigid bodies, the 

equations of free motion of the rim and the belt in the absence of external excitations can be written as 

follows, 
 ( ) ( )

( ) ( )

.

r r r b r b

b b b r b r s x dyn

b b x b x b s x

k d

k d k s r

m x k x d x k s

 

 
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    

     

      

   

 (1) 

According to Zegelaar (Zegelaar, 1998), who is the founding father of the rigid ring tyre model, the 

dynamic behaviour of the tyre-surface interaction can be described by a contact model which is 

represented by a first-order linear system. The time constant of the first order system corresponds to the 

ratio of relaxation length and translational velocity, / xv , and the amplification factor corresponds to 

the ratio of slip stiffness and translational velocity, /s xk v . Here the relaxation length   is the distance 

travelled after a sudden change in the input variable until 63% of the steady-state final value is reached. 

The translational velocity, or rolling speed, 
xv , is related to the angular velocity of the wheel,  ,  

 
x dynv r   (2) 

where dynr  is the dynamic rolling radius which is a constant. The slip velocity, sv , is given by the diffe-

rence between the translational velocity of the ring and its circumferential velocity according to the 

following equation, 
 ( ).s b dyn bv x r     (3) 

Actually, sv  is the velocity of the tyre in the contact zone, and it is the system input of the contact model. 

By definition, the slip velocity is positive and the slip is negative if the translational velocity of the ring 

is greater than its circumferential velocity. The other variables in the contact model definition are the 

tread stiffness tk  and the tread damping td  (for variables see Fig. 1). Using these variables the dynamic 

equation for describing the slip according to the above described contact model is given by the following 

equation, 
 

.t t
x x x x s s

t t

d d
v s v s v v

k k

 

     
 

 (4) 

An advantage of the formulation of the contact model according to equation (4) is that the slip 

definition is not directly included. Zegelaar has also shown that the first-order system for longitudinal 

slip xs  according to equation (4), taking into account the flexibility of the wall, is best suited for 

implementation in the tyre model (in terms of slip and wheel load variation and numerical stability). 

Thus finally, the equations of motion describing the free oscillations of the model, taking into account 

also the contact model, are given by equations (1) and (4). To study the natural frequencies and the 
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corresponding oscillation modes of the system it is convenient to write these equations of motion as a 

system of first order linear differential equations as follows,  

 .c c c cA B    (5) 

Here, c  denotes the state vector containing the state variables of the “component” model,  

  , , , , , , ,c r b b x r b bx s x    
T  (6) 

 

 and the definitions of the cA and cB  matrices are obvious based on the equations of motion (1) and (4), 

furthermore substituting the definition of sv  from equation (3) into equation (4): 
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and 
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 (9) 

Furthermore, for performing time step simulations with arbitrary excitation characteristics an extra 

term must be added to the right hand side of equation (5), c , which describe the excitation. The 

definition of the excitation in the simulation of a vehicle rolling over a single cleat is discussed in more 

detail in the Subsection 5.1. 

As mentioned above, the second partial model, that we call “subsystem” model, is developed to 

analyse the interaction between the tyre as a component and the elastokinematics of the wheel 

suspension on a general, fundamental level. Fig. 2 shows the structure of the “subsystem” model. It can 

be seen that the basic model structure is identical to the “component” model. In the “subsystem” model, 

the ring (belt) also has a translational degree of freedom bx  (in the longitudinal direction) and a rotational 

degree of freedom b , and it is coupled to the rim and to the ground.  
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The contact model is also the same as in the case of the “component” model. The difference lies in 

an additional degree of freedom rx  of the rim in longitudinal direction, which is coupled to the fixed 

environment described by a stiffness ak  and the damping ad . This additional degree of freedom 

symbolizes the generalized translational longitudinal elasticity of the front axle suspension. 

Consequently, a mass am  is also defined, which represents the oscillatory mass of the wheel suspension. 

