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Abstract  

Calculating the critical load that could lead to beam failure through buckling is a complex issue. This 

paper intends to analyze the stability of arches taking into account how the curvature, material 

properties, load positions and geometry affect the behavior. Unlike in many other articles, the impact 

of the bending moment on the membrane strain is also incorporated into the model. To derive the 

buckling equilibrium equation, the principle of virtual work is applied, and analytical solutions for the 

limit point buckling are provided. It is worth noting that the load location has a significant impact on 

the buckling load, and this relationship is strongly associated with the ratio of the arch length to the 

radius of the gyration of the structure. It is found that in the case of fixed arches, two stable equilibrium 

branches and one unstable branch can be observed when buckling is possible. When the load is 

positioned sufficiently far from the crown point, the load-carrying capacity of the structure improves.  
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1. Introduction  

Arches are common architectural features that are used commonly. They are employed to support a roof, 

bridge, or to span an opening. When arches are subjected to a compressive load, they may become 

unstable and experience a phenomenon known as buckling. Therefore, it is essential to consider the 

potential of the limit point buckling in arch design to ensure structural stability and safety (Timoshenko 

et al., 1961). In essence, the failure mode of buckling in arches refers to the arch collapsing inward along 

the plane of curvature. The issue of buckling has been the subject of extensive research and analysis in 

the past and present, and there exists a considerable body of work on this topic (Simitses, 1976), 

(Bradford et al., 2015), (Simitses et al., 2006). It is essential to understand the factors that contribute to 

buckling of arches, such as the material properties, and the geometrical features. By identifying these 

factors and incorporating them into the design process, engineers can create arches that are better 

equipped to resist buckling issue and ensure the safety and stability of the structure. Several studies have 

investigated the impact of a concentrated force at the crown point of arches (Bradford et al., 2015), 

(Gjelsvik et al., 1962), (Pi et al., 2008), (Pi et al., 2017). Researchers have also used a radial concentrated 

load in the vicinity of the crown as a substitute for a precisely located concentrated load. This approach 

is more practical to implement in experimental settings. By using radial concentrated loads in 

experiments, researchers can gain a better understanding of the behavior of arches under different 
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loading conditions to improve the design of arches in order to resist buckling and collapse. Some 

numerical studies, such as those conducted by (Yang et al., 1995), (Kuo et al., 1990), have discovered 

that the position of the radial load can have an impact on both nonlinear equilibrium and limit buckling 

load. The effect of an arbitrary load for fixed supports is addressed in (Kiss, 2020), however, the article 

fails to deliver an in-depth analysis about the topic. 

Overall, it can be concluded that the available literature lacks sufficient analysis regarding the 

nonlinear equilibrium and buckling of arches under asymmetrical loading conditions, including radial 

concentrated forces. Additionally, gaining knowledge about how load position affects the buckling load 

of fixed arches could prove to be highly beneficial in engineering applications. The present study focuses 

on examining the stability of fixed arches that have an I-shaped cross-section and are subjected to radial 

concentrated load. To derive the governing pre-buckling equilibrium equation, the principle of virtual 

work is employed, and special attention is paid to accounting for the effect of the bending moment on 

the membrane strain. 

2. Mechanical model  

We shall consider a fixed-fixed arch as it is shown in Figure 1. The cross-sectional coordinates are η, ζ 

and the axis ξ coincides with the circumferential direction. Axis η is a major principal axis of the arch. 

The length of the arch is S, the included angle is 2θ, the initial constant radius of curvature is R. 

Furthermore, φ and s are the angle and arc coordinates. The load is applied at a coordinate α = [0; θ]. If 

α = 0, it is a limit case with the load being at the symmetry axis of the arch. It is assumed that the 

behavior of the material is linearly elastic and isotropic. 

