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Abstract

The purpose of this paper is to study the state of stress and displacement field of a curved beam with
non-uniform cross section. The material of the beam is non-homogeneous isotropic linearly elastic.
The curved beam is subjected to couple moment at the ends of geometry. Utilizing analytical closed
form solutions are obtained for the radial and circumferential stresses and for the displacements and
cross sectional rotation. A numerical example illustrates the applications of the derived formulae.

Keywords: curved beam, non-homogeneous, pure bending, non-uniform, normal stresses, radial dis-
placement

1. Introduction, governing equations

Structural curved elements such as bars, beams and curved panels are often used in different engineer-
ing branches. These type of curved elements are frequently encountered in defense industry, aviation
or as basic structural components of bridges. The aim of this paper is to give an analytical method to
the analysis of mechanical properties of curved beam made of hon-homogeneous isotropic and linearly
elastic materials. The cross section of the curved beam is a rectangle. The geometry of the considered
curved beam with the loads acting on it is shown in Fig. 1. The thickness of the curved beam is denot-
ed by b. The computations are made in cylindrical coordinate system Org, r means the radial coor-

dinate and the polar angle is ¢. The unit vectors of the cylindrical coordinate system Or¢ are e, and
e, as shown in Fig. 2.

The solution of the pure bending problem is based on the following displacement field (Ecsed and
Dluhi, 2005)
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Figure 1. The geometry of the curved beam with non-uniform cross section
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Figure 2. The unit vectors of the cylindrical coordinate system
u=ue, +ve, +we,,
4=Up), V=1de)+V(p), Vip)=' (2, w=0.
The corresponding strains are (Sokolnikoff, 1956; Slaughter, 2002)
&=6=0, %, =V, =7, =0,

2,
£ :1 d—U+U +d—¢.
7 r( de? de

)
)

©)

(4)

This type of strain field satisfies the requirements of the Euler-Bernoulli beam theory (Barber,
2011). All the shearing strains Vepr Vizr Vor and the normal strains ¢,, ¢, vanish, only the normal

strain ¢, is different from zero. Application of the strain-displacement relations gives
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o, (r¢) = Es, - E[Mﬁ—ﬂ, ©)
r do
where
d?U

In formula (5) E is the modulus of elasticity and o, denotes the circumferential normal stress.
The domain B occupying the composite curved beam consists of three parts B=B, UB, UB,

Blz{(r,go)|aiera2, —aZS(DSaZ}, (7
B,={(r.¢)la—c<r<a, —o<p<a}, ()
B,={(r,¢p)|a, <r<a,+c, —o <p<a}. 9)

The modulus of elasticity in the beam component B, is E; and the value of modulus of elasticity in
the beam components B, and B, is E, (Fig. 1). The following cross sectional properties are intro-
duced (Ecsedi and Dluhi, 2005)

A =(a,—a)b, A =bc, A =bc, (10)
+a c c

Plzaiz 2, p2:a1_§v p3=a2+§, (11)
R=2"% p-__¢ p-__° (12)

In(aZ] In( 4 j In (az +CJ

8 8 —C &
The circumferential normal stress in B, is
W(p) , d¢

o1, (rp) = El[T—’_Ej (13)

furthermore o,, and o, denote the circumferential normal stress in B, and B,. The formulae of
those stresses are

(v =5, 2, 20 19
03 (19) =E, [W I(f’) +S—Z]. (15)

In the beam component B, the normal stress resultant N, is
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N(p) = [ 03, 0A=E,A (WFE‘/’) + @(@J, (16)
A 1

where
d
o) -5 (17)
4
The couple stress resultant M, in the beam component B, is obtained as

M, (p) = [ roy,dA=E A (W (p) + pO(9)). (18)
A

In the beam components B, and B, the normal stress resultants N, and N, are as follows

N,(p) = [ 3, 0A=E, A, (Wé‘/’) v ®(¢)j, (19)
A 2

Ny(g) = [ 05, 0A=E,A (WFE")) + @(q))j. (20)
A, 3

The formulae of the couple stress resultants in the beam components B, and B, are