The model structure corresponds (neglecting the vertical direction) in the broadest sense to the situation 

on the wheel-axle test rig and, neglecting the vehicle body mass, to the situation in the road test. In the 

case of the rear axle, the elastically mounted subframe must be taken into account. The neglecting of the 

vehicle body mass is permissible because the vehicle body mass is significantly higher than the 

oscillating masses considered here. 

Thus, the degrees of freedom of the “subsystem” model consists of the translation rx  and the rotation 

r  of the rim, the translation bx  and the rotation b  of the belt as well as the slip xs  according to the 

contact model. The linear equations of motion of the model which describe the free oscillations are given 

by equations (4) and (10): 
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Analogous to the „component” model, the equations of motion of the „subsystem” model can be 

written as a system of first order linear differential equations, 

 .s s s sA B    (11) 

Certainly, due to axle elasticity the state vector 
s  is extended by the additional state variables, the 

translational position of the rim, 
rx , and translational velocity of the rim, 
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Figure 2. The “subsystem” model 
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This also changes the definition of the matrices 
sA  and 

sB  in a straightforward way since the derivation 

of these matrices is based on the equations of motion. 

3. Parameterization of the models 

Both simulation models are designed as linear models. However, this does not agree with the real 

physical system, since in principle all parameters occur nonlinearly. As an example, the generalized axle 

stiffness and axle damping of the front axle shall be given. It is significantly influenced by the 

characteristics of the bearings, whose stiffness and damping are frequency-dependent and therefore 

represent nonlinear force elements. Based on measurements published in the literature (see e.g. Pfeffer 

and Hofer, 2002), Figure 3 shows the typical behaviour of the normalized dynamic stiffness and the 

normalized damping angle (sometimes called loss angle) of the bearing as a function of frequency. It 

can be seen that the damping maximum of the bearing is designed for the range of the axis longitudinal 

natural frequency at about 13-15 Hz in order to damp this natural vibration for comfort reasons. In the 

range of the torsional longitudinal tyre vibration (30-40 Hz) the damping angle is approx. 50% lower. 

Due to their design, the dynamic stiffness increases sharply in the region of the damping maximum. This 

means that the dynamic stiffness in the area of the axis natural frequency is only around one third of the 

stiffness in the area of the torsional longitudinal tyre vibration. 

 

For the parameterization of the linear models, this results in the fact that the representation of the 

generalized longitudinal stiffness of the axle with a linear stiffness and a linear damper is actually not 

possible. One possible solution to this problem is to represent the frequency-dependent stiffness and 

damping of elastomeric or hydromounts with suitable mechanical substitute models. Approaches for the 

representation of conventional elastomeric bearings as well as of hydromounts are presented by Pfeffer 

and Hofer (Pfeffer and Hofer, 2002), among others. For the derivation of principle statements 

Figure 3. Typical behaviour of the normalized dynamic stiffness (red line) 

and the normalized damping angle (blue line) of the bearing as a function  

of frequency 
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concerning the interaction between the tyre and the chassis elasticity, the consideration of a constant 

stiffness or a constant damping is sufficient in this work. Using the above example of longitudinal axle 

elasticity, it becomes clear that the real parameters of the simulation models are partly subject to 

strong nonlinearities, which leads to simulation results that are not valid for the whole working range 

of the tyre, but only in the vicinity of a certain working point. However, in Subsection 5.2 we examine 

the effect of axle elasticity on our results, and we find that the results are robust against the changing 

of this parameter.  

Table 1 contains the complete set of parameters of both models with symbol and unit for three 

different tyre pressures “Pressure 1”, “Pressure 2” and “Pressure 3”, where the first one represents the 

highest and the last the lowest tyre pressure.  

