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Abstract 

A solar air heater (SAH) is a unique form of solar thermal collector that utilizes solar energy emitted 

from the sun to produce heated air. Various experimental and theoretical investigations have been 

undertaken to improve the poor thermal performance of SAHs. The difficulties related to these studies 

drew attention toward a reliable soft computing technique exemplified by the Artificial Neural Network 

(ANN) technique. The current work applied actual meteorological data from Miskolc City, Hungary, to 

an ANN model with the structure of a Multi-layer Perceptron (MLP) to forecast the energy performance 

of a V-corrugated solar-powered air heater. Seven input parameters and one output parameter make 

up the ANN structure, with a single hidden layer. For the purpose of selecting the most effective network 

for predicting output parameters, ten neurons have been assessed. The suggested ANN model was 

trained with 336 data sets using the Levenberg-Marquardt (LM) learning technique. The comparison of 

anticipated and real thermal performance values shows a very good agreement. The statistical error 

analysis showed that the optimal ANN model structure of 7-8-1 can reliably and accurately predict 

SAH’s thermal performance and thus it can save both time and cost. 

Keywords: solar air heater, thermal performance, artificial neural network, Levenberg–Marquardt 

algorithm, multi-layer perceptron 

1. Introduction 

The reliance on fossil fuels has resulted in several issues, including the  effects of greenhouse gases, the 

loss of the ozone layer, the consequences of acid rain, and air pollution. The limited quantities of this 

source of energy will cause a drastic depletion in the near future (Hamdan et al., 2016). Consequently, 

renewable and alternative sources of energy have been profoundly investigated. The most distinctive 

form of renewable energy is solar energy. It is an environmentally friendly, accessible, sustainable, and 

carbon-free energy source (Bazri et al., 2019). Solar systems can be categorized into three main types: 

which are solar thermal systems(ST), solar photovoltaic systems (PV), and dual (hybrid) systems Figure 

1. 
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Figure 1. Classification of solar energy systems. 

A solar thermal device is one such structure that is designed to harvest and convert the emitted heat 

energy from the sun into usable thermal energy using an essential component called a solar collector. In 

general, solar collectors are classified into liquid and air collectors depending on the type of heat transfer 

medium (Vengadesan and Senthil, 2020). 

The solar air collector (SAC) plays a crucial role in various applications such as space heating, 

agricultural drying, and other applications in industry (Hasan and Hriczó, 2023). The primary limitations 

of a SAC arise from the inadequate thermal conductivity and insufficient heat capacity of air. 

Consequently, this leads to a reduced heat transfer coefficient between the flowing air and absorber 

plate, resulting in a lower thermal efficiency of the collector. Recently, various numerical and 

experimental studies have been carried out by numerous researchers to ameliorate the thermal 

performance of SACs (Karim and Hawlader, 2004; Karsli, 2007; Benli, 2013). Experimental 

investigation of the thermal performance of solar collectors consumes both time and effort due to various 

measurements. Additionally, the numerical methods commonly employed for estimating the thermal 

performance of SACs often require substantial computational power and significant time to generate 

accurate predictions. Soft computing techniques can address these concerns while saving time and 

money. The Artificial Neural Network (ANN) has gained significant popularity across various 

disciplines, particularly in engineering applications. This is primarily due to its faster computation 

performance and excellent outcomes, making it a superior technique in comparison (Ghritlahre, 2018). 

Researchers have increasingly employed ANN in thermal engineering applications recently (Ghritlahre 

et al., 2021).  

In the current study, the ANN approach has been employed to predict the solar energy efficiency of 

a V-corrugated SAC. The ANN structure is a multi-layer perceptron (MLP) form with a single hidden 

layer, seven input parameters and one output parameter. The ANN model was assessed using real 

weather data from Miskolc City, Hungary. A total of 336 data sets are implemented in this ANN model. 