M, (9) = [ 1oy, dA=E, A, (W (p) + p,0(0)), (21)
A

My (@) = [ ros,dA=E,A (W (p) + p;,0(9)), (22)
A

According to the definitions of function W (¢) and ®(¢) which are

W<¢)=j—‘i+u, o) =2 (23)
7 do

the values of function U =U () and ® =O(¢p) are depend on the polar angle ¢ as

U=U(p), ©=0.(p), ¢=¢(p) for —a,<p<-a, (24)
U=Uy(p), ©=0,(p), ¢=¢(p) for —a<p<a, (25)
U=Us(p), 0=05(p), ¢=¢(p) for o <p<a, (26)

According to equations (24), (25) and (26) the function W, =W, (¢) (i=1,2,3) is defined as (Fig.
1)
2

d°U
W1(¢)) = dQ)Zl +U1(¢7), _aZ S¢)S _ala (27)
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2

d?U

W2(¢)=ﬁ+uz(¢’)a -y spsa, (28)
d’U,

W;(p) = P +Uz(p), o <9p<a,, (29)

The normal force stress resultant N =N(¢) vanishes in all cross section and the bending moment
is constant that is M (¢) = M,,. From the statements mentioned above it follows that

N(?):AiEi[V%WL@l((P)j:O' 0, SQP=-—0, (30)
M(p)=M, =A1E1(W1((P)+p1®1((0)), —0, SQPs<-0, (31)
N(p) - A_LE{MMZ(@} %E{szw)}
R, R,
(32)
+AE; [V\%-F @2((p)J =0, — gy <¢p<a,
3
M(p) =M, = AE, (Wz (@) + pl®2((/7))+ AE, (Wz (o) + ,02®2((P))+ (33)
+AE; (Wz (@) + P3®2(¢’))v -y <@p<a,
N(¢)=A&E1(V%+®3(¢)]:O’ oy <p=a,, (34)
M((P)ZMO:A1E1(W3((0)+101®3(¢’))1 Q=P (35)
The solution of the system of equations (30-35) for W, (¢) and ©,(¢) (i=12,3) is as follows
le—&, @1:L' -, <p<—a, (36)
AE (p—R) AE (n—R)
WZZ—E1AE+E2A2+E3A3 My, —<p<a, (37)

Q

(ElAi + E2A2 + E3A3)2 (38)
EA , EA  EA |
RR R R

Qz[EA+ Exfy , BsA

R, R R J EA0+EAp, +EAp; -
2 3
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M,

0, = ( )2, -~ <9<, (39)
EA +EA +EA
+E +E - 2 3
EiAipl 2A2p2 3A3p3 E1A1+E2A2 +E3A3
R, R, Ry
M,R
Wy=—021 _ g <p<a, (40)
: A1E1(,01_R1) ' ?
M
0 , 4y <p<a,. (41)

®=—"0
: AiEl(pl - Rl)

It must be remarked that W,, ®, (i=1,2,3) do not depend on the polar angle.

2. Determination of circumferential and radial normal stresses

2.1. Circumferential normal stress

The circumferential normal stress o, can be computed in the domain —a, <p<-a;, 8 <r<a, as

0, (1) = EI(V%+ @J (42)

and in the domain o, <@ <e,, a <r<a, the expression of the circumferential normal stress is as
follows

03, (1) = El(‘%mg} (43)

The o,,(r) can be obtained in —a; <@ <¢, from the following formula

W (44)
+H (r—az)Ez(—er@zj, a,<r<a,
r
Here the function H(x) is the Heaviside function.

2.2. Radial normal stress
The radial normal stress o, is computed by the application of stress equilibrium equation

d

—(rar)—% =0. (45)

dr
Combination of equations (42), (43) and (44) with equation (45) yields
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o, (r) = Ei(mlnL+®l(l—ﬁj], —a, <p<-a, (46)
rooa r
oy (r)=E, Yt o (1—ij o <p<a (47)
3r rog e P ase=a

In the three layered beam component the following formula can be used to evaluate the radial nor-
mal stress o, (r)

02r(r)=(H (r-a;)-H (r—ai))albr(r)+(H (r-a)-H (r—az))azm(r)+

(48)
+H(r—a,)oq, (1), —g<p<a,
where

alb,(r)zEz(%ln : +®2(1—%+%)], (49)

W. r a a
Oy (M) =E; (Tzlna"‘@z (1_T1D+Tlalbr (&), (50)

W, r a a
-5 " L0, (1-2 | 20 ), &)