Table 1. Parameter set of the models for the simulations 

symbol parameter (unit) Pressure 1 Pressure 2 Pressure 3 

bm  mass of the vibrating tyre belt (kg) 7.1 6.9 6.7 

b  moment of inertia of the vib. tyre belt 

(kg/m2) 
0.69 0.67 0.65 

am  mass of the oscillating axle (kg) 35 35 35 

r  moment of inertia of the rim (kg/m2) 0.68 0.68 0.68 

xk  longitudinal tyre stiffness (N/m) 61.5 10  61.4 10  61.3 10  

k  tyre torsional stiffness (Nm/rad) 378 10  374 10  370 10  

tk  tread stiffness (N/m) 61.55 10  61.6 10  61.65 10  

sk  slip stiffness (N) 3185 10  3190 10  3195 10  

ak  axle longitudinal stiffness (N/m) 3350 10  3350 10  3350 10  

xd  longitudinal tyre damping (Ns/m) 290 260 230 

d  torsional tyre damping (Nm s/rad) 13 12 11 

td  tread damping (Ns/m) 180 220 260 

ad  axle longitudinal damping (Ns/m) 3500 3500 3500 

dynr  dynamic rolling radius (m) 0.35 0.345 0.34 

  
relaxation length (m) 0.09 0.95 0.1 

xv  rolling speed (m/s) 10 10 10 
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Only qualitative information is introduced for the tyre pressures, since the parameterization is not 

based on the behavior of a specific tyre at well-defined tyre pressures. The concrete parameter values 

are partly based on measurements (such as weight, mass inertias and cleat test measurements) and partly 

represent assumptions. The choice of parameter values was based mainly on the works of Schmeitz 

(Schmeitz, 2004; Schmeitz et al., 2005). 

The mass parameters bm  and b  of the tyre belt are defined with decreasing values as the tyre 

pressure decreases, because the reduced vertical stiffness increases the fixation of the tyre to the ground. 

This means that more of the tyre is bound to the contact patch and the vibrating part of the belt is reduced. 

In contrast, the mass parameters of the axle or rim am  and r  are not affected by the tyre pressure. The 

same moment of inertia is defined for the rim in both models. 

The longitudinal tyre stiffness xk  as well as the longitudinal tyre damping xd  are defined as 

decreasing with decreasing tyre pressure due to the decreasing tension of the tyre as a result of the lower 

compressed air content in the tyre. The same applies (in an identical manner) to the torsional tyre 

elasticity consisting of the stiffness k  and the damping d . The effective tread stiffness tk  and the 

tread damping td  depend significantly on the size of the contact patch, which increases with decreasing 

tyre pressure due to decreasing vertical stiffness (Doria and Taraborrelli, 2016). It follows that the 

effective tread stiffness and the corresponding damping increase with decreasing tyre pressure. 

Based on the results of Schmeitz et al. (Schmeitz et al., 2005), the longitudinal slip stiffness increases 

with decreasing tyre pressure and with increasing wheel load for a tested tyre in the dimension 225/55 

R16. The main reason for this is the extended contact patch. Therefore the slip stiffness sk  is defined in 

this work as increasing with decreasing tyre pressure. In correlation with the measurement results of the 

transverse dynamic relaxation length as a function of tyre pressure (Doria and Taraborrelli, 2016), the 

longitudinal relaxation length   increases with decreasing tyre pressure. In contrast, the generalized 

axial elasticity with stiffness ak  and damping ad  is constant over the tyre pressure. 

4. Free response characteristics of the models 

In this Section the description and discussion of the model characteristics of both models are given. The 

imaginary part of the eigenvalues of the matrices cA  and sA  gives the natural frequencies of the 

corresponding models. Table 2 shows the free response model characteristics of the “component” model 

on the basis of amplitude (absolute value) and phase of the complex eigenvectors in the parameterization 

for “Pressure 1”. In addition, the corresponding natural frequencies are also contained. 

 For the “component” model, three eigenvalues result from the three mass parameters. The first 

eigenmode corresponds to the torsional longitudinal tyre mode and has an associated natural frequency 

of 34.93 Hz. From the phase information it can be seen that for this mode of vibration the degrees of 

freedom r , bx  and b  are approximately in phase. The characteristics of this oscillation mode correlate 

with the results of Zegelaar (Zegelaar, 1998), who, among others, calls this oscillation mode “in-phase 

rotational mode”, in which tyre and rim oscillate in the same phase. From the magnitudes of the 

eigenvector components it can be seen that the rotational vibration amplitudes of the tyre belt are lower 

compared to that of rim. 