  
 

Figure 1. Arch geometry 

 

The membrane strain at an arbitrary point on the centroidal axis (ζ = 0) is given by (Szeidl et al., 2015):  
 

   

(1) 

 

 where u and w are the axial and radial displacements on the centroidal axis, respectively. The nonlinear 

term 0.5(dw/ds)2 accounts for the large rotations. The axial force N and the bending moment M can be 

represented as follows (Szeidl et al., 2015) using the Hooke law: 
 

    

(2) 
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with Ie being the moment of inertia about the major principal axis η and Ae being the E- weighted area 

of the cross-section: 

  
     (3) 

 

Using the virtual work principle, the pre-buckling equilibrium configuration can be established (Szeidl 

et al., 2015). For mathematical simplification we shall introduce W = w/R and U = u/R are dimensionless 

displacements. Fundamental equations (1)–(3) yield (Kiss, 2020) equilibrium equations 

  
 

  

    

(4) 
 

with d(…)/ds=(…)’ and  

  
 

  

    

(5) 

 

In which λ is the slenderness of the arch (Bradford et al., 2002) and r is the radius of gyration of the 

cross-section about its major principal axis η. 

The displacement and rotation are zero at the supports, whereas all fields are continuous, with the 

exception of the dimensionless shear force distribution, which displays a discontinuity of value Q at α: 

  
 

  

    

 

 

(6) 

 

where Q is the dimensionless load defined by Q=qR^2θ/2Ie. Thus, the membrane strain is constant and 

equal to its average as per Equation (4)1. Using the solution to Equation (4)2 and the constant membrane 

strain finding, it yields a nonlinear equilibrium equation which relates the dimensionless strain parameter 

μ and the dimensionless load Q as 

  
 

  

    

(7) 

 

Due to the shallowness, the impact of the axial displacement on the rotation can be disregarded (Pi et 

al., 2017). Based on the information provided above, closed-form calculations can be set up for the 

constants B1, B2 and B3, which are functions of α, θ, λ, μ. For more details, we advise the reader to refer 

to (Kiss, 2020). 

3. Results and Discussion 

In this section, we present some illustrative results to investigate the effect of load position and geometric 

properties on the stability of the fixed-fixed arch. The purpose of this study is to extend (Kiss, 2020) 

and gain detailed insights into the behavior of these structures when they are subjected to an arbitrary 

radial concentrated force. To simplify the analysis, it is assumed that the material used in the 
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construction of the arch is homogeneous. This means that the modulus of elasticity (E) and the Poisson 

ratio (ν) of the material remain constant throughout the entire arch. The values for these constants have 

been taken as E = 2.1e5 N/mm2 and ν = 0.3. Figure 1 provides a detailed representation of the 

geometrical data for the I-cross section. The section depth is denoted as h and has a value of 256 mm. 

The flange width is denoted as b1=b2 and has a value of 146 mm. The flange thickness is denoted as 

t1 = t2 and has a value of 10.9 mm. The web thickness is denoted as t3 and has a value of 6 mm. The 

quotient of the arch length S and the radius of gyration r = (I /A)0.5 is selected to have seven values: 50, 

75, 100, 150, 200, 250 and 300. 

In Figure 2, the dimensionless buckling loads are plotted against the semi-vertex angle for the 

selected S/r ratios with the assumption that the load is applied at the crown point (α = 0). It is discovered 

that the critical load increases as the S/r quotient increases and that the arches with a higher S/r ratio can 

carry greater loads.  

 

 

Figure 2. Critical loads of a fixed arch for different values of S/r 

 

 

This increase in the radius of curvature leads to a reduction in the bending moment within the arch, 

resulting in a higher load-carrying capacity. It is observed that when the semi-vertex angle 0.85 < θ and 

200 < S/r, the solutions of the critical load tend to be less independent of these parameters, which in 

turn leads to little or no difference in the critical load. It can be seen that when the load is applied 

vertically at the crown point, the curves shift to the left when S/r is increased, i.e., buckling may occur 

for smaller included angles. 

The impact of load position denoted by α/θ on the dimensionless buckling loads of the analyzed arch 

having S/r = 150 is presented in Figure 3. The results indicate that the effect of load location is 

considerably dependent on the semi-vertex angle θ. In the case of arches having θ = 0.2, the buckling 

load increases monotonically with α/θ. However, for arches with θ = 0.4 and θ = 1, the buckling load 

initially experiences a slight decline until α/θ = 0.15 and then increases. Meanwhile, the buckling load 

of the arches having θ = 0.6 and θ = 0.8 first decreases until α/θ = 0.16 and then increases. 
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Figure 3. Effect of load position α/θ on the buckling load of arches having S/r = 150 