These data are divided into training, validation, and testing groups. The suggested ANN model 

underwent training using the Levenberg–Marquardt (LM) learning approach to forecast the thermal 

performance of SAC. In order to detect the suitable network for predicting output parameters, the study 

examined the range of 3-12 neurons in the hidden layer. Through error analysis, it has been found that 

a network with eight neurons in the hidden layer, utilizing the LM algorithm, yielded the best results. In 

addition, the study involved a comparison between the predicted and actual values of thermal 

performance. Furthermore, a statistical error analysis was conducted specifically for the predicted values 

of thermal performance. 
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2. Energy analysis of solar air heater 

The thermal efficiency ( 𝜂) of any solar thermal device is a key indicator of its performance. It is defined 

as the ratio of the useful heat gain (𝑄𝑢) to the total incident solar irradiation (𝐼𝑡) and it is calculated as 

(Duffie et al., 2020): 

𝜂 =
𝑄𝑢

𝐴𝑐 𝐼𝑡

 (1) 

where 𝐴𝑐 is the collector area and 𝐼𝑡 is the total incident radiation. 

The useful heat gain of a collector (𝑄𝑢) can be calculated by subtracting the overall thermal losses (𝑈𝑙) 

from the absorbed solar radiation (𝑆) as (Duffie et al., 2020): 

𝑄𝑢 = 𝐴𝑐𝐹𝑅[𝑆 − 𝑈𝑙(𝑇𝑖 − 𝑇𝑎)] (2) 

where 𝐹𝑅 is the collector heat removal factor, 𝑇𝑖 is the air inlet temperature, and 𝑇𝑎 is the ambient 

temperature. The absorbed solar energy by the collector (𝑆) can be calculated on an hourly basis using 

the following equation (Duffie et al., 2020): 

𝑆 = 𝐷𝑓 . 𝑆𝑓 [𝐼𝑏(𝜏𝛼)𝑒𝑏 + 𝐼𝑑(𝜏𝛼)𝑒𝑑 + 𝐼𝑟(𝜏𝛼)𝑒𝑟] (3) 

where, 𝐼𝑏, 𝐼𝑑, and 𝐼𝑟 are the beam, diffuse, and the ground reflected radiation, respectively which are 

briefly calculated by Ref. (Duffie et al., 2020). (𝜏𝛼)𝑒𝑏, (𝜏𝛼)𝑒𝑑, and (𝜏𝛼)𝑒𝑟 are the effective 

transmittance-absorbtance product for beam, diffuse, and ground reflected solar radiation, respectively. 

The dust factor 𝐷𝑓 which accounts for the reduction in absorber energy due to dust on the glass cover 

was assumed equal to (0.99), while the shade factor 𝑆𝑓 which accounts for the reduction in absorbed 

energy when some of the air heater structure intercepts solar radiation was assumed (0.98). The term 

𝑈𝑙(𝑇𝑖 − 𝑇𝑎) is the thermal losses with details of calculation given in Ref. (Duffie et al., 2020). The 

collector heat removal factor (𝐹𝑅) quantifies the ratio of the actual useful energy collected to the energy 

that would be collected if the entire absorber plate were at the temperature of the fluid entering the 

collector. It can be calculated as (Duffie et al., 2020): 

𝐹𝑅 =
𝐺 𝑐𝑝

𝑈𝑙

[1 − 𝑒𝑥𝑝 (
−𝐹′𝑈𝑙

𝐺 𝑐𝑝

)] (4) 

where, 𝐺 is the air mass flux, and 𝐹′ is the collector efficiency factor. 

3. Artificial Neural Network (ANN) 

In the field of artificial intelligence (AI), the most widely utilized technique is the artificial neural 

network (ANN) (Qazi et al., 2015). The structure of ANN is similar to that of the human nervous system 

and it works like a human brain. It aims to emulate the functions of the human brain in a computerized 

manner by learning the connections between input and output through training, where the network 

adjusts its parameters to optimize performance and improve its ability to make accurate predictions or 

classifications. Therefore, it operates like a black box model. The ANN’s general structure is composed 

of three major layers: an input layer, one or more hidden layers, and an output layer as shown in Figure 

2. 
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Figure 2. The structure of an artificial neural network. 