In contrast to the first eigenmode, the second eigenmode at 74.82 Hz is characterized by the antiphase 

of rim rotation and belt motion. A corresponding behaviour is also found in the literature (see e.g. 

Zegelaar, 1998). It is called “anti-phase rotational mode”, and identified as the second mode of vibration, 



Gurin, P., Varga, Sz.  Wheel Vibration Analysis for indirect TPMS Systems 

164 

in which the vibrations of rim and belt oscillate in antiphase. The magnitude information of the 

eigenvector components show that in this mode the amplitudes of the rim rotation are comparable to 

those of the belt rotation. 

  

Table 2. Relevant components of the eigenvectors and corresponding natural frequencies  

of the “component” model at “Pressure 1”. The eigenvectors are normalized in such a way  

that the largest component is 1 

natural 

frequency (Hz) 

r  b  bx  

Amplitude  Phase  Amplitude  Phase  Amplitude  Phase  

1 34.93f   1 93.32   0.58 96.63   0.13 89.09   

2 74.82f   1 92.44   0.93 88.35° 0.34 81.42° 

3 143.46f   0.16 92.04   1 86.37° 0.31 92.97   

 

The third eigenmode of the “component” model has a natural frequency of 143.46 Hz. From the 

phase information of the associated eigenvector it can be seen that this oscillatory mode is characterized 

by the opposite phase of translation and rotation of the belt. As in the second eigenmode, the rotation of 

the rim is in opposite phase compared to that of belt rotation. However, in contrast to the second 

oscillatory mode, the belt rotation occurs with higher amplitudes than the rim rotation. 

Based on the experimental results from the literature which are related to the situation on the tyre 

test rig with the wheel kinematically fixed in the vertical direction (see e.g. Zegelaar, 1998; Schmeitz, 

2004; Pacejka, 2012) we can say that the typical amplitude spectra of the wheel angular velocity (in the 

case of a single cleat excitation) has two eigenfrequencies in the frequency range up to 120 Hz. The first 

resonance point is the torsional longitudinal tyre mode with the already known pressure-dependent 

behaviour, typically in the range of 30-40 Hz. The second resonance frequency is in the range of 70-80 

Hz with identical pressure-dependent characteristics. These are good agreement with our results. 

However, in the literature, besides the data for the angular velocity spectrum, there are data for the 

amplitude spectra of the longitudinal tyre force, in which a third resonant frequency in the range of 

approx. 100 Hz can also be detected. A natural question arises about the origin of this belt vibration. 

The comparison with our results (see Table 2) shows no corresponding natural frequency. According to 

the selected model approach, however, rotational vibrations of the rim and vibrations of the belt always 

occur together with a defined coupling. Based on this, it can be concluded that the vibration mode in the 

range of 100 Hz represents a flexible belt mode, which cannot be represented by the model approach 

chosen here. Also Schmeitz determines a third peak at approx. 110 Hz (Schmeitz, 2004) beside the “in-

phase” mode at 35 Hz and the “anti-phase” mode at 80 Hz, which are both visible in the tyre longitudinal 

force and the wheel angular velocity. However, in his opinion, this frequency is attributed to the 

structural dynamics of the test rig. Zegelaar (Zegelaar, 1998) also determines, in addition to the “in-

phase” and the “anti-phase” mode, which are both visible in the tyre longitudinal force and the wheel 

angular velocity, a third oscillation which only occurs in the tyre longitudinal force. According to 

Zegelaar, this represents the first flexible belt mode, which has a higher natural oscillation frequency of 

90 Hz compared to the “anti-phase” mode. We agree with this opinion.  
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In analogy to the “component” model, the model characteristic of the “subsystem” model is also 

analysed. Table 3 shows absolute value and phase of the complex eigenvectors and the corresponding 

four natural frequencies at the highest tyre pressure (“Pressure 1”).  