2

In the presented numerical example the numerical value of Von-Mises stress is computed by the

use of following formula
oo (r)=.Jo? —GrG(ﬂ-f-O';. (52)

3. Formulae of the radial and circumferetial displacements

To obtain the radial displacement the undermentioned ordinary differential equation will be used

d’u,
W +U (@) =W,, —a,<p<-a, (53)
d’u,
VJFUz((P):W’ -y <p<a, (54)
d’U,

dgoz +U (@) =W;, oy <¢<a,, (55)

with the following boundary conditions
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U,(0)=0, [dUzj =0.
do ),

It is evident that
U, () =U, (-a),
Us(ey) =U, (),
Vi(—a) =V, (),

Vi(a) =V, (),

(56)

(57)
(58)
(59)
(60)

since the function U(p) and V () :3—U are continuous on the whole interval of ¢ (-, <@p<a,).
4

Simple computation gives
U,(p) =W, +c cosp+C,sing, —a, <¢p<-q,
Vi(p)=—Csinp+cC,C080, —a, <@p<-q,
U,(@) =W, (1-cosg), —a <p<a,
Vo(@)=W,sing, —o <p<a,
U,(p) =W, +c;cosp+c,sing, o <@p<a,,
V;(p) =—C;sinp+c,C08¢0, o <p<a,.
In equations (61-66)
¢, = (W, -W, )cosey —W,,
¢, =(W, W, )sina,
c; =(W, —W; )cosey —W,,
¢, = (W, —W,)sine,.
The expression of the radial displacement U =U () is as follows
U(p) =(H (go+a2)— H (go+a1))Ul(g0)+(H ((p+a1)— H (¢—al))U2((p)+
+H ((p—al)US((p), -, <@p<la,.

The cross sectional rotation is obtained from the following equations

é(p) =

((p+al)—®2a1, -, Lp<—-a,

My
AR (n-R)
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(66)

(67)
(68)
(69)

(70)

(71)

(72)



Ecsedi, I, Lengyel, A. J., Baksa, A., Gonczi, D. Pure bending of curved beam

() =00, —<p<a, (73)
%(w)zﬁ(w_%%f@z%’ o <p<a,. (74)

4. Numerical example

The following data are used in the numerical example: a =0.05m, a,=0.1m, c¢c=0.025m,
a,=a, —c=0.025m, a,=a,+c=0.125m, b=005m, o, =7/6, a,=x/3, E =1.45x10" Pa,
E, =2x10" Pa, E;=2x10" Pa, M, =3000 Nm.

The plot of o,(r) as a function of the radial coordinate r is shown in Fig. 2. The radial normal
stress o, (r) as a function of r is presented in Fig. 3. The Von-Mises stress o, (r) is given in Fig. 4
as a function of radial coordinate r. The graph of the circumferential normal stress o,,(r) is shown
inFig. 5 for a; <r<a,, —o <@<q. The plot of the radial normal stress o,,(r) is given in the Fig.
6 for a;<r<a,, -og<@<q. The Von-Mises stress o,(r) is presented in Fig. 7 for

a; <r<a,, —o <@<o. The graphs of the radial displacement and cross sectional rotation are shown
in Fig. 8 and Fig. 9.

o, (r) [Pa]
l’p 8
1,x10

5,%10°
r [m]
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Figure 3. The plot of the o3, (r) function
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Figure 4. The plot of the o;,(r) function
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Figure 5. The Von-Mises stress function o, (r)
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Figure 6. The circumferential normal stress o,,,(r) inthe domain a; <r<a,, - <p<a
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o, (r) [Pa] s o]

Figure 7. The radial normal stress o,,(r) inthe domain a; <r<a,, -4 <¢<a
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Figure 8. The Von-Mises stress o,(r) inthe domain a; <r<a,, - <¢<a
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Figure 9. The plot of the U(¢) radial displacement function
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Figure 10. The plot of the ¢(¢) cross sectional rotation function

5. Conclusions

Paper deals with the static bending problem of isotropic non-homogeneous curved beam whose cross
section is non-uniform. The curved beam is loaded by bending moments at its end cross section. An
analytical model is developed to compute the stresses and displacements. The obtained result can be
used as benchmark solution to check the solution come from different numerical methods such as fi-
nite differences, finite element method, etc.
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