This structure is known as the multi-layered perceptron (MLP) model and it is the most popular one 

(˙I¸seri and Karlık, 2009). Each layer contains of several tiny, individually linked processing 

components known as neurons or nodes. The number of nodes in the input and output layers is dictated 

by the quantity of parameters present in those layers. Basically, ANN operates in two stages: the initial 

stage involves the learning process, while the subsequent stage involves storing data sets within 

interconnections referred to as weights. The ANN tool is commonly utilized to predict outcomes by 

considering factors such as income, the neural model structure, and the chosen learning approaches. 

Levenberg-Marquardt (LM), Polak-Ribiere Conjugate Gradient (CGP), One Step Secant (OSS), Scaled 

Conjugate Gradient (SCG), and BFGS Quasi-Newton (BFG) are only a few examples of learning 

algorithms that can be used for model training (Ghritlahre et al., 2021). LM is the standout algorithm 

among these options, as it is derived from the original Newton algorithm and is designed to solve 

minimization problems. It offers improved stability, efficiency, and rapid convergence while keeping 

the discrepancies between actual and expected values to a minimum. (Benli, 2013). 

ANN is a MATLAB simulation tool that stands out for its speed, simplicity, and ability to handle 

multiple values. It excels at solving intricate relationships between these values and providing accurate 

predictions, even when trained with limited data (Esen et al., 2009). 

4. Levenberg–Marquardt training algorithm 

The LM algorithm is a refined version of Newton’s method that effectively minimizes functions 

consisting of sums of nonlinear functions’ squares (Demuth and Beale, 2003). Its development aimed to 

overcome the limitations of both the Gauss-Newton (GN) method and the gradient descent algorithm, 

making it a valuable intermediate optimization technique. 

The GN method exhibits an impressive quick quadratic convergence, but it heavily relies on the 

accurate selection of weight values, which may not be practically feasible for real-world problems. In 

contrast, the gradient descent algorithm is less reliant on initial values but converges at a slower pace. 

However, its linear approach towards the minimum can sometimes lead to a sluggish convergence rate 

and insufficient convergence properties. 

The LM algorithm is a hybrid optimization technique that combines the positive attributes of GN and 

gradient descent algorithms. It is suitable for many real-world applications. This algorithm possesses 
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quadratic convergence, which means it approximates the GN method when it is in the vicinity of a 

minimum (but not too close) (Kollias and Anastassiou, 1989). To improve the accuracy of its parameters, 

LM uses gradient descent to enhance an initial guess. As it approaches the minimum value of the cost 

function, it transforms to the GN method. Once it reaches the minimum, it transforms back to the 

gradient descent algorithm to further improve accuracy. The update rule for the weights of the neural 

network according to GN method is (Kermani et al., 2005): 

∆𝜔 =  −[𝛻2𝐸(𝜔)]−1. 𝛻𝐸(𝜔) (5) 

where 𝛻2𝐸(𝜔) represents the Laplacian of the energy function and is also referred to as the Hessian 

matrix. The Hessian term can be written as: 

𝛻2𝐸(𝜔)  =  𝐽T(𝜔). 𝐽(𝜔)  +  𝑆(𝜔) (6) 

𝑆(𝜔)  =  ∑ 𝑒i(𝜔)

N

i=1

. 𝛻2𝑒i(𝜔) 

(7) 

where the term 𝑒i(𝜔) denotes the error vector of the neural network for pattern i and 𝐽(𝜔) represents the 

Jacobian matrix. 

Similar to the Taylor partial series expansion, for the GN method it is normally assumed that: 

𝑆(𝜔)  ≈  0 (8) 

The term 𝑆(𝜔)  includes the second derivatives of the network error concerning the network weights. 