Table 3. Relevant components of the eigenvectors and corresponding natural frequencies  

of the “subsystem” model at “Pressure 1”. The eigenvectors are normalized in such a way  

that the largest component is 1  

natural 

frequency 

(Hz) 

r  rx  b  bx  

Amp. Phase Amp. Phase Amp. Phase Amp. Phase 

1 11.77f   1 112.73   0.31 118.5   0.96 115.1   0.32 114.97   

2 41.54f   1 96.51   0.1 99.87° 0.42 111.72   0.05 118.83   

3 77.76f   0.91 95.16   0.074 86.56   1 87.08° 0.33 79.38° 

4 143.96f   0.16 92.21   0.018 96.67° 1 86.31° 0.32 92.79   

 

The first calculated natural mode at 11.77 Hz represents an in-phase oscillation of all four degrees of 

freedom. This means that the wheel angular velocity oscillate in phase with the translational motion of 

the masses coupled to the rim. This represents a very good correlation to the measurement results on the 

wheel-axle test rig, since the axle natural oscillation as the first identified oscillation also represents an 

in-phase oscillation of axle longitudinal motion and tyre longitudinal force (Zegelaar, 1998; Schmeitz, 

2004). From the magnitude it can be seen that both rotational degrees of freedoms as well as both 

translational degrees of freedoms occur with comparable amplitudes. 

In correlation to the measurement results on the wheel-axle test rig (Zegelaar, 1998; Schmeitz, 2004; 

Pacejka, 2012), the second natural oscillation corresponds to the torsional longitudinal tyre mode, which 

results at a frequency of 41.54 Hz. From the phase information it is clear that the interaction with the 

axle elasticity does not really affect the characteristics of the tyre vibration and that all three degrees of 

freedom of the tyre still oscillate almost in phase. It follows that there is a strong coupling between the 

longitudinal acceleration of the rim and the wheel angular velocity, which correlates with the 

measurement results. Changes in the conditions due to the loss of the pressure in the tyre, are therefore 

just as observable in the longitudinal acceleration of the rim as in the wheel angular velocity. The 

counter-phase of the translational motion of the rim in the torsional longitudinal vibration mode of the 

tyre is also consistent with the measurement results. On the other hand, the additional axle elasticity also 

results in a shift of the natural frequency of the torsional longitudinal tyre mode to higher frequencies 

in the model. From the absolute values of the eigenvector components it can be seen that the 

amplitudes of the translational motions are small and similar, but the amplitude of the rim rotation is 

higher compared to the tyre belt. The determined model characteristics, especially with respect to the 

phase relationship between tyre vibration and axle vibration, correlate with the results of Schmeitz 

(Schmeitz, 2004). 

The analysis of the third and fourth natural vibration shows a very high correlation to the second and 

third natural vibration of the “component” model with respect to the natural frequency and the amplitude 
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and phase of the degrees of freedom r , bx  and b . The main difference lies in the additional degree 

of freedom, rx , which occurs in both eigenmodes in antiphase to the translational belt motion, but has 

significantly lower amplitudes. It follows that the characteristics of the eigenmodes at the component 

level are not significantly affected by the interaction with the axial elasticity. Only the natural frequency 

of the torsional longitudinal tyre mode shifts slightly to higher frequencies, which, according to the 

literature, can also be observed in an identical way in the measurement data. 

5. Simulation of a single cleat crossing 

For the simulation of a single cleat crossing, time step simulations was performed with both models. In 

the following, the external excitation of the state space models for these simulation is discussed. Then 

the resulting amplitude spectra of the wheel angular velocity and the longitudinal acceleration of the rim 

are considered at the three different tyre pressures. Direct comparison is always made with the results 

of the measurements known from the literature. Subsequently, the variation of the axle elasticity is 

performed in order to determine the influence of the wheel suspension on the sensitivity of the tyre 

vibrations with respect to the pressure loss. 

5.1. Definition of the excitation 

As mentioned at the beginning, both models are simulated with an impact excitation by a single cleat. 

