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Abstract 

The purpose of this paper is to study the state of stress and displacement field of a curved beam with 

non-uniform cross section. The material of the beam is non-homogeneous isotropic linearly elastic. 

The curved beam is subjected to couple moment at the ends of geometry. Utilizing analytical closed 

form solutions are obtained for the radial and circumferential stresses and for the displacements and 

cross sectional rotation. A numerical example illustrates the applications of the derived formulae. 

Keywords: curved beam, non-homogeneous, pure bending, non-uniform, normal stresses, radial dis-

placement 

1. Introduction, governing equations 

Structural curved elements such as bars, beams and curved panels are often used in different engineer-

ing branches. These type of curved elements are frequently encountered in defense industry, aviation 

or as basic structural components of bridges. The aim of this paper is to give an analytical method to 

the analysis of mechanical properties of curved beam made of non-homogeneous isotropic and linearly 

elastic materials. The cross section of the curved beam is a rectangle. The geometry of the considered 

curved beam with the loads acting on it is shown in Fig. 1. The thickness of the curved beam is denot-

ed by b . The computations are made in cylindrical coordinate system Or , r  means the radial coor-

dinate and the polar angle is  . The unit vectors of the cylindrical coordinate system Or  are re  and 

e  as shown in Fig. 2.  

The solution of the pure bending problem is based on the following displacement field (Ecsed and 

Dluhi, 2005) 
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Figure 1. The geometry of the curved beam with non-uniform cross section 

 

Figure 2. The unit vectors of the cylindrical coordinate system 
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The corresponding strains are (Sokolnikoff, 1956; Slaughter, 2002) 

 0, 0,         r z r rz z  (3) 

 
2

2

1 d d
.

dd







 
   

 

U
U

r
 (4) 

This type of strain field satisfies the requirements of the Euler-Bernoulli beam theory (Barber, 

2011). All the shearing strains  r ,  rz ,  z  and the normal strains  r ,  z  vanish, only the normal 

strain   is different from zero. Application of the strain-displacement relations gives 
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In formula (5) E  is the modulus of elasticity and   denotes the circumferential normal stress. 

The domain B  occupying the composite curved beam consists of three parts 1 2 3  B B B B  

  1 1 2 2 2( , ) | , ,        B r a r a  (7) 

  2 1 1 1 1( , ) | , ,         B r a c r a  (8) 

  3 2 2 1 1( , ) | , .         B r a r a c  (9) 

The modulus of elasticity in the beam component 1B  is 1E  and the value of modulus of elasticity in 

the beam components 2B  and 3B  is 2E (Fig. 1). The following cross sectional properties are intro-

duced (Ecsedi and Dluhi, 2005) 
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The circumferential normal stress in 1B  is 
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furthermore 2  and 3  denote the circumferential normal stress in 2B  and 3B . The formulae of 

those stresses are 
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In the beam component 1B  the normal stress resultant 1N  is 
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The couple stress resultant 1M  in the beam component 1B  is obtained as 
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In the beam components 2B  and 3B  the normal stress resultants 2N  and 3N  are as follows 
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The formulae of the couple stress resultants in the beam components 2B  and 3B  are 
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According to the definitions of function ( )W  and ( )  which are 
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the values of function ( )U U  and ( )  are depend on the polar angle   as 
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According to equations (24), (25) and (26) the function ( )i iW W  ( 1,2,3)i  is defined as (Fig. 

1) 
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The normal force stress resultant ( )N N  vanishes in all cross section and the bending moment 

is constant that is 0( ) M M . From the statements mentioned above it follows that 
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The solution of the system of equations (30–35) for ( )iW  and ( )i  ( 1,2,3)i  is as follows 
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It must be remarked that iW , i  ( 1,2,3)i  do not depend on the polar angle. 

2. Determination of circumferential and radial normal stresses 

2.1. Circumferential normal stress 

The circumferential normal stress   can be computed in the domain 2 1      , 1 2 a r a  as 
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and in the domain 1 2    , 1 2 a r a  the expression of the circumferential normal stress is as 

follows 
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The 2 ( ) r  can be obtained in 1 1      from the following formula 
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Here the function ( )H x  is the Heaviside function.  

2.2. Radial normal stress 

The radial normal stress  r  is computed by the application of stress equilibrium equation 

   0.  r

d
r

dr
 (45) 

Combination of equations (42), (43) and (44) with equation (45) yields 
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In the three layered beam component the following formula can be used to evaluate the radial nor-

mal stress 2 ( ) r r  
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In the presented numerical example the numerical value of Von-Mises stress is computed by the 

use of following formula 

 2 2
0 ( ) .       r rr  (52) 

3. Formulae of the radial and circumferetial displacements 

To obtain the radial displacement the undermentioned ordinary differential equation will be used 
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with the following boundary conditions 
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In equations (61–66) 
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The expression of the radial displacement ( )U U  is as follows 
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The cross sectional rotation is obtained from the following equations 
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4. Numerical example 

The following data are used in the numerical example: 1 0.05 m,a  2 0.1 m,a  0.025 m,c  

3 1 0.025 m,  a a c  4 2 0.125 m,  a a c  0.05 m,b  1 / 6,   2 / 3,   11
1 1.45 10 Pa, E  

11
2 2 10 Pa, E  11

3 2 10 Pa, E  0 3000 Nm.M  

The plot of 1 ( ) r  as a function of the radial coordinate r  is shown in Fig. 2. The radial normal 

stress 1 ( ) r r  as a function of r  is presented in Fig. 3. The Von-Mises stress 1( ) r  is given in Fig. 4 

as a function of radial coordinate .r  The graph of the circumferential normal stress 2 ( ) r  is shown 

in Fig. 5 for 3 4 , a r a  1 1.      The plot of the radial normal stress 2 ( ) r r  is given in the Fig. 

6 for 3 4 , a r a  1 1.      The Von-Mises stress 2 ( ) r  is presented in Fig. 7 for 

3 4 , a r a 1 1.      The graphs of the radial displacement and cross sectional rotation are shown 

in Fig. 8 and Fig. 9. 

 

Figure 3. The plot of the 1 ( ) r  function 
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Figure 4. The plot of the 1 ( ) r r  function 

 

Figure 5. The Von-Mises stress function 1( ) r  

 

Figure 6. The circumferential normal stress 2 ( ) r  in the domain 3 4 , a r a  1 1      
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Figure 7. The radial normal stress 2 ( ) r r  in the domain 3 4 , a r a  1 1      

 

Figure 8. The Von-Mises stress 2 ( ) r  in the domain 3 4 , a r a  1 1      

 

Figure 9. The plot of the ( )U  radial displacement function 
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Figure 10. The plot of the ( )   cross sectional rotation function 

5. Conclusions 

Paper deals with the static bending problem of isotropic non-homogeneous curved beam whose cross 

section is non-uniform. The curved beam is loaded by bending moments at its end cross section. An 

analytical model is developed to compute the stresses and displacements. The obtained result can be 

used as benchmark solution to check the solution come from different numerical methods such as fi-

nite differences, finite element method, etc. 
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