Calculating this term is costly since the number of computations grows exponentially as the size of the 

network increases. By merging the equations above, we can formulate the update rule for the GN method 

as: 

∆(𝜔)  =  −[𝐽𝑇(𝜔). 𝐽(𝜔) ]−1. 𝐽𝑇(𝜔). 𝑒(𝜔) (9) 

Given the above introduction, the Levenberg–Marquardt modification to the GN method is as 

follows: 

∆(𝜔) = −[𝐽𝑇(𝜔). 𝐽(𝜔) + 𝜆𝐼]−1. 𝐽𝑇(𝜔). 𝑒(𝜔) (10) 

It’s worth noting that the expression above is an approximation of gradient descent, using a learning 

rate of 1/𝜆 when 𝜆 is large. Conversely, the algorithm approximates the GN method when 𝜆 is small. 

The LM algorithm is unique in its ability to adjust the 𝜆 parameter adaptively, enabling it to navigate 

between these two extremes effectively. This approach combines the strengths of both gradient descent 

and GN algorithms while avoiding their limitations. The adaptive adjustment of the 𝜆 parameter is 

similar to the adaptive learning rate modification in the back-propagation algorithm. When a step leads 

to an increased energy function, 𝜆 is multiplied by a constant 𝜆𝐼𝑛𝑐 > 1, moving the algorithm in the 

direction of the gradient descent algorithm for more stability. On the other hand, if a step leads to a 

decreased energy function, 𝜆 is multiplied by 𝜆Dec = 1/𝜆𝐼𝑛𝑐, moving the algorithm towards the GN 

algorithm and gaining more speed (Singh et al., 2007). 
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5. Modeling of ANN structure 

In the present work, the data is partitioned into three subsets during the modeling process: The training 

set is utilized to calculate and adjust the weights and biases of the network. The validation set is 

employed to monitor errors during the training phase. The MLP structure was devised specifically in 

order to anticipate the energy performance of SAH. For ANN structure development, seven parameters: 

date, time, solar radiation intensity, ambient temperature, mean plate temperature, outlet collector 

temperature, and air mass flow rate are used in the input layer. The output layer is dedicated to 

representing the energy efficiency of SAH. The three-layer network structure is shown in Figure 3. 

 

Figure 3. The structure of ANN in the present study. 

A total of 336 samples were collected for the MLP model used for prediction. In total, 70% of these 

samples were employed for training, 15% for validation, and the remaining 15% for testing purposes. 

Prior to inputting the data into the model, a normalization process was applied to ensure values fell 

within the range of 0 and 1. The selection of the number of neurons in the hidden layer was primarily 

determined through a trial and error approach. Accordingly, 3 to 12 neurons have been examined to 

assess any performance enhancements achieved by the proposed modeling system. 

6. Results and discussion 

For modeling purposes, a feed-forward neural network based on the back propagation algorithm was 

employed. This algorithm serves as a training function for the network, where it updates the weight and 

bias values using the LM back propagation optimization method (˙I¸seri and Karlık, 2009). The 

performance evaluation of each model with a range of 3 to 12 hidden neurons was conducted using 

statistical error analysis. Table 1 presents the results of the statistical analysis for the model. 
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Table 1. Statistical evaluation of MLP with 3-12 hidden neurons. 

LM MSE1 MSE2 MSE3 R1 R2 R3 Rt 

3 3.93E-04 4.35E-04 4.41E-04 0.99854 0.99813 0.99836 0.99844 

4 1.40E-04 1.55E-04 2.78E-04 0.99948 0.99943 0.99872 0.99938 

5 4.38E-06 5.38E-06 4.94E-06 0.99998 0.99997 0.99998 0.99998 

6 9.63E-05 1.24E-04 1.32E-04 0.99963 0.99956 0.99944 0.9996 

7 3.15E-05 5.91E-05 5.88E-05 0.99988 0.99982 0.9998 0.99985 

8 2.99E-06 3.20E-06 4.53E-06 0.99999 0.99999 0.99998 0.99999 

9 4.11E-06 4.90E-06 1.39E-05 0.99998 0.99998 0.99995 0.99998 

10 4.81E-06 1.06E-05 8.79E-06 0.99998 0.99996 0.99997 0.99998 

11 1.04E-05 1.97E-05 1.29E-05 0.99996 0.99993 0.99995 0.99995 

12 1.78E-05 6.45E-05 3.94E-05 0.99993 0.99976 0.99986 0.99989 

 