In principle, it is also possible to simulate a stochastic road excitation in addition to the deterministic 

excitation (Schmeitz, 2004). However, due to the linearity of the two models, in this work the analysis 

of the simulation results is limited to the deterministic excitation by a single cleat. In the studied case 

the velocity is 36xv   km/h (i.e. 10xv  m/s). 

Keeping the model conception of a rigid ring rolling over a single obstacle (cleat), two different 

torques as well as two forces can generally be identified during the obstacle crossing which realize the 

vibration excitation. Hiba! A hivatkozási forrás nem található. illustrates these forces and torques. 

When the ring hits the cleat, a vertical force zF  and a longitudinal force xF  occur simultaneously against 

the direction of motion. In addition, due to the effective lever arms xl  and zl , two torques about the y-

axis ( )xF

yM  as well as ( )zF

yM  occur according to equation (13) and equation (14).  

 
 ( )xF cleat

y x zM F l  (13) 

 ( )zF cleat

y z xM F l  (14) 

It becomes clear that, except for the vertical force zF , all three excitation variables change sign during 

the rolling over the cleat when the cleat passes through the tyre center plane. 

As we have mentioned, when simulating a single cleat crossing an extra term must be added to the 

right hand side of equation (5) and (11), c , which describe the excitation. From Hiba! A hivatkozási 

forrás nem található. it is clear that in the case of the „component” model, 

 
  ( )( )0 0 0 0 0 ( ) ( ) ( ) .xz FF cleat

c y y xM t M t F t   
T  (15) 
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The case of the “subsystem” model is straightforward.  

Since the tyre belt undergoes elastic deformation as it passes through the cleat, the rigid ring model 

approach is inherently limited in its ability to describe the excitation. Model-based approaches to 

describe the excitation by a single cleat in a rigid ring model approach are given by Zegelaar (Zegelaar, 

1998). Zegelaar presents that the time histories of the tyre forces can be well represented even during 

the excitation phase. However, the excitation stage is less relevant in the context of this work than the 

free oscillations after the excitation, therefore a detailed description of the excitation process is omitted, 

and in our work, for the time evolution of the longitudinal and vertical excitation forces we use the 

results of Schmeitz et al. (Schmeitz et al., 2005). 

Furthermore, the simplifying assumption is made that the excitation characteristic changes only as a 

function of speed, but are the same for all tyre pressures. However, from the excitation analysis 

according to the literature (Oertel and Wei, 2012), it follows that the excitation itself is also pressure-

dependent, since the effective length of the lever arm changes with the pressure. Thus, the pressure 

dependence of both models results exclusively from the pressure-dependent tyre characteristic itself. 

In the case of the “subsystem” model, besides the angular velocity, we calculate the longitudinal 

acceleration of the rim, which is also a measurable quantity. It is easy to compute it as the second to last 

(8th) component of the vector s , see equation (12), that is known from equation (11). 
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Figure 4. Excitation variables during a single cleat crossing 
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5.2. Simulation results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hiba! A hivatkozási forrás nem található. shows the amplitude spectra of the wheel angular velocity, 

which are obtained with a single cleat excitation at a speed of 36 km/h for the “component” model. As 

a result of the specific characteristics of the torsional longitudinal oscillation mode and the 

corresponding pressure-dependent parameterization, a reduction in the oscillation frequency and an 

increase in the oscillation amplitude are obtained with decreasing tyre pressure. It is in a complete 

correlation to the measurement results (Schmeitz, 2004; Pacejka, 2012), thus the behaviour observed in 

the measurement can be reproduced and understood within the framework of the simple theory to which 

our calculations refer. However, we should mention that compared to the measured data, the amplitudes 

are lower, which is partly due to the fact that the parameterization of the model is not optimized for the 

tyre used in the measurement. On the other hand, it must be taken into account that the amplitudes also 

deviate from the measured data as a result of the highly simplified excitation definition. 