 

In the case of arches with S/r = 150, it is investigated how the load position α can affect their behavior 

as is shown in Figure 4. Since one branch always starts from the origin (Q = 0, μ = 1), i.e., εm = 0. It is 

worth noting that the position of the load has a significant impact on determining the curve endpoints, 

which have different values on the vertical axis. This latter one is greater in terms of the dimensionless 

load if α is greater. It can be seen also that the intersection point for all curves has the same coordinate 

at μ = 10.54. The loop always becomes smaller with μ parameter when α increases. As a result, the load-

bearing capabilities of arches become even better when the load is placed elsewhere sufficiently far from 

the crown point. When the load position is changed from the crown position, the critical load decreases 

due to a small perturbation in the load position (α = 0.1θ) but after that, there is an increase. 

 

 

Figure 4. Dimensionless load in terms of a dimensionless strain parameter µ 

 



Messaoudi, A., Kiss, L. P.  Buckling of fixed curved beams 

83 

It is found that fixed-fixed arches are not sensitive to small imperfections in load position, unlike pinned-

pinned members (Kiss, 2019), i.e., the difference in buckling load of these is small due to a small 

perturbation in the load position around the crown point. 

The nonlinear behavior of an arch, when subjected to a given load position α/θ, is strongly influenced 

by its modified slenderness. The changes in the dimensionless crown point displacement Wc = W(φ = 0) 

as a function of the dimensionless radial concentrated load Q when the load position has a value of 

α/θ = 0.2 are illustrated in Figure 5. It is revealed that when the modified slenderness λ is greater than 

12.6, the arch exhibits distinct upper and lower limit points. However, at λ = 12.6, these limit points 

merge into a point of inflection. 

 

 

 

Figure 5. Arch with θ = 0.3 and α/θ = 0.2: dimensionless load against  

dimensionless crown point displacement 

 

 

For values of λ below 12.6, the arch does not display any typical buckling behavior. When there is no 

buckling, there is only one stable branch (see the continuous curve). On the other hand, the number of 

equilibrium branches increases with λ and it seems to be always three branches (two stable branches and 

one unstable) unlike the nonlinear behavior of pinned-pinned (Kiss, 2019) arches, where more than three 

branches can be found generally. 

Figures 6 and 7 illustrate the impact of load position on the dimensionless radial displacements W 

and inner forces (M/NR) along the length of the arch. The analysis considers a value of λ = 22.5, and a 

concentrated load is applied radially at various positions on the right half of the arch. The magnitude of 

the load corresponds to the upper limit of the same arch when the load is applied at the crown point 

(given by a dimensionless load Q = 6.33). With N being the second mode of the flexural buckling load 

of the fixed -fixed column in axial uniform compression and it has the following formula Ieπ
2/0.25S2. 
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Figure 6. Effects of the load positions on the dimensionless radial displacement 

 

It is obvious that the displacement at the load position has the maximum value because it directly 

experiences the applied load, leading to the most significant deformation within the arch structure. The 

difference in displacements and bending moments of the arch become greater as the load shifts away 

from the crown point. It turned out that the bending moment at the right end changes from positive to 

negative. 

 

Figure 7. Effects of the load positions on the dimensionless inner forces 

 

4. Conclusions 

This article focuses on the stability behavior of the fixed-fixed arches with the I-cross-section, which 

are subjected to a radial concentrated load. A one-dimensional beam model based on the Euler-Bernoulli 

hypothesis was used and the related static pre-buckling equilibrium equations were derived from the 
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principle of virtual work. It was found that the arch length/radius of gyration ratio S/r influenced the 

buckling load significantly, and the influence was much related to the included angle of the arch. 

Increasing the value S/r leads to an increase in the critical loads. It also turned out that when the load is 

placed far from the crown point, the buckling load experiences a decrease for a short while and after it 

increases. As a results, when the load is positioned close to the supports, the structure's ability to bear 

the load improves, and the buckling load can increase or the arch may not experience buckling. 

Additionally, it was shown that when S/r is smaller than a specific value, the arch does not buckle. There 

are only three equilibrium branches for the fixed- fixed arches (two stable and an unstable between 

them) when the buckling can occur.  
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