It can be observed that the MLP model with 8 hidden neurons exhibited the lowest mean square error 

(MSE) and the highest correlation coefficient (R). Training, validation, testing, and overall period 

correlation coefficients were exceptionally high, with values of 0.99999, 0.99999, 0.99998, and 0.99999, 

respectively. These values surpassed those of other models with varying neuron counts, indicating 

superior performance. Additionally, the model achieved the lowest MSE values for training, validation, 

and testing, measuring 2.99E-06, 3.20E-06, and 4.53E-06, respectively. 

In Figure 4, the performance curve of a 7-8-1 neuron model is illustrated. The graph demonstrates a 

consistent decrease in MSE values as the number of epochs increases. The training process concluded 

at epoch 252 since it had the lowest MSE among the validation sets. Notably, the most accurate value 

of the predicted results from the Artificial Neural Network (ANN) was obtained at epoch 258, which 

exhibited a remarkably minimal MSE and indicated the best validation performance. 

 

Figure 4. Performance curve of 7-8-1. 

The histogram of the errors is shown in Figure 5. It reflects the prediction accuracy of the ANN 

model. The histogram confirms that a significant portion of the errors are concentrated around the zero- 
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point error line. This observation further strengthens the notion that the ANN model accurately predicted 

the performance of SAH. 

 

Figure 5. Histogram of errors in proposed MLP of 7-8-1. 

Figure 6 displays the regression plot of the model with a 7-8-1 structure. The regression coefficient 

(R) values for training, validation, testing, and the overall process are found to be optimal. The circles 

in this diagram indicate data points, while the colored lines reflect the best match between outputs and 

targets. Notably, the outputs are perfectly aligned with the targets, indicating that the ANN’s MLP 

structure can forecast the performance of SAH with a high level of accuracy. 
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Figure 6. The Regression plot of an artificial neural network. 

The comparison between actual (target) and predicted (output) thermal efficiency is illustrated in 

Figure 7. Additionally, the discrepancy between these two values is displayed in the form of a bar chart 

in Figure 8. The maximum error value is 0.0066 and the minimum error value is -0.0084, which are 

recorded at sample numbers of 217 and 316, respectively. 
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Figure 7. Comparison between actual and anticipated thermal performances. 

 

Figure 8. Individual error bar graph. 
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7. Summary 

In this paper, an ANN model was built using the LM learning technique and effectively used to forecast 

the energy efficiency of a V-corrugated SAH. In total, 336 data sets were employed to examine the 

neural model. The neural model utilized seven parameters in the input layer and one parameter in the 

output layer. In the hidden layer, various numbers of neurons ranging from 3 to 12 were tested. By 

performing statistical error analysis, it was identified that the optimal number of neurons in the hidden 

layer for the neural model is 8, as evidenced by the lowest mean square error (MSE) and the highest 

correlation coefficient (R) among all evaluated neurons. Moreover, the statistical error analysis confirms 

the ANN model’s dependability and correctness. 

According to the results obtained, our 7-8-1 ANN model possesses the capability to precisely 

estimate the intricate relationship between input and output parameters. The robustness of this ANN 

model in predicting the energy efficiency of SAH is evident from the histogram and regression plots, 

further validating its effectiveness. 

In view of the high level of precision achieved in anticipating the energy efficiency of SAH, the 

proposed MLP neural network model can be applied to properly forecast the thermal performance of the 

SAH systems. Therefore, it can be concluded that our 7-8-1 ANN model can be used as an alternative 

way since this technique requires less time and a number of tests as compared to other experimental and 

analytical approaches that are expensive and entail sophisticated governing formulas. This approach 

provides an easy and cost-effective method for manufacturers to simulate SAH, saving both time and 

expenses. 
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