Analogous to the „component” model, the simulation result of the “subsystem” model with a single 

cleat excitation at a speed of 36 km/h is shown in Figure 6. Based on the amplitude spectra of the wheel 

angular velocity and the longitudinal acceleration of the rim, it can be seen that the low-frequency 

vibration is hardly dependent on the tyre pressure as a result of axle elasticity. Only the vibration 

amplitudes show a very slight change with variation of the tyre pressure. 

In contrast, the torsional longitudinal tyre mode shows the familiar and, compared to the wheel-axle 

test rig, identical pressure-dependent behaviour. With decreasing tyre pressure, the vibration frequencies 

decrease in both wheel angular velocity and rim acceleration, while the vibration amplitudes increase.  

In a similar way like the simulation result of the “component” model, the “subsystem” model shows 

lower amplitudes compared with the measurement (on the wheel-axle test rig). For this the reasons are 

also similar: the parameterization, which is not optimized for the tyre used in the measurement, and the 

Figure 5. Amplitude spectrum of the wheel angular velocity of the 

“component” model for a single cleat excitation at 36 km/h 
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greatly simplified definition of the excitation. Overall, the “subsystem” model also shows a very good 

correlation with the measured data. 

It is important to note that our simulation results show that the anti-phase torsional vibration mode 

around 70-80 Hz has a very similar behaviour as the in-phase mode around 40 Hz. That is, the natural 

frequency of the oscillation decreases and the amplitude increases with the loss of pressure, and the 

magnitude of these effects is quite similar to that for the in-phase mode. However, in contrast to the 

“component” model, the resonance peak for the “subsystem” model is definitely higher than the peak 

associated with the in-phase mode. Furthermore, this is more pronounced in the longitudinal acceleration 

data. Therefore, based on our results, we can suggest that the inclusion of the anti-phase mode in indirect 

TPMS seems to be definitely advantageous. This is especially true when, in addition to the data from 

the wheel angular velocity sensor, acceleration data are also available and the measured data are 

processed in a unified manner within an integrated system. This is a key finding of our work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the “subsystem” model in the simulation we determined the effect of axle elasticity on the 

sensitivity of the resonance peak to pressure loss. For this purpose, the generalized axle stiffness ak  is 

reduced from the initial value ( ak  350 kN/m) to ak   200 kN/m and increased to ak   500 kN/m. 

With the new values for ak , the “subsystem” model is simulated with a single cleat excitation at a speed 

Figure 6. Amplitude spectrum of the wheel angular velocity (lower panel) 

and the longitudinal acceleration of the rim (upper panel)  

of the “component” model for a single cleat ecxitation at 36 km/h 
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of 36 km/h and then the resulting vibration frequencies as well as the vibration amplitudes of the 

torsional longitudinal tyre mode are analysed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The lower panel of Figure 7 compares the oscillation frequencies of the wheel angular rim 

acceleration with variation of the generalized axle stiffness ak . It can be seen that the shift of vibration 

frequencies are approximately proportionally to ak . In agreement with the measurements, the vibration 

frequencies increase with increasing axle stiffness. In the simulation, the vibration frequencies of the 

tyre longitudinal force and the wheel angular velocity increase by approx. 0.8 Hz with an increase in the 

axle stiffness from ak   200 kN/m to ak   500 kN/m, which corresponds to an increase of 150%. This 

shows that the sensitivity of the tyre properties with respect to a pressure loss is not significantly 

influenced by axle properties. Analogously, the upper panel of Figure 7 compares the oscillation 

amplitudes of the wheel angular velocity associated to the oscillation frequencies. This figure is 

important because the more pronounced the peak in the spectrum, the easier it is to detect the pressure 

loss. It can be seen that in the simulation, in correlation to the measurement (Pacejka, 2012), the 

Figure 7. Vibration frequencies (lower panel) and vibration amplitudes 

(upper panel) of the torsional longitudinal tire mode with variation  

of the axle stiffness 
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amplitudes decrease with increasing axle stiffness. However, in the case of the angular velocity, this 

effect is more pronounced compared to the measurement. Furthermore, it can be seen from the 

simulation results that the sensitivity with respect to the pressure-dependent amplitude variation slightly 

increases with decreasing axle stiffness. 

6. Summary 

We emphasize in this study that the important properties of the wheel vibrations in the frequency range 

that is important from the point of view of the indirect TPMS systems can be described sufficiently using 

a very simple minimal model based on the rigid ring tyre approximation. In order to better understand 

the pressure-dependent vibration behaviour of tyres, this phenomenon has been analysed by simulation 

to make some observations on the definition of the test procedure. For this purpose, the two simulation 

models “component” and „subsystem” are developed. Both models take into account the belt translation 

in longitudinal direction as well as the rotations around the transverse axis (y-axis) of belt and rim. In 

the “subsystem” model, the rim additionally has a translational degree of freedom with elastic coupling 

to the rigid environment to represent the interaction with the wheel suspension. The contact to the ground 

is realized in both models via a slip model according to the literature (Zegelaar, 1998). Based on the 

model characteristics (eigenfrequencies and eigenvectors) and time step simulations of the “component” 

model, the pressure dependence of the torsional longitudinal tyre mode is demonstrated. In this mode 

all degrees of freedom of the model oscillate in phase at 34.93 Hz (according to the “Pressure 1” 

parameterization). From the results it can be concluded that the effects of changing the conditions (such 

as tyre pressure variation) are equally observable in both the frequency and the amplitude of the 

resonance peak, which correlates with the measurement results on the test rigs and the road test. 

From the model characteristics of the “subsystem” model, the interaction of the tyre oscillations with 

the longitudinal stiffness of the wheel suspension is evident. The first calculated mode at 11.77 Hz is 

characterized by the in-phase oscillation of all degrees of freedom of the model (i.e. longitudinal axle 

motion and tyre degrees of freedom) and results from the elastic suspension of the rim-coupled-to-axle 

masses. At 41.54 Hz, the second mode, which corresponds to the in-phase longitudinal torsional tyre 

mode, occurs at a significantly higher frequency compared to the “component” model. The torsional 

longitudinal mode of the “subsystem” model is characterized by the phase equality of the tyre degrees 

of freedom. Thus, even under the influence of the chassis elasticity, the strong coupling between the 

longitudinal acceleration of the rim and the wheel angular velocity is a characteristic feature of the 

longitudinal torsional tyre mode, even if it occurs at higher oscillation frequencies. Therefore the data 

from the wheel angular velocity produced for the ABS system can be effectively completed by 

accelerometer data to detect the pressure loss. The calculated correlation between the tyre vibration 

behavior and the axle elasticity shows a very good agreement with the measurement results. 

The simulated single cleat crossings with the models show a high correlation to the measured data 

presented in the literature. The wheel angular velocity and the longitudinal acceleration of the rim are 

defined as output variables. We have found that the anti-phase mode of the torsional tyre vibrations 

shows a more pronounced peak together with the longitudinal acceleration data of the wheel, therefore 

it is important to take into consideration these frequencies in the indirect TPMS systems. 

The “subsystem” model is also used to analyse the variation in the sensitivity of the tyre vibration 

behaviour to the pressure loss as a function of the longitudinal elasticity of the front axle suspension. It 

is shown that when the axle stiffness is varied, the oscillation frequencies of the torsional longitudinal 

tyre mode shift approximately in propotion with it, as in the measurements. The sensitivity of the natural 
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frequency of the tyre vibration with respect to a pressure loss is thus not influenced. In contrast, the 

vibration amplitude increases with decreasing tyre pressure the lower the axle stiffness. This effect is 

weakly supported by the measurements. 

In summary, a tyre model with rigid ring as tyre belt is a suitable model approach to analyse both the 

correlation between tyre longitudinal acceleration or force and wheel angular velocity, and the 

interaction between tyre characteristics and axle elasticity. The tyre vibration behaviour relevant for the 

indirect tyre pressure monitoring systems can be reproduced with a very high correlation to the measured 

data using the selected model approach and the corresponding pressure-dependent parameterization